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Abstract

Developing cyber physical systems is hard since it requiresa coordinated, physics-aware allocation

of CPU and network resources to satisfy their end-to-end quality-of-service (QoS) requirements. This

paper provides two contributions to address these challenges. First, we present model-driven middleware

called NetQoPE that shields application developers from the complexities of programming the lower-

level CPU and network QoS mechanisms by simplifying (1) the specification of per-application CPU

and per-flow network QoS requirements subject to the physical constraints and dynamics, (2) resource

allocation and validation decisions (such as admission control), and (3) the enforcement of per-flow

network QoS at runtime. Second, we empirically evaluate howNetQoPE provides QoS assurance for CPS

applications. Our results demonstrate that NetQoPE provides flexible and non-invasive QoS configuration

and provisioning capabilities by leveraging CPU and network QoS mechanisms without modifying

application source code.

I. INTRODUCTION

Emerging trends and limitations. Cyber physical systems (CPS), such as smart buildings,

high confidence medical devices and systems, and traffic control and safety systems consist

of applications that participate in multiple end-to-end application flows, operate in resource-

constrained environments, and have varying quality-of-service (QoS) requirements driven by

the dynamics of the physical environment in which they operate. For example, smart buildings

can host different types of applications with diverse (1) CPU QoS requirements (e.g., personal

desktop applications versus fire sensor data analyzers), and (2) network QoS requirements (e.g.,

transport of e-mails versus transport of security-relatedinformation). In such systems, there is a

need to allocate CPU and network resources to contending applications subject to the constraints



on resources imposed by the physical phenomena (e.g., a fire may partition a set of resources

requiring rerouting of network flows).

The QoS provisioning problem is complex due to the need to differentiate applications and

application flows at the processors and the underlying network elements, respectively, so that

mission-critical applications receive better performance than non-critical applications [1], [2].

Overprovisioning is often not a viable option in cost- and resource-constrained environments

where CPS applications deployed,e.g. in emerging markets that cannot afford the expense of

overprovisioning. CPS application developers must therefore seek effective resource management

mechanisms that can efficiently provision CPU and network resources, and address the following

two limitations in current research:

Limitation 1: Need for physics-aware integrated allocation of multiple resources. Prior

work has focused predominantly on allocating and scheduling CPU [3], [4] or network re-

sources [5], [6] in isolation. While single resource QoS mechanisms have been studied ex-

tensively, little work has focused on coordinated mechanisms that allocate multiple resources,

particularly for CPS applications where the coordinated resource management must be aware

of the physical dynamics. In the absence of such mechanisms,CPS applications systems may

not meet their QoS goals. For example, an application CPU allocation algorithm [7], [3], could

dictate multiple placement choices for application(s), but not all placement choices may provide

the networkand CPU QoS because physical limitations may not permit certainallocations

(e.g., the placement of a fire sensor impacts its wireless network connectivity to nearby access

points). Coordinated mechanisms are therefore needed to allocate CPU and network resources

in an integrated manner.

Limitation 2: Need for a non-invasive application-level resource management framework.

Even if an integrated, physics-aware multi-resource management framework existed for CPS

applications, developers would still incur accidental complexities in using the low-level APIs of

the framework. Moreover, application source code changes may be needed whenever changes

occur to the deployment contexts (e.g., source and destination nodes of applications), per-

flow network resource requirements, per-application CPU resource requirements, or IP packet

identifiers.

Middleware frameworks that perform CPU [8], [9], [10], [11], [12] or network [13], [2], [14],

[15] QoS provisioning often shield application developersfrom these accidental complexities.



Despite these benefits, CPS applications can still be hard toevolve and extend when the APIs

change and middleware evolve. Addressing these limitations requires higher-level integrated

CPU and network QoS provisioning technologies that decouple application source code from the

variabilities (e.g., different source and destination node deployments, different QoS requirement

specifications) associated with their QoS requirements. This decoupling enhances application

reuse across a wider range of deployment contexts (e.g., different deployment instances each

with different QoS requirements), thereby increasing deployment flexibility.

Solution approach → Model-driven deployment and configuration middleware for CPS

applications. To simplify the development of CPS applications, we developed a multistage,

model-driven deployment and configuration framework called Network QoS Provisioning Engine

(NetQoPE) that integrates CPU and network QoS provisioningvia declarative domain-specific

modeling languages (DSML) [16]. NetQoPE leverages the strengths of middleware while simulta-

neously shielding developers from specific middleware APIs. This design allows system engineers

and software developers to performreusabledeployment-time analysis (such as schedulability

analysis [17]) of non-functional system properties (such as CPU and network QoS assurances

for end-to-end application flows). The result is enhanced deployment-time assurance that the

QoS requirements of CPS applications will be satisfied.

Paper organization.The remainder of the paper is organized as follows: Section II describes

a case study that motivates common requirements associatedwith provisioning QoS for CPS

applications; Section III explains how NetQoPE addresses those requirements via its multistage

model-driven middleware framework; Section IV empirically evaluates the capabilities provided

by NetQoPE in the context of a representative CPS application case study; Section V compares

our work on NetQoPE with related research; and Section VI presents concluding remarks and

lessons learned.

II. M OTIVATING NETQOPE’S QOS PROVISIONING CAPABILITIES

This section presents a case study of a representative CPS application from the domain of

smart office environments. We use this case study throughoutthe paper to motivate and evaluate

NetQoPE’s model-driven, middleware-guided CPU and network QoS provisioning capabilities.



A. Smart Office Environment Case Study

Smart offices belong to a domain of systems calledSmart Buildings[18] and showcase state-

of-the-art computing and communication infrastructure inits offices and meeting rooms, as

shown in Figure 1. Below we describe the cyber physical traits of the smart office environment,

focusing on the development and deployment challenges CPS application developers face when

ensuring the integration between the cyber and physical aspects of the system.

Fig. 1. Network Configuration in a Smart Office Environment

• Fire and smoke management.

