FLARe: a Fault-tolerant Lightweight Adaptive Real-time
Middleware for Distributed Real-time and Embedded
Systems

Jaiganesh Balasubramanian
Department of Electrical Engineering and Computer Science
Vanderbilt University, Nashville, TN 37203

jai@dre.vanderbilt.edu

ABSTRACT

An important class of distributed real-time and embedded
(DRE) applications consists of periodic soft real-time tasks.
Timeliness and availability are essential requirements for
the correct operation of these applications. Conventional
solutions to these challenges tend to use non-adaptive and
load-agnostic fault tolerance solutions within a real-time sys-
tem, which often end up making ad hoc fault tolerance (e.g.,
failover targets) decisions that can further overload already
strained resources. Potential adverse consequences of these
ad hoc actions include excessive delays for real-time tasks
and cascades of resource failures.

This paper presents FLARe, which is a middleware that
provides adaptive fault tolerance for DRE systems. FLARe’s
resource management infrastructure monitors various sys-
tem metrics, including CPU utilization, and makes informed,
load-aware, and adaptive decisions about the application’s
fault tolerance configurations (e.g., failover targets, physical
placement of replicas). FLARe also employs decision mak-
ing algorithms to adapt these decisions at runtime as faults
occur and provides trade-offs between timeliness, availabil-
ity, and performance as resources get overloaded, removed,
or added.

1. INTRODUCTION

Many distributed real-time and embedded (DRE) sys-
tems, such as shipboard computing systems [26], consist
predominantly of soft real-time tasks that must continue to
provide real-time quality of service (QoS) even when hard-
ware and software faults occur. For example, the behavior
of the object tracking subsystem of a shipboard computing
environment is influenced by external sensor readings. The
object tracking system should be available and responsive
even if processes or processors fail. Likewise, it should con-
tinue to provide timely response even when system workload
varies significantly at runtime, e.g., due to faults, dynamic
task arrival, or intrusion detection.

Permission to make digital or hard copies of all or part of thiork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listquiees prior specific
permission and/or a fee.

MDS 2007, November 26-30, 2007, Newport Beach, CA, Canada
Copyright 2007 ACM 978-1-59593-933-3/07/11 ...$5.00.

Conventional fault tolerance solutions replicate servers that
may fail independently, giving clients a robust service that
appears as though it was provided by a single server. Two
common approaches for maintaining replicas are ACTIVE and
PASSIVE replication. In ACTIVE replication, a collection of
servers maintains identical state, and all client requests are
executed atomically in all of the replicas using a group com-
munication service. If a server fails other servers continue
to execute the protocol, so clients are not affected by the
failures of individual replicas.

Although AcTIVE replication has been used for some hard
real-time systems [17] it is expensive for systems that do not
require strong state consistency or hard real-time guarantees
due to its high resource usage [31]. For such systems, pAs-
SIVE replication may be preferred, where one replica—called
the primary handles all client requests, and backup repli-
cas receive state updates from the primary. If the primary
dies, a backup is elected to become the new primary.

To decouple application logic from dealing with the com-
plexities of the different fault tolerance mechanisms, mid-
dleware such as CORBA, and J2EE, alleviate many inher-
ent and accidental complexities in DRE application integra-
tion with QoS provisioning mechanisms, and have become
essential to the development and integration of DRE sys-
tems. Specialized middleware specifications (for e.g., Fault-
Tolerant CORBA (FT-CORBA) [21], and Real-Time CORBA
(RT-CORBA) |22]) have been adopted to provide real-time
and fault tolerance capabilities to DRE applications using
the PASSIVE replication scheme.

These middleware specifications provide applications with
a transparent way to configure the fault tolerance (e.g., repli-
cation degree, checkpointing interval) and fault recovery (e.g.,
address of next primary) mechanisms to meet an applica-
tion’s fault tolerance requirements. For example, middle-
ware keeps a list of replica references, and automatically
redirects clients to one of the replicas (e.g., chosen in a
roundrobin fashion) in case of the primary failure. However,
it is likely that those fault tolerance and recovery configura-
tions are not valid at runtime because of resource failures.
This causes delays in recovering from failures which is not
acceptable for real-time tasks to maintain their deadlines.
Similarly, as system resources fail at runtime, it may not
be possible to operate all the replicas at the deployment-
time fault tolerance configuration, and trade-offs need to be
made between availability of resources and strength of fault
tolerance.

Current solutions lack runtime decision making algorithms

working in conjunction with fault-tolerant middleware to
make fault tolerance and recovery configuration decisions
in a resource-aware manner. Specifically, existing solutions
suffer from the following drawbacks:

Lack of support for timely and appropriate client
failover. Current middleware support [23, 25, 1, 24] config-
ures PASSIVE replication recovery strategies in a static fash-
ion, which allows timely client redirection. However, after
failover, client-perceived response times depend on the load
on the processor hosting the new primary. Since the failover
targets are chosen statically, and without the knowledge
of the current system resource availability, client failovers
could cause system pollution, where different processor fail-
ures caused all the clients to failover to the same processor.
This could lead to cascading resource failures seriously af-
fecting the real-time and fault tolerance capabilities of the
system. DRE applications need support from middleware
for timely and appropriate failover.

Lack of support for reconfiguration as part of the
recovery process. PASSIVE replication scheme relies on ap-
propriate physical placement of replicas to handle failures,
and recovers by redirecting clients to one of the deployed
replicas. So, even an optimal initial distribution might not
suffice as tasks might be added to the system at runtime
causing (1) increase in resource utilization in certain proces-
sors, and (2) load imbalance amongst the processors in the
system. As failures followed by client failovers happen, this
load imbalance increases causing some of the tasks to miss
real-time deadlines. DRE applications need middleware and
algorithmic support for fast reconfigurations at runtime to
handle load imbalances and overloads caused by resource
failures and subsequent client failovers. Existing middle-
ware support for adaptive fault tolerance [16, 15, 12| do not
solve such issues.

Lack of support for making trade-offs between real-

time performance and availability requirements. When

both real-time and fault tolerance must be satisfied within
the same system, it is rather likely that trade-offs [19] are
made during the composition. For example, in conditions
where overloads cannot be controlled by migration, perfor-
mance needs to be compromised by operating tasks with
implementations which consume less resources but give a
performance lower than the possible capacity. A better so-
lution could be to stop certain implementations, and run
the remaining implementations in the same performance. A
run-time decision making unit with support from utility op-
timization algorithms could make the best possible decision
to be implemented by the middleware. However, current
fault tolerance solutions [20, 10, 1] do not provide such al-
gorithmic support to work in conjunction with middleware-
based solutions to make trade-offs between performance and
fault tolerance capabilities.

The goal of our research is to devise novel techniques
and middleware platform services that provide real-time and
fault tolerance capabilities to soft real-time DRE applica-
tions while using PASSIVE replication schemes. In particu-
lar, effective PASSIVE replication schemes for DRE systems
require innovations in (1) timely failover, (2) adapting fault
tolerance configurations (e.g., to determine failover targets)
in response to changing resource availabilities, (3) adaptive
reconfiguration of the system to recover from processor fail-
ures and overloads caused by subsequent client failovers, and
(4) selecting and applying trade-offs amongst fault tolerance,

real-time, and performance capabilities of the application
while recovering from resource failures, as described below.

What DRE systems need, therefore, are a combination
of middleware and algorithmic capabilities that integrate
real-time and fault tolerance by design, and are adaptive
and load-aware so that these solutions can maintain soft
real-time performance in the face of failures. This paper
describes FLARe, which is a middleware that provides an
adaptive, fault tolerance solution for Real-time CORBA [22]
applications. Specifically, FLARe uses the following novel
techniques to provision real-time and fault tolerance capa-
bilities to DRE applications:

e Adaptive, load-aware, and timely client failover tech-
niques, where decision-making algorithms determine
failover targets based on up-to-date utilization esti-
mates, and these targets are proactively updated with
the middleware managing client redirection, so that re-
covery can be fast, transparent, appropriate, and help
maintain timely response to client’s requests after a
failover.

e Dynamic reconfiguration, and load shedding techniques,
where adaptive reconfiguration and overload manage-
ment algorithms (1) work with middleware redirection
mechanisms to proactively (before the occurrence of a
failure) redirect clients to appropriate targets to han-
dle overloads caused by client failovers, and (2) assist
in reassigning tasks from failed processors to fault-free
processors to maintain replication degree requirements
of the applications.

e Utility optimization techniques, where fault tolerance
configurations (e.g., checkpointing, replication degree,
application implementations) are changed dynamically
in response to changing resource availabilities to trade-
off performance and availability requirements of appli-
cations.

2. DESIGN OF FLARE

This section describes the design of the FLARe middle-
ware. We describe its replication style, real-time system
model, and fault model, as well as its software design.

2.1 FLARe€sReal-time System Model

FLARe supports DRE systems consisting predominantly
of soft periodic real-time tasks, such as those found in ship-
board computing and intelligence, surveillance, and recon-
naissance systems.! We assume the soft periodic tasks are
deployed on a RT-CORBA [22] infrastructure, such as that
provided by the TAO middleware (www.dre.vanderbilt.
edu). These tasks are scheduled on different nodes of the
DRE system, with tasks on each node scheduled using Rate
Monotonic Scheduling (RMS) [18].

The client-side request rate defines the priority at which
the task will execute at the server. We therefore use RT-
CORBA’S CLIENT _PROPAGATED priority model, which al-
lows the clients to dictate the priority at which the servers
have to service their requests. Since a single server pro-
cess may handle multiple clients with different priorities,
we also use the RT-CORBA thread pool with lanes feature,

'In such systems we assume that each node has a single pro-
cessor and hard real-time tasks are provisioned separately,
with dedicated hardware and software, and as such are out-
side the scope of this discussion.

which partitions the available number of threads across dif-
ferent priorities, so that the server can simultaneously serve
multiple client requests with multiple priorities. While our
current implementation employs RMS, our middleware ar-
chitecture can easily incorporate other scheduling policies,
such as Maximum Urgency First [27] (MUF).

2.2 Fault Model

Our research focuses on a fail-stop model of failures, where
processes or processors can fail and the remainder of the
system can continue executing. We assume that processor
faults are hard faults, 7.e., when a processor has a fault it
stops permanently. These types of faults may occur due
to aging or acute damage, though in domains like shipboard
computing acute damage is the main concern since hardware
components are periodically replaced through routine main-
tenance. Considering unpredictable behavior of processes or
processors is beyond the scope of our research.

We assume that networks provide bounded communica-
tion latencies and do not fail. This assumption is reason-
able for certain DRE systems, such as shipboard computing,
where nodes are connected by highly redundant high-speed
networks. Relaxing this assumption through integration of
our middleware with network level fault tolerance techniques
is an area of future work.

2.3 FLAResMiddleware Architecture

We now describe how FLARe is designed to provide the
key capabilities as described in Section 1. Figure 1 depicts
the architecture of the FLARe. We first describe the respon-
sibilities of the major components of FLARe. Then we de-
scribe how the major middleware components work together
with different runtime algorithms to provide the capabilities
described in Section 1.

————— Cached IORs g——p Active Middleware Local Resource
e..—..—e Liveliness Comini=tion Replication Manager
Monitoring @ Resource Manager
@ Primary Server Monitor Resource
Manager
" Fault Detector
@ Replica Server

Client Request
Interceptor

i

M

Host 1
oz
cfg;”" ol \ @ Host Utilization
S ~ = — N g Updates
; Forwarding =~ ~ @
PCllen(Agent I &
rocess
T Hostz CLRM
Management
Management
Failover Target
Updates Host 3 Host 5 ‘
MWRM RM
Host 6
Proactive redirection \—/ \‘Jleorises
Hosta || 1

0

Figure 1: FLARe Middleware Architecture

Middleware replication manager. FLARe’s middle-
ware replication manager provides interfaces for registering
and managing information about the server objects and their
backup replicas. The purpose of the middleware replication
manager is to manage the fault tolerance and recovery re-
quirements of the applications, and use them as a blueprint
to adapt configurations at runtime in response to changing

resource availabilities.

