
FLARe: a Fault-tolerant Lightweight Adaptive Real-time
Middleware for Distributed Real-time and Embedded

Systems

Jaiganesh Balasubramanian
Department of Electrical Engineering and Computer Science

Vanderbilt University, Nashville, TN 37203
jai@dre.vanderbilt.edu

ABSTRACTAn important 
lass of distributed real-time and embedded(DRE) appli
ations 
onsists of periodi
 soft real-time tasks.Timeliness and availability are essential requirements forthe 
orre
t operation of these appli
ations. Conventionalsolutions to these 
hallenges tend to use non-adaptive andload-agnosti
 fault toleran
e solutions within a real-time sys-tem, whi
h often end up making ad ho
 fault toleran
e (e.g.,failover targets) de
isions that 
an further overload alreadystrained resour
es. Potential adverse 
onsequen
es of thesead ho
 a
tions in
lude ex
essive delays for real-time tasksand 
as
ades of resour
e failures.This paper presents FLARe, whi
h is a middleware thatprovides adaptive fault toleran
e for DRE systems. FLARe'sresour
e management infrastru
ture monitors various sys-temmetri
s, in
luding CPU utilization, and makes informed,load-aware, and adaptive de
isions about the appli
ation'sfault toleran
e 
on�gurations (e.g., failover targets, physi
alpla
ement of repli
as). FLARe also employs de
ision mak-ing algorithms to adapt these de
isions at runtime as faultso

ur and provides trade-o�s between timeliness, availabil-ity, and performan
e as resour
es get overloaded, removed,or added.
1. INTRODUCTIONMany distributed real-time and embedded (DRE) sys-tems, su
h as shipboard 
omputing systems [26℄, 
onsistpredominantly of soft real-time tasks that must 
ontinue toprovide real-time quality of servi
e (QoS) even when hard-ware and software faults o

ur. For example, the behaviorof the obje
t tra
king subsystem of a shipboard 
omputingenvironment is in�uen
ed by external sensor readings. Theobje
t tra
king system should be available and responsiveeven if pro
esses or pro
essors fail. Likewise, it should 
on-tinue to provide timely response even when system workloadvaries signi�
antly at runtime, e.g., due to faults, dynami
task arrival, or intrusion dete
tion.
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Conventional fault toleran
e solutions repli
ate servers thatmay fail independently, giving 
lients a robust servi
e thatappears as though it was provided by a single server. Two
ommon approa
hes for maintaining repli
as are a
tive andpassive repli
ation. In a
tive repli
ation, a 
olle
tion ofservers maintains identi
al state, and all 
lient requests areexe
uted atomi
ally in all of the repli
as using a group 
om-muni
ation servi
e. If a server fails other servers 
ontinueto exe
ute the proto
ol, so 
lients are not a�e
ted by thefailures of individual repli
as.Although a
tive repli
ation has been used for some hardreal-time systems [17℄ it is expensive for systems that do notrequire strong state 
onsisten
y or hard real-time guaranteesdue to its high resour
e usage [31℄. For su
h systems, pas-sive repli
ation may be preferred, where one repli
a�
alledthe primary�handles all 
lient requests, and ba
kup repli-
as re
eive state updates from the primary. If the primarydies, a ba
kup is ele
ted to be
ome the new primary.To de
ouple appli
ation logi
 from dealing with the 
om-plexities of the di�erent fault toleran
e me
hanisms, mid-dleware su
h as CORBA, and J2EE, alleviate many inher-ent and a

idental 
omplexities in DRE appli
ation integra-tion with QoS provisioning me
hanisms, and have be
omeessential to the development and integration of DRE sys-tems. Spe
ialized middleware spe
i�
ations (for e.g., Fault-Tolerant CORBA (FT-CORBA) [21℄, and Real-Time CORBA(RT-CORBA) [22℄) have been adopted to provide real-timeand fault toleran
e 
apabilities to DRE appli
ations usingthe passive repli
ation s
heme.These middleware spe
i�
ations provide appli
ations witha transparent way to 
on�gure the fault toleran
e (e.g., repli-
ation degree, 
he
kpointing interval) and fault re
overy (e.g.,address of next primary) me
hanisms to meet an appli
a-tion's fault toleran
e requirements. For example, middle-ware keeps a list of repli
a referen
es, and automati
allyredire
ts 
lients to one of the repli
as (e.g., 
hosen in aroundrobin fashion) in 
ase of the primary failure. However,it is likely that those fault toleran
e and re
overy 
on�gura-tions are not valid at runtime be
ause of resour
e failures.This 
auses delays in re
overing from failures whi
h is nota

