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Abstract—Developing large-scale distributed real-time and em-
bedded (DRE) systems is hard in part due to complex deploymén
and configuration issues involved in satisfying multiple gality
for service (QoS) properties, such as real-timeliness andafilt
tolerance. Effective deployment requires developing andvaluat-
ing a range of task allocation algorithms that satisfy DRE Q&
properties while reducing resources usage. Effective cougfiiration
requires automated tuning of middleware QoS mechanisms to
avoid tedious and error-prone manual configuration.

This paper makes three contributions to the study of de-
ployment and configuration middleware for DRE systems that
satisfy multiple QoS properties. First, it describes a novietask
allocation algorithm for passively replicated DRE systemsto
meet their real-time and fault-tolerance QoS properties wlie
consuming significantly less resources. Second, it presenthe
design of a strategizable allocation engine that enables pfication
developers to evaluate different allocation algorithms. Tird,
it presents the design of a middleware-agnostic configuratin
framework that uses allocation decisions to deploy applidion
components/replicas and configure the underlying middlewa
automatically on the chosen nodes. These contributions ameal-
ized in the DeCoRAM (Deployment and Configuration Reasoning
and Analysis via Modeling) middleware. Empirical results o a
distributed testbed demonstrate DeCoRAM'’s ability to hande
multiple failures and provide efficient and predictable red-time
performance.

|. INTRODUCTION

Distributed real-time and embedded (DRE) systems operat
in resource-constrained environments and are composed
tasks that must process events and provide soft real-ti
performance. Examples include shipboard computing envir

ments; intelligence, surveillance and reconnaissandersgs

and smart buildings. A second key quality of service (Qo%

attribute of these DRE systemsfault-tolerancesince system
unavailability can degrade real-time performance andilisab
Fault-tolerant DRE systems are often built usexgive or

passivereplication [1]. Due to its low resource consumption,

passive replication is appealing for soft real-time amgilans

that cannot afford the cost of maintaining active replicas
and do not require hard real-time performance [2]. Despite

improving availability, however, server replication imiably

increasesresource consumption, which is problematic for
DRE systems that place a premium on minimizing the re-

sources used [3].

To address these concerns, DRE systems require solutions
that can exploit the benefits of replication, but share the

available resources amongst the applications efficienty, (
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to minimize the number and capacities of utilized resoyrces
These solutions must also provide both timeliness and high
availability assurances for applications. For a class ofEDR
systems that areclosed (i.e, the number of tasks, their
execution patterns, and their resource requirements anerkn
ahead-of-time and are invariant), such solutions may berdet
mined at design-time, which in turn can assure QoS propertie
at runtime.

The advent of middleware that supports application-
transparent passive replication [4], [5], [6] appears [simg
to provide such design-time QoS solutions for fault-taitra
DRE systems. Unfortunately, conventional passive refitina
schemes incur two challenges for resource-constrained DRE
systems: (1) the middleware must generate the right replica
to-node mappings that meet both fault-tolerance and hew-t
requirements with a minimum number of nodes, and (2) the
replica-to-node mapping decisions and QoS needs must be
configured within the middleware. Developers must othezwis
manually configure the middleware to host applicationsciwhi
requires source code changes to applications whenever new
allocation decisions are made or existing decisions chémge
handle new requirements. Due to differences in middleware
architectures, thesed hocand manual approaches are neither
reusable nor reproducible, so this tedious and error-prone
effort must be repeated.
e[o address the challenges associated with passive replica-

.0 .
tion for DRE systems, this paper presents a resource-aware

me

deployment and configuration middleware for DRE systems
called DeCoRAM Deployment and Configuration Reasoning
nd Analysis via Modeling DeCoRAM automatically deploys

nd configures DRE systems to meet the real-time and fault-
tolerance requirements via the following novel capaletiti

e A resource-aware task allocation algorithmthat im-
proves the current state-of-the-art in integrated passive
replication and real-time task allocation algorithms [7],
[8], [9], [10] by providing a novel replica-node mapping
algorithm called FERRARIRailurg, Real-time, and Re-
source Awareness Reconciliation Intelligepcehe nov-
elty of this algorithm are its simultaneous (fBal-time
awareness which honors application timing deadlines,
(2) failure awarenesswhich handles a user-specified
number of multiple processor failures by deploying mul-
tiple passive replicas such that each of those replicas can
continue to meet client timing needs when processors
fail while also addressing state consistency requirements



