
FLARe: a Fault-tolerant Lightweight Adaptive Real-time
Middleware for Distributed Real-time and Embedded

Systems

Jaiganesh Balasubramanian
Department of Electrical Engineering and Computer Science

Vanderbilt University, Nashville, TN 37203
jai@dre.vanderbilt.edu

ABSTRACTAn important lass of distributed real-time and embedded(DRE) appliations onsists of periodi soft real-time tasks.Timeliness and availability are essential requirements forthe orret operation of these appliations. Conventionalsolutions to these hallenges tend to use non-adaptive andload-agnosti fault tolerane solutions within a real-time sys-tem, whih often end up making ad ho fault tolerane (e.g.,failover targets) deisions that an further overload alreadystrained resoures. Potential adverse onsequenes of thesead ho ations inlude exessive delays for real-time tasksand asades of resoure failures.This paper presents FLARe, whih is a middleware thatprovides adaptive fault tolerane for DRE systems. FLARe'sresoure management infrastruture monitors various sys-temmetris, inluding CPU utilization, and makes informed,load-aware, and adaptive deisions about the appliation'sfault tolerane on�gurations (e.g., failover targets, physialplaement of replias). FLARe also employs deision mak-ing algorithms to adapt these deisions at runtime as faultsour and provides trade-o�s between timeliness, availabil-ity, and performane as resoures get overloaded, removed,or added.
1. INTRODUCTIONMany distributed real-time and embedded (DRE) sys-tems, suh as shipboard omputing systems [26℄, onsistpredominantly of soft real-time tasks that must ontinue toprovide real-time quality of servie (QoS) even when hard-ware and software faults our. For example, the behaviorof the objet traking subsystem of a shipboard omputingenvironment is in�uened by external sensor readings. Theobjet traking system should be available and responsiveeven if proesses or proessors fail. Likewise, it should on-tinue to provide timely response even when system workloadvaries signi�antly at runtime, e.g., due to faults, dynamitask arrival, or intrusion detetion.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MDS 2007, November 26-30, 2007, Newport Beach, CA, Canada
Copyright 2007 ACM 978-1-59593-933-3/07/11 ...$5.00.

Conventional fault tolerane solutions repliate servers thatmay fail independently, giving lients a robust servie thatappears as though it was provided by a single server. Twoommon approahes for maintaining replias are ative andpassive repliation. In ative repliation, a olletion ofservers maintains idential state, and all lient requests areexeuted atomially in all of the replias using a group om-muniation servie. If a server fails other servers ontinueto exeute the protool, so lients are not a�eted by thefailures of individual replias.Although ative repliation has been used for some hardreal-time systems [17℄ it is expensive for systems that do notrequire strong state onsisteny or hard real-time guaranteesdue to its high resoure usage [31℄. For suh systems, pas-sive repliation may be preferred, where one replia�alledthe primary�handles all lient requests, and bakup repli-as reeive state updates from the primary. If the primarydies, a bakup is eleted to beome the new primary.To deouple appliation logi from dealing with the om-plexities of the di�erent fault tolerane mehanisms, mid-dleware suh as CORBA, and J2EE, alleviate many inher-ent and aidental omplexities in DRE appliation integra-tion with QoS provisioning mehanisms, and have beomeessential to the development and integration of DRE sys-tems. Speialized middleware spei�ations (for e.g., Fault-Tolerant CORBA (FT-CORBA) [21℄, and Real-Time CORBA(RT-CORBA) [22℄) have been adopted to provide real-timeand fault tolerane apabilities to DRE appliations usingthe passive repliation sheme.These middleware spei�ations provide appliations witha transparent way to on�gure the fault tolerane (e.g., repli-ation degree, hekpointing interval) and fault reovery (e.g.,address of next primary) mehanisms to meet an applia-tion's fault tolerane requirements. For example, middle-ware keeps a list of replia referenes, and automatiallyredirets lients to one of the replias (e.g., hosen in aroundrobin fashion) in ase of the primary failure. However,it is likely that those fault tolerane and reovery on�gura-tions are not valid at runtime beause of resoure failures.This auses delays in reovering from failures whih is notaeptable for real-time tasks to maintain their deadlines.Similarly, as system resoures fail at runtime, it may notbe possible to operate all the replias at the deployment-time fault tolerane on�guration, and trade-o�s need to bemade between availability of resoures and strength of faulttolerane.Current solutions lak runtime deision making algorithms