eptable for real-time tasks to maintain their deadlines.Similarly, as system resour
es fail at runtime, it may notbe possible to operate all the repli
as at the deployment-time fault toleran
e 
on�guration, and trade-o�s need to bemade between availability of resour
es and strength of faulttoleran
e.Current solutions la
k runtime de
ision making algorithms



working in 
onjun
tion with fault-tolerant middleware tomake fault toleran
e and re
overy 
on�guration de
isionsin a resour
e-aware manner. Spe
i�
ally, existing solutionssu�er from the following drawba
ks:La
k of support for timely and appropriate 
lientfailover. Current middleware support [23, 25, 1, 24℄ 
on�g-ures passive repli
ation re
overy strategies in a stati
 fash-ion, whi
h allows timely 
lient redire
tion. However, afterfailover, 
lient-per
eived response times depend on the loadon the pro
essor hosting the new primary. Sin
e the failovertargets are 
hosen stati
ally, and without the knowledgeof the 
urrent system resour
e availability, 
lient failovers
ould 
ause system pollution, where di�erent pro
essor fail-ures 
aused all the 
lients to failover to the same pro
essor.This 
ould lead to 
as
ading resour
e failures seriously af-fe
ting the real-time and fault toleran
e 
apabilities of thesystem. DRE appli
ations need support from middlewarefor timely and appropriate failover.La
k of support for re
on�guration as part of there
overy pro
ess. passive repli
ation s
heme relies on ap-propriate physi
al pla
ement of repli
as to handle failures,and re
overs by redire
ting 
lients to one of the deployedrepli
as. So, even an optimal initial distribution might notsu�
e as tasks might be added to the system at runtime
ausing (1) in
rease in resour
e utilization in 
ertain pro
es-sors, and (2) load imbalan
e amongst the pro
essors in thesystem. As failures followed by 
lient failovers happen, thisload imbalan
e in
reases 
ausing some of the tasks to missreal-time deadlines. DRE appli
ations need middleware andalgorithmi
 support for fast re
on�gurations at runtime tohandle load imbalan
es and overloads 
aused by resour
efailures and subsequent 
lient failovers. Existing middle-ware support for adaptive fault toleran
e [16, 15, 12℄ do notsolve su
h issues.La
k of support for making trade-o�s between real-time performan
e and availability requirements. Whenboth real-time and fault toleran
e must be satis�ed withinthe same system, it is rather likely that trade-o�s [19℄ aremade during the 
omposition. For example, in 
onditionswhere overloads 
annot be 
ontrolled by migration, perfor-man
e needs to be 
ompromised by operating tasks withimplementations whi
h 
onsume less resour
es but give aperforman
e lower than the possible 
apa
ity. A better so-lution 
ould be to stop 
ertain implementations, and runthe remaining implementations in the same performan
e. Arun-time de
ision making unit with support from utility op-timization algorithms 
ould make the best possible de
isionto be implemented by the middleware. However, 
urrentfault toleran
e solutions [20, 10, 1℄ do not provide su
h al-gorithmi
 support to work in 
onjun
tion with middleware-based solutions to make trade-o�s between performan
e andfault toleran
e 
apabilities.The goal of our resear
h is to devise novel te
hniquesand middleware platform servi
es that provide real-time andfault toleran
e 
apabilities to soft real-time DRE appli
a-tions while using passive repli
ation s
hemes. In parti
u-lar, e�e
tive passive repli
ation s
hemes for DRE systemsrequire innovations in (1) timely failover, (2) adapting faulttoleran
e 
on�gurations (e.g., to determine failover targets)in response to 
hanging resour
e availabilities, (3) adaptivere
on�guration of the system to re
over from pro
essor fail-ures and overloads 
aused by subsequent 
lient failovers, and(4) sele
ting and applying trade-o�s amongst fault toleran
e,

