Model-driven Engineering for Early QoS Validation
of Component-based Software Systems

James H. Hill and Aniruddha Gokhale
Vanderbilt University, Nashville, TN, USA
Email: {hillj, gokhale}@dre.vanderbilt.edu

Abstract— Model-driven engineering (MDE) techniques are
increasingly being used to address many of the development
and operational lifecycle concerns of large-scale component-based
systems. One such concern that is growing in importance, but
lacking significant research is the validation of quality-of-service
(QoS) properties of component-based systems throughout their
development lifecycle. In the current state of the art, large-scale
component-based systems have to wait until system integration
time to perform in-depth QoS testing, which can be too late and
detrimental to project schedules and costs. This paper describes
our novel MDE-based solution to address this challenge. At
the core of our solution approach are (1) a set of domain-
specific modeling languages that allow us to mimic component
“business logic,” and (2) a generative programming framework
that synthesizes configuration files for system simulation. A
particular thrust of this paper is describing the syntax and
semantics of the component behavior modeling language, which
are based on the Input/Output automaton formalism.

Our experience shows that our techniques enable developers
of large-scale component-based systems to perform early QoS
evaluation from development time to production time. Moreover,
our experience shows we are able to provide an environment
where developers can rapidly test ideas and methodologies
largely alleviating the need to expend effort, money, and time
implementing them.

Index Terms— model-driven system engineering, continuous
QoS validation, simulation, timed input/output automata

I. INTRODUCTION

Model-driven engineering (MDE) [1] techniques are in-
creasingly being used to address many of the development and
operational lifecycle complexities of large-scale component-
based systems. Although there have been many advances in
MDE techniques for large-scale component-based systems,
MDE techniques to date have focused primarily on (a) struc-
tural issues of system development, such as component as-
sembly, packaging, configuration and deployment [2]-[4], and
(b) functional and behavioral issues, such as model checking
for functional correctness (e.g., Bogor [5] and Cadena [6])
or runtime validation of performance (i.e., running empirical
benchmarks at integration time to validate performance).

Although MDE tools continue to raise the level of abstrac-
tion of component-based software systems and address many
of their complexities, there remains a major gap in evaluat-
ing system quality of service (QoS), e.g., performance and
reliability, at different phases of development, which would
enable design flaws to be rectified earlier in the development
lifecycle. This impediment is due primarily to the “serialized
phasing” [1] nature of the development lifecycle wherein the

system is developed in layers (e.g., first the components at the
infrastructure layer(s) and then the application layer(s)).

Throughout the development of each layer, the business-
logic encapsulated within individual components is usually
thoroughly tested for both functional correctness (i.e., whether
it performs the expected operations) and performance correct-
ness (i.e., whether operations are performed with the expected
QoS). Due to the composite nature of large-scale component-
based software systems, complete system QoS validation can
proceed only when all the system components are available
and deployed in the runtime infrastructure [7], [8]. Moreover,
waiting too late in the development lifecycle (e.g., integration
time when all components are available) to resolve any per-
formance problems can be too costly to resolve. It is clear
that system engineers need proper tools to help address QoS
validation not only at integration and production time, but at
development time before performance problems become too
“hard” to locate and resolve.

In our previous research [9]-[12], we showed how em-
ulating system components for QoS validation while the
“real” components are being developed enables developers
to perform QoS validation throughout the entire development
lifecycle. At the core of our solution are two domain-specific
modeling languages (DSMLs) [13] named the Component
Behavior Modeling Language (CBML) and the Workload
Modeling Language (WML), which allow developers to define
the behavior and workload, respectively, of component-based
systems at a higher-level of abstraction from that provided by
third generation programming languages [12]. In addition, we
implemented a reusable generative programming framework
for CBML and WML that allows us to generate configuration
files and/or source code for different use cases [14]. In this
paper, we extend our previous research efforts and focus on
the formal definition of a component in terms of CBML.
Moreover, we illustrate how we are able to generate configura-
tion files for validating components via simulation at design-
time using a technique called semantic anchoring [15]-[17],
which uses well-defined transformations to map a DSML to an
existing formal language (e.g., input/output automata [18] and
timed-automata [19]) to validate formally define the semantics
of the DSML.

Paper Organization. The remainder of this paper is orga-
nized as follows: Section II introduces a motivating example
we use to describe the challenges in realizing a solution
for early QoS evaluation; Section III describes the structure
and functionality of our DSML for simulating component

behavior; Section IV explains how we integrate our DSML
with existing structural DSMLs to associate behavior models
with structural models; Section V explains how we use seman-
tic anchoring to generate configuration files for simulation;
Section VI compares our work with related research; and
Section VII presents concluding remarks.

II. MOTIVATING EXAMPLE

This section describes the challenges in developing a so-
lution that addresses the need for early QoS evaluation of
component-based systems developed using serialized phasing
processes. We use a motivating example to highlight these
challenges.

A. A Distributed Stockbroker Application Case Study

We use a representative example taken from the financial
domain [20] as a motivating example to illustrate the serialized
phasing problem and how our research artifacts described in
this paper enable us to provide early QoS validation. Our
case study is called the Distributed Stockbroker Application
(DSA), which is an online web application for viewing stock
information.

Figure 1 shows a high-level representation of the DSA and
its communication flows between components. The DSA is
composed of six different components. The Naming Service
component allows client applications to locate the Gateway
Component for the application. The location (i.e., the binding
IP address and port number) of the naming service component
is therefore persistent. The Gateway Component serves as the
entrance to the stock application, which all clients must pass
through. The Gateway Component accepts the username and
password of the user and sends it to the Identity Manager
component. The Identity Manager component is responsible
for verifying the username and password, and initializing the
correct QoS policies based on user type. Once the access
is granted to the client, it is given direct access to a Stock
Component. The Stock Component is created on-demand and
initialized with the correct QoS specified by the Identity Man-
ager. The Stock Component interacts with a MySQL database
that contains the stock information. Lastly, all components in
the system — both application and infrastructure — log their
activities to a Logging Component.