Resource Manager. The resource manager acts as a
bridge between the decision making algorithms and the mid-
dleware implementing the decisions of the decision making
algorithms. The function of the resource manager is to use
adaptive resource management algorithms to make runtime,
resource-aware, (QoS-aware decisions about the configura-
tion of the fault tolerance and real-time service of the sys-
tem. The resource manager is designed to be extensible to
allow plugging in many different algorithms which are used
for different purposes in the context of FLARe. For exam-
ple, in certain scenarios, after a client failover, the processor
may not get overloaded, in which case the resource manager
does not apply the dynamic reconfiguration algorithms.

Local resource manager. Local resource manager re-
sides in each processor and works in conjunction with the
global resource manager to implement the processor-specific
trade-off decisions between performance and availability of
applications.

Client interceptors and forwarding agent. Client
interceptors and the forwarding agent help shield the appli-
cations from managing the responsibilities associated with
client redirection.

Resource monitors and fault detectors. Resource
monitors monitor different resources (e.g., CPU, memory,
network bandwidth) in the system, and periodically updates
the resource manager. Fault detectors monitor the health of
processes and processors and periodically updates the mid-
dleware replication manager.

2.4 Functionality of FLARe

We now describe how the major middleware components
work together with different runtime algorithms to provide
the capabilities described in Section 1 and also provide so-
lutions to the drawbacks listed in Section 1.

Adaptive, load-aware, and timely client failover
techniques. Middleware replication manager manages in-
formation such as server’s multiple implementations, their
resource utilization requirements, and their utility values,
and decides on an appropriate implementation to operate
in resource-constrained scenarios. Middleware replication
manager also keeps track of information about the server
replica and their backup placements, replication degree, and
consistency requirements. Such information can also be fed
to the middleware replication manager using a modeling
tool like MDDPro [28]. At runtime, middleware replication
manager adapts such deployment-time fault tolerance (e.g.,
backup location) and performance configuration information
by working in conjunction with the resource manager.

Resource manager collects metrics like CPU utilization
from the processors hosting the replicas, and utilizes replica
selection algorithms to make resource-aware fault tolerance
configuration decisions like determination of failover targets
for each server replica. The middleware replication manager
periodically makes QoS queries on the resource manager to
determine the failover target, and redirects the information
to the client-side middleware so that client failover can be
timely and appropriate.

Forwarding agent resides in the client middleware process
and periodically queries the middleware replication manager
about the appropriate failover targets to redirect clients.
When the client interceptors catch exceptions created by
processor or process failures, they make a request on the for-

warding agent to know the backup location address. Since
the request from the interceptor to the forwarding agent tra-
verses the same in-process address space, no network latency
is involved, and the client redirection is fast, and appropri-
ate.

To detect the failure of a process quickly, each applica-
tion process on a processor opens up a passive POSIX local
socket (also known as a UNIX domain socket), and registers
the port number with the fault detector. The fault detec-
tor connects to and performs a blocking read on the socket.
If an application process crashes, the socket and the opened
port will be invalidated. The fault detector then receives an
invalid read error on the socket, which indicates the failure
of the process.

The effectiveness of the adaptive, timely, and load-aware
client failover technique depends on the replica selection al-
gorithm used by the resource manager to periodically update
the forwarding agents. We have implemented a least-loaded
replica selection algorithm described in Algorithm 1.

Algorithm 1 Determine per-object failover targets

1: N — number of processors

2: for i =1to N do

3: reset expected utilization of all the processors to the
current utilization

4: P = number of processes in this processor i

5: for j=1to P do

6: O = number of objects running in this process j

7: for £ =1to O do

8: find all the processors of the object k’s replicas

9: find the processor MIN with the minimum ex-
pected utilization

10: failover target for object k is the object running
in MIN

11: expected utilization of processor MIN += object
k’s load

12: end for

13: end for

14: end for

FLARe’s replica selection algorithm chooses the processor
with the lowest utilization from among all processors hosting
an object’s replicas as its failover target. The expected uti-
lization variable is used to account for the failover decision
of other objects located on the same processor. By select-
ing the processor with the lowest expected utilization, our
replication selection algorithm distributes the failover tar-
gets of objects on a single processor to multiple processors.
A detailed evaluation of FLARe’s adaptive, load-aware and
timely failover techniques can be obtained from [4].