real-time, and performan
e 
apabilities of the appli
ationwhile re
overing from resour
e failures, as des
ribed below.What DRE systems need, therefore, are a 
ombinationof middleware and algorithmi
 
apabilities that integratereal-time and fault toleran
e by design, and are adaptiveand load-aware so that these solutions 
an maintain softreal-time performan
e in the fa
e of failures. This paperdes
ribes FLARe, whi
h is a middleware that provides anadaptive, fault toleran
e solution for Real-time CORBA [22℄appli
ations. Spe
i�
ally, FLARe uses the following novelte
hniques to provision real-time and fault toleran
e 
apa-bilities to DRE appli
ations:
• Adaptive, load-aware, and timely 
lient failover te
h-niques, where de
ision-making algorithms determinefailover targets based on up-to-date utilization esti-mates, and these targets are proa
tively updated withthe middleware managing 
lient redire
tion, so that re-
overy 
an be fast, transparent, appropriate, and helpmaintain timely response to 
lient's requests after afailover.
• Dynami
 re
on�guration, and load shedding te
hniques,where adaptive re
on�guration and overload manage-ment algorithms (1) work with middleware redire
tionme
hanisms to proa
tively (before the o

urren
e of afailure) redire
t 
lients to appropriate targets to han-dle overloads 
aused by 
lient failovers, and (2) assistin reassigning tasks from failed pro
essors to fault-freepro
essors to maintain repli
ation degree requirementsof the appli
ations.
• Utility optimization te
hniques, where fault toleran
e
on�gurations (e.g., 
he
kpointing, repli
ation degree,appli
ation implementations) are 
hanged dynami
allyin response to 
hanging resour
e availabilities to trade-o� performan
e and availability requirements of appli-
ations.

2. DESIGN OF FLAREThis se
tion des
ribes the design of the FLARe middle-ware. We des
ribe its repli
ation style, real-time systemmodel, and fault model, as well as its software design.
2.1 FLARe’s Real-time System ModelFLARe supports DRE systems 
onsisting predominantlyof soft periodi
 real-time tasks, su
h as those found in ship-board 
omputing and intelligen
e, surveillan
e, and re
on-naissan
e systems.1 We assume the soft periodi
 tasks aredeployed on a RT-CORBA [22℄ infrastru
ture, su
h as thatprovided by the TAO middleware (www.dre.vanderbilt.edu). These tasks are s
heduled on di�erent nodes of theDRE system, with tasks on ea
h node s
heduled using RateMonotoni
 S
heduling (RMS) [18℄.The 
lient-side request rate de�nes the priority at whi
hthe task will exe
ute at the server. We therefore use RT-CORBA's 
lient_propagated priority model, whi
h al-lows the 
lients to di
tate the priority at whi
h the servershave to servi
e their requests. Sin
e a single server pro-
ess may handle multiple 
lients with di�erent priorities,we also use the RT-CORBA thread pool with lanes feature,1In su
h systems we assume that ea
h node has a single pro-
essor and hard real-time tasks are provisioned separately,with dedi
ated hardware and software, and as su
h are out-side the s
ope of this dis
ussion.



whi
h partitions the available number of threads a
ross dif-ferent priorities, so that the server 
an simultaneously servemultiple 
lient requests with multiple priorities. While our
urrent implementation employs RMS, our middleware ar-
hite
ture 
an easily in
orporate other s
heduling poli
ies,su
h as Maximum Urgen
y First [27℄ (MUF).
2.2 Fault ModelOur resear
h fo
uses on a fail-stop model of failures, wherepro
esses or pro
essors 
an fail and the remainder of thesystem 
an 
ontinue exe
uting. We assume that pro
essorfaults are hard faults, i.e., when a pro
essor has a fault itstops permanently. These types of faults may o

ur dueto aging or a
ute damage, though in domains like shipboard
omputing a
ute damage is the main 
on
ern sin
e hardware
omponents are periodi
ally repla
ed through routine main-tenan
e. Considering unpredi
table behavior of pro
esses orpro
essors is beyond the s
ope of our resear
h.We assume that networks provide bounded 
ommuni
a-tion laten
ies and do not fail. This assumption is reason-able for 
ertain DRE systems, su
h as shipboard 
omputing,where nodes are 
onne
ted by highly redundant high-speednetworks. Relaxing this assumption through integration ofour middleware with network level fault toleran
e te
hniquesis an area of future work.
2.3 FLARe’s Middleware ArchitectureWe now des
ribe how FLARe is designed to provide thekey 
apabilities as des
ribed in Se
tion 1. Figure 1 depi
tsthe ar
hite
ture of the FLARe. We �rst des
ribe the respon-sibilities of the major 
omponents of FLARe. Then we de-s
ribe how the major middleware 
omponents work togetherwith di�erent runtime algorithms to provide the 
apabilitiesdes
ribed in Se
tion 1.