working in onjuntion with fault-tolerant middleware tomake fault tolerane and reovery on�guration deisionsin a resoure-aware manner. Spei�ally, existing solutionssu�er from the following drawbaks:Lak of support for timely and appropriate lientfailover. Current middleware support [23, 25, 1, 24℄ on�g-ures passive repliation reovery strategies in a stati fash-ion, whih allows timely lient rediretion. However, afterfailover, lient-pereived response times depend on the loadon the proessor hosting the new primary. Sine the failovertargets are hosen statially, and without the knowledgeof the urrent system resoure availability, lient failoversould ause system pollution, where di�erent proessor fail-ures aused all the lients to failover to the same proessor.This ould lead to asading resoure failures seriously af-feting the real-time and fault tolerane apabilities of thesystem. DRE appliations need support from middlewarefor timely and appropriate failover.Lak of support for reon�guration as part of thereovery proess. passive repliation sheme relies on ap-propriate physial plaement of replias to handle failures,and reovers by redireting lients to one of the deployedreplias. So, even an optimal initial distribution might notsu�e as tasks might be added to the system at runtimeausing (1) inrease in resoure utilization in ertain proes-sors, and (2) load imbalane amongst the proessors in thesystem. As failures followed by lient failovers happen, thisload imbalane inreases ausing some of the tasks to missreal-time deadlines. DRE appliations need middleware andalgorithmi support for fast reon�gurations at runtime tohandle load imbalanes and overloads aused by resourefailures and subsequent lient failovers. Existing middle-ware support for adaptive fault tolerane [16, 15, 12℄ do notsolve suh issues.Lak of support for making trade-o�s between real-time performane and availability requirements. Whenboth real-time and fault tolerane must be satis�ed withinthe same system, it is rather likely that trade-o�s [19℄ aremade during the omposition. For example, in onditionswhere overloads annot be ontrolled by migration, perfor-mane needs to be ompromised by operating tasks withimplementations whih onsume less resoures but give aperformane lower than the possible apaity. A better so-lution ould be to stop ertain implementations, and runthe remaining implementations in the same performane. Arun-time deision making unit with support from utility op-timization algorithms ould make the best possible deisionto be implemented by the middleware. However, urrentfault tolerane solutions [20, 10, 1℄ do not provide suh al-gorithmi support to work in onjuntion with middleware-based solutions to make trade-o�s between performane andfault tolerane apabilities.The goal of our researh is to devise novel tehniquesand middleware platform servies that provide real-time andfault tolerane apabilities to soft real-time DRE applia-tions while using passive repliation shemes. In partiu-lar, e�etive passive repliation shemes for DRE systemsrequire innovations in (1) timely failover, (2) adapting faulttolerane on�gurations (e.g., to determine failover targets)in response to hanging resoure availabilities, (3) adaptivereon�guration of the system to reover from proessor fail-ures and overloads aused by subsequent lient failovers, and(4) seleting and applying trade-o�s amongst fault tolerane,

real-time, and performane apabilities of the appliationwhile reovering from resoure failures, as desribed below.What DRE systems need, therefore, are a ombinationof middleware and algorithmi apabilities that integratereal-time and fault tolerane by design, and are adaptiveand load-aware so that these solutions an maintain softreal-time performane in the fae of failures. This paperdesribes FLARe, whih is a middleware that provides anadaptive, fault tolerane solution for Real-time CORBA [22℄appliations. Spei�ally, FLARe uses the following noveltehniques to provision real-time and fault tolerane apa-bilities to DRE appliations:
• Adaptive, load-aware, and timely lient failover teh-niques, where deision-making algorithms determinefailover targets based on up-to-date utilization esti-mates, and these targets are proatively updated withthe middleware managing lient rediretion, so that re-overy an be fast, transparent, appropriate, and helpmaintain timely response to lient's requests after afailover.
• Dynami reon�guration, and load shedding tehniques,where adaptive reon�guration and overload manage-ment algorithms (1) work with middleware rediretionmehanisms to proatively (before the ourrene of afailure) rediret lients to appropriate targets to han-dle overloads aused by lient failovers, and (2) assistin reassigning tasks from failed proessors to fault-freeproessors to maintain repliation degree requirementsof the appliations.
• Utility optimization tehniques, where fault toleraneon�gurations (e.g., hekpointing, repliation degree,appliation implementations) are hanged dynamiallyin response to hanging resoure availabilities to trade-o� performane and availability requirements of appli-ations.

2. DESIGN OF FLAREThis setion desribes the design of the FLARe middle-ware. We desribe its repliation style, real-time systemmodel, and fault model, as well as its software design.
2.1 FLARe’s Real-time System ModelFLARe supports DRE systems onsisting predominantlyof soft periodi real-time tasks, suh as those found in ship-board omputing and intelligene, surveillane, and reon-naissane systems.1 We assume the soft periodi tasks aredeployed on a RT-CORBA [22℄ infrastruture, suh as thatprovided by the TAO middleware (www.dre.vanderbilt.edu). These tasks are sheduled on di�erent nodes of theDRE system, with tasks on eah node sheduled using RateMonotoni Sheduling (RMS) [18℄.The lient-side request rate de�nes the priority at whihthe task will exeute at the server. We therefore use RT-CORBA's lient_propagated priority model, whih al-lows the lients to ditate the priority at whih the servershave to servie their requests. Sine a single server pro-ess may handle multiple lients with di�erent priorities,we also use the RT-CORBA thread pool with lanes feature,1In suh systems we assume that eah node has a single pro-essor and hard real-time tasks are provisioned separately,with dediated hardware and software, and as suh are out-side the sope of this disussion.

whih partitions the available number of threads aross dif-ferent priorities, so that the server an simultaneously servemultiple lient requests with multiple priorities. While oururrent implementation employs RMS, our middleware ar-hiteture an easily inorporate other sheduling poliies,suh as Maximum Urgeny First [27℄ (MUF).
2.2 Fault ModelOur researh fouses on a fail-stop model of failures, whereproesses or proessors an fail and the remainder of thesystem an ontinue exeuting. We assume that proessorfaults are hard faults, i.e., when a proessor has a fault itstops permanently. These types of faults may our dueto aging or aute damage, though in domains like shipboardomputing aute damage is the main onern sine hardwareomponents are periodially replaed through routine main-tenane. Considering unpreditable behavior of proesses orproessors is beyond the sope of our researh.We assume that networks provide bounded ommunia-tion latenies and do not fail. This assumption is reason-able for ertain DRE systems, suh as shipboard omputing,where nodes are onneted by highly redundant high-speednetworks. Relaxing this assumption through integration ofour middleware with network level fault tolerane tehniquesis an area of future work.
2.3 FLARe’s Middleware ArchitectureWe now desribe how FLARe is designed to provide thekey apabilities as desribed in Setion 1. Figure 1 depitsthe arhiteture of the FLARe. We �rst desribe the respon-sibilities of the major omponents of FLARe. Then we de-sribe how the major middleware omponents work togetherwith di�erent runtime algorithms to provide the apabilitiesdesribed in Setion 1.

Figure 1: FLARe Middleware ArhitetureMiddleware repliation manager. FLARe's middle-ware repliation manager provides interfaes for registeringand managing information about the server objets and theirbakup replias. The purpose of the middleware repliationmanager is to manage the fault tolerane and reovery re-quirements of the appliations, and use them as a blueprintto adapt on�gurations at runtime in response to hanging