Dynamic reconfiguration, and load shedding tech-
niques. The goal of FLARE’s replica selection algorithm
is to allow clients failover to replicas hosted in processor,
whose load does not increase beyond a threshold after the
failover. However, in certain scenarios, after a client failover,
the load of a processor might increase beyond the utilization
bound within which RMS can guarantee scheduling of real-
time tasks in a processor. Rather than delaying the failover,
and affecting the real-time schedules of tasks, FLARe pro-
ceeds with the failover. However, if the overloads are not
controlled appropriately, some of the tasks in the processor
will miss their deadlines.

We are developing and implementing overload manage-

ment algorithms in the context of FLARe’s resource man-
ager. The primary goal of the overload management algo-
rithms is to provide a fast reconfiguration with minimum
disturbance to the clients, whose availability requirements
might get affected during the reconfiguration. The idea is
to take advantage of the replicas hosted in processors which
are lightly loaded, but whose primary replica is hosted in
the processor that is overloaded. This is a case of forced
or proactive redirection of clients from one replica to an-
other even though the failure has not occurred. Once forced
redirection targets are identified, the middleware replica-
tion manager notifies the forwarding agents. The forward-
ing agents proceed with the redirection at a moment that
causes the least disturbance for the clients (e.g., after the
end of a request and before the start of the next period).

Utility optimization techniques. In scenarios, where
dynamic reconfiguration and load shedding algorithms can-
not control the overloads in processors, resource manager
makes use of utility optimization techniques [30] to get the
resource consumption in the processors down to an accept-
able value (e.g, RMS utilization bound). The resource man-
ager looks at the utility values of all the objects operating
in the processor, and tries all possible combinations which
can bring the utilization down to the target threshold. It
then picks the combination, that gives the maximum utility
value. The utility values could be assigned based on (1) the
implementation the object operates, and (2) whether the
object operates or not.

Local resource manager works in conjunction with the re-
source manager to implement the trade-off decisions between
performance and availability of applications. For example,
in certain resource-constrained scenarios, the resource man-
ager might decide to operate a less resource consuming im-
plementation of a server hosted in a processor. The recov-
ery manager conveys this information to the local resource
manager, which uses the techniques described in [3] to swap
server implementations. We are in the process of developing
sophisticated utility optimization algorithms and strategies
that can work in conjunction with middleware mechanisms
to provide degraded QoS to applications.

3. RELATED WORK

Real-time fault tolerant scheduling. Fundamental
ideas and challenges in combining real-time and fault tol-
erance are described in [29], where the notion of imprecise
computations have been used to provide degraded QoS to
applications operating in the presence of failures. [10] pro-
poses adaptive fault tolerance mechanisms to choose a suit-
able redundancy strategy for dynamically arriving aperiodic
tasks based on system resource availability. [8] proposes a
feasibility test to determine if a given task set is schedu-
lable for fault-tolerant purposes using earliest deadline first
(EDF) scheduling. [12] proposes a fixed priority-driven pre-
emptive scheduling scheme to preallocate time intervals to
both the primary and backup replicas of a task, and adap-
tively executes either the primary or a backup depending
on failures and available time. [15] generates a FT sched-
ule for tasks with precedence constraints and plans for suffi-
cient slack time to handle recovery actions in case of failures.
FLARe differs from these approaches in providing fault tol-
erance capabilities to soft real-time applications. Rather
than ensuring hard deadlines are met in the presence of fail-
ures, therefore, FLARe focuses on minimizing the impact

of failure recovery on client response times and system re-
source utilization, and also provides timely client failover to
appropriate failover targets.