Logging

Component \

,,,,,,, Identty . Stock . , Database

Naming

Service

CIie(n)t ‘A/

A

Gateway

Component ------ > Manager ---* Component *-~ Component
/\
Client B
Fig. 1. High-level structural composition of the Distributed Stock Applica-

tion.

The DSA has two user classes: Basic and Gold. Gold
users are persons who use the service frequently, whereas
Basic users use the service infrequently. Table I provides

the projected usage pattern and desired response times (i.e.,
QoS) of each user for the DSA. Due to the serialized-phasing
development process, the underlying infrastructure of the DSA
(i.e., all the components illustrated in Figure 1) may complete
their development at different time scales. Evaluating system
design decisions on the target architecture to understand and
evaluate system QoS, therefore, has to wait until all the “real”
components are available.

TABLE I
PREDICTED USAGE PATTERN OF THE DISTRIBUTED STOCK APPLICATION
BASED ON USER TYPE.

Type Percentage Response Time (msec)
Basic (Client A) 65% 300
Gold (Client B) 35% 150

The application components of DSA are implemented as
Lightweight CORBA Component Model (CCM) [21] compo-
nents. The target architecture comprises three hosts for deploy-
ing all its components. Lastly, the software platform version
is Fedora Core 4 using ACE+TAO+CIAO 5.1 middleware
platform available at www.dre.vanderbilt.edu.

B. Impediments to Overcoming the Serialized-phasing Barrier

To achieve the vision of early QoS validation in the pres-
ence of serialized phasing, such as in the case of the DSA
case study, the proposed solution must address the following
challenges:

o Challenge 1: Capture business logic — The components

must resemble their counterparts in both supported inter-
faces and behavior. For emulation, the target environment
should allow seamless replacement of faux components
with real components as they become available. For sim-
ulation, however, seamless replacement is not applicable.
The configuration files for simulation must define ele-
ments (e.g., inputs, outputs, and transitions) that resemble
their real counterpart to preserve similarity and contextual
representation.
In the context of the DSA, emulated components should
be used to evaluate QoS at early stages of development,
and as the “real” components are available they should re-
place the emulated components to achieve more accurate
QoS metrics. Likewise, the simulated components should
be used to verify properties such as functional correctness
and reachability.

o Challenge 2: Realistic mapping of behavior — The

behavior specification should operate at a high-level of
abstraction (i.e., at the application level) and map to
realistic operations (e.g., memory allocations and deal-
locations, file operations, or database transactions).
For example, in the DSA the high-level database behavior
should “realistically” query a database for stock informa-
tion when using emulation. In the context of simulation,
the behavior should map to well-defined elements of
the underlying formal language that represent querying
a database.

o Challenge 3: Technology independence — The be-
havior specification should not be tightly coupled to a

programming language, middleware platform, hardware
technology, and MDE tool.

In the context of the DSA, if we wanted to evaluate the
system on CCM or Microsoft .NET [22], or use multiple
modeling tools [23], [24], then we should be able to
reuse the same concepts and models. Likewise, if we
wanted to simulate the DSA under different tools such as
Tempo (www.veromodo.com) or UPPAAL (www.
uppaal.com), we should be able to reuse the same
models.

The remainder of this paper describes our solution to resolve
these challenges.

III. DOMAIN-SPECIFIC MODELING LANGUAGES FOR
EARLY QOS VALIDATION

Addressing the challenges of continuous QoS evaluation in
the face of serialized phasing requires mechanisms to mimic
application component behavior. This section describes our
R&D on a DSML named the Component Behavior Modeling
Language (CBML). CBML is a DSML for capturing the
behavior of a component and is primarily used to generate
configuration files for simulation tools. The remainder of this
section discusses CBML in detail explaining how CBML helps
resolve Challenges 1 and 2 discussed in Section II-B in the
context of the case study described in Section II-A.

A. The Component Behavioral Modeling Language

Any mechanism that mimics component behavior must
incorporate the design principles and semantics of component
architectures. In such architectures, systems are composed
of components that react to method invocations and events
received on their input ports. This “reaction” causes a sequence
of activities that can be defined by a series of states and
transitions. Although the range of activities performed in the
course of a component’s execution can vary broadly, they can
be divided into two distinct operational classes: internal and
communication.

Internal operations are those not observable from out-
side a component (e.g., memory allocations/deallocations and
database transactions executed by the database component in
the DSA case study). Communication operations are represen-
tative of sending/receiving an event to/from another compo-
nent (e.g., input and output events transmitted between each
of the components in the DSA case study).

When trying to emulate a component’s behavior (i.e., ad-
dressing Challenge 1 in Section II-B), it is desirable to capture
it as close as possible to its real counterpart using combinations
of internal and communication operations. It is also desirable
to represent the behavior based on a formal mathematical
foundation because it will (1) facilitate transformation of
existing models between different formal behavioral languages
(e.g., timed-automata, StateCharts [25] and PetriNets [26]),
and (2) assist in proving any formal properties of the sys-
tem (e.g., correctness and stability). Likewise, it will also
facilitate reverse transformations (i.e., from models in other
languages to models of this language). We believe that lack
of formal semantics can limit the capabilities and scope of

such a behavioral modeling language. At the same time, it
should not be dependent on any programming language and
software/hardware platform, and be as general purpose as
possible.

Based on the desired functionality for modeling component
behavior, we have developed the Component Behavioral Mod-
eling Language (CBