
A Framework for (Re)Deploying Components in
Distributed Real-time and Embedded Systems

N. Shankaran†, J. Balasubramanian† , D. Schmidt†, G. Biswas†

P. Lardieri‡, E. Mulholland‡, and T. Damiano‡
†Dept. of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN

‡Lockheed Martin Advanced Technology Labs, Cherry Hill, NJ

Abstract
This paper describes the Resource Allocation and Control
Engine (RACE) that integrates multiple resource manage-
ment algorithms for (re)deploying and managing performance
of application components in distributed real-time and em-
bedded (DRE) systems. RACE enables DRE systems to
(re)configure allocation and control algorithms depending on
application characteristics and environmental conditions. It
also enables developers to focus on algorithm logic, while
reusing many mechanisms used to (re)configure and (re)depl-
oy the algorithms on distributed computing nodes.

1. INTRODUCTION
Component-based technologies are increasingly being ap-

plied to distributed real-time and embedded (DRE) systems,
such as shipboard computing environments, avionics mis-
sion computing systems, and earth science missions. Appli-
cations in DRE systems have a range of quality of service
(QoS) requirements that may vary in response to changes
in mission goals at runtime, e.g., due to new information or
because certain tasks cannot be completed on time. QoS
requirements can also vary due to changes in system run-
time performance, e.g., due to loss of resources, transient
overload and/or algorithmic properties.

To support different types of applications running in var-
ious DRE system environments, a range of resource man-
agement algorithms and mechanisms are needed to (1) al-
locate resources to application components and (2) control
system QoS and behavior after application components have
been deployed. Allocation algorithms determine the initial
deployment process by mapping application components to
the appropriate target nodes; control algorithms adapt the
execution of application components at runtime in response
to changing environments and variations in resource avail-
ability and/or demand. Mechanisms perform the allocation
and control decisions of these algorithms.

A common way to develop resource management for DRE
systems is to handcraft algorithms and mechanisms for spe-
cific application use cases. Although this approach can yield

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC ’06, April, 23-27, 2006, Dijon, France.
Copyright 2005 ACM 1-59593-108-2/06/0004 ...$5.00.

efficient point solutions, it can also lead to a number of
problems. First, the aggregate QoS of multiple applica-
tions may be suboptimal if resource management algorithms
are tightly coupled to a subset of the system’s requirements
and operating conditions that change dynamically. Second,
handcrafted point solutions can increase system complex-
ity due to the following tedious and error-prone human-
intensive programming tasks: (1) specifying and evaluat-
ing component resource requirements, (2) examining appli-
cation behavioral and interaction characteristics to identify
which resource management algorithm(s) are best suited for
(re)deployment, (3) monitoring resources available in the
system to assist allocation and adaptation decisions, and (4)
interacting with middleware infrastructure mechanisms that
(re)configure and (re)deploy components based on decisions
made by allocation and control algorithms.

This paper describes the structure, functionality, and use
of the Resource Allocation and Control Engine (RACE),
which is an open-source framework (www.dre.vanderbilt.
edu) that addresses the problems described above using stan-
dard OMG Lightweight CORBA Component Model (CCM)
middleware (www.omg.org). RACE helps manage various
system resources (such as network bandwidth, as well as
CPU and memory on each node) by selectively applying
algorithms designed to meet application QoS requirements
and operating conditions. RACE also separates resource
allocation and control algorithms from the underlying mid-
dleware mechanisms so that these algorithms can reuse com-
mon mechanisms to (re)configure and (re)deploy compo-
nents properly onto DRE system nodes.

2. OVERVIEW OF RACE
RACE is an extensible framework that factors out mecha-

nisms common to different allocation and control algorithms,
including (1) capabilities for describing application QoS char-
acteristics declaratively, (2) monitors that track applica-
tion and infrastructure performance and resource usage, (3)
the ability to represent allocation/control algorithm poli-
cies declaratively and automatically configure the resource
management middleware to enforce these policies, and (4)
the ability to (re)deploy and (re)configure the application
components based on decisions made by the allocation and
control algorithms. Applications in DRE systems can use
RACE to manage system resource utilization and ensure
their QoS requirements are met even under varying opera-
tional contexts and/or resource requirement/availability.

Figure 1 illustrates the architecture of the RACE frame-
work, which is implemented as an assembly of CCM compo-
nents in CIAO and DAnCE [2]. Each RACE component is

737

Figure 1: The RACE Architecture

described below and is motivated in terms of the problems
described in Section 1.

Specifying and evaluating component resource re-
quirements. Application characteristics and QoS require-
ments determine the resource management algorithms to use
when making (re)deployment decisions. RACE’s Input-

Manager is a CCM component that interacts with exter-
nal users and planners to capture key properties of system
(re)deployment, including which application components com-
prise the system, the execution profiles and resource require-
ments of each component, the data/control dependencies
between components, the communication characteristics of
components, and the QoS requirements of those communi-
cations in terms of latency, throughput, etc. The Input-

Manager receives this input from various sources, including
component modeling languages, such as PICML (www.dre.
vanderbilt.edu/cosmic) and declarative languages, such as
web service interfaces. To reconcile different formats from
various input sources, RACE’s InputManager captures the
input in the form of standards-based XML descriptors de-
fined by the OMG D&C specification.

Supporting multiple resource management algo-
rithms. Applications in DRE systems often have different
QoS goals and requirements, so a single allocation and con-
trol algorithm may not meet the needs of these applications.
RACE’s DeploymentManager is a CCM component that sup-
ports the (re)configuration and operation of multiple re-
source management algorithms, whose behavior depends on
application characteristics and environmental conditions. It
contains an Allocator that supports multiple resource allo-
cation algorithms, such as PBFD [1], and Avala [5] whose be-
havior depends on the requirements captured by the Input-
Manager. It also contains a Controller that supports mul-
tiple control algorithms, such as FCS [4] and HySUCON [3],
that help ensure QoS properties of components, as specified
to the InputManager. RACE’s DeploymentManager com-
ponent captures the allocation and control decisions of the
algorithms in the form of standards-based XML descriptors
defined by the D&C specification and passes these descrip-
tors to the middleware platform, which then performs sys-
tem re(deployment).

Monitoring dynamic system information. To make
accurate allocation and adaptation decisions, system resource
utilization must be monitored periodically. RACE’s Target-
Manager is a CCM component that monitors online system
resource utilization, so that allocation/adaptation decisions
and QoS properties of applications can be evaluated dynami-
cally. The TargetManager monitors the (potentially hetero-
geneous) network of nodes where application components
are deployed based on the decisions made by Allocator al-

gorithms and periodically informs Controller algorithms to
aid resource management adaptation decisions.

Support for selecting proper resource management
algorithms. Configuring all resource management algo-
rithms for a particular DRE system can yield excessive mem-
ory footprint and resource usage. Application behavioral
characteristics and requirements must therefore be analyzed
carefully to (1) operate the best possible algorithms and
(2) change the algorithms if the QoS becomes unsatisfac-
tory. RACE’s DeploymentAnalyzer is a CCM component
that parses the behavioral characteristics and requirements
of applications and identifies the best resource management
algorithms to use for the system (re)deployment.

3. APPLICATION OF RACE
We are applying RACE to several large-scale DRE sys-

tems, including Naval shipboard computing systems and
NASA earth science missions. Our goal is to evaluate how
well it monitors system QoS and adapts algorithms in re-
sponse to changing application requirements and operating
conditions. We are also evaluating how well different re-
source management algorithms optimize the deployment of
application components.

To show RACE in action, we briefly describe its applica-
tion to Naval shipboard computing systems. In this exam-
ple, the DeploymentAnalyzer examines the input from the
InputManager and if there are no communications across
components, it uses a classical simple bin-packing algorithm
to allocate components to nodes. Conversely, if component
communications are involved, RACE uses a more sophisti-
cated bin-packing algorithm, such as PBFD [1].

RACE’s DeploymentAnalyzer can (re)configure the algo-
rithms to use by analyzing (1) the system properties and
deployment constraints captured by the InputManager and
(2) the system monitoring information from TargetManager

to ensure the QoS properties of the system are maintained.
After components are mapped to nodes using the appropri-
ate Allocator algorithms, RACE’s Controller algorithms
adapt application component execution dynamically in re-
sponse to changing requirements or variations in resource
availability or demand. For example, a Controller can (1)
modify an application’s current operating mode, (2) dynam-
ically update component implementations, and/or (3) rede-
ploy components to other target nodes to meet end-to-end
QoS requirements.

4. REFERENCES
[1] D. de Niz and R. Rajkumar. Partitioning Bin-Packing

Algorithms for Distributed Real-Time Systems. International
Journal of Embedded Systems, 2005.

[2] G. Deng, J. Balasubramanian, W. Otte, D. C. Schmidt, and
A. Gokhale. DAnCE: A QoS-enabled Component Deployment
and Conguration Engine. In Proceedings of the 3rd Working
Conference on Component Deployment, Grenoble, France, Nov.
2005.

[3] X. Koutsoukos, R. Tekumalla, B. Natarajan, and C. Lu. Hybrid
Supervisory Control of Real-Time Systems. In 11th IEEE

Real-Time and Embedded Technology and Applications
Symposium, San Francisco, California, Mar. 2005.

[4] C. Lu. Feedback Control Real-Time Scheduling. PhD thesis,
University of Virginia, Charlottesville, VA, May 2001.

[5] M. Mikic-Rakic, S. Malek, and N. Medvidovic. Improving

Availability in Large, Distributed Component-Based Systems
Via Redeployment. In 3rd International Working Conference
on Component Deployment (CD 2005), Grenoble, France, 2005.

738