resoure availabilities.Resoure Manager. The resoure manager ats as abridge between the deision making algorithms and the mid-dleware implementing the deisions of the deision makingalgorithms. The funtion of the resoure manager is to useadaptive resoure management algorithms to make runtime,resoure-aware, QoS-aware deisions about the on�gura-tion of the fault tolerane and real-time servie of the sys-tem. The resoure manager is designed to be extensible toallow plugging in many di�erent algorithms whih are usedfor di�erent purposes in the ontext of FLARe. For exam-ple, in ertain senarios, after a lient failover, the proessormay not get overloaded, in whih ase the resoure managerdoes not apply the dynami reon�guration algorithms.Loal resoure manager. Loal resoure manager re-sides in eah proessor and works in onjuntion with theglobal resoure manager to implement the proessor-spei�trade-o� deisions between performane and availability ofappliations.Client intereptors and forwarding agent. Clientintereptors and the forwarding agent help shield the appli-ations from managing the responsibilities assoiated withlient rediretion.Resoure monitors and fault detetors. Resouremonitors monitor di�erent resoures (e.g., CPU, memory,network bandwidth) in the system, and periodially updatesthe resoure manager. Fault detetors monitor the health ofproesses and proessors and periodially updates the mid-dleware repliation manager.
2.4 Functionality of FLAReWe now desribe how the major middleware omponentswork together with di�erent runtime algorithms to providethe apabilities desribed in Setion 1 and also provide so-lutions to the drawbaks listed in Setion 1.Adaptive, load-aware, and timely lient failovertehniques. Middleware repliation manager manages in-formation suh as server's multiple implementations, theirresoure utilization requirements, and their utility values,and deides on an appropriate implementation to operatein resoure-onstrained senarios. Middleware repliationmanager also keeps trak of information about the serverreplia and their bakup plaements, repliation degree, andonsisteny requirements. Suh information an also be fedto the middleware repliation manager using a modelingtool like MDDPro [28℄. At runtime, middleware repliationmanager adapts suh deployment-time fault tolerane (e.g.,bakup loation) and performane on�guration informationby working in onjuntion with the resoure manager.Resoure manager ollets metris like CPU utilizationfrom the proessors hosting the replias, and utilizes repliaseletion algorithms to make resoure-aware fault toleraneon�guration deisions like determination of failover targetsfor eah server replia. The middleware repliation managerperiodially makes QoS queries on the resoure manager todetermine the failover target, and redirets the informationto the lient-side middleware so that lient failover an betimely and appropriate.Forwarding agent resides in the lient middleware proessand periodially queries the middleware repliation managerabout the appropriate failover targets to rediret lients.When the lient intereptors ath exeptions reated byproessor or proess failures, they make a request on the for-

warding agent to know the bakup loation address. Sinethe request from the intereptor to the forwarding agent tra-verses the same in-proess address spae, no network latenyis involved, and the lient rediretion is fast, and appropri-ate.To detet the failure of a proess quikly, eah applia-tion proess on a proessor opens up a passive POSIX loalsoket (also known as a UNIX domain soket), and registersthe port number with the fault detetor. The fault dete-tor onnets to and performs a bloking read on the soket.If an appliation proess rashes, the soket and the openedport will be invalidated. The fault detetor then reeives aninvalid read error on the soket, whih indiates the failureof the proess.The e�etiveness of the adaptive, timely, and load-awarelient failover tehnique depends on the replia seletion al-gorithm used by the resoure manager to periodially updatethe forwarding agents. We have implemented a least-loadedreplia seletion algorithm desribed in Algorithm 1.Algorithm 1 Determine per-objet failover targets1: N = number of proessors2: for i = 1 to N do3: reset expeted utilization of all the proessors to theurrent utilization4: P = number of proesses in this proessor i5: for j = 1 to P do6: O = number of objets running in this proess j7: for k = 1 to O do8: �nd all the proessors of the objet k's replias9: �nd the proessor MIN with the minimum ex-peted utilization10: failover target for objet k is the objet runningin MIN11: expeted utilization of proessor MIN += objetk's load12: end for13: end for14: end forFLARe's replia seletion algorithm hooses the proessorwith the lowest utilization from among all proessors hostingan objet's replias as its failover target. The expeted uti-lization variable is used to aount for the failover deisionof other objets loated on the same proessor. By selet-ing the proessor with the lowest expeted utilization, ourrepliation seletion algorithm distributes the failover tar-gets of objets on a single proessor to multiple proessors.A detailed evaluation of FLARe's adaptive, load-aware andtimely failover tehniques an be obtained from [4℄.Dynami reon�guration, and load shedding teh-niques. The goal of FLARE's replia seletion algorithmis to allow lients failover to replias hosted in proessor,whose load does not inrease beyond a threshold after thefailover. However, in ertain senarios, after a lient failover,the load of a proessor might inrease beyond the utilizationbound within whih RMS an guarantee sheduling of real-time tasks in a proessor. Rather than delaying the failover,and a�eting the real-time shedules of tasks, FLARe pro-eeds with the failover. However, if the overloads are notontrolled appropriately, some of the tasks in the proessorwill miss their deadlines.We are developing and implementing overload manage-

ment algorithms in the ontext of FLARe's resoure man-ager. The primary goal of the overload management algo-rithms is to provide a fast reon�guration with minimumdisturbane to the lients, whose availability requirementsmight get a�eted during the reon�guration. The idea isto take advantage of the replias hosted in proessors whihare lightly loaded, but whose primary replia is hosted inthe proessor that is overloaded. This is a ase of foredor proative rediretion of lients from one replia to an-other even though the failure has not ourred. One foredrediretion targets are identi�ed, the middleware replia-tion manager noti�es the forwarding agents. The forward-ing agents proeed with the rediretion at a moment thatauses the least disturbane for the lients (e.g., after theend of a request and before the start of the next period).Utility optimization tehniques. In senarios, wheredynami reon�guration and load shedding algorithms an-not ontrol the overloads in proessors, resoure managermakes use of utility optimization tehniques [30℄ to get theresoure onsumption in the proessors down to an aept-able value (e.g, RMS utilization bound). The resoure man-ager looks at the utility values of all the objets operatingin the proessor, and tries all possible ombinations whihan bring the utilization down to the target threshold. Itthen piks the ombination, that gives the maximum utilityvalue. The utility values ould be assigned based on (1) theimplementation the objet operates, and (2) whether theobjet operates or not.Loal resoure manager works in onjuntion with the re-soure manager to implement the trade-o� deisions betweenperformane and availability of appliations. For example,in ertain resoure-onstrained senarios, the resoure man-ager might deide to operate a less resoure onsuming im-plementation of a server hosted in a proessor. The reov-ery manager onveys this information to the loal resouremanager, whih uses the tehniques desribed in [3℄ to swapserver implementations. We are in the proess of developingsophistiated utility optimization algorithms and strategiesthat an work in onjuntion with middleware mehanismsto provide degraded QoS to appliations.
3. RELATED WORKReal-time fault tolerant sheduling. Fundamentalideas and hallenges in ombining real-time and fault tol-erane are desribed in [29℄, where the notion of impreiseomputations have been used to provide degraded QoS toappliations operating in the presene of failures. [10℄ pro-poses adaptive fault tolerane mehanisms to hoose a suit-able redundany strategy for dynamially arriving aperioditasks based on system resoure availability. [8℄ proposes afeasibility test to determine if a given task set is shedu-lable for fault-tolerant purposes using earliest deadline �rst(EDF) sheduling. [12℄ proposes a �xed priority-driven pre-emptive sheduling sheme to prealloate time intervals toboth the primary and bakup replias of a task, and adap-tively exeutes either the primary or a bakup dependingon failures and available time. [15℄ generates a FT shed-ule for tasks with preedene onstraints and plans for su�-ient slak time to handle reovery ations in ase of failures.FLARe di�ers from these approahes in providing fault tol-erane apabilities to soft real-time appliations. Ratherthan ensuring hard deadlines are met in the presene of fail-ures, therefore, FLARe fouses on minimizing the impat

of failure reovery on lient response times and system re-soure utilization, and also provides timely lient failover toappropriate failover targets.Alloation of resoures for fault tolerane. Otherresearh has foused on deployment-time alloation of re-soures to tasks operating in a multi-proessor environmentwhile onsidering fault tolerane. [9℄ fouses on hoosingappropriate task implementations and degrees of replia-tion for fault tolerane depending on system resoure avail-ability. [11℄ proposes a fully polynomial-time approxima-tion algorithm to map tasks and their replias to hetero-geneous multiproessors. [2℄ proposes a bi-riteria heuris-ti for sheduling operations in heterogeneous arhitetureswhile minimizing shedule length and maximizing reliabil-ity. [6℄ proposes a polynomial-time approximation shemefor repliation of periodi hard real-time tasks in identialmultiproessor environments while minimizing system uti-lization. The FLARe middleware an be extended readilyto support deployment-time alloation planning using suhalgorithms. Furthermore, as failures our and tasks arrivedynamially at run-time, FLARe an also adapt by hang-ing failover targets on the �y so that lient response timesare not overly a�eted by failures.Real-time fault-tolerant middleware. Delta-4/XPA [24℄was an early e�ort to provide real-time fault-tolerant solu-tions to distributed systems by using the semi-ative repli-ation model, where all the replias are ative, but onlyone replia sends output responses. ARMADA [1℄ de�nes aset of ommuniation and middleware servies that supportfault tolerane and end-to-end guarantees for real-time dis-tributed appliations. MEAD [23℄ and its proative reoverystrategy for distributed CORBA appliations an minimizethe reovery time for DRE systems. The Time-triggeredMessage-triggered Objets (TMO) projet [16℄ onsiders repli-ation shemes suh as the primary-shadow TMO replia-tion (PSTR) sheme, for whih reovery time bounds anbe quantitatively established, and real-time fault toleraneguarantees an be provided to appliations. FLARe's re-searh ontributions are similar to these projets in pro-viding modular middleware servies to add fault toleraneapabilities to objet-based systems. FLARe also enhanestraditional fault tolerane tehniques with utilization mon-itoring tehniques, however, so as to minimize the e�et ofreovery on lient response times, and to manage systemresoures e�iently.Dynami migration and reon�guration. Deplanheet all [7℄ have studied task migration in the ontext of re-on�guration in fault-tolerant distributed systems. Hou etall [13℄ have used the minimum laxity �rst served algorithmto do task migration to meet real-time deadlines. Bettatiet all [5℄ provide timing guarantees to lients by dynami-ally hanging resoure alloations and migrating resouresfrom one node to another. Kalogeraki et all [14℄ proposetwo algorithms to graefully migrate objets from the pro-essors when proessor overloads and high task lateniesare deteted. FLARe's dynami reon�guration goals arenot to migrate objets from one node to another. ButFLARe wants to make use of the available replias, and redi-ret lients from one replia to another, thereby exploitinglightweight migration with minimal disturbane to lients.Moreover, FLARe applies dynami reon�guration in theontext of passive repliation sheme as opposed to ativerepliation shemes.

4. CONCLUDING REMARKS AND ONGO-
ING WORKThis paper desribes the design of FLARe, whih is alightweight middleware that enhanes RT-CORBA to pro-vide adaptive and load-aware fault tolerane solutions forDRE systems. We have implemented a prototype of FLARewith a least loaded replia seletion algorithm as desribedin [4℄. Our initial evaluations have shown that FLARe'sproative load-aware failover strategy an support transpar-ent and timely failure handling for DRE appliations by se-leting failover targets on proessors with the least load,thereby minimizing the impat of failures, suh as unpre-ditable system utilization and inreased lient-pereivedend-to-end response times.Currently, our work fouses on the following researh is-sues:

• We are developing dynami reon�guration and loadshedding algorithms in the ontext of the resoure man-ager and hope to have a prototype available by Novem-ber 2006. We also plan to evaluate the performane ofthe algorithms in a representative DRE system asestudy deployed in a Linux test bed, and plan to writea tehnial paper by Deember 2007.
• We are also in the proess of developing utility opti-mization tehniques to manage the trade-o�s betweenperformane and fault tolerane, and provide solutionsthat work in onjuntion with the middleware meha-nisms to manage the real-time and fault tolerane a-pabilities of the system. We plan to have a prototypeimplementation with few domain-spei� utility opti-mization strategies (e.g., hanging implementations forimage proessing ontrollers) under given onstraintsin a pratial deployment senario. We plan to eval-uate the performane of the algorithms in a represen-tative DRE system ase study and write a tehnialpaper by Marh 2008.
• Supporting stateful appliations in DRE systems notonly requires timely failover, but lient onsisteny re-quirements, suh as weak or strong onsisteny mod-els. FLARe is urrently designed for stateless applia-tions, so our future work will enhane the replia se-letion algorithm to onsider onsisteny levels of thereplias while hoosing failover targets. We are alsoenhaning FLARe to support repliation requirementsfor di�erent onsisteny levels. We plan to approahthe researh as an aperiodi sheduling problem withappliation requiring support from the fault tolerantmiddleware to shedule its state synhronization a-tivities. We plan to have a prototype implementationready by May 2008, and plan to write a tehnial paperat that time.

5. REFERENCES[1℄ T. F. Abdelzaher, S. Dawson, W. hang Feng,F. Jahanian, S. Johnson, A. Mehra, T. Mitton,A. Shaikh, K. G. Shin, Z. Wang, H. Zou,M. Bjorkland, and P. Marron. ARMADA middlewareand ommuniation servies. Real-Time Systems,16(2-3):127�153, 1999.[2℄ I. Assayad, A. Girault, and H. Kalla. A bi-riteriasheduling heuristi for distributed embedded systemsunder reliability and real-time onstraints. In DSN '04.

[3℄ J. Balasubramanian, B. Natarajan, D. C. Shmidt,A. Gokhale, G. Deng, and J. Parsons. MiddlewareSupport for Dynami Component Updating. InInternational Symposium on Distributed Objets andAppliations (DOA 2005), Agia Napa, Cyprus, Ot.2005.[4℄ J. Balasubramanian, S. Tambe, A. Gokhale, C. Lu,C. Gill, and D. C. Shmidt. FLARe: a Fault-tolerantLightweight Adaptive Real-time Middleware forDistributed Real-time and Embedded Systems.Tehnial Report ISIS-07-812, Institute for SoftwareIntegrated Systems, Vanderbilt University, Nashville,TN, May 2007.[5℄ R. Bettati and A. Gupta. Dynami ResoureMigration for Multiparty Real-Time Communiation.Proeedings of the IEEE 16th International Confereneon Distributed Computing Systems, pages 646�655.[6℄ J.-J. Chen, C.-Y. Yang, T.-W. Kuo, and S.-Y. Tseng.Real-time task repliation for fault tolerane inidential multiproessor systems. IEEE RTAS,0:249�258, 2007.[7℄ A. Deplanhe and J. Elloy. Task Redistribution withAlloation Constraints in a Fault-Tolerant Real-TimeMultiproessor System. DistributedProessing�Proeedings of the IFIP WW6,10(3):133�150.[8℄ S. Ghosh, R. Melhem, and D. Mosse. Enhaningreal-time shedules to tolerate transient faults. InRTSS '95.[9℄ S. Ghosh, R. Rajkumar, J. Hansen, and J. Lehozky.Salable resoure alloation for multi-proessor qosoptimization. In ICDCS '03.[10℄ O. Gonzalez, H. Shrikumar, J. A. Stankovi, andK. Ramamritham. Adaptive fault tolerane andgraeful degradation under dynami hard real-timesheduling. In RTSS '97.[11℄ S. Gopalakrishnan and M. Caamo. TaskPartitioning with Repliation upon HeterogeneousMultiproessor Systems. In RTAS 2006.[12℄ C.-C. Han, K. G. Shin, and J. Wu. A fault-tolerantsheduling algorithm for real-time periodi tasks withpossible software faults. IEEE Transations onComputers, 52(3):362�372, 2003.[13℄ C. Hou and K. Shin. Load sharing with onsiderationof future task arrivals inheterogeneous distributedreal-time systems. Computers, IEEE Transations on,43(9):1076�1090, 1994.[14℄ V. Kalogeraki, P. Melliar-Smith, and L. Moser.Dynami migration algorithms for distributed objetsystems. ids, 00:0119, 2001.[15℄ N. Kandasamy, J. P. Hayes, and B. T. Murray.Transparent reovery from intermittent faults intime-triggered distributed systems. IEEE Transationson Computers, 52(2):113�125, 2003.[16℄ K. H. K. Kim and C. Subbaraman. The pstr/snssheme for real-time fault tolerane via ative objetrepliation and network surveillane. IEEETransations on Knowledge and Data Engineering,12(2):145�159, 2000.[17℄ H. Kopetz, A. Damm, C. Koza, M. Mulazzani,W. Shwabl, C. Senft, and R. Zainlinger. Distributedfault-tolerant real-time systems: The mars approah.