Figure 1: FLARe Middleware Ar
hite
tureMiddleware repli
ation manager. FLARe's middle-ware repli
ation manager provides interfa
es for registeringand managing information about the server obje
ts and theirba
kup repli
as. The purpose of the middleware repli
ationmanager is to manage the fault toleran
e and re
overy re-quirements of the appli
ations, and use them as a blueprintto adapt 
on�gurations at runtime in response to 
hanging

resour
e availabilities.Resour
e Manager. The resour
e manager a
ts as abridge between the de
ision making algorithms and the mid-dleware implementing the de
isions of the de
ision makingalgorithms. The fun
tion of the resour
e manager is to useadaptive resour
e management algorithms to make runtime,resour
e-aware, QoS-aware de
isions about the 
on�gura-tion of the fault toleran
e and real-time servi
e of the sys-tem. The resour
e manager is designed to be extensible toallow plugging in many di�erent algorithms whi
h are usedfor di�erent purposes in the 
ontext of FLARe. For exam-ple, in 
ertain s
enarios, after a 
lient failover, the pro
essormay not get overloaded, in whi
h 
ase the resour
e managerdoes not apply the dynami
 re
on�guration algorithms.Lo
al resour
e manager. Lo
al resour
e manager re-sides in ea
h pro
essor and works in 
onjun
tion with theglobal resour
e manager to implement the pro
essor-spe
i�
trade-o� de
isions between performan
e and availability ofappli
ations.Client inter
eptors and forwarding agent. Clientinter
eptors and the forwarding agent help shield the appli-
ations from managing the responsibilities asso
iated with
lient redire
tion.Resour
e monitors and fault dete
tors. Resour
emonitors monitor di�erent resour
es (e.g., CPU, memory,network bandwidth) in the system, and periodi
ally updatesthe resour
e manager. Fault dete
tors monitor the health ofpro
esses and pro
essors and periodi
ally updates the mid-dleware repli
ation manager.
2.4 Functionality of FLAReWe now des
ribe how the major middleware 
omponentswork together with di�erent runtime algorithms to providethe 
apabilities des
ribed in Se
tion 1 and also provide so-lutions to the drawba
ks listed in Se
tion 1.Adaptive, load-aware, and timely 
lient failoverte
hniques. Middleware repli
ation manager manages in-formation su
h as server's multiple implementations, theirresour
e utilization requirements, and their utility values,and de
ides on an appropriate implementation to operatein resour
e-
onstrained s
enarios. Middleware repli
ationmanager also keeps tra
k of information about the serverrepli
a and their ba
kup pla
ements, repli
ation degree, and
onsisten
y requirements. Su
h information 
an also be fedto the middleware repli
ation manager using a modelingtool like MDDPro [28℄. At runtime, middleware repli
ationmanager adapts su
h deployment-time fault toleran
e (e.g.,ba
kup lo
ation) and performan
e 
on�guration informationby working in 
onjun
tion with the resour
e manager.Resour
e manager 
olle
ts metri
s like CPU utilizationfrom the pro
essors hosting the repli
as, and utilizes repli
asele
tion algorithms to make resour
e-aware fault toleran
e
on�guration de
isions like determination of failover targetsfor ea
h server repli
a. The middleware repli
ation managerperiodi
ally makes QoS queries on the resour
e manager todetermine the failover target, and redire
ts the informationto the 
lient-side middleware so that 
lient failover 
an betimely and appropriate.Forwarding agent resides in the 
lient middleware pro
essand periodi
ally queries the middleware repli
ation managerabout the appropriate failover targets to redire
t 
lients.When the 
lient inter
eptors 
at
h ex
eptions 
reated bypro
essor or pro
ess failures, they make a request on the for-



warding agent to know the ba
kup lo
ation address. Sin
ethe request from the inter
eptor to the forwarding agent tra-verses the same in-pro
ess address spa
e, no network laten
yis involved, and the 
lient redire
tion is fast, and appropri-ate.To dete
t the failure of a pro
ess qui
kly, ea
h appli
a-tion pro
ess on a pro
essor opens up a passive POSIX lo
also
ket (also known as a UNIX domain so
ket), and registersthe port number with the fault dete
tor. The fault dete
-tor 
onne
ts to and performs a blo
king read on the so
ket.If an appli
ation pro
ess 
rashes, the so
ket and the openedport will be invalidated. The fault dete
tor then re
eives aninvalid read error on the so
ket, whi
h indi
ates the failureof the pro
ess.The e�e
tiveness of the adaptive, timely, and load-aware
lient failover te
hnique depends on the repli
a sele
tion al-gorithm used by the resour
e manager to periodi
ally updatethe forwarding agents. We have implemented a least-loadedrepli
a sele
tion algorithm des
ribed in Algorithm 1.Algorithm 1 Determine per-obje
t failover targets1: N = number of pro
essors2: for i = 1 to N do3: reset expe
ted utilization of all the pro
essors to the
urrent utilization4: P = number of pro
esses in this pro
essor i5: for j = 1 to P do6: O = number of obje
ts running in this pro
ess j7: for k = 1 to O do8: �nd all the pro
essors of the obje
t k's repli
as9: �nd the pro
essor MIN with the minimum ex-pe
ted utilization10: failover target for obje
t k is the obje
t runningin MIN11: expe
ted utilization of pro
essor MIN += obje
tk's load12: end for13: end for14: end forFLARe's repli
a sele
tion algorithm 
hooses the pro
essorwith the lowest utilization from among all pro
essors hostingan obje
t's repli
as as its failover target. The expe
ted uti-lization variable is used to a

ount for the failover de
isionof other obje
ts lo
ated on the same pro
essor. By sele
t-ing the pro
essor with the lowest expe
ted utilization, ourrepli
ation sele
tion algorithm distributes the failover tar-gets of obje
ts on a single pro
essor to multiple pro
essors.A detailed evaluation of FLARe's adaptive, load-aware andtimely failover te
hniques 
an be obtained from [4℄.Dynami
 re
on�guration, and load shedding te
h-niques. The goal of FLARE's repli
a sele
tion algorithmis to allow 
lients failover to repli
as hosted in pro
essor,whose load does not in
rease beyond a threshold after thefailover. However, in 
ertain s
enarios, after a 
lient failover,the load of a pro
essor might in
rease beyond the utilizationbound within whi
h RMS 
an guarantee s
heduling of real-time tasks in a pro
essor. Rather than delaying the failover,and a�e
ting the real-time s
hedules of tasks, FLARe pro-
eeds with the failover. However, if the overloads are not
ontrolled appropriately, some of the tasks in the pro
essorwill miss their deadlines.We are developing and implementing overload manage-

ment algorithms in the 
ontext of FLARe's resour
e man-ager. The primary goal of the overload management algo-rithms is to provide a fast re
on�guration with minimumdisturban
e to the 
lients, whose availability requirementsmight get a�e
ted during the re
on�guration. The idea isto take advantage of the repli
as hosted in pro
essors whi
hare lightly loaded, but whose primary repli
a is hosted inthe pro
essor that is overloaded. This is a 
ase of for
edor proa
tive redire
tion of 
lients from one repli
a to an-other even though the failure has not o

urred. On
e for
edredire
tion targets are identi�ed, the middleware repli
a-tion manager noti�es the forwarding agents. The forward-ing agents pro
eed with the redire
tion at a moment that
auses the least disturban
e for the 
lients (e.g., after theend of a request and before the start of the next period).Utility optimization te
hniques. In s
enarios, wheredynami
 re
on�guration and load shedding algorithms 
an-not 
ontrol the overloads in pro
essors, resour
e managermakes use of utility optimization te
hniques [30℄ to get theresour
e 
onsumption in the pro
essors down to an a

