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Abstract time performance. For example, in SCADA systems for
power grid monitoring, remote terminal units must continue

Supporting uninterrupted services for distributed soft to process updates from sensors monitoring power grid fail-
real-time applications is hard in resource-constrainedlan ures, even when load fluctuations and failures occur.
dynamic environments, where processor or process failures ACTIVE andPASSIVE replication [16] are two common
and system workload changes are common. Fault-tolerantapproaches for building fault-tolerant distributed apali
middleware for these applications must achieve high servic tions. InACTIVE replication [24], client requests are mul-
availability and satisfactory response times for clienpbyp ticast and executed at all replicas. Failure recovery is fas
cations. Although passive replication is a promising fault because if any replicas fail, the remaining replicas can con
tolerance strategy for resource-constrained systems; con tinue to provide the service to the clientscTIVE replica-
ventional client failover approaches are non-adaptive and tion imposes high communication and processing overhead,
load-agnostic, which can cause system overloads and sig-however, which may not be viable in resource-constrained
nificantly increase response times after failure recovery.  systems [7].

This paper presents four contributions to the study of  In PASSIVE replication [6] only one replica—called the
passive replication for distributed soft real-time applic ~ primary—handles all client requests, and backup replicas
tions. First, it describes how our Fault-tolerant Load- do not incur runtime overhead, except for receiving state
aware and Adaptive middlewaRe (FLARe) dynamically ad- updates from the primary. If the primary fails, a failover is
justs failover targets at runtime in response to system loadtriggered and one of the backups becomes the new primary.
fluctuations and resource availability. Second, it desesib  Due to its low resource consumptiagmssivEreplication is
how FLARe’s overload management strategy proactively appealing for soft real-time applications that cannotraffo
enforces desired CPU utilization bounds by redirecting the cost of maintaining active replicas and need not assure
clients from overloaded processors. Third, it presents the hard real-time performance.
design and implementation of FLARe’s lightweight mid-  Although PASSIVE replication is desirable in resource-
dleware architecture that manages failures and overloads constrained systems, it is challenging to deliver soft-real
transparently to clients. Finally, it presents experin@nt time performance for applications basedrssIVE repli-
results on a distributed Linux testbed that demonstrate howcation. In particular, conventional client failover solu-
FLARe adaptively maintains soft real-time performance for tions [4, 22] in PASSIVE replication are non-adaptive and
clients operating in the presence of failures and overloads load-agnostic, which can cause post-recovery system over-
with negligible runtime overhead. loads and significantly increase response times for clients
Moreover, the middleware must dynamically handle over-
load conditions caused by workload fluctuations and con-
current failures. Therefore, a lightweight middleware ar-

chitecture is needed that can handle failures and overloads
Distributed real-time middleware, such as Real-time transparently from the applications.

CORBA [21] and Distributed Real-time Java [17], have To address this need, we have developed Fhalt-
been used to develop a range of distributed soft real-time ap tolerant, Load-aware and Adaptive middlewaRe (FLARe)
plications, such as online stock trading systems and sisperv which maintains service availability and soft real-time-pe
sory control and data acquisition (SCADA) systems. Such formance in dynamic environments. This paper evaluates
applications operate in dynamic environments where sys-the extent to which FLARe provides the following contribu-
tem loads and resource availabilities fluctuate signifigant tions to developing distributed soft real-time applicago

at runtime due to service request arrivals and processerfai 4 A | pad-aware Adaptive Failover (LAAF) strat-

ures. In such environments, it is important for applicagion egy, which dynamically adjusts failover targets in re-
to maintain both system availability and desired soft real-

1 Introduction



sponse to load fluctuations and processor/process fail- Processors and processes may experience fail-stop [24]
ures based on current CPU utilization. failures and concurrent failures in multiple processors or
e A Resource Overload Management rEdirector processes can occur. To provide lightweight fault-toleean
(ROME) strategy, which dynamically enforces FLARe employspAssIVE replication [6], where services
schedulable utilization bounds by proactively redirect- are replicated and deployed across multiple processors. We

ing clients from overloaded processors. assume that networks provide bounded communication la-
e A lightweight adaptive middleware architecture, tencies and do not fail or partition. This assumption is rea-
which handles failures and overloads transparently sonable for many soft real-time systems, such as SCADA
from applications. systems, where nodes are connected by highly redundant
FLARe has been implemented atop the TAO Real- high-speed networks. Relaxing this assumption through in-
time CORBA middleware vimv. dr e. vander bi | t. edu/ tegration of our middleware with network-level fault toler
TAO) and evaluated empirically in the I1SISlab testbealy( ance and QoS management techniques [1] is an area of fu-

dre.vanderbilt.edu/1SI S ab). The experimental re- ture work.
sults reported in this paper demonstrate how FLARe can

dynamically maintain both system availability and desired 3 Design and Implementation of FLARe
soft real-time performance for clients, while incurringgne

ligible run-time overhead. This section describes the design and implementation

The remaind_er of this paper is organized as follows: of FLARe. The key design goals of FLARe are to (1)
Section 2 describes the system and fault models that formmask clients from processor and process failures through

the basis for our work on FLARe, Section 3 describes the transparent client fa”over, (2) alleviate post recovergre

structure and functionality of FLARe; Section 4 empirigall  |gad through load-aware failover target selection, and (3)

applications with dynamic application arrivals and faélsy  enforcing suitable CPU utilization bounds on the servers
Section 5 compares FLARe with related research; and Secthrough overload management.

tion 6 presents concluding remarks.

3.1 FLARe Middleware Architecture
2 System and Fault Models
FLARe’s architecture, shown in Figure 1, has four

FLARe supports distributed systems where application main components: traiddleware r_epllcat|0n managalh_e
client failover managefor each client process, thaoni-

servers provide multiple long-running services on a cluste " h hosi dsthee t
of computing nodes. The services in this system are invokedfOr on e?; pro;:]essor oshm% SErvers, anFLAR ranﬁ.—
by clients periodically via remote operation requests.- Fur eragenion each process hosting Servers. € achieves

ther, these types of systems experiedgeamicworkloads fault-tolerance thro_ughASSlVErepIication Qf CORBA ob-
when clients start and stop services dynamically. Clients ®CtS: where the primary anpl backqp r_ephcas are deployed
demand both soft real-time performance as well as sys-25'95% different processors in the distributed system.

tem availability despite workload fluctuations and prooess Middleware replication manager. FLARe's middleware

and process failures. FLARe supports stateful servicds thargphc.atlon mgnage(MRM) allows server objects to pro-
maintain states across invocations. vide information about (1) the processors and processes

The end-to-end delay of a remote operation requestin which their primaries and backups are hosted, (2) the

comprises delays on the server, the client, and the net_CPU utilization that they will require to serve client regtse

work. FLARe is designed to achieve desired server delays,.ShOUId they become primary, apd (3) thei_r interoperable ob-
which often dominate in distributed real-time systefs)( ject reference (IOR) so that clients can invoke remote op-

SCADA systems) equipped with high-speed networks. To erations on them when the server objects are added to the

meet desired server delays FLARe allows users to specify adystem. To manage the primary and backup replicas—and

utilization bound for each CPU on the servers. The utiliza- ©© Make ad_?ptwe fa||(;]vertargetd(-:m;smnksf—_II:LARe deCRPI\{IJ
tion bound can be set to below the schedulable utilization YS€S @nonitoron €ach processorto track failures an
bound of the real-time scheduling policg.§, rate mono- utilization of all processors hosting the primary and backu

tonic) supported by the middleware scheduling service. At replicas of each server object.

run time FLARe maintains desired server delays by dynam- AIS hig{:{igh;ei by Iabelg K:j Fi%_ureFl,_lFLAtI?Ae'A’\slz 'V:RM
ically enforcing the utilization bounds on the servers employs a-oad-Aware an aptive Fal O.Vé ) tar-
get selection algorithm (described in Section 3.2) to prepa

FLARe is targeted asoftreal-time applications and does not provide ~ &N Ordered. ran_k list of failover targets for. e@ﬁmary ob- .
hard guarantees on meeting every deadline ject operating in the system. The rank list includes multi-




ple failover targets in order to handle multiple failures of mary replica to the backup replicas using remote operation
the same server object. There are situations when the currequests from the state transfer agent on the primary geplic

rentprimary replica becomes overloadeglg, due to sud-
den workload fluctuations and multiple failures. FLARe’s
MRM employs theResource Overload Management rEdi-
rector(ROME) algorithm (described in Section 3.3) to redi-
rect clients from overload processors to maintain the ddsir
soft real-time performance. The LAAF and ROME strate-
gies are detailed in Section 3.2 and Section 3.3, respéctive
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Figure 1:The FLARe Middleware Architecture

Client failover manager. As highlighted by labes in Fig-
ure 1, FLARe’sclient failover managecontains aedirec-

to one of the backup replicas. The period of the state up-
date task is equal to the period of the primary task. In the
current implementation, each state update task is scheédule
on the processor hosting the backup replicas at the priority
determined by the rate-monotonic scheduling algorithm.

To support distributed soft real-time applications in
FLARe, theprimaryreplica updates the states oflitackup
replicasafterit sends its response to the client. This design
choice significantly reduces the response times for clients
Replica consistency may be lost, however, if firenary
replica crashes after it responds to the client, but betore i
propagates its state update to teeckupreplicas. This de-
sign tradeoff is desirable in many distributed soft realdi
applications where state can be reconstructed using sub-
sequent€.g, sensor) data updates at the cost of transient
degradation of services.

3.2 Load-aware and Adaptive Failover

As described in Section 3.1, FLARe’s MRM collects pe-
riodic measurement updates from the monitors about CPU
utilizations and liveness of processors/processes. FLARe
provides doad-aware, adaptive failover (LAARarget se-
lection algorithm that uses these measurements to select
per-object failover targets. LAAF uses the following input
(1) the list of processors and the list of processes in each
processor, (2) the list of primary object replicas opegatin
in each process, (3) the list of backup replicas for each pri-
mary object replica and the processors hosting those repli-
cas, and (4) the current CPU utilization of all processors in

tion agentthat is updated with failover and redirection tar- the system. This algorithm is executed whenever there is a
gets so clients can recover transparently from failures andchange in the CPU utilization bythreshold(e.g, + 10%)

overloads, respectively. To handle failures, as highéght
by labelc in Figure 1, FLARe'sclient request interceptor
catches failure exceptions and instead of propagating¢he e
ception to the client application, the client request icegr
tor redirects the client invocation to the appropriatedfeir

target provided by the redirection agent.

State transfer agent As highlighted by labeb in Fig-
ure 1, FLARe'sstate transfer agerndllows server objects
to inform it about changes to application states. $tade
transfer agents updated with per-server-object failover tar-
gets by FLARe’s MRM. When a@rimary replica in a pro-
cess informs about application state changestate trans-
fer agentutilizes interfaces provided by the server object
to obtain the new state. Trstate transfer agengéynchro-
nizes the state of thieackupreplicas with the new state by
making remote invocations on thackupreplicas using the
provided failover target references as highlighted byllabe

in Figure 1.

in any of the processors in the system since FLARe must
react to such dynamic environment changes.

The output of LAAF is a ranked list of failover targets for
each primary object replica in the system. To deal with con-
current failures, FLARe maintains an ordered list of fadov
targets, instead of only the first one. When both the primary
replica and some of its backup replicas fail concurrertly, t
client can failover to the first backup replica in the listttha
is still alive. LAAF estimates the post-failover CPU utdiz
tions of processors hosting backup replicas for a primary
object, assuming the primary object fails. The backup fepli
cas are then ordered based on the estimated CPU utiliza-
tions of the processors hosting them, and the backup replica
whose host has the lowest estimated CPU utilization is the
first failover target of the replica. To balance the loadrafte
a processor failure, LAAF redirects the clients of differen
primary objects located on a same processor to replicas on
different processors. Finally, the references (IORs) ta¢h

FLARe schedules state update propagations from the pri-replicas are collected in a list and provided to the redirec-



tion agents for use during failure recovery. To reduce the gets, however, when multiple processors fail concurrently
failover delay, MRMproactivelyupdates a client whenever In this case, clients of objects located on different failed

its failover target list changes. processors may failover to a same processor, thereby over-
loading it. Similarly, LAAF may also result in suboptimal
Algorithm 1 LAAF Target Selection Algorithm failover targets when process/processor failures and work
1: P, : Set of processes on processor load fluctuation occur concurrentlye., before FLARe's
2: O; : Set of primary replica objects in procejss MRM receives the updated CPU utilization from the mon-

3: Ry : list of processors hosting backup replicas for a pri- itors. To handle such overload situations FLARe employs

mary objeck the ROME algorithm (described nextin Section 3.3) to redi-
4: cu : current utilization of processor rect clients of overloaded processors, proactively to less
5. ey : expected utilization of processbafter failovers loaded processors.
6: lx : CPU utilization attributed to primary object k
7: for every processdrdo 3.3 Resource Overload Management and Redi-
8 ey = cu // reset expected utilization rection
o: for every proces$in P, do
10: for every primary objeck in O; do

= ; . FLARe’s MRM employs theResource Overload Man-
1 sortRgin increasing order of expected CPU uti-  50ement and rEdirection (ROMB)gorithm to enforce de-
lization sired CPU utilization and service delay bounds. FLARe

12 el += l_k' where processofis the head of the 5 5y5 users to specify a per-processuitization bound
sorted listR based on the schedulable utilization bound of the real-time
13: end for scheduling policy é.g, rate monotonic) supported by the
14:  end for middleware scheduling service. A processor whose CPU
15: end for utilization exceeds thetilization bounds considered over-
loaded.
Algorithm 1 depicts the steps in the LAAF target se- In the case of failures, the clients are redirected to appro-

lection algorithm. For every processor in the system (line priate failover targets based on decisions made by LAAF,
7), LAAF iterates through all hosted processes (line 9), and as described in Section 3.2. In the case of overloads, slient
the primary replicas that are hosted in those processes (lin of the current primary replicas are redirected automayical
10). For every such primary replica, the algorithm deter- to the chosen new backup replicas. We refer to this load re-
mines the processors hosting its backup replicas and thalistribution mechanism dghtweight migrationsince we
least loaded of those processors (line 11). The algorithmmigrateloads(through client redirection) of objects as op-
then adds the load of the primary object replica (known to posed tabjects ROME is thus more efficient than moving
FLARe’'s MRM because of the registration process as ex-the object itself to a lightly loaded processor.
plained in Section 3.1) to the load of least loaded processor Algorithm 2 depicts the steps ROME uses to handle CPU
and defines that as tlexpected utilizationf that processor  overload and load imbalance, respectively.
(line 12) were such a failover to occur. Handling overloads When the CPU utilization at any of

The algorithm repeats the process described above foithe processor crosses thilization bound FLARe’'s MRM
every other primary replica object hosted in the same pro-triggers ROME to react to the overloads. FLARe deter-
cess (Lines 10-12). The least loaded failover processor ismines the primary objects whose clients need to be redi-
determined by considering the expected utilizations of the rected and their target hosts using ROME. Given an over-
processors (line 11). This decision allows the algorithm to loaded processoi.€., whose CPU utilization exceeds the
consider the failover of co-located primary replica obgect utilization bound, ROME considers the primary objects on
within a processor while determining the failover targdts o the processor in decreasing order of CPU utilization (line 9
other primary replica objects hosted in the same processorand attempts to migrate the load generated by those objects
The failover target selection algorithm therefore makes de to the least-loaded processor hosting their backup replica
cisions not only based on the dynamic load conditions in (lines 11, 12, 13, 14, and 15). The attempt fails if the least-
the system (which are determined by the monitors), but alsoloaded processor of the backup replicas would exceed the
based on load additions that may be caused by failovers ofutilization boundif the migration occurs. ROME attempts
co-located primary objects. The failover targets are then migrations until (1) the processor is no longer overloaded o
used for redirecting a client if any failure occurs before th (2) all clients of primary objects in the overloaded prooess
next time LAAF is run. have been considered for redirection.

LAAF is optimized for multiple process failures or single Similar to LAAF, ROME also uses thexpected CPU
processor failures. It may result in suboptimal failover ta  utilizationto spread the load of multiple objects on an over-



Algorithm 2 Determine Load-redistributing Targets main socket) and registers the port number with the monitor.
1: O; : list of primary objects in an overloaded procesisor The monitor connects to the socket and performs a blocking

2: R; : list of processors hosting objegs replicas read. If an application process crashes, the socket and the

3: cy : current utilization of processor opened port will be invalidated, in which case the monitor

4: ey : expected utilization of processioafter migrations  receives an invalid read error on the socket that indicates

5: |j : CPU utilization of primary object | the process crash. Fault tolerance of the monitor processes

6: tj : upper bound for processids CPU utilization is also achieved through passive replication. If phienary

7: ey = cu, for every processar monitor replica fails to send updated information or respon

8: for every overloaded processaido to FLARe’smiddleware replication managédescribed be-

9:  sortQ; in decreasing order of their CPU utilizations  low) within a timeout period, FLARe suspects that the pro-

10:  for every object in the sorted lisO; do cessor has crashed.

11: min: processorin R; with lowest CPU utilization Middleware replication manager. FLARe’s middle-

12: if (I; + €Unin) < tmin then ware replication manageis designed using the Active Ob-

13: migrate the load of objeqtto j’s replica inmin ject pattern [25] to decouple the reporting of a load change

14: €Unin += 1| or a failure from the process. This decoupling allows sev-

15: ey -=1; eral monitors to register with FLARemiddleware repli-

16: end if cation managewhile allowing synchronized access to its

17: if ey < tj then internal data structures. Moreover, FLARe can be config-

18: processor is no longer overloaded; stop ured with the LAAF and ROME algorithms via the Strat-

19: else egy pattern [10]. FLARe’sniddleware replication manager

20: migrate another primary obje¢tin the proces-  is replicated usingsEMI_ACTIVE replication [13] (pro-
sori vided by TAO middleware) with regular state updates to the

21: end if backup replicas.

22:  end for Client failover manager. As shown in Figure 1, the

23: end for client’s failover manager comprises a CORBA portable

interceptor-basedient request interceptd26] and a redi-
rection agent, which together coordinate to handle fail-

loaded processor to different hosts. The expected CPU uti-ures transparently from client application logic. When-
lization accounts for the load change due to the redirectionever a primary fails, the interceptor catches the CORBA
decisions affecting the overloaded processor. After new re COMM_FAILURE exception. Since portable interceptors are
configurations are identified, redirection agents are wgutiat not remotely invocable objects, it was not feasible for an
to redirect existing clients from the current primary repli ~ external entity (such as a MRM) to send the rank list infor-
to the selected backup replica at the start of the next remotgnation to the interceptor, which is necessary to determine

invocation. Clients are thus redirected to new targets with the next failover target. The redirection agent is theretor
minimal perturbations. CORBA object that runs in a separate thread from the inter-

ceptor thread. The interceptor consults the redirecti@mtg
for the failover target from the rank list it maintains. The
interceptor will then reissue the request to the new target.
The rank list is propagated to the redirection agenoac-
tively by FLARe’'s MRM whenever the failover target list
changes.

3.4 Implementation of FLARe

FLARe has been implemented atop the TAO Real-time
CORBA middleware. It is implemented 9,000 lines of
C++ source code (excluding the code in TAO). Below we
highlight several key aspects of the FLARe implementation . .
(a more detailed description of FLARe appears in [2]). 4 Empirical Evaluation of FLARe

Monitoring CPU utilization and processor failures.

On Linux, FLARe’smonitor process uses ther oc/ st at We empirically evaluated FLARe at ISISlalwv. dr e.

file to estimate the CPU utilizationé., the fraction of time  vanderbilt. edu/1SI Sl ab) on a testbed of 14 blades.
when the CPU is not idle) in each sampling period. We Each blade has two 2.8 GHz CPUs, 1GB memory, a 40
chose to measure the CPU utilization online, rather than re-GB disk, and runs the Fedora Core 4 Linux distribution.
lying on the estimated CPU utilization provided by users Our experiments used one CPU per blade and the blades
to account for estimation errors and other activities in the were connected via a CISCO 3750G switch into a 1 Gbps
middleware and OS kernel. To detect the failure of a pro- LAN. 12 of the blades ran Real-time CORBA applications
cess quickly, each application process on a processor opensn FLARe. FLARe’s MRM and its backup replicas ran in
up a passive POSIX local socket (also known as a UNIX do- the other 2 blades. To emulate distributed soft real-time ap



plications, the clients in these experiments used thraads r Analysis of results. Figure 3a shows the CPU utiliza-
ning in the Linux real-time scheduling class to invoke oper- tions at all the processors, when clients used the stagintcli
ations on server objects at periodic intervals. All operadi failover strategy. At 50 seconds, servers-1 andDv-2
and state updates on the servers are executed according were invoked by client€L-5 andcL-6 causing the CPU
the rate monotonic scheduling policy supported by the TAO utilizations at processorsAMBADA and CHARLIE to in-

scheduling service. crease from 0% to 50%.
At 150 seconds when process hosting beth andBs-
4.1 Evaluating LAAF 1 fails on the processaraNGo. ClientscL-1 andcL-2

failover to the statically configured replicas3 at proces-
SOrLAMBADA andB-3 at procesSOCHARLIE respectively.

This experiment is designed to evaluate FLARe’s LAAF As a result, the CPU utilizations at processpAs/BADA
algorithm (described in Section 3.2) and compare it with andcHARLIE increase to 90% and 80% respectively. Note
the optimaistaticclient failover strategy. In the static client that 90% CPU utilization is highly undesirable in middle-
failover strategy, the client middleware is initializedtivi  ware systems because it is close to saturate the CPU which
a static list of IORs of the backup replicas, ranked based may result in kernel starvation and system crash [20]. The
on the CPU utilization of their processors dg¢ployment  high CPU utilizations on processocs{ARLIE and LAM -
time The listis not updated at run-time based on the currentgapa occur, because th&tatic client failover strategy did
CPU utilizations in the system (the failover targets are op- not account fordynamicsystem loads while determining
timal at deployment time, but arstaticfailover target can  client failover targets.
become suboptimal at run-time in face of dynamic work-  In contrast, FLARe’s MRM triggers LAAF to recom-
loads). In contrast, LAAF dynamically recomputed failover pute the failover targets in response to load changes. At
targets whenever there is a change in the CPU utilization50 seconds, LAAF changed the failover targets of the pri-
by athreshold(e.g, + 10%) in any of the processors in the mary replicaa-1 from A-3 to A-2, in response to the load
system. increase on processoAMBADA (host ofA-3). Similarly,

Experiment setup. Figure 2 and Table 1 illustrate our | AAF also changed the failover target Bf1 from B-3 to
experimental setup. The experiment ran for 300 secondss-2 in response to the load increase on processoR-
To evaluate FLARe in the presence adfnamic workload LIE (host ofB-3). At 150 seconds, clientsL-1 andcL-2
changes at 50 seconds after the experiment was started,failover to backup replicas-2 ands-2 respectively. As
we introduced dynamic invocations on two server objects shown in Figure 3b, none of the processor utilizations are

DY-1 andDy-2, using client objectscL-5, andCL-6, re-  greater than 60% after the failover of cliemts-1 andcL-
spectively. Thestatic failover strategy selects failover tar- 2. This figure shows that LAAF effectively alleviates pro-
gets that are optimal at deployment time, as followsx-it cessor overloads after failure recovery, due to its adaptiv
fails, contact-3 followed byA-2; if B-1 fails, contacs-3 and load-aware failover strategy.
followed byB-2.
We emulated a process failure 150 seconds after the Client | Server| Invocation| Server Object
experiment started. We used a fault injection mecha- Object | Object| Rate (Hz) | Utilization
nism, where when clienteL-1 or cL-2 make invoca- Static Loads
tions on server objects-1 or B-1, respectively, the server CcL-1 A-1 10 40%
objects calls theexit (1) command, crashing the process CL-2 B-1 5 30%
hosting server objects-1 andB-1 on processorANGO. CcL-3 c1 2 20%
The clients receive OMM_FAILURE exceptions, and then CL-4 D-1 1 10%
failover to replicas chosen by the failover strategy. Dynamic Loads
= s CL-5 | Dv-1 5 50%
- @W @ T s CL-6 | pv-2 10 50%
| SIRION | ":---@LAMB DA LINDY - U.:;g::s
:L vz b gt Table 1:Experiment setup for LAAF
| k@/---—‘m@ - e O Eﬁ? 4.2 Evaluating ROME
5 @ @ e . valuating
: 1) va Eauus | | e . . .
L Q | deployment | This set of experiments evaluate the ROME algorithm
|| Siames | —eElA= ':-_;@ described in Section 3.3. We stress-tested ROME under
b= PRINCE overloads caused by dynamic workload changes and mul-
Figure 2:Load-aware Failover Experiment Setup tiple failures.
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Experiment setup. Figure 4 and Table 2 show the ex-

client cL-1 makes invocations on server objectl, the
server object calls thexit (1) command, crashing the pro-
cess hosting server objectl on the processamNGoO. The
client cL-1 receives a&cOMM_FAILURE exception due to
the failure ofa-1, and then consults its rank list to make a
failover decision, which ia-2. At the same time, a client
CL-5 starts making invocations on a new sencé.

As a result of the concurrent failure and workload
change, the load on the processara rises to 90% (high-
lighted by pointA in the Figure 5a), which exceeds the
specified utilization bound (70%) and consequently trig-
gers ROME. ROME then performs a lightweight migration
of the clients ofa-2 and redirects all of its clients ta-

perimental setup. The utilization bound on every processor3: Which is hosted in the least loaded of all the processors

hosting a replica oA-1. Within 1 second, the utilization of

was set to 70%, which is below the schedulable utilization X eatit
bound (based on the number of tasks) for the rate mono-PTOCESSOBETA decreases to 50%, while the utilization of

tonic policy supported by the middleware scheduling ser- PFOCESSOLAMBADA increases to 40% due #©-3 becom-
vice. The required server delay for each task equalled its'"d the new primary replica.

invocation period.

Table 2:Experiment setup for ROME

Concurrent Workload Change and Process Failure.

At this stage, the CPU utilizations of all processors are
below 70%. We also plot the measured end-to-end re-

Client | Server| Invocation| Server Object sponse times perceived by the clients in Figure 5b. After
Object | Object | Rate (Hz) | Utilization ROME redirected the client’s requests, the end-to-end re-
Static Loads sponse t_im_es o_f all the clients drop beloyv the required serve
o1 Al 10 0% de!ays, indicating that every server object achieved s re
oo 51 5 30% quired server delay (WhICh is a part of the corresponding
o3 o1 5 30% end-to-end response times). This result demonstrated that
5 ROME can handle overload effectively and efficiently.
cL-4 D-1 ,1 10% Concurrent Failures. The second half of the experi-
Dynamic Loads ment stress-tested ROME further with concurrent failures.
cL-5 | H-1 | 10 [ 50% Since the CPU utilizations in the system have changed dy-

namically, FLARe’'s MRM also employs LAAF to redeter-
mine the failover targets for all the primary objects in the
system. The recomputed failover targets are as follows: (1)

We emulated a failure 50 seconds after the experimentfor A-1, itis (A-4,A-2) (2) forB-1, itis (B-2,B-3), and (3)
started. We used a fault injection mechanism, where whenfor D-1, it is (D-2)
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Figure 5: Evaluation of ROME
We emulated a failure 150 seconds after the experiment o Withqut‘ FLARC
started. We used a fault injection mechanism, where when With FLARe ==

clientscL-1 andcL-2 make invocations on server objects
A-3 ands-1, respectively, the server objects call thet (1)
command, crashing the process hosting server obje&s
ON ProcessoLAMBADA andB-1 on procesSOCHARLIE.
The clients receive€ OMM_FAILURE exceptions, and then
fail over to replicas chosen by the failover strategy. Using
the failover targets computed by LAAF, clieot-1 fails
over to A-4 while clientcL-2 fails over toB-2, both of
which end up starting on the same procegs®HA, which

is already hosting a primaiy-1.

As a result, the CPU utilization of the processar-

PHA jumps to 80% (as highlighted by poiatin Figure 5a),
while the clientscL-1, cL-2, andcCL-4 see an increase in
response times (as shown in Figure 5b). FLARe's MRM
triggers ROME once again to resolve the overload, starting
with the heaviest service,-4. But clients ofa-4 cannot be
moved, as that would again overload the processA.
Hence, ROME redirects all clients Bf2 (which is the next
heaviest object) to its replia3 on processoPRINCE. As

a result, the CPU utilizations of all the processors settle b
low 70% as shown by poing(in Figure 5a), while the end-
to-end response times (and hence the server delays) dro
below the required server delays.

This experiment demonstrates that ROME can effec-
tively enforce the specified utilization bound and server de
lays by dynamically handling overloads caused by concur-
rent failures and workload changes.

4.3 Failover Delay

To empirically evaluate the failover delays under the
staticand theadaptivefailover strategies, we ran an exper-

39.25 39.26

milliseconds

Failover Delay Runtime Overhead

Figure 6:Failover delay and run-time overhead

objectAa-1. No other processes operated in the processor
hostingA-1, so that the response time will equal the exe-
cution time of the server. A fault was injected to kill the
server while executing the 801 request. The clients then
failover to backup server objects 2, which execute the re-
maining 5,000 requests (including the one experiencing the
failure).

Figure 6 shows the different response times perceived
by clientc-1 in the presence of server object failures. The
failover delays for thestatic and adaptivefailover strate-
gies are similar because under the static strategy thet clien
knows the the failover decisioa priori, while under the
LAAF strategy, FLARe’s MRM proactively sends the up-
dated failover targets to the client so that it is also rgadil
available when the failover occurs. Our results indicase th
FLARe’s proactive failover strategy achieves fast failove

iment with clientcL-1 invoking 10,000 requests on server with a failover delay comparable to the static strategy.



4.4 Overhead under Fault-Free Conditions replication. MEAD [23] reduces fault detection and client
failover time by determining the possibility of a primary
FLARe uses a CORBA client request interceptor to replica failure using simple failure prediction mechargsm
catchcomMM_FAILURE exceptions and transparently redi- and redirects clients to alternate servers before failaces
rect clients to suitable failover targets. To evaluate tire r ~ cur. [27] presents a real-time primary backup replication
time overhead of these per-request interceptions during no scheme that uses scheduling algorithms such as rate mono-
mal failure free conditions, we ran a simple experiment with tonic scheduling algorithm for providing temporal consis-

client cL-1 making invocations on server objectl with tency guarantees for operations as well as update transmis-

and without client request interceptors. sions. The key contributions of FLARe are its adaptive
We ran this experiment for 50,000 iterations and mea- failover target selection and overload management approac

sured the average response time perceivedibyl. Fig- for handling dynamic soft real-time applications.

ure 6 shows that the average response time perceived-by Prior research has also focused on deployment-time

1 increased by only 8 microseconds when using the clientscheduling and task partitioning algorithms that deploy
request interceptor. This result shows that interceptids a tasks and theiPASSIVE replicas in their appropriate pro-
negligible overhead to the normal operations of an applica-cessors. [5] analyzes first-fit assignments for periodit rea

tion. time tasks scheduled using rate monotonic priority assign-
ments with both passive as well as active instances. To pro-
5 Related Work vide fault-tolerance for aperiodic tasks in multiprocesso

systems, [11] introduces backup overbooking techniques
, . , . that allocate multiple passive replicas to the same proces-
Fault-tolerance in non-real-_tlmg middleware. Prior re- sor assuming that only some passive replicas must be acti-
search has_focused on designing fault—tolerant_mlddlewarevated at the same time. Likewise, [14] proposes adaptive
systems using CORBA [9, 3, 4]. A survey of different ar- ¢, 1t tolerance mechanisms to choose a suitable redundancy
chitectures, approaches, and strategies using CORB/A basestrategy for dynamically arriving aperiodic tasks based on

Lault-tlolerfance c;pabilities is presgnteoclj ifn [IZZ].I Resiear.d system resource availability and supports ttssiveand
as also focused on non-CORBA based fault-tolerant mid- /.., - replication. FLARe can benefit from such work for

dleware. For example, IFLOW [7] uses fault-prediction deploying long-running periodic tasks and thekssive

tecr|1_n|ques to mcrheasg or_decrease _th(_a frequencyncj):ibackupep"cas at their most appropriate processors. The novelty
replica state synchronizations to optimize state trarciler of FLARe lies its capability to adapt to dynamic workloads

ing failure recovery. These prior middleware platforms, through load-aware failover and overload management.
however, were not designed for real-time applications. In

contrast, FLARe can maintain desired soft real-time perfor

mance in face of dynamic workload and failures.

Fault-tolerance in real-time systems based on active .

replication. Prior research has focused on developing mid- & ~ Concluding Remarks

dleware systems that provide fault-tolerance for reaktim

systems usingCTIVE replication. AQUA [19] dynamically

adapts the number of replicas receiving a client request in

anACTIVE replication scheme so that slower replicas donot  This paper presents the Fault-tolerant Load-aware and
affect the response times received by clients. Eternal [18] Adaptive middlewaRe (FLARe) for distributed soft real-
dynamically changes the locations of active replicas by mi- time applications. FLARe features (1) the Load-aware and
grating soft real-time objects from heavily loaded proces- Adaptive Failover (LAAF) strategy that adapts failovertar
sors to lightly loaded processors, thereby providing bbette gets based on system load; (2) the Resource Overload Man-
response times for clients. In the past decade, researctagement Redirector (ROME) strategy that dynamically en-
has also focused on task partitioning algorithms [15, 8, 12] forces CPU utilization bounds to maintain desired server
that allocate tasks and thedcTIVE replicas on appropri-  delays in face of concurrent failures and load changes; (3)
ate processors at deployment time while satisfying timing an efficient fault-tolerant middleware architecture thgi-s
and dependability constraints. We recognize that hard real ports transparent failover to passive replicas. FLARe has
time systems require predictable performance despite thebeen implemented on top of the TAO RT-CORBA mid-
occurence of failures, and hence requi@TIVE replica- dleware as open-source software. Empirical evaluation on
tion. In contrast, FLARe focuses amssIVE replication, a distributed testbed demonstrates FLARe’s capability to
which is more suitable for resource-constrained distédut maintain system availability and soft real-time performman
soft real-time applications due to its low resource usage. in face of dynamic workload and failures at negligible run-
Fault-tolerance in real-time systems based on passive time overhead.
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