and (3)resource awarenessvhich reduces the numbersystems. In contrast, we focus on offline algorithms based
of processors used for replication. on static scheduling that leverage the invariant propeie
e A strategizable allocation enginethat decouples the closed DRE systems, which enables us to seamlessly leverage
deployment of a DRE system from a specific task alloc&xisting operating systems schedulers. Prior researchatio s
tion algorithm by providing a general framework that cagcheduling-based passive replication approaches [1], [
be strategized by a variety of task allocation algorithnonsider only one processor failure at a time.
tailored to support different QoS properties of the DRE DeCoRAM's replica allocation algorithm differs from those
system. The novelty of DeCoRAM’s allocation engin@pproaches as follows: (1) it handles multiple processor
stems from its ability to vary the task allocation algorithnfiailures using passive replication while considering faniyn
used from the feasibility test criteria. replicas, backup replicas, and state synchronizatiors coshe
e A deployment and configuration (D&C) enginethat replica allocation problem, (2) it opportunistically obeoks
takes the decisions computed by the allocation algorithpiocessors with multiple backup replicas by analyzingitéas
and automatically deploys the tasks and their replicgilover patterns caused due to multiple processor faslure
in their appropriate nodes and configures the underlyidpd (3) it extends time-demand analysis [20] to meet real-
middleware appropriately. The novelty of DeCoRAM'dime requirements both in normal conditions and after mlti
D&C engine stems from the design of the automateRrocessor failures.
configuration capability, which is decoupled from thdools for task allocation, deployment, and configuration
underlying middleware architecture. of DRE systems.Prior work on deployment and configu-
DeCoRAM’s allocation engine, and the deployment an@tion tools for .real-time systems includgg VEST [21] and
configuration engine are implemented #110,000 lines of AIRES [22], which analyze domain-specific models of em-
C++. This paper empirically evaluates the capabilities dredded real-time systems to perform schedulability aislys
DeCoRAM in a real-time Linux cluster to show how itsdnd provide automated allocation of components to proces-
real-time fault-tolerance middleware incurs low (Esource SOrS. SysWeaver [23] supports design-time timing behavior
consumption overheadwhere application replicas are deVerification of real-ime systems and automatically getesra
ployed across processors in a resource-aware manner bsing?S !nterfacmg code with predictable timing informatiorr fo
FERRARI algorithm, (2yuntime processing overheagthere Multiple target platforms. . .
failure recovery decisions are made at deployment-timd, an SYNDEX [15] provides a graphical environment for automat-
(3) development overhead/here application developers needcally exploring various design space alternatives usimgng

not write application-specific code to obtain a real-timeltta analysis, active replication scheme, and simulations, asol
tolerance solution. generates a code as a real-time executive conforming to the

generated schedule.

DeCoRAM differs from these approaches as follows: (1) it
considers task allocation using minimal resources alort wi

Fault-tolerant middleware has emerged as a core platforeal-time {.e., response times) and fault-tolerance in a passive
for developing closed DRE systems. For example, MEAD [4ieplication schemé.g., replication and state synchronization)
AQUA [6], and ARMADA [11], among others are fault-and (2) it automatically deploys and configures applicaion
tolerant middleware frameworks that provide runtime repland replicas on top of fault-tolerant middleware on nodes
cation management capabilities in a DRE system. The De€hosen by the replica allocation algorithm.
oRAM middleware presented in this paper reduces runtinRelation to our prior work. Our prior work on real-time
decision making overhead incurred in such middleware withfault-tolerant middleware also contains significant gapet
replica allocation and failover decision algorithm. Moven example, whileFault-tolerant, Load-aware and Adaptive mid-
DeCoRAM reduces the manual efforts spent by developersdiewaRe(FLARe) [24] maintains service availability and soft
deploy application replicas and configure such fault-eoér real-time performance in dynamic environments, it recaiae
middleware so that application developers can just focusen initial deployment of replicas that are assumed to be opglyma
business logic. This section compares DeCoRAM with relatgdaced. Moreover, FLARe does not attempt to minimize the
work along the dimensions described below. number of resources used; its goal is to maintain service
Replica-node mapping algorithms.Prior research on real- availability and desired response times for the given numbe
time fault-tolerant task allocation algorithms [12], [1814], of resources. FLARe thus provides online failover in dyrmami
[15] have focused on active replication, whose resource canvironments by changing the failover order of replicas ac-
sumption overhead is not suitable for closed DRE systent@rding to the monitored utilization of resources.
Research has also focused on transient failures (faillvas t The COmponent Replication based on Failover Units
appear and disappear quickly) [16], [17] environments. HOWCORFU) [25] middleware enhances FLARe to provide fault-
ever, such approaches cannot provide high availability faslerance for component-based DRE systems, specifically to
applications in the presence of fail-stop processor fagur support atomic failover for groups of components. Autordate
which is the focus of our work. configuration is supported in CORFU, which is made feasible

Prior work that focuses on passively replicated real-tirdue to the declarative mechanisms supported by component
fault-tolerant task allocation algorithms [18], [7], [8dl with middleware. CORFU’s automation is limited to maintaining
online algorithms, which incur extra overhead for closedERreplica group semantics, however, and the solution is ealpl

II. RELATED WORK



to the CORBA Component Model middleware. Since CORFU Each backup replica of a tagkis associated with its worst-

is based on FLARe, it incurs the same limitations as FLARease execution time for synchronizing st&e which signif-
DeCoRAM’s FERRARI algorithm statically decides thdcantly reduces the response times for clients, but support

failover order for replicas since it can leverage the iraatri only “best effort” guarantees for state synchronizatioepita

properties of closed DRE systems, which reduces the need donsistency may be lost if the primary replica crashes dfter

sophisticated runtime capabilities provided by FLARe. FEResponds to the client, but before it propagates its statatep

RARI focuses primarily on replica allocation while attemptto the backup replicas. This design tradeoff is desirab2RiE

ing to significantly reduce the number of resources needeystems where state can be reconstructed using subsequent

The allocation engine in DeCoRAM provides an opportunitie.g, sensor) data updates at the cost of transient degradation

to evaluate multiple different algorithms beyond FERRARIf services.

Moreover, unlike CORFU, the deployment and configuration

engine in DeCoRAM can work with a variety of fault-toleran

middleware and is not limited to FLARe and CORFU. b Problem Motivation and Research Challenges

The goal of DeCoRAM is to deploy and configure a
passively replicated DRE system Nftasks that is tolerant to
at mostK fail-stop processor failures, while also ensuring that

This section defines the problem definition for our work ofioft real-time requirements are met. To satisfy fault tee

DeCoRAM in the context of the task and fault system modefl$€ds, no two replicas of the same task can be collocated. To
used. satisfy real-time requirements, the system also must remai

schedulable. These goals must be achieved while reducing
resource utilization. To realize such a real-time fauliitant

IIl. PROBLEM DEFINITION AND SYSTEM MODEL

A. DRE System Model DRE system, a number of research questions arise, which we
Our research focuses on a class of DRE systems where $f@mine below via an example used throughout the paper.
system workloads and the number of tasks are knapriori. Consider a sample task set with their individual periods, as

Examples include system health monitoring applicationsép Shown in Table 1. Assuming that the system being deployed
in the automotive domaine(g, periodic transmission of ag-
gregated vehicle health to a garage) or in industrial autimma

(e.g, periodic monitoring and relaying of health of physical :gi:ggiggz 4218 8:‘21 1‘3?) 38
devices to operator consoles), or resource management in <C1,C2,C3>| 50 | 05| 200 | 25
the software infrastructure fpr shipboard f:omputing. ‘Ehes 22155,233: ;gg 2_25 1?)88 gg
systems also demonstrate stringent constraints on theneeso

that are available to support the expected workloads akd.tas TABLE I: Sample Ordered Task Set with Replicas

Task model. We consider a set ofN long running soft

real-time tasks (denoted & = {Ti, T, ..., Tn}) deployed must tolerate a maximum of two processor failures, two
on a cluster of hardware nodes. Clients access these taskekup replicas of each task are needed as shown. The table
periodically via remote operation requests: each apjdicat also shows the execution times taken by the primary replica,
Ti is associated with its worst-case execution time (denasedthe state synchronization times taken by the backup replica
Ej), its period (denoted aR), and its relative deadline (whichand the utilization of a primary replica.

is equal to its period). On each processor, the rate morotoni Using bin packing algorithms [26], [27]e(g, based on
scheduling algorithm (RMS) [20] is used to schedule eadiist-fit allocation) and ensuring that no two replicas of the
task and individual task priorities are determined based same task are collocated, we can identify the lower and
their periods. We assume that the networks within this clagpper bounds on the number of processors required to host
of DRE systems provide bounded communication latencies filne system. For example, Figure 1 shows the placement of
application communication and do not fail or partition. the tasks, indicating a lower bound on processors that is
Fault model. We focus on fail-stop processor failures withirdetermined using a bin packing algorithm when no faults are
DRE systems that prevent clients from accessing the sarvieonsidered. Figure 2 shows the upper bound on processors
provided by hosted applications. We ys#ssive replicatiofil]

I Task [ E ] ST R JuilT]

to recover from fail-stop processor failures. In passiy#ica- P1 P2
tion, only one replica—called the primary—handles all lie (2] [c] j ®
requests when the application state maintained at the prima [o] g
replica could change. Since backup replicas are not indolve [] P =

in processing client’s requests, their application statestm
be synchronized with the state of the primary replica. We
assume that the primary replica (which executes for worst- Fig. 1:Lower Bound on Processors (No FT Case)

case execution tim&;) uses non-blocking remote operation

invocation mechanisms, such as asynchronous messagingndeded when the system uses active replication. This case
send state update propagations to the backup replica, whié@resents an upper bound because in active replicatibn, al
immediately returning the response to the client. replicas contribute WCET. Passive replication can redbee t

P1 P2
Processors



e " " to-node mappings are determined via task allocation algo-
rithms, these decisions must be enforced within the runtime
middleware infrastructure for DRE systems. Although devel
opers often manually configure the middleware, differerices
middleware architectures (g, object-based vs. component-
= « & i - - based vs. service-based) and mechaniseng, (declarative

Processors vs. imperative) make manual configuration tedious and error
prone. What is needed, therefore, is a capability that can
(1) decouple the configuration process from the middleware
infrastructure and (2) seamlessly automate the configurati
number of resources used because the backup replicapincess. Section IV-C describes how the DeCoRAM configu-
a passively replicated system only contributes to the statdion engine automates the configuration process.
synchronization overhead. Naturally, the number of preces
required for passive replication should be within the range
identified above.

Researchers and developers must address the following
questions when deploying and configuring DRE systems thatThis section presents the structure and functionality of
must assure key QoS properties: DeCoRAM and shows how it resolves the three challenges
e How can developers accurately pinpoint the number described in Section III-B.
resources required?

e Does this number depend on the task allocation algorithm : .
used? A. DeCoRAM'’s Resource-aware Task Allocation Algorithm
e How can application developers experiment with different Challenge 1 described in Section IlI-B is a well-known NP-
allocation algorithms and evaluate their pros and cons?  hard problem [13], [15], [26]. Although this problem is siani

e How can the results of the allocations be integrated with the bin-packing problems [26], it is significantly harder doe
runtime infrastructures and how much effort is expended ohe added burden of satisfying both fault-tolerance andt rea
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Fig. 2: Upper Bound on Processors (Active FT Case)

IV. THE STRUCTURE AND FUNCTIONALITY OF
DECORAM

the part of an application developer? time system constraints. We developed an algorithm called
The three key challenges described below arise when &@ilurE, Real-time, and Resource Awareness Reconcitiatio
dressing these questions. Intelligence(FERRARI) presented below to satisfy the real-

Challenge 1: Reduction in resource needsSince backups time and fault-tolerance properties of DRE systems while
contribute to state synchronization overhead, a bin-packireducing resource utilization. FERRARI is explained udime
algorithm can pack more replicas, thereby reducing the mumisample task set shown in Table I.

of resources used. The resulting packing of replicas, hewev 1) Allocation Heuristic: Algorithm 1 describes the design

is a valid deployment only in no-failure scenarios, which isf DeCoRAM's replica allocation algorithm called FERRARI.
unrealistic for DRE systems. On failures, some backups wiline 3 replicates the original task set corresponding tokhe
be promoted to primaries (thereby contributing to WCETJault tolerance requirements, and orders these tuplesdiogo
Bin packing algorithm cannot identify which backups willto the task ordering strategy (Line 4). For example, to tdker
get promoted, however, since failures are unpredictabte amvo processor failures, tasks could be ordered by RMS prior-
these decisions are made entirely at runtime. What is neediéids and the resulting set could contain tasks arranged wit
therefore, is the ability to identifg priori the potential failures tuples from highest priority to lowest as shown in a sample
in the system and determine which backups will be promotéakk set of Table I.

to primaries so as to determine the number of resourced.ines 5 and 6 show how FERRARI allocates a task and all
needed. Section IV-A describes an algorithm that uses tbkits K replicas before allocating the next task. For example,
bounded and invariant properties of closed DRE systemsfty the set of tasks in Table I, first all replicas belonging to
address this challenge in a design-time algorithm. task A will be allocated followed by B and so on. To allocate
Challenge 2: Ability to evaluate different deployment al- each replica, FERRARI selects a candidate processor based o
gorithms. An algorithm for task allocation has limited benefithe configured bin-packing heuristic (Line 8). To satisfylfa

if there is no capability to integrate it with production systolerance requirements, FERRARI ensures that the processo
tems where the algorithm can be executed for different DRIbes not host another replica of the same application being
system requirements. Moreover, since different DRE systemlocated when selecting a candidate processor.

may impose different QoS requirements, any one allocationFor the candidate processor, FERRARI runs a feasibil-
algorithm is often limited in its applicability for a broadelass ity test using novel enhancements to the well-known time-
of systems. What is needed, therefore, is a framework tldgmand analysis [20], which is used to test feasibility (see
can evaluate different task allocation algorithms for agean Section 1V-A2). We chose the time-demand analysis for its
of DRE systems. Section 1V-B discusses how the DeCoRARtcuracy in scheduling multiple tasks in a processor. Aigfo
framework evaluates different task allocation algorithms  the time-demand analysis method is computationally expen-
Challenge 3: Automated configuration of applications on sive, it is acceptable since DeCoRAM is a deployment-time
real-time fault-tolerant middleware. Even after the replica- solution.



Algorithm T: Replica Allocafion Algorithm ZLLU%WEK if kK is primary
Input: r(t)=E+ i71(t13( if k is backu for O<t<P
T « set ofN tasks to be deployed (not including replicas), 2k:1 Py P
K «number of processor failures to tolerate, ) . ) )
Output: where the tasks are sorted in non-increasing order of RMS pri
gfpr'ggmg:; i'ii'éf,;oiié’cféwfsgép'es mapping a replica to a processor;  grities. This condition is checked for each t&lkat an instant
1 begin called thecritical instant phasing20], which corresponds to
2 Intially, DP = {},P- = default set of one processor ; ; ; ;
3 LetTh e [ty ) 1< <N.1< k<K 1 Replicato each tasks in T, K the instant when the Fa;k is activated along W|_th all thesta_tsk
times so that T’ contains set of N K-tuples that have a higher priority thalj. The task set is feasible if
H ! H . . .
. fToEr‘;';—C?]rtduegl'gggTE /1 Order the tasks and replicas all tasks can be scheduled under the critical instant ppasin
6 for k=1toKdo criteria.
7 /I Allocate a task and all its K replicas before moving to the next Using this modified definition. we now enhance the feasi-
8 Proc_SelectPick a candidate processpg from the setP: not yet . K X N b .
being evaluated for allocation bility test criteria using the following novel features:
9 /* Check if allocation is feasible on this processor */ H fae W » H _
10 bool result — Test Alloc. for Feastylityt K pe.K) (_1) Necessary_ criteria: Iookahegd for failures. Sec
11 if result==false then // Infeasible allocation . tion 1ll-A explained how a task being allocated can play the
12 $%T?e%mmr selecting the next candidate processor for role of a primary (which consumes worst case execution time
13 else// Update the deployment plan E) or a backup replica (which consumes worst case state
14 DP «— DP {J {< ti, pc >} // add this allocation i H H ;
15 if o . from set P is a feasible allocatiorthen synchron|zat|or_1 timeS). Due to fa|lur(_es, some backups on
16 Add a new processor tB _ o a processor will get promoted to primaries and becatse
o O i Sty erptalocation agaim Wi e new set of >> §, the time-demand analysis method must consider failure
18 end scenarios so that the task allocation is determined feagibl

both a non-failure and failure case. For our sample task set,
this criteria implies that all possible failure scenariogsinbe
i‘xplored for the snapshot shown in Figure 3 when allocating

The feasibility criteria evaluates if the replica could b e primary replica for task Q.. C1).

allocated to the processor subject to the specified rea-ti For anv two processor failure combinatio the failure
and fault-tolerance constraints (Line 10). If the testsfdir y P s,

the current processor under consideration, a new candid%\{ﬁp1 and P2 or P1 a_nd P3_), th_e bacl_<ups of tasks A and B
will be promoted to being primaries. It is therefore no longe

processor is chosen. For our sample task set, after degloy}nasible to allocate C1 on either P2 or P3 (using the same

task sets A and B along with their replicas (as shown i ing that eliminated P1 hoi A h ¢
Figure 3), the next step is to decide a processor for the Wiméeasonlng at eliminate as a choice). An enhancemen

replica of task C. Processor P1 is determined an infeasible = = 5 "
P1 P2 P3 1]
Fig. 4: Feasible Allocation for Task C1

to perform such a check must be made available in the time-
Fig. 3: Allocation of Primary and Backup Replicas for demand analysis, which then results in an extra processor to
Tasks A and B host C1, as shown in Figure 4.