ept-able value (e.g, RMS utilization bound). The resour
e man-ager looks at the utility values of all the obje
ts operatingin the pro
essor, and tries all possible 
ombinations whi
h
an bring the utilization down to the target threshold. Itthen pi
ks the 
ombination, that gives the maximum utilityvalue. The utility values 
ould be assigned based on (1) theimplementation the obje
t operates, and (2) whether theobje
t operates or not.Lo
al resour
e manager works in 
onjun
tion with the re-sour
e manager to implement the trade-o� de
isions betweenperforman
e and availability of appli
ations. For example,in 
ertain resour
e-
onstrained s
enarios, the resour
e man-ager might de
ide to operate a less resour
e 
onsuming im-plementation of a server hosted in a pro
essor. The re
ov-ery manager 
onveys this information to the lo
al resour
emanager, whi
h uses the te
hniques des
ribed in [3℄ to swapserver implementations. We are in the pro
ess of developingsophisti
ated utility optimization algorithms and strategiesthat 
an work in 
onjun
tion with middleware me
hanismsto provide degraded QoS to appli
ations.
3. RELATED WORKReal-time fault tolerant s
heduling. Fundamentalideas and 
hallenges in 
ombining real-time and fault tol-eran
e are des
ribed in [29℄, where the notion of impre
ise
omputations have been used to provide degraded QoS toappli
ations operating in the presen
e of failures. [10℄ pro-poses adaptive fault toleran
e me
hanisms to 
hoose a suit-able redundan
y strategy for dynami
ally arriving aperiodi
tasks based on system resour
e availability. [8℄ proposes afeasibility test to determine if a given task set is s
hedu-lable for fault-tolerant purposes using earliest deadline �rst(EDF) s
heduling. [12℄ proposes a �xed priority-driven pre-emptive s
heduling s
heme to preallo
ate time intervals toboth the primary and ba
kup repli
as of a task, and adap-tively exe
utes either the primary or a ba
kup dependingon failures and available time. [15℄ generates a FT s
hed-ule for tasks with pre
eden
e 
onstraints and plans for su�-
ient sla
k time to handle re
overy a
tions in 
ase of failures.FLARe di�ers from these approa
hes in providing fault tol-eran
e 
apabilities to soft real-time appli
ations. Ratherthan ensuring hard deadlines are met in the presen
e of fail-ures, therefore, FLARe fo
uses on minimizing the impa
t



of failure re
overy on 
lient response times and system re-sour
e utilization, and also provides timely 
lient failover toappropriate failover targets.Allo
ation of resour
es for fault toleran
e. Otherresear
h has fo
used on deployment-time allo
ation of re-sour
es to tasks operating in a multi-pro
essor environmentwhile 
onsidering fault toleran
e. [9℄ fo
uses on 
hoosingappropriate task implementations and degrees of repli
a-tion for fault toleran
e depending on system resour
e avail-ability. [11℄ proposes a fully polynomial-time approxima-tion algorithm to map tasks and their repli
as to hetero-geneous multipro
essors. [2℄ proposes a bi-
riteria heuris-ti
 for s
heduling operations in heterogeneous ar
hite
tureswhile minimizing s
hedule length and maximizing reliabil-ity. [6℄ proposes a polynomial-time approximation s
hemefor repli
ation of periodi
 hard real-time tasks in identi
almultipro
essor environments while minimizing system uti-lization. The FLARe middleware 
an be extended readilyto support deployment-time allo
ation planning using su
halgorithms. Furthermore, as failures o

ur and tasks arrivedynami
ally at run-time, FLARe 
an also adapt by 
hang-ing failover targets on the �y so that 
lient response timesare not overly a�e
ted by failures.Real-time fault-tolerant middleware. Delta-4/XPA [24℄was an early e�ort to provide real-time fault-tolerant solu-tions to distributed systems by using the semi-a
tive repli-
ation model, where all the repli
as are a
tive, but onlyone repli
a sends output responses. ARMADA [1℄ de�nes aset of 
ommuni
ation and middleware servi
es that supportfault toleran
e and end-to-end guarantees for real-time dis-tributed appli
ations. MEAD [23℄ and its proa
tive re
overystrategy for distributed CORBA appli
ations 
an minimizethe re
overy time for DRE systems. The Time-triggeredMessage-triggered Obje
ts (TMO) proje
t [16℄ 
onsiders repli-
ation s
hemes su
h as the primary-shadow TMO repli
a-tion (PSTR) s
heme, for whi
h re
overy time bounds 
anbe quantitatively established, and real-time fault toleran
eguarantees 
an be provided to appli
ations. FLARe's re-sear
h 
ontributions are similar to these proje
ts in pro-viding modular middleware servi
es to add fault toleran
e
apabilities to obje
t-based systems. FLARe also enhan
estraditional fault toleran
e te
hniques with utilization mon-itoring te
hniques, however, so as to minimize the e�e
t ofre
overy on 
lient response times, and to manage systemresour
es e�
iently.Dynami
 migration and re
on�guration. Deplan
heet all [7℄ have studied task migration in the 
ontext of re-
on�guration in fault-tolerant distributed systems. Hou etall [13℄ have used the minimum laxity �rst served algorithmto do task migration to meet real-time deadlines. Bettatiet all [5℄ provide timing guarantees to 
lients by dynami-
ally 
hanging resour
e allo
ations and migrating resour
esfrom one node to another. Kalogeraki et all [14℄ proposetwo algorithms to gra
efully migrate obje
ts from the pro-
essors when pro
essor overloads and high task laten
iesare dete
ted. FLARe's dynami
 re
on�guration goals arenot to migrate obje
ts from one node to another. ButFLARe wants to make use of the available repli
as, and redi-re
t 
lients from one repli
a to another, thereby exploitinglightweight migration with minimal disturban
e to 
lients.Moreover, FLARe applies dynami
 re
on�guration in the
ontext of passive repli
ation s
heme as opposed to a
tiverepli
ation s
hemes.

4. CONCLUDING REMARKS AND ONGO-
ING WORKThis paper des
ribes the design of FLARe, whi
h is alightweight middleware that enhan
es RT-CORBA to pro-vide adaptive and load-aware fault toleran
e solutions forDRE systems. We have implemented a prototype of FLARewith a least loaded repli
a sele
tion algorithm as des
ribedin [4℄. Our initial evaluations have shown that FLARe'sproa
tive load-aware failover strategy 
an support transpar-ent and timely failure handling for DRE appli
ations by se-le
ting failover targets on pro
essors with the least load,thereby minimizing the impa
t of failures, su
h as unpre-di
table system utilization and in
reased 
lient-per
eivedend-to-end response times.Currently, our work fo
uses on the following resear
h is-sues:

• We are developing dynami
 re
on�guration and loadshedding algorithms in the 
ontext of the resour
e man-ager and hope to have a prototype available by Novem-ber 2006. We also plan to evaluate the performan
e ofthe algorithms in a representative DRE system 
asestudy deployed in a Linux test bed, and plan to writea te
hni
al paper by De
ember 2007.
• We are also in the pro
ess of developing utility opti-mization te
hniques to manage the trade-o�s betweenperforman
e and fault toleran
e, and provide solutionsthat work in 
onjun
tion with the middleware me
ha-nisms to manage the real-time and fault toleran
e 
a-pabilities of the system. We plan to have a prototypeimplementation with few domain-spe
i�
 utility opti-mization strategies (e.g., 
hanging implementations forimage pro
essing 
ontrollers) under given 
onstraintsin a pra
ti
al deployment s
enario. We plan to eval-uate the performan
e of the algorithms in a represen-tative DRE system 
ase study and write a te
hni
alpaper by Mar
h 2008.
• Supporting stateful appli
ations in DRE systems notonly requires timely failover, but 
lient 
onsisten
y re-quirements, su
h as weak or strong 
onsisten
y mod-els. FLARe is 
urrently designed for stateless appli
a-tions, so our future work will enhan
e the repli
a se-le
tion algorithm to 
onsider 
onsisten
y levels of therepli
as while 
hoosing failover targets. We are alsoenhan
ing FLARe to support repli
ation requirementsfor di�erent 
onsisten
y levels. We plan to approa
hthe resear
h as an aperiodi
 s
heduling problem withappli
ation requiring support from the fault tolerantmiddleware to s
hedule its state syn
hronization a
-tivities. We plan to have a prototype implementationready by May 2008, and plan to write a te
hni
al paperat that time.
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