Allocation of resources for fault tolerance. Other
research has focused on deployment-time allocation of re-
sources to tasks operating in a multi-processor environment
while considering fault tolerance. [9] focuses on choosing
appropriate task implementations and degrees of replica-
tion for fault tolerance depending on system resource avail-
ability. [11] proposes a fully polynomial-time approxima-
tion algorithm to map tasks and their replicas to hetero-
geneous multiprocessors. [2| proposes a bi-criteria heuris-
tic for scheduling operations in heterogeneous architectures
while minimizing schedule length and maximizing reliabil-
ity. [6] proposes a polynomial-time approximation scheme
for replication of periodic hard real-time tasks in identical
multiprocessor environments while minimizing system uti-
lization. The FLARe middleware can be extended readily
to support deployment-time allocation planning using such
algorithms. Furthermore, as failures occur and tasks arrive
dynamically at run-time, FLARe can also adapt by chang-
ing failover targets on the fly so that client response times
are not overly affected by failures.

Real-time fault-tolerant middleware. Delta-4/XPA [24]

was an early effort to provide real-time fault-tolerant solu-
tions to distributed systems by using the semi-active repli-
cation model, where all the replicas are active, but only
one replica sends output responses. ARMADA [1] defines a
set of communication and middleware services that support
fault tolerance and end-to-end guarantees for real-time dis-
tributed applications. MEAD [23] and its proactive recovery
strategy for distributed CORBA applications can minimize
the recovery time for DRE systems. The Time-triggered
Message-triggered Objects (TMO) project [16] considers repli-
cation schemes such as the primary-shadow TMO replica-
tion (PSTR) scheme, for which recovery time bounds can
be quantitatively established, and real-time fault tolerance
guarantees can be provided to applications. FLARe’s re-
search contributions are similar to these projects in pro-
viding modular middleware services to add fault tolerance
capabilities to object-based systems. FLARe also enhances
traditional fault tolerance techniques with utilization mon-
itoring techniques, however, so as to minimize the effect of
recovery on client response times, and to manage system
resources efficiently.

Dynamic migration and reconfiguration. Deplanche
et all [7] have studied task migration in the context of re-
configuration in fault-tolerant distributed systems. Hou et
all [13] have used the minimum laxity first served algorithm
to do task migration to meet real-time deadlines. Bettati
et all [5] provide timing guarantees to clients by dynami-
cally changing resource allocations and migrating resources
from one node to another. Kalogeraki et all [14] propose
two algorithms to gracefully migrate objects from the pro-
cessors when processor overloads and high task latencies
are detected. FLARe’s dynamic reconfiguration goals are
not to migrate objects from one node to another. But
FLARe wants to make use of the available replicas, and redi-
rect clients from one replica to another, thereby exploiting
lightweight migration with minimal disturbance to clients.
Moreover, FLARe applies dynamic reconfiguration in the
context of PASSIVE replication scheme as opposed to ACTIVE
replication schemes.

4. CONCLUDING REMARKSAND ONGO-
ING WORK

This paper describes the design of FLARe, which is a
lightweight middleware that enhances RT-CORBA to pro-
vide adaptive and load-aware fault tolerance solutions for
DRE systems. We have implemented a prototype of FLARe
with a least loaded replica selection algorithm as described
in [4]. Our initial evaluations have shown that FLARe’s
proactive load-aware failover strategy can support transpar-
ent and timely failure handling for DRE applications by se-
lecting failover targets on processors with the least load,
thereby minimizing the impact of failures, such as unpre-
dictable system utilization and increased client-perceived
end-to-end response times.