IEEE Miro, 09(1):25�40, 1989.[18℄ J. Lehozky, L. Sha, and Y. Ding. The RateMonotoni Sheduling Algorithm: ExatCharaterization and Average Case Behavior. InProeedings of the 10th IEEE Real-time SystemsSymposium (RTSS 1989), pages 166�171. IEEEComputer Soiety Press, 1989.[19℄ P. Narasimhan. Trade-O�s Between Real-Time andFault Tolerane for Middleware Appliations.Workshop on Foundations of MiddlewareTehnologies, Nov. 2002.[20℄ P. Narasimhan, T. Dumitras, A. M. Paulos, S. M.Pertet, C. F. Reverte, J. G. Slember, andD. Srivastava. MEAD: support for Real-TimeFault-Tolerant CORBA. Conurreny - Pratie andExperiene, 17(12):1527�1545, 2005.[21℄ Objet Management Group. Fault Tolerant CORBA,Chapter 23, CORBA v3.0.3, OMG Doumentformal/04-03-10 edition, Mar. 2004.[22℄ Objet Management Group. Real-time CORBASpei�ation v1.2 (stati), OMG Doumentformal/05-01-04 edition, Nov. 2005.[23℄ S. Pertet and P. Narasimhan. Proative Reovery inDistributed CORBA Appliations. In DSN 2004.[24℄ D. Powell. Distributed fault tolerane: Lessons fromdelta-4. IEEE Miro, 14(1):36�47, 1994.[25℄ Y. Ren, D. Bakken, T. Courtney, M. Cukier, D. Karr,P. Rubel, C. Sabnis, W. Sanders, R. Shantz, andM. Seri. AQuA: an adaptive arhiteture that providesdependable distributed objets. Computers, IEEETransations on, 52(1):31�50, 2003.[26℄ D. C. Shmidt, R. Shantz, M. Masters, J. Cross,D. Sharp, and L. DiPalma. Towards Adaptive andRe�etive Middleware for Network-Centri CombatSystems. CrossTalk - The Journal of Defense SoftwareEngineering, Nov. 2001.[27℄ D. B. Stewart and P. K. Khosla. Real-time Shedulingof Sensor-Based Control Systems. In W. Halang andK. Ramamritham, editors, Real-time Programming.Pergamon Press, Tarrytown, NY, 1992.[28℄ S. Tambe, J. Balasubramanian, A. Gokhale, andT. Damiano. MDDPro: Model-Driven DependabilityProvisioning in Enterprise Distributed Real-Time andEmbedded Systems. In Proeedings of theInternational Servie Availability Symposium (ISAS),Durham, New Hampshire, USA, 2007.[29℄ F. Wang, K. Ramamritham, and J. A. Stankovi.Determining redundany levels for fault tolerantreal-time systems. IEEE Transations on Computers,44(2):292�301, 1995.[30℄ Zhongtang Cai and Vibhore Kumar and Brian F.Cooper and Greg Eisenhauer and Karsten Shwan andRobert E. Strom. Utility-Driven ProativeManagement of Availability in Enterprise-SaleInformation Flows. In Proeedings ofACM/Usenix/IFIP Middleware, pages 382�403, 2006.[31℄ H. Zou and F. Jahanian. A real-time primary-bakuprepliation servie. Parallel and Distributed Systems,IEEE Transations on, 10(6):533�548, 1999.