Detectors are placed in different

rooms to send periodic sensory in-

formation to a fire and smoke man-

agement service. While designing

and deploying this capability, de-

velopers must ensure the delivery

of sensory data to the management

service—and the outgoing traffic

from this service—ishigh priority,

i.e., it should always obtain the de-

sired CPU and network resources,

even though the emergency mode

operation (e.g., in the event of a fire)

of this service is infrequent. Moreover, sensory and actuation traffic must be reliable. The service

should also adapt its policies of routing information to other resources when the current set of

resources become unavailable,e.g., due to fire or other adverse event.

• Security surveillance.This service uses a feed from cameras and audio sensors in different

rooms and performs appropriate audio and video processing to sense physical movements and

other intrusions. To notify the security control room, developers must ensure that the input feed

from these sensors obtain high bandwidth for their multimedia traffic, while the outgoing alert

notifications and activation of door controls are provided high priority. The image processing

task must also be allocated its required CPU resources to perform intrusion detection.

• Air conditioning and lighting control.The air conditioning and lighting control service



maintains appropriate ambient temperatures and lighting,respectively, in different parts of a

building, including business offices, conference rooms andserver rooms. It also turns off lights

when rooms are not occupied to save energy. This service receives sensory data from thermostats

and motion sensors, and controls the air conditioning ventsand light switches. This service

must be assured reliable transmission of information, though it does not necessarily require high

priority.

• Multimedia video and teleconferencing.Offices often provide several multimedia-enabled

conference rooms to conduct meetings simultaneously. These multimedia conferences require

high bandwidth provisioning. A moderator of each meeting submits a request for bandwidth to

this service, which must be reliably transmitted to the service. The service in turn must provision

the appropriate bandwidth for the multimedia traffic. This service may also need to actuate a

public address system informing people of a meeting. Since resources are finite, developers must

make tradeoffs and assign this category of public address announcements to the best effort class

of traffic, though that announcements about evacuations must be treated with high priority.

• Email and other web traffic.Offices also involve a number of other kinds of traffic including

email, calendar management, and web traffic. This service must manage these best effort class

of traffic on behalf of the people.

B. Challenges in Provisioning and Managing QoS in the Smart Office

We now describe the challenges encountered when implementing the QoS provisioning and

managing steps described above in the CPS applications thatcomprise our case study:

• Challenge 1: Physics-aware QoS requirements specification. Manually modifying appli-

cation source code to specify both CPU and network QoS requirements is tedious, error-prone,

and non-scalable. In particular, applications could have different resource requirements depending

on the physical context in which they are deployed. For example, in our smart office case study,

fire sensors have different importance levels (e.g., fire sensors deployed in the parking lot have

lower importance than those in the server room). The sensor to monitor flows thus have different

network QoS requirements, even though the software controllers managing the fire sensor and

the monitor are reusable units of functionality. It may be hard to envision at development time

all the contexts in which source code will be deployed; if such information is readily available,

application source code can be modified to specify resource requirements for each of those



contexts.

The need to know source and destination addresses of an application—coupled with the fact

that multiple choices are possible for deploying applications—makes changing application source

code to specify resource requirements inflexible and non-scalable. Section III-A describes how

NetQoPE provides a solution to this challenge by providing adomain-specific modeling language

(DSML) to support design-time application non-invasive specification of per-application network

and CPU QoS requirements.

• Challenge 2: Application resource allocation.Manual modifications to source code to

reserve resources tightly couple application components with a network QoS mechanism API

(e.g., Telcordia’s Bandwidth Broker [19]). This coupling complicates deploying the same appli-

cation component with resources reserved using a differentnetwork QoS mechanism API (e.g.,

GARA Bandwidth Broker [20]). Similarily, source code modifications are also required when

the same application is deployed with different network QoSrequirements (e.g., requesting more

bandwidth on its application flows). Allocating network resources may also depend on their IP

addresses, which may be feasible only when CPU allocations are done, which may not be known

at design-time.

Ideally, network resources should be allocated without modifying application source code and

should handle complexities associated with specifying application source and destination nodes,

which could vary depending on the deployment context. Section III-B describes how NetQoPE

provides a solution to this challenge by providing a resource allocator framework that supports

resource reservation for each application and all its application flows in a non-invasive and

transparent manner.

• Challenge 3: Application QoS configuration. Application developers have historically

written code that instructs the middleware to provide the appropriate runtime services,e.g.,

DSCP markings in IP packets [2]. Since applications can be deployed in different contexts,

modifying application code to instruct the middleware to add network QoS settings is tedious,

error-prone, and non-scalable.

Application-transparent mechanisms are therefore neededto configure the middleware to add

these network QoS settings depending on the application deployment context. Section III-C

describes how NetQoPE provides a solution to this challengeby providing a network QoS

configurator that provides deployment-time configuration of component middleware containers



to automatically add flow-specific identifiers to support router layer QoS differentiations.

III. N ETQOPE’S MULTISTAGE NETWORK QOS PROVISIONING ARCHITECTURE

This section describes how NetQoPE addresses the challenges from Section II-B associ-

ated with allocating and providing network and CPU QoS in tandem to CPS applications.

NetQoPE deploys and configures component middleware-basedCPS applications and enforces

their network and CPU QoS requirements using the multistage(i.e., design-, pre-deployment-,

deployment-, and run-time) architecture shown in Figure 2.NetQoPE’s multistage architecture

consists of the following elements in the workflow, which automates the task of QoS provisioning

for CPS applications.

Fig. 2. NetQoPE’s Multistage Architecture

• The Network QoS specifica-

tion language (NetQoS), which is

a DSML that supports design-time

specification of per-application CPU

resource requirements, as well as

per-flow network QoS requirements,

such as bandwidth and delay across

a flow. NetQoPE uses NetQoS to

resolveChallenge 1of Section II-B,

as described in Section III-A.

• The Network Resource Al-

location Framework (NetRAF),

which is a middleware-based resource allocator framework that uses the network QoS require-

ments captured byNetQoSas input at pre-deployment time to help guide QoS provisioning

requests on the underlying network and CPU QoS mechanisms atdeployment time. NetQoPE

uses NetRAF to resolveChallenge 2of Section II-B, as described in Section III-B.

• The Network QoS Configurator (NetCON), which is a middleware-based network QoS

configurator that provides deployment-time configuration of component middleware containers.

NetCON adds flow-specific identifiers (e.g., DSCPs) to IP packets at runtime when applications

invoke remote operations. NetQoPE uses NetCON to resolveChallenge 3of Section II-B, as

described in Section III-C.



NetQoPE implementation technologies.We developed a prototype of the smart office en-

vironment case study using the Lightweight CORBA ComponentModel [21]. We also used a

Bandwidth Broker [19] to allocate per-application-flow network resources using DiffServ network

QoS mechanisms. In addition, we used the Generic Modeling Environment (GME) [22] to

create domain-specific modeling languages (DSMLs) [23] that simplify the development and

deployment of smart office environment applications.

The remainder of this section describes each element in the NetQoPE’s multistage architecture

and explains how they provide the functionality required tomeet the end-to-end QoS requirements

of CPS applications. Although the case study in this paper leverages LwCCM and DiffServ,

NetQoPE can be used with other network QoS mechanisms (e.g., IntServ) and component

middleware technologies (e.g., J2EE).

A. NetQoS: Supporting Physics-aware CPU and Network QoS Requirements Specification

To resolveChallenge 1of Section II-B, NetQoPE enables CPS application developers to spec-

ify their resource requirements at application deployment-time using a DSML called theNetwork

QoS Specification Language(NetQoS). NetQoS is built using the Generic Modeling Environment

(GME) [22] and works in concert with thePlatform Independent Component Modeling Language

(PICML) [23]. NetQoS provides applications with an application-independent, declarative (as

opposed to application-intrusive [14], middleware-dependent [8], and OS-dependent [24]) mech-

anism to specify multi-resource requirements simultaneously that can account for the physical

context in which the system is deployed.

NetQoS also allows specifying resource requirements as applications are deployed and config-

ured in the target environment. Its declarative mechanisms(1) decouple this responsibility from

application source code, and (2) specialize the process of specifying resource requirements for the

particular deployment and usecase. Below we describe the steps in using NetQoS’ capabilities.

1. Declarative specification of resource requirements.CPS applications developers can use

NetQoS to (1) model application elements, such as interfaces, components, connections, and

component assemblies, (2) specify CPU utilization of components, and (3) specify the network

QoS classes, such asHIGH PRIORITY (HP), HIGH RELIABILITY (HR), MULTIMEDIA (MM ), and



BEST EFFORT(BE), bi-directional bandwidth requirements on the modeled application elements.1

NetQoS’s network QoS classes correspond to the DiffServ levels supported by an underlying

network-level resource allocator, such as the Bandwidth Broker [19] we used in our case study.2

For example, theHP class represents the highest importance and lowest latencytraffic (e.g., fire

detection reporting in the server room) whereas theHR class represents traffic with low drop rate

(e.g., surveillance data). Figure 3 show how NetQoS was used to model the QoS requirements

of our case study.

Fig. 3. Applying NetQoS Capabilities to the Case Study

2. Flexible enforcement of net-

work QoS. In certain application

flows in the smart office case study,

(e.g., a monitor requesting loca-

tion coordinates from a fire sensor)

clients control the network priorities

at which requests/replies are sent. In

other application flows (e.g., a tem-

perature sensor sending temperature

sensory information to monitors),

the servers control the reception and

processing of client requests. If such

design intentsare not captured, applications could potentially misuse network resources at

runtime, and also affect the performance of other applications that share the network.

To support both models of communication (i.e., whether clients or servers control network

QoS for a flow), NetQoS supports annotating each bi-directional flow using either: (1) the

CLIENT_PROPAGATEDnetwork priority model, which allows clients to request real-time network

QoS assurance even in the presence of network congestion, or(2) the SERVER_DECLARED

network priority model, which allows servers to dictate theservice that they wish to provide to

1Middleware such as the Lightweight CORBA Component Model allow components to communicate usingports that provide

application-level communication endpoints. NetQoS provides capabilities to annotate communication ports with the network

QoS requirement specification capabilities.

2NetQoS’s DSML capabilities can also be extended to provide requirements specification conforming to other network QoS

mechanisms, such as IntServ.



the clients to prevent clients from wasting network resources on non-critical communication.

NetQoS initiates the allocation of CPU and network resources on behalf of applications by

triggering the next stage of the workflow. Section III-C describes how NetQoPE uses component

middleware frameworks at runtime torealize the design intent captured by NetQoS andenforce

network QoS for applications.

3. Early detection of QoS specification errors.Defining network and CPU QoS specifications

in source code or through NetQoS is a human-intensive process. Errors in these specifications

may remain undetected until later lifecycle stages (such asdeployment and runtime) when they

are more costly to identify and fix. To identify common errorsin network QoS requirement

specification early in the development phase, NetQoS uses built-in constraints specified via

the OMG Object Constraint Language (OCL) that check the application model annotated with

network and CPU priority models.

For example, NetQoS detects and flags specification network resource specification errors, such

as negative or zero bandwidth. It also enforces the semantics of network priority models via syn-

tactic constraints in its DSML. For example, theCLIENT_PROPAGATEDmodel can be associated

with ports in the client role only (e.g., required interfaces), whereas theSERVER_DECLARED

model can be associated with ports in the server role only (e.g., provided interfaces). Figure 4

shows other examples of network priority models supports byNetQoS.

Fig. 4. Network QoS Models Supported by NetQoS

4. Preparation for allocating CPU and

network resources. After a model has

been created and checked for type viola-

tions using NetQoS’s built-in constraints,

network resources must be allocated us-

ing a network QoS mechanism [19], [20].

As described in Section II-B, this process

requires determination of source and des-

tination IP addresses of the applications.

NetQoS allows the specification of CPU utilization requirements of each component and also

the target environment where components are deployed. NetQoS’s model interpreter traverses

CPU requirements of each application component and generates a set of feasible deployment

plans using CPU allocation algorithms, such asfirst fit, best fit, and worst fit, as well asmax



and decreasingvariants of these algorithms. NetQoS can be used to choose the desired CPU

allocation algorithm and to generate the appropriate deployment plans automatically, thereby

shielding developers from tedious and error-prone manual component-to-node allocations.