Currently, our work focuses on the following research is-
sues:

e We are developing dynamic reconfiguration and load
shedding algorithms in the context of the resource man-
ager and hope to have a prototype available by Novem-
ber 2006. We also plan to evaluate the performance of
the algorithms in a representative DRE system case
study deployed in a Linux test bed, and plan to write
a technical paper by December 2007.

e We are also in the process of developing utility opti-
mization techniques to manage the trade-offs between
performance and fault tolerance, and provide solutions
that work in conjunction with the middleware mecha-
nisms to manage the real-time and fault tolerance ca-
pabilities of the system. We plan to have a prototype
implementation with few domain-specific utility opti-
mization strategies (e.g., changing implementations for
image processing controllers) under given constraints
in a practical deployment scenario. We plan to eval-
uate the performance of the algorithms in a represen-
tative DRE system case study and write a technical
paper by March 2008.

e Supporting stateful applications in DRE systems not
only requires timely failover, but client consistency re-
quirements, such as weak or strong consistency mod-
els. FLARe is currently designed for stateless applica-
tions, so our future work will enhance the replica se-
lection algorithm to consider consistency levels of the
replicas while choosing failover targets. We are also
enhancing FLARe to support replication requirements
for different consistency levels. We plan to approach
the research as an aperiodic scheduling problem with
application requiring support from the fault tolerant
middleware to schedule its state synchronization ac-
tivities. We plan to have a prototype implementation
ready by May 2008, and plan to write a technical paper
at that time.

5. REFERENCES

[1] T. F. Abdelzaher, S. Dawson, W. chang Feng,
F. Jahanian, S. Johnson, A. Mehra, T. Mitton,
A. Shaikh, K. G. Shin, Z. Wang, H. Zou,
M. Bjorkland, and P. Marron. ARMADA middleware
and communication services. Real-Time Systems,
16(2-3):127 153, 1999.

[2] I. Assayad, A. Girault, and H. Kalla. A bi-criteria
scheduling heuristic for distributed embedded systems
under reliability and real-time constraints. In DSN ’04.

13l

4]

5]

[6]

7]

B

9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

J. Balasubramanian, B. Natarajan, D. C. Schmidt,
A. Gokhale, G. Deng, and J. Parsons. Middleware
Support for Dynamic Component Updating. In
International Symposium on Distributed Objects and
Applications (DOA 2005), Agia Napa, Cyprus, Oct.
2005.

J. Balasubramanian, S. Tambe, A. Gokhale, C. Lu,
C. Gill, and D. C. Schmidt. FLARe: a Fault-tolerant
Lightweight Adaptive Real-time Middleware for
Distributed Real-time and Embedded Systems.
Technical Report ISIS-07-812, Institute for Software
Integrated Systems, Vanderbilt University, Nashville,
TN, May 2007.

R. Bettati and A. Gupta. Dynamic Resource
Migration for Multiparty Real-Time Communication.
Proceedings of the IEEE 16th International Conference
on Distributed Computing Systems, pages 646—655.
J.-J. Chen, C.-Y. Yang, T.-W. Kuo, and S.-Y. Tseng.
Real-time task replication for fault tolerance in
identical multiprocessor systems. IEEE RTAS,

0:249 258, 2007.

A. Deplanche and J. Elloy. Task Redistribution with
Allocation Constraints in a Fault-Tolerant Real-Time
Multiprocessor System. Distributed
Processing—Proceedings of the IFIP WW6,

10(3):133 150.

S. Ghosh, R. Melhem, and D. Mosse. Enhancing
real-time schedules to tolerate transient faults. In
RTSS ’95.

S. Ghosh, R. Rajkumar, J. Hansen, and J. Lehoczky.
Scalable resource allocation for multi-processor qos
optimization. In ICDCS ’03.

0. Gonzalez, H. Shrikumar, J. A. Stankovic, and

K. Ramamritham. Adaptive fault tolerance and
graceful degradation under dynamic hard real-time
scheduling. In RTSS ’97.

S. Gopalakrishnan and M. Caccamo. Task
Partitioning with Replication upon Heterogeneous
Multiprocessor Systems. In RTAS 2006.

C.-C. Han, K. G. Shin, and J. Wu. A fault-tolerant
scheduling algorithm for real-time periodic tasks with
possible software faults. IEEE Transactions on
Computers, 52(3):362-372, 2003.

C. Hou and K. Shin. Load sharing with consideration
of future task arrivals inheterogeneous distributed
real-time systems. Computers, IEEE Transactions on,
43(9):1076 1090, 1994.