(2) Relaxation criteria: assign “failover ordering” to min i-
solution since the combined utilization on the processarld/o mize processors utilizedClause 1 above helps determine the
exceed 100% if C1 were allocated on P1 already hosting Alacement of newly considered primariesg, C1). We next
and Bl (40+40+25=105). address the allocation of backups. One approach is to &loca

If a feasible allocation is found, the output deploymer€2 and C3 on processors P5 and P6 (see Figure 2). This
plan setDP is updated (Line 14). If no candidate processatraightforward approach, however, requires the same aumb
results in a feasible allocation, however, the set of caatdid of resources used in active replication, which is contrary t
processor$x is updated (Line 16) and the replica allocatiothe intuition that passive replication utilizes fewer nezes.
is attempted again. As shown in Section IV-A2, C1 cannot be Using Clause 1, P1 can be eliminated as a choice to host
allocated to any of P1, P2 or P3, thereby requiring an addiackup C2 since a failure of P4 will make C2 a primary
tional processor (as shown in Figure 4). FERRARI completes P1, which is an infeasible allocation. Clause 1 provides
after allocating all the tasks and its replicas. only limited information, however, on whether P2 and P3 are

2) Failure-Aware Look-Ahead Feasibility Algorithm: acceptable choices to host backups of C (and also those of
Challenge 1 implied exploring the state space for all pdssitD and E since they form a group according to the first-fit
failures in determining the feasible allocations. The timeriteria). We show this case via our sample task set.
demand analysis on its own cannot determine this state space&Consider a potential feasible allocation in a non-failuase
We therefore modify the well-known time-demand functiothat minimizes resources, as shown in Figure 5. Using Clause
ri(t) for taskT; in time-demand analysis [20] as follows: 1, we lookahead for any 2-processor failure combinatiohs. |



///P? \\ /\ //\ / reduces the number of resources used and supports real-time
( \ ‘/@ \ [las \ [ \ performance even in the presence of up to two processor
: || ‘ ;
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Fig. 5: Determining Allocation of Backups of C, D and E 03| 2| | ot
B1 B2 —— B3 ——
E3 E2 E1
P1 and P2 fail, the allocation is still valid since only A3 and Fig. 6: Allocation of Sample Task Set

B3 on P3 will be promoted to primaries, whereas C1, D1 and

E1 continue as primaries on P4. If P2 and P3 were to fail, the3) DeCORAM  Algorithm Complexity: We now briefly
allocation will still be feasible since the existing prire on  jiscss the complexity of FERRARI. The top-level algorithm
P1 and P4 are not affected. (Algorithm 1) comprises an ordering step on Line 4, which

An interesting scenario occurs when P1 and P4 fail. Thejes s ino(Nlog(N) for N tasks. Allocation decision must
are two possibilities for how backups are promoted. If thétfa o4 he made for each of thetasks, theik replicas, and upto

management system promotes A2 and B_Z on processor F’Z’_ﬁw rocessors if the feasibility test fails fél — 1 processors.
C3, D3 and E3 on processor P3 to primaries the allocationtne  gyerall complexity is thus O(N * K * M x

will still be feasible and there will be no correlation bewve e gipijity test), where feasibility_test is the failure-aware
the failures of individual tasks and/or processors. If taeltf |, -vo-g feasibility algorithm described in SectionAR-
management system promotes all of A2, B2, C2, D2 and Ezchy execution of the feasibility test requires (1 (#)

to primaries on processor P2, however, an infeasible e_tllm_u:a executions of the enhanced time-demand analysis [20]eSinc
will resutt The “r!pmd'c‘ab'? nature of failures and decis ¢ replica allocation algorithm allocates tasks accadin
made at runtime is the key limitation of Clause 1. to non-increasing RMS priority order, however, the time-

A potential solution is to have the runtime fault managemefbmand analysis is not overly costly and can be performed
system identify situations that lead to infeasible allaoat incrementally.

and not enforce them. The drawback with this approach,

however, is that the numbgr of failure _Comb|nat|ons iNCB8ASE paCoRAM Allocation Engine
exponentially, thereby making the runtime extremely carpl ) ) _ )
and degrading performance as the system scale increases® FERRARI qlgorlthm preser_lted n S_ect|0n IV-A is
A complex runtime scheme is unaffordable for closed DRENE Of many possible task allocation algorithms that target
systems that place a premium on resources. Moreover, desfifferent QoS requirements of DRE systems. Moreover, it may
many properties of closed DRE systems being invaria necessary to decouple an allocation algorithm from the

the runtime cannot leverage these properties to optimiee figasibility test criteria. For example, FERRARI can leg=a
performance. other schedulability testing mechanisms beyond time-adeima

It is possible to overcome the limitation of Clause 1 if th@nalysis. To address these variabilities, Challenge 2 x Se

runtime fault management system follows a specific order fiP1 1I-B highlighted the need for a framework to evaluate
failovers. Our algorithm therefore orders the failover bet Multiple different algorithms that can work with different
replicas according to their suffixes, which eliminates tbe-p feasibility criteria. . . o

sibility of infeasible allocations at design-time. Natiyathe ~ 1he DeCORAM Allocation Engine shown in Figure 7

replica-to-node mapping and hence the time-demand aBahg'iovides such a framework comprising multiple components,
must be enhanced to follow this ordering. each designed for a specific purpose. DeCoRAM'’s Allocation

Based on this intuition, even witk processor failures it is

. . . Allocation Engine
unlikely that backups on a live processor will be promotdd al

. Input PI t Task
at once. In other words, only a subset of backups on a given Manager "~ Controler "+ Replicator
processor will be promoted in the worst case, without caysin — 7 Repllca-host mepging
an infeasible allocation. The rest of the backups will comé oo sotoctey | Admission output acting as input to
to contribute onlyS load, which enables the overbooking of Controller | o on angine
more backup replicas on a processor [18], thereby reducing
the number of processors utilized. Fig. 7: Architecture of the DeCoRAM Allocation Engine

These two criteria form the basis of the enhancements we
made to the original time-demand analysis, which underpiEsgine is implemented ir-6,500 lines of C++ and provides
the feasibility test in our task allocation algorithm FERRIA a placement controller componerihat can be strategized
Due to space considerations we do not show the feasibiliggth different allocation algorithms, including FERRARSde
test algorithm itself, but the details are available at wisig. Section IV-A). This component coordinates its activitieishw
vanderbilt.edu/sites/default/files/decoram_tr09.pdf. the following other DeCoRAM components:

Figure 6 shows a feasible allocation determined by FER- Input manager. DRE system developers who need to
RARI for the sample set of tasks and their replicas, whiaeploy a system with a set of real-time and fault-tolerance



constraints express these requirements via QoS spedifisatiand replicas in their appropriate nodes and configures the
that include: (1) the name of each task in the DRE sysnderlying middleware using-3,500 lines of C++. Figure 8
tem, (2) the period, worst-case execution time, and worsthows how this D&C engine is designed using the Bridge
case state synchronization time of each task, and (3) thattern [29], which decouples the interface of the DeCoRAM
number of processor failures to tolerate. Any technique f@&C engine from the implementation so that the latter can
gathering these QoS requirements can be used as longvay. In our case, any real-time fault-tolerant componeitt-m
DeCoRAM can understand the information format. For th@leware can serve as the implementation. By using a common
examples in this paper, we used our CoSMIC modeling tomiterface, DeCoRAM can operate using various component
(www.dre.vanderbilt.edu/cosmic), which supplies infation middleware, such as [4], [6].

to DeCoRAM as XML metadata. The input manager com- The building blocks of DeCoRAM’s D&C engine are de-
ponent parses this XML metadata into an in-memory dasaribed below:

structure to start the replica allocation process. e XML parser. The XML parser componentonverts the

2. Node selectorTo attempt a replica allocation, the allocatiorallocation decisions captured in the deployment plan (twhic
algorithm must select a candidate nogeg, using efficient is the output of the allocation engine) into in-memory data
processor selection heuristics based on bin-packing [#&. structures used by the underlying middleware.

node selector componenan be configured to select suitable e Middleware deployer. The middleware deployer com-
processors based on first-fit and best-fit bin packing heurgnentinstantiates middleware-specific entities on behalf of
tics [28] that reduce the total number of processors useaplication developers, including essential buildingckk of
though other strategies can also be configured. any fault tolerance solution, such as teplication manager

3. Admission controller. Feasibility checks are required towhich manages the replicas; er-process monitgrwhich
allocate a replica to a processor. As described above, tteecks liveness of a host; arslate transfer agentwhich
goal of DeCoRAM’s allocation algorithm is to ensure botlsynchronizes state of primary with backups.

real-time and fault-tolerance requirements are satisfiadnwv e Middleware configurator. The middleware configurator
allocating a replica to a processor. Tadmission controller componentonfigures the QoS policies of the real-time fault-
componentan be strategized by a feasibility testing strategiglerant middleware to prepare the required operating-envi
such as our enhanced time-demand analysis algorithm (seement for the tasks that will be deployed. Examples of
Section IV-A2). these QoS policies include thread pools that are configured
4. Task replicator. The task replicator componenadds a with appropriate threads and priorities,g, RMS priorities

set of K replicas for each task in the input task set anfibr periodic tasks.

sorts the resultant task set according to a task orderings Application installer. The application installer compo-
strategy to facilitate applying the feasibility algorithoy the nentinstalls and registers tasks with the real-time fault+izahé
admission controller component. Since FERRARI uses timatiddleware,e.g, it registers the created object references for
demand analysis [20] for its feasibility criteria, the chngask the tasks with the real-time fault-tolerant middlewarete@f
ordering strategy is RMS prioritization, with the taskstedr these references are maintained by middleware entitieh,asi
from highest to lowest rate to facilitate easy applicatibthe the replication manager and fault detectors. Client appbos
feasibility algorithm. Other task ordering criteria alsancbe also may be transparently notified of these object refeence
used by the task replicator component.

For the closed DRE systems that we focus on in this paper, Fom bscoran

the output from the DeCoRAM Allocation Engine framework f — ®
is (1) the replica-to-node mapping decisions for all thédas XML Parser r S Midewarespecifo
and their replicas in the system, and (2) the RMS priorities Ji {@ l@ l"@
in which the primary and backup replicas need to operate in — [ Ropica | [Site xir|[Host
each processor. This output format may change depending on Deployer _[13] Rl Rl s
the type of algorithm and feasibility criteria used. Thepuit J s [T 1 ®
serves as input to the deployment and configuration (D&C) i L Thsaroo |
engine (described in Section IV-C). This staged approafgshe *’4 = @ 77‘ ®
automate the entire D&C process for closed DRE systems. e [ S

Installer | \‘—D Component Server

Interface bridge——  Implementation

C. DeCoRAM Deployment and Configuration (D&C) Engine

The replica-to-node mapping decisions must be configured
within the middleware, which provides the runtime infras-
tructure for fault management in DRE systems. Challenge 3DeCoRAM’s D&C engine provides two key capabilities:
in Section 111-B highlighted the need for a deployment anfl) application developers need not write code to achiewi-fa
configuration capability that is decoupled from the undedy tolerance, as DeCoRAM automates this task for the appdicati
middleware. This capability improves reuse and decouples tdeveloper, and (2) applications need not be restricted to
task allocation algorithms from the middleware infrastame. any particular fault-tolerant middleware; for every di#fat

The DeCoRAM D&C Engine automatically deploys taskdackend, DeCoRAM is required to support the implementation

Fig. 8: Architecture of the DeCoRAM D&C Engine



of the bridge. This cost is acceptable since the benefits ean b
amortized over the number of DRE systems that can benefit
from the automation.

V. EVALUATION OF DECORAM

This section empirically evaluates DeCoRAM along several
dimensions by varying the synthetic workloads and the numbe
of tasks/replicas.

A. Effectiveness of the DeCoRAM Allocation Heuristic

By executing FERRARI on a range of DRE system tasks
and QoS requirements, we demonstrate the effectiveness of
DeCoRAM’s allocation heuristic in terms of reducing the
number of processors utilized.

Variation in input parameters. We randomly generated task
sets of different sizebl, whereN = {10,20,40,80,160}. We

also varied the number of failures we toleratéd, where

K = {1,2,3,4}. DRE systems often consist of hundreds of
applications, while passively replicated systems oftea 8s
replicas, which make these input parameters reflect reddwo
systems. For each run of the allocation engine, we varied a
parameter calledhax load which is the maximum utilization
load of any task in the experiment. Our experiments varied
max loadbetween 10%, 15%, 20%, and 25%.

For each task in our experiments, we chose task periods that
were uniformly distributed with a minimum period of 1 msec
and a maximum period of 1,000 msec. After the task period
was obtained, each task load was picked at random from a
uniformly distributed collection with a minimum task loadl o
0% up to the specified maximum task load, which determines
the worst-case execution times of each task.

We applied a similar methodology to pick the worst-case
state synchronization times for all tasks between 1% and 2%
of the worst-case execution times of each task. The deadline
of each task was set to be equal to its period. Our objective in
varying these parameters as outlined above was to undérstan
how effectively DeCoRAM reduces resources and how each
input parameter impacts the result.

Evaluation criteria. To determine how many resources FER-
RARI was able to save, we defined two baseline bounds: a
lower bound for the no-failure case (shown as No-FT) and an
upper bound for the active replication case (shown as AFT).

We then strategized FERRARI to use the first-fit (FF-FT)
and best-fit (BF-FT) (max utilization) allocation technésg,
and computed the number of processors needed. Section IV-B
showed how the node selector component in the DeCoRAM
Allocation Engine can be strategized with these techniques
Analysis of results. Figures 9a, 9b, 9¢, and 9d show the
number of processors used when each allocation heuristic
attempts to allocate varying number of tasks with varying
max loadfor a task set. AN and K increase, the number
of processors used also increased exponential AFSF. This
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exponential increase in processors is due to the behaviorFég. 9: Performance of FERRARI with Varying Tasks,
the active replication scheme, which executes all the capli Backups, and Loads

to provide fast failure recovery on a processor failure.
In contrast, when DeCoRAM uses tid=-FT or the BF-

processors used in comparison with thie-FT allocation

FT allocation heuristics, the rate of increase in number ofuristic is slower compared t&FT. For example, wherK



8120
c
is equal to 1, the number of processors used by botltie §100 ]
FT andBF-FT allocation heuristics is only slightly larger than 2 (CLIENT-B)
those used by thBlo-FT allocation heuristics. E®
As the number of tasks and processor failures to tolerate E 60
increases, the ratio of the number of processors used by the E 40 " o ]
FF-FT and theBF-FT allocation heuristics to those used by 5 — — (CHENTA)
the No-FT allocation heuristic increases, but at a much slower a 20
rate than the increase in the caseAdfT. For largeN andK x s s s s s
(e.g, see Figure 9d, 160 tasks and 4 backups for each task), 50 100 150 200 250 300
the number of processors used by #eFT and theBF-FT Time (sec)
gllo:gli_on heuristics is only half the number of processsed Fig. 10: DeCoRAM Empirical Validation
y :

This result is a direct consequence of the relaxation caiter ) ) o
described in Section IV-A2. As the number of tasks to allecafc: Evaluating DeCoRAM's Automation Capabilities
and number of backup replicas increases, the look ahead steye now define a metric that counts the number of steps per
finds more opportunities for passive overbooking of backupieployment and configuration activity to provide a qualiat
on a processor for FF-FT and BF-FT allocation heuristics. evaluation of developer effort saved using DeCoRAM. Assum-
ing N number of tasksK number of failures to tolerate, ahd
processors needed to host the tasks, Table Il shows theseffor
expended by the developer in conventional approachessrersu
using DeCoRAM (we assume the use of our FLARe [24] real-
We now empirically validate the real-time and faulttime fault-tolerant middleware).
tolerance properties of an experimental DRE system task set

B. Validation of Real-time Performance

deployed and configured using DeCoRAM. The experiment H Activity I fﬂﬁ:r:tj;?tepsl Requires) H
was conducted in the ISISlab testbed (www.dre.vanderbilt. Sheciicaton N N
edu/ISISlab) using 10 blades (each with two 2.8 GHz CPUs, Allocation NF(K+1) 0

i i XML Parsing 1 0
1GB memory, anq a_40 G_B disk) _and running the Fedora Mddleware Depayment | T+ N2 5
Core 6 Linux distribution with real-time preemption patshe Middleware Configuration M 0
(www.kernel.org/publ/linux/kernel/projects/rt) for thieernel. Application Installation 2*NF(K+1) 0
Our experiments used one CPU per blade and the blades were TABLE II: Effort Comparison

connected via a CISCO 3750G switch to a 1 Gbps LAN.

The experimen_tal _setup and task allocation fOHOWS_ the The contents of the table are explained below. Rdasks,
mod_el presented in Flgu_re 6 and Table I. I_:or our eXpe”m@—Bth the conventional and DeCoRAM approaches require
we implemented the Bridge pattern [29] in the DeCoRA evelopers to specify the QoS requirements. All steps in-DeC

D&C engine for our FLARe middleware [24]. Clients OfoRAM are then automated and hence no effort is expended

eaph of the 5 ta.sks. are hosted in 5 ;eparate ble}d_es. FLABJ%/SdeveIopers. In contrast, in a manual approach, devedoper
middleware replication manager ran in the remaining blade ust determine the allocation fér+ 1 replicas (primary and

The expe_nment ran for 300 seconds._ W(_a introduced ackups) of theN tasks followed by one step in parsing the
processor failures (processors P1 and P2 in Figure 6) 100 L output

\2/\(/)0 se%ondfs, lrte_spec:_lvely, afther t_he exrr])enment Wafts elitarte IMiddleware deployment requires one step in deploying the
© used a fault injection mechanism Where Server 1asks ARe middleware replication managed steps to install

the exit() system call (crashing the process hosting the SENfk FLARe client request interceptors on tleclients of the

tasks) while the Cl'entS:L'ENT'A_ Oor CLIENT-B make invo- servers, and 2 steps each to deploy the FLARe monitor and
catlons_ on server task_s. The cllent_s FECEaMEMM_FAILURE  p) ARe state transfer agent on each of Meprocessors. One
exceptions and then failover to replicas according to thieior step is then necessary to configure the underlying middewar
ch0§en by DeCORAM. . . (e.g, setting up thread pools with priorities) dvh processors
F|g_ure 10 s.hows the response times observed by thg Cl'eibﬂsqa total ofM steps. Finally, installation of each task requires
despite the failures of 2 processors. As shown by the latel P{VO steps to register a task with the FLARe middleware

Figure 10, at 100 seconds when replica Al fails (processor e]plication manager and FLARe state transfer agent for the
fails, thereby failing B1 as well), clientLIENT-A experiences N

a momentary increase of 10.6 milliseconds in its end-to-end
response time, which is the combined time for failure déect
and subsequent failover but stabilizes immediately, there
ensuring soft real-time requirements. The same behavior isThis paper describes the structure, functionality, andoper
also observed at 200 seconds (see la)akhen P2 fails. mance of the DeCoRAM deployment and configuration frame-
These results demonstrate that irrespective of the ovirbowork, which provides a novel replica allocation algorithm
ing of the passive replicas, DeCoRAM can still assure reglalled FERRARI that provides real-time and fault-tolemnc
time and fault-tolerance for applications. to closed DRE systems while significantly reducing resource

tasks withK + 1 replicas each.

VI. CONCLUDING REMARKS



utilization. DeCoRAM also provides a strategizable altawa
engine that is used to evaluate FERRARI’s ability to redhee t
resources required in passively replicated closed DREBst

[9] X. Qin, H. Jiang, and D. R. Swanson, “An Efficient Faultidi@nt
Scheduling Algorithm for Real-Time Tasks with Precedencasiraints

in Heterogeneous Systems,” iICPP '02: Proceedings of the 2002

Based on the decisions made by FERRARI, DeCoRAM'’s de-
ployment and configuration engine automatically deploys a3l
plication components/replicas and configures the middiewa
in the appropriate nodes, thereby eliminating manual tasks
needed to implement replica allocation decisions. Theltesu
from our experiments demonstrate how DeCoRAM provides
cost-effective replication solutions for resource-coaisied,

closed DRE systems.

[12]

Below is a summary of lessons learned from our work
developing and empirically evaluating DeCoRAM:

e DeCoRAM requires a small number of additional pro[-13]
cessors to provide fault-tolerance, particularly for deral
number of processor failures to tolerateg., smaller
values ofK.

e As loads contributed by individual tasks increases, they
gains in processor reduction increases when compared
with active replication since DeCoRAM exploits the
failover order of backup replicas to overbook multiplg;s;
backup replicas whose ranks are high and whose lower

ranked replicas are deployed across different processors.

e The gains seen by FERRARI hold when the state syps
chronization overhead is a small fraction of the worst case
execution time. As the state synchronization overhe&d!
approaches 50% or more of the WCET, the reduction seen
in processors consumed is no longer attractive, whictg]
indicates that such DRE systems may benefit from using
active replication.

DeCoRAM is available in open-source format at www.drg19]
vanderbilt.edufjai/DeCoRAM.
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