To perform network resource allocations (see Section III-B), NetQoS’s model interpreter

captures the details about (1) the components, (2) their deployment locations (determined by

the CPU allocation algorithms), and (3) the network QoS requirements for each application flow

in which the components participate.

Application to the case study.Figure 3 shows a NetQoS model that highlights many capabilities

described above. In this model, multiple instances of the same reusable application components

(e.g., FireSensorParking and FireSensorServer components) areannotated with different QoS

attributes using drag-and-drop.

Our case study has scores of application flows with differentclient- and server-dictated network

QoS specifications, which are modeled usingCLIENT_PROPAGATED and SERVER_DECLARED

network priority models, respectively. The well-formedness of these specifications are checked

using NetQoS’s built-in constraints. In addition, the sameQoS attribute (e.g., HR_1000 in

Figure 3) can be reused across multiple connections, which increases the scalability of expressing

requirements for a number of connections prevalent in large-scale CPS applications, such as our

smart office environment case study. Section IV-B and Section IV-C empirically evaluate these

capabilities.

B. NetRAF: Alleviating Complexities in Network Resource Allocation and Configuration

NetQoPE’sNetwork Resource Allocator Framework(NetRAF) is a resource allocator engine

that allocates network resources for CPS applications using DiffServ network QoS mechanisms,

which resolvesChallenge 2described in Section II-B.. NetRAF allocates network resources for

application flows on behalf of the applications (recall how NetQoS invokes NetRAF on behalf

of the applications as part of their workflow) and shields applications from interacting with

complex network QoS mechanism APIs. To ensure compatibility with different implementations

of network QoS mechanisms (e.g., multiple DiffServ Bandwidth Broker implementations [19],

[20]), NetRAF uses XML descriptors that capture CPU and network resource requirement

specifications (which were specified using NetQoS in the previous stage) inQoS-independent

manner. These specifications are then mapped toQoS-specificparameters depending on the



chosen network QoS mechanism. The task of enforcing those QoS specifications are then left

to the underlying network QoS mechanism, such as DiffServ, IntServ, and RSVP.

NetRAF provides a clean separation of functionality between resource reservation (provided

by NetRAF) and QoS enforcement (done by underlying network elements), as described in the

following steps:

Fig. 5. NetRAF’s Network Resource Allocation Capabilities

1. Network resource allocations.Figure 5

shows how NetRAF’sNetwork Resource Al-

locator Manageraccepts application QoS re-

quests at pre-deployment-time. It processes

these requests in conjunction with aDiffServ

Allocator, using deployment specific informa-

tion (e.g., source and destination nodes) of

components and per-flow network QoS re-

quirements embedded in the deployment plan

created by NetQoS. This capability shields

applications from interacting directly with

complex APIs of network QoS mechanisms thereby enhancing the flexibility NetQoPE for

a range of deployment contexts. Moreover, since NetRAF provides the capability to request

network resource allocations on behalf of components, developers need not write source code

to request network resource allocations for all applications flows, which simplifies the creation

and evolution of application logic (see Section IV-B).

2. Integrated CPU and network QoS provisioning. While interacting with network QoS

mechanism specific allocators (e.g., a Bandwidth Broker), NetRAF’s Network Resource Allocator

Manager may need to handle exceptional conditions, such as infeasible resource allocation

errors. Although NetQoS checks the well-formedness of network requirement specifications at

application level, it cannot identify every situation thatmay lead to scenarios with infeasible

resource allocations, since these depend on the dynamics ofthe physical environment.

To handle such scenarios, NetRAF provides hints to regenerate CPU allocations for compo-

nents using the CPU allocation algorithm selected by application developers using NetQoS.

For example, if network resource allocations fails for a pair of components deployed in a

particular source and destination node, NetRAF requests revised CPU allocations by adding



a constraint to not deploy the components in the same source and destination nodes. After the

revised CPU allocations are computed, NetRAF will (re)attempt to allocate network resources

for the components.

NetRAF automates the network resource allocation process by iterating over the set of deploy-

ment plans until a deployment plan is found that satisfies both types of requirements (i.e., both

the CPU and network resource requirements) thereby simplifying system deployment via the

following two-phase protocol: (1) it invokes the API of the QoS mechanism-specific allocator,

providing it one flow at a time without actually reserving network resources, and (2) it commits

the network resources if and only if the first phase is completely successful and resources for

all the flows can be successfully reserved.

This protocol prevents the delay that would otherwise be incurred if resources allocated

for a subset of flows must be released due to failures occurring at a later allocation stage.

If no deployment plan yields a successful resource allocation, the network QoS requirements of

component flows must be reduced using NetQoS.

Application to the case study.Since our case study is based on DiffServ, NetRAF uses its

DiffServ Allocatorto allocate network resources, which in turn invokes the Bandwidth Broker’s

admission control capabilities [19] by feeding it one application flow at a time. NetRAF’s Diff-

Serv Allocator instructs the Bandwidth Broker to reserve bi-directional resources in the specified

network QoS classes, as described in Section III-A. The Bandwidth Broker determines the bi-

directional DSCPs and NetRAF encodes those values as connection attributes in the deployment

plan. This paper assumes the underlying network QoS mechanism (e.g., the Bandwidth Broker)

is responsible for configuring the routers to provide the per-hop behavior [19].

C. NetCON: Alleviating Complexities in Network QoS Settings Configuration

NetQoPE’sNetwork QoS Configurator(NetCON) resolvesChallenge 3described in Sec-

tion II-B by enabling the auto-configuration of component middleware containers, which pro-

vide a hosting environment for application component functionality. Through NetCON auto-

configuration, containers can add DSCPs to IP packets when applications invoke remote opera-

tions. The current version of NetCON is developed for the LwCCM component middleware and

is shown in Figure 6.

During deployment, NetCON parses the deployment plan (which now includes both the



CPU allocations and network DSCP tags for the connections) to determine (1) source and

destination components, (2) the network priority model to use for their communication, (3)

the bi-directional DSCP values (obtained via NetRAF), and (4) the target nodes on which the

components are deployed. NetCON deploys the components on their respective containers and

creates the associated object references for use by clientsin a remote invocation.

Fig. 6. NetCON’s Container Auto-configurations

NetCON’s container programming model

can transparently add DSCPs and en-

force the network priority models (see

Figure 3). To support theSERVER_DE-

CLARED network priority model, Net-

CON encodes aSERVER_DECLARED

policy and the associated request/reply

DSCPs on the server’s object reference.

When a client invokes a remote operation

with this object reference, the client-side

middleware checks the policy on the object reference, decodes the request DSCP, and includes it

in the request IP packets. Before sending the reply, the server-side middleware checks the policy

again and the reply DSCP is added to the associated IP packets.

To support theCLIENT_PROPAGATED network priority model, NetCON configures the con-

tainers to apply aCLIENT_PROPAGATED policy at the point of binding an object reference

with the client. In contrast to theSERVER_DECLARED policy, theCLIENT_PROPAGATED policy

allows clients to control the network priorities with whichtheir requests and replies traverse

the underlying network and different clients can access theservers with different network

priorities. When the source component invokes a remote operation using the policy-applied

object reference, NetCON adds the associated forward and reverse DSCP markings on the IP

packets, thereby providing network QoS to the application flow. A NetQoPE-enabled container

can therefore transparently add both forward and reverse DSCP values when components invoke

remote operations using the container services.

Application to the case study.In our case study shown in Figure 3, the FireSensor software

controller component is deployed in two different instances to control the operation of the fire

sensors in the parking lot and the server room. There is a single MonitorController software



component (MonitorController3 in Figure 4) that communicates with the deployed FireSensor

components. Due to differences in importance of the FireSensor components deployed, however,

the MonitorController software component usesCLIENT_PROPAGATED network priority model

to communicate with the FireSensor components with different network QoS requirements.

After the first two stages of NetQoPE, NetCON configures thecontainerhosting the Mon-

itorController3 component with theCLIENT_PROPAGATED policy, which corresponds to the

CLIENT_PROPAGATED network priority model defined on the component by NetQoS. This

capability is provided automatically by containers to ensure that appropriate DSCP values are

added at runtime to both forward and reverse communication paths when the MonitorController3

component communicates with either the FireSensorParkingor FireSensorServer component.

Communication between the MonitorController3 and the FireSensorParking or FireSensorServer

components thus receives the required network QoS since NetRAF configures the routers be-

tween the MonitorController3 and FireSensorParking components with the source IP address,

destination IP address, and DSCP tuple. Section IV-B and Section IV-C empirically evaluate

these capabilities.

IV. EMPIRICAL EVALUATION OF NETQOPE

This section empirically evaluates NetQoPE’s capabilities to provide CPU and network QoS

assurance to end-to-end application flows. We first demonstrate how NetQoPE’s model-driven

QoS provisioning capabilities can significantly reduce application development effort compared

with conventional approaches. We then validate that NetQoPE’s automated model-driven ap-

proach can provide differentiated network performance fora variety of CPS applications, such

as our case study in Section II.

A. Evaluation Scenario

Hardware and software testbed. Our empirical evaluation of NetQoPE was conducted on

ISISlab (www.dre.vanderbilt.edu/ISISlab), which consists of (1) 56 dual-CPU blades running

2.8 GHz XEONs with 1 GB memory, 40 GB disks, and 4 NICs per blade, and (2) 6 Cisco

3750G switches with 24 10/100/1000 MPS ports per switch. Ourexperiments were conducted

on 15 of dual CPU blades in ISISlab, where (1) 7 blades (A, B, D,E, F, G, and H) hosted our

smart office enterprise case study software components (e.g., a fire sensor software controller)



and (2) 8 other blades (P, Q, R, S, T, U, V, and W) hosted Linux router software. Figure 7

depicts these details.

Fig. 7. Experimental Setup

The software controller components were de-

veloped using the CIAO middleware, which is an

open-source LwCCM implementation developed

atop the TAO real-time CORBA object request

broker [11]. Our evaluations used DiffServ QoS

and the associated Bandwidth Broker [19] software

was hosted on bladeC. All blades ran Fedora Core

4 Linux distribution configured using the real-time

scheduling class. The blades were connected over

a 1 Gbps LAN via virtual 100 Mbps links.

Evaluation scenario. In this scenario six sensory and imagery software controllers sent their

monitored information to three monitor controllers so thatappropriate control actions could

be performed by enterprise supervisors monitoring abnormal events. For example, Figure 7

shows twofire sensor controllercomponents deployed on hosts A and B. These components

sent their monitored information tomonitor controller components deployed on hosts D and

F. Each of these software controller components have their own CPU resource requirements

and the physical node allocations for those components weredetermined by the CPU allocation

algorithms employed by NetQoS. Further, communication between these software controllers

used one of the traffic classes (e.g., HIGH PRIORITY (HP)) defined in Section III-A with the

following capacities on all links:HP = 20 Mbps,HR = 30 Mbps, andMM = 30 Mbps. TheBE

class used the remaining available bandwidth in the network.

To emulate the CPU and network behavior of the software controllers when different QoS

requirements are provisioned, we created theTestNetQoPE performance benchmark suite.3 We

usedTestNetQoPE to evaluate the flexibility, overhead, and performance of using NetQoPE to

provide CPU and network QoS assurance to end-to-end application flows. In particular, we used

TestNetQoPE to specify and measure diverse CPU and network QoS requirements of the different

software components that were deployed via NetQoPE, such asthe application flow between

3TestNetQoPE can be downloaded as part of the CIAO open-source middlewareavailable at (www.dre.vanderbilt.edu/CIAO).



the fire sensor controllercomponent on host A and themonitor controllercomponent on host

D. These tests create a session for component-to-componentcommunication with configurable

bandwidth consumption (components also consume a configurable percentage of CPU resource

on their hosted processors). High-resolution timer probeswere used to measure roundtrip latency

accurately for each client invocation.

B. Evaluating NetQoPE’s Model-driven QoS Provisioning Capabilities

Rationale. This experiment evaluates the effort application developers spend using NetQoPE to

(re)deploy applications and provision QoS and compares this effort against the effort needed to

provision QoS for applications via conventional approaches.

Methodology. We first identified four flows from Figure 7 whose network QoS requirements

are described as follows:

• A fire sensor controller component on host A uses the high reliability (HR) class to send

potential fire alarms in the parking lot to the monitor controller component on host D.

• A fire sensor controller component on host B uses the high priority (HP) class to send

potential fire alarms in the server room to the monitor controller component on host F.

• A camera controller component on host E uses the multimedia (MM ) class and sends imagery

information from the break room to the monitor controller component on host G.

• A temperature sensor controller component on host A uses thebest effort (BE) class and

sends temperature readings to the monitor controller component on host F.

The clients dictated the network priority for requests and replies in all flowsexceptfor the

temperature sensor and monitor controller component flow, where the server dictated the priority.

TCP was used as the transport protocol and 20 Mbps of forward and reverse bandwidth was

requested for each type of network QoS traffic.

To evaluate the effort saved using NetQoPE, we developed a taxonomy of technologies that

provide CPU and network QoS assurances to end-to-end CPS application flows. This taxonomy

is used to compare NetQoPE’s methodology of provisioning integrated network and CPU QoS

for these flows with conventional approaches, including (1)object-oriented [15], [13], [2], (2)

aspect-oriented [25], and (3) component middleware-based[14], [26] approaches.

Below we describe how each approach provides the following functionality needed to leverage

network QoS mechanism capabilities:



• QoS Requirements specification. In conventional approaches applications use (1) middleware-

based APIs [15], [13], (2) contract definition languages [2], (3) runtime aspects [25], or (4)

specialized component middleware container interfaces [14] to specify QoS requirements. These

approaches do not, however, provide capabilities to specify both CPU and network requirements

and assume that physical node placement for all components are decided (i.e., applications are

already deployed in appropriate hosts) before the network resource allocations are requested

using the appropriate APIs. This assumption allows those applications to specify the source and

destination IP addresses of the applications when requesting network resources for an end-to-end

application flow.

In such approaches, application source code must change whenever the deployment context

(e.g., different physical node allocations, component deployment for a different usecase) and

the associated QoS requirements (e.g., CPU or network resource requirements) change, which

limits reusability. In contrast, NetQoS provides domain-specific, declarative techniques that

increase reusability across different deployment contexts and alleviate the need to specify QoS

requirements programmatically, as described in Section III-A.

• Resource allocation. Conventional approaches require application deploymentbefore their

per-flow network resource requirements can be provisioned by network QoS mechanisms. Recall

that appropriate hosts for each application is determined by intelligent CPU allocation algo-

rithms [3] before their per-flow network resource requirements can be provisioned by network

QoS mechanisms. If the required network resources cannot beallocated for these applications

after a CPU allocation decision is made, however, the following steps occur: (1) the applications

must be stopped, (2) their source code must be modified to specify new resource requirements

(e.g., either source and destination nodes of the components can be changed, forcing application

re-deployments as well or for the same pair of source and destination nodes the network resource

requirements could be changed, and (3) the resource reservation process must be restarted.

This approach is tedious since applications may be deployedand re-deployed multiple times,

potentially on different nodes. In contrast, NetRAF handles deployment changes via NetQoS

models (see Section III-B) at pre-deployment,i.e., before applications have been deployed,

thereby reducing the effort needed to change deployment topology or application QoS require-

ments.

• Network QoS enforcement. Conventional approaches modify application source code [2]



or programming model [14] to instruct the middleware to enforce runtime QoS for their remote

invocations. Applications must therefore be designed to handle two different usecases—to enforce

QoS and when no QoS is required—thereby limiting application reusability. In contrast, NetCON

uses a container programming model that transparently enforces runtime QoS for applications

without changing their source code or programming model, asdescribed in Section III-C.

Based on this taxonomy, we now compare the effort required toprovision end-to-end QoS to

the 4 end-to-end application flows described above using conventional manual approaches vs. the

NetQoPE model-driven approach. We decompose this effort across the following general steps:

(1) implementation, where software developers write code to specify resource requirements and

allocate needed resources, (2)deployment, where system deployers map (or stop) application

components on their target nodes, and (3)modeling tool use, where application developers use

NetQoPE to model a CPS application structure, specify per-application CPU resource and per-

flow network resource requirements, and allocate needed CPUand network resources.

To compare NetQoPE with other conventional efforts, we devised a realistic scenario for the

4 end-to-end application flows described above. In this scenario, three sets of experiments were

conducted with the following deployment variants:4

• Baseline deployment. This variant configured all 4 end-to-end application flows with the

CPU and network QoS requirements as described above. The manual effort required using

conventional approaches for the baseline deployment involved 10 steps: (1) modify source code

for each of the 8 components to specify their QoS requirements (8 implementation steps – note

that CPU allocation algorithms were used to determine the appropriate physical node allocations

for the applications before network resources were requested for each application flow), (2)

deploy all components (1 deployment step), and (3) shutdownall components (1 deployment

step).

In contrast, the effort required using NetQoPE involved thefollowing 4 steps: (1) model

the CPS application structure of all 4 end-to-end application flows using NetQoS (1 modeling

step), (2) annotate QoS specifications on each application and each end-to-end application flow (1

modeling step), (3) deploy all components (1 deployment step – this step also involved allocation

4In each of the experiment variants, we kept the same per-application CPU resource requirements, but varied the network

resource requirements for the application flows.



of both CPU and network resources for applications using NetRAF’s two step allocation process

described in Section III-B), and (4) shutdown all components (1 deployment step).

• QoS modification deployment. This variant demonstrated the effect of changes in QoS

requirements on manual efforts by modifying the bandwidth requirements from 20 Mbps to 12

Mbps for each end-to-end flow. As with the baseline variant above, the effort required using a

conventional approach for the second deployment was 10 steps since source code modifications

were needed as the deployment contexts changed (in this casethe bandwidth requirements

changed across 4 different deployment contexts – however, the CPU resource requirements did

not change, and hence the application physical node allocations did not change as well).

In contrast, the effort required using NetQoPE involved 3 steps: (1) annotate QoS specifications

on each end-to-end application flow (1 modeling step), (2) deploy all components (1 deployment

step), and (3) shutdown all components (1 deployment step).Application developers also reused

NetQoS’ application structure model created for the initial deployment, which helped reduce the

required efforts by a step.

• Resource (re)reservation deployment. This variant demonstrated the effect of changes in

QoS requirements and resource (re)reservations taken together on manual efforts. We modified

bandwidth requirements of all flows from 12 Mbps to 16 Mbps. Wealso changed the temperature

sensor controller component to use the high reliability (HR) class instead of the best effortBE

class. Finally, we increased the backgroundHR class traffic across the hosts so that the resource

reservation request for the flow between temperature sensorand monitor controller components

fails. In response, deployment contexts (e.g., bandwidth requirements, source and destination

nodes) were changed and resource re-reservation was performed.

The effort required using a conventional approach for the third deployment involved 13

steps: (1) modify source code for each of the 8 components to specify their QoS requirements

(8 implementation steps), (2) deploy all components (1 deployment step), (3) shutdown the

temperature sensor component (1 deployment step – note thatthe resource allocation failed for

the component), (4) modify source code of temperature sensor component back to useBE network

QoS class (deployment context change) (1 implementation step), (5) redeploy the temperature

sensor component (1 deployment step – note that the CPU allocation algorithms were rerun to

change physical node allocations), and (6) shutdown all components (1 deployment step).

In contrast, the effort required using NetQoPE for the thirddeployment involved 4 steps: (1)



annotate QoS specifications on each end-to-end applicationflow (1 modeling step), (2) begin

deployment of all components, though NetRAF’s pre-deployment-time allocation capabilities

determined the resource allocation failure and prompted the NetQoPE application developer to

change the QoS requirements (1 pre-deployment step), (3) re-annotate QoS requirements for the

temperature sensor component flow (1 modeling step) (4) deploy all components (1 deployment

step), and (5) shutdown all components (1 deployment step).

Fig. 8. Effort Comparison Across Different

Approaches

Figure 8 summarizes the step-by-step analysis de-

scribed above. These results show that conventional

approaches incurred roughly an order of magnitude

more effort than NetQoPE to provide CPU and network

QoS assurance for end-to-end application flows. Closer

examination shows that in conventional approaches,

application developers spend substantially more effort

developing software that can work across different deployment contexts. Moreover, this process

must be repeated when deployment contexts and their associated QoS requirements change. In

addition, conventional implementations are complex sincethe requirements are specified directly

using middleware [13] and/or network QoS mechanism APIs [5].

Application (re)deployments are also required whenever reservation requests fail. In this

experiment only 1 flow required re-reservation and that incurred additional effort of 3 steps.

If there are large number of flows—and CPS systems like our case study often have scores of

flows—conventional approaches require significantly more effort.

In contrast, NetQoPE’s ability to “write once, deploy multiple times for different QoS re-

quirements” increases deployment flexibility and extensibility in environments that deploy many

reusable software components. To provide this flexibility,NetQoS generates XML-based de-

ployment descriptors that capture context-specific QoS requirements of applications. For our

experiment, communication between fire sensor and monitor controllers was deployed in multiple

deployment contexts,i.e., with bandwidth reservations of 20 Mbps, 12 Mbps, and 16 Mbps. In

CPS applications such as our case study, however, the same communication patterns between

components could occur in many deployment contexts.



Fig. 9. Generated lines of XML code

For example, the same communication patterns could

use any of the four network QoS classes (HP, HR,

MM , andBE). The communication patterns that use the

same network QoS class could make different forward

and reverse bandwidth reservations (e.g., 4, 8, or 10

Mbps). As shown in Figure 9, NetQoS auto-generates

over 1,300 lines of XML code for these scenarios,

which would otherwise be handcrafted by application developers. These results demonstrate that

NetQoPE’s model-driven CPU and network QoS provisioning capabilities significantly reduce

application development effort compared with conventional approaches. Moreover, NetQoPE also

provides increased flexibility when deploying and provisioning multiple application end-to-end

flows in multiple deployment and diverse QoS contexts.

C. Evaluating NetQoPE’s QoS Customization Capabilities

Rationale. This experiment empirically evaluates the benefits of the the flexibility and decoupling

resulting from NetQoPE’s multi stage architecture, and whether the CPS applications indeed

obtain their required QoS.

Methodology. From Figure 7, the four flows that were described in Section IV-B were modeled

with the same set of network and CPU QoS requirements using NetQoS. TheCLIENT_PROPAGATED

network policy was used for all flows, except for the temperature sensor and monitor controller

component flow, which used theSERVER_DECLARED network policy.

We executed two variants of this experiment. The first variant used TCP as the transport

protocol and requested 20 Mbps of forward and reverse bandwidth for each type of QoS traffic.

TestNetQoPE configured each application flow to generate a load of 20 Mbps and the average

roundtrip latency over 200,000 iterations was calculated.The second variant used UDP as the

transport protocol andTestNetQoPE was configured to makeonewayinvocations with a payload

of 500 bytes for 100,000 iterations. We used high-resolution timer probes to measure the network

delay for each invocation on the receiver side of the communication.

At the end of the second experiment we recorded 100,000 network delay values (in millisec-

onds) for each network QoS class. Those network delay valueswere then sorted in increasing

order and every value was subtracted from the minimum value in the whole sample,i.e., they



were normalized with respect to the respective class minimum latency. The samples were divided

into fourteen buckets based on their resulting values. For example, the 1 ms bucket contained

only samples that are<= to 1 ms in their resultant value, the 2 ms bucket contained only samples

whose resultant values were<= 2 ms but> 1 ms, etc.

Fig. 10. Background Traffic

To evaluate application performance in the presence

of background network loads, several other applications

were run in both experiments, as described in Figure 10

(in this table TS stands for “temperature sensor con-

troller,” MS stands for “monitor controller”, FS stands

for “fire sensor controller,” and CS stands for “camera

controller”). NetRAF determined the DSCP values which werethen enforced in each outgoing

packet through the container auto-configuration effected by NetCON.
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Analysis of results. Figure 11 shows the results of

experiments when the deployed applications were con-

figured with different network QoS classes and sent

TCP traffic. This figure shows that irrespective of the

heavy background traffic, the average latency experi-

enced by the fire sensor controller component using the

HP network QoS class is lower than the average latency

experienced by all other components. In contrast, the

traffic from theBE class is not differentiated from the

competing background traffic and thus incurs a high latency (i.e., throughput is very low).

Moreover, the latency increases while using theHR and MM classes when compared to the

HP class.

Figure 12 shows the (1) cardinality of the network delay groupings for different network QoS

classes under different ms buckets and (2) losses incurred by each network QoS class. These

results show that the jitter values experienced by the application using theBE class are spread

across all the buckets,i.e., are highly unpredictable. When combined with packet or invocation

losses, this property is undesirable in CPS applications. In contrast, the predictability and loss-

ratio improves when using theHP class, as evidenced by the spread of network delays across just

two buckets. The application’s jitter is almost constant and is not affected by heavy background



traffic.

Fig. 12. Jitter Distribution under Different Network QoS Classes

The results in Figure 12 also show that

the application using theMM class ex-

perienced more predictable latency than

applications usingBE and HR class. Ap-

proximately 94% of theMM class invoca-

tions had their normalized delays within

1 ms. This result occurs because the

queue size at the routers is smaller for

the MM class than the queue size for the

HR class, so UDP packets sent by the invocations do not experience as much queuing delay in

the core routers as packets belonging to theHR class. TheHR class provides better loss-ratio,

however, because the queue sizes at the routers are large enough to hold more packets when the

network is congested.

These results demonstrate that NetQoPE can provide significant flexibility and customizability,

while ensuring that applications obtain their required QoS.

V. RELATED WORK

This section compares our R&D activities on NetQoPE with related work on middleware-based

QoS management and model-based design tools.

Network QoS management in middleware. Prior work on integrating network QoS mechanisms

with middleware [13], [2], [15] focused on providing middleware APIs to shield applications

from directly interacting with complex network QoS mechanism APIs. Middleware frameworks

transparently converted the specified application QoS requirements into lower-level network QoS

mechanism APIs and provided network QoS assurances. These approaches, however, modified

applications to dictate QoS behavior for the various flows. NetQoPE differs from this related

work by providing application-transparent and automated solutions to leverage network QoS

mechanisms, thereby significantly reducing manual design and development effort to obtain

network QoS.

QoS management in middleware. Prior research has focused on adding various types of QoS

capabilities to middleware. For example, [27] describes J2EE container resource management



mechanisms that provide CPU availability assurances to applications. Likewise, 2K [28] provides

QoS to applications from varied domains using a component-based runtime middleware. In ad-

dition, [14] extends EJB containers to integrate QoS features by providing negotiation interfaces

which the application developers need to implement to receive desired QoS support. These

approaches are restricted to CPU QoS assurances or application-level adaptations to resource-

constrained scenarios. NetQoPE differs by providing network QoS assurances in a application-

agnostic fashion.

Our previous work [21] has focused on mechanisms that add real-time QoS aspects into

a component middleware, so that component middleware applications can enforce CPU QoS

at runtime in a non-invasive manner. NetQoPE builds on that work but solves the following

orthogonal but important problems - how to decide what all applications need to operate in a

particular processor such that both their CPU and network resources can be provisioned, and

how to enforce network QoS for such applications at runtime.Combined with our previous work,

NetQoPE can thus manage and enforce both CPU and network QoS for applications.

Model-based design tools. Prior work has been done on model-based design tools. PICML[23]

enables developers of CPS applications to define component interfaces, their implementations,

and assemblies, facilitating deployment of LwCCM-based applications. VEST [29] and AIR-

ES [17] analyze domain-specific models of embedded real-time systems to perform schedulability

analysis and provides automated allocation of components to processors. SysWeaver [30] supports

design-time timing behavior verification of real-time systems and automatic code generation and

weaving for multiple target platforms. In contrast, NetQoPE provides model-driven capabilities

to specify network QoS requirements on CPS application flows, and subsequently allocate

network resources automatically using network QoS mechanisms. NetQoPE thus helps assure

that application network QoS requirements are met at deployment-time, rather than design-time

or runtime.

VI. CONCLUDING REMARKS

This paper described the design and evaluation of NetQoPE, which is a model-driven mid-

dleware framework that manages CPU and network QoS for CPS applications. The lessons we

learned developing NetQoPE and applying it to a representative CPS application case study thus

far include:



• NetQoPE’s domain-specific modeling languages (e.g., NetQoS) help capture per-deployment

QoS requirements of applications so that CPU and network resources can be allocated appro-

priately. Application business logic consequently need not be modified to specify deployment-

specific QoS requirements, thereby increasing software reuse and flexibility across a range of

deployment contexts, as shown in Section III-A.

• Programming network QoS mechanisms directly in application code requires the deployment

and execution of applications before they can determine if the required network resources are

available to meet QoS needs. Conversely, providing these capabilities via NetQoPE’s model-

driven, middleware framework helps guide resource allocation strategiesbeforeapplication de-

ployment, thereby simplifying validation and adaptation decisions, as shown in Section III-B.

• NetQoPE’s model-driven deployment and configuration toolshelp configure the underlying

component middleware transparently on behalf of applications to add context-specific network

QoS settings. These settings can be enforced by NetQoPE’s runtime middleware framework

without modifying the programming model used by applications. Applications therefore need not

change how they communicate at runtime since network QoS settings can be added transparently,

as shown in Section III-C.

• NetQoPE’s strategy of allocating network resources beforedeployment may be too limiting

for certain types of CPS applications. In particular, because of the physical nature of the systems,

faults might occur at runtime, and applications might not consume all their resource allotment at

runtime. Similarily, applications in open systems might require dynamic provisioning of resources

based on application demand. Our future work is therefore extending NetQoPE to overprovision

resources for applications on the assumption that not all applications will use their allotment.

NetQoPE’s model-driven middleware platforms and tools described in this paper and used in

the experiments are available in open-source format from www.dre.vanderbilt.edu/cosmic and in

the CIAO component middleware available at www.dre.vanderbilt.edu. The Bandwidth Broker

is a product licensed by Telcordia.
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