V. Kalogeraki, P. Melliar-Smith, and L. Moser.
Dynamic migration algorithms for distributed object
systems. icdes, 00:0119, 2001.

N. Kandasamy, J. P. Hayes, and B. T. Murray.
Transparent recovery from intermittent faults in
time-triggered distributed systems. IEEE Transactions
on Computers, 52(2):113-125, 2003.

K. H. K. Kim and C. Subbaraman. The pstr/sns
scheme for real-time fault tolerance via active object
replication and network surveillance. IEEE
Transactions on Knowledge and Data Engineering,
12(2):145-159, 2000.

H. Kopetz, A. Damm, C. Koza, M. Mulazzani,

W. Schwabl, C. Senft, and R. Zainlinger. Distributed
fault-tolerant real-time systems: The mars approach.

[18]

[19]

[20]

[21]

22]

23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

IEEE Micro, 09(1):25—40, 1989.

J. Lehoczky, L. Sha, and Y. Ding. The Rate
Monotonic Scheduling Algorithm: Exact
Characterization and Average Case Behavior. In
Proceedings of the 10th IEEE Real-time Systemns
Symposium (RTSS 1989), pages 166 171. IEEE
Computer Society Press, 1989.

P. Narasimhan. Trade-Offs Between Real-Time and
Fault Tolerance for Middleware Applications.
Workshop on Foundations of Middleware
Technologies, Nov. 2002.

P. Narasimhan, T. Dumitras, A. M. Paulos, S. M.
Pertet, C. F. Reverte, J. G. Slember, and

D. Srivastava. MEAD: support for Real-Time
Fault-Tolerant CORBA. Concurrency - Practice and
Ezperience, 17(12):1527 1545, 2005.

Object Management Group. Fault Tolerant CORBA,
Chapter 23, CORBA v3.0.3, OMG Document
formal/04-03-10 edition, Mar. 2004.

Object Management Group. Real-time CORBA
Specification v1.2 (static), OMG Document
formal/05-01-04 edition, Nov. 2005.

S. Pertet and P. Narasimhan. Proactive Recovery in
Distributed CORBA Applications. In DSN 200.

D. Powell. Distributed fault tolerance: Lessons from
delta-4. IEEE Micro, 14(1):36-47, 1994.

Y. Ren, D. Bakken, T. Courtney, M. Cukier, D. Karr,
P. Rubel, C. Sabnis; W. Sanders, R. Schantz, and

M. Seri. AQuA: an adaptive architecture that provides
dependable distributed objects. Computers, IEEE
Transactions on, 52(1):31-50, 2003.

D. C. Schmidt, R. Schantz, M. Masters, J. Cross,

D. Sharp, and L. DiPalma. Towards Adaptive and
Reflective Middleware for Network-Centric Combat
Systems. CrossTalk - The Journal of Defense Software
Engineering, Nov. 2001.

D. B. Stewart and P. K. Khosla. Real-time Scheduling
of Sensor-Based Control Systems. In W. Halang and
K. Ramamritham, editors, Real-time Programming.
Pergamon Press, Tarrytown, NY, 1992.

S. Tambe, J. Balasubramanian, A. Gokhale, and

T. Damiano. MDDPro: Model-Driven Dependability
Provisioning in Enterprise Distributed Real-Time and
Embedded Systems. In Proceedings of the
International Service Availability Symposium (ISAS),
Durham, New Hampshire, USA, 2007.

F. Wang, K. Ramamritham, and J. A. Stankovic.
Determining redundancy levels for fault tolerant
real-time systems. IEEE Transactions on Computers,
44(2):292 301, 1995.

Zhongtang Cai and Vibhore Kumar and Brian F.
Cooper and Greg Eisenhauer and Karsten Schwan and
Robert E. Strom. Utility-Driven Proactive
Management of Availability in Enterprise-Scale
Information Flows. In Proceedings of
ACM/Useniz/IFIP Middleware, pages 382 403, 2006.
H. Zou and F. Jahanian. A real-time primary-backup
replication service. Parallel and Distributed Systems,
IEEE Transactions on, 10(6):533 548, 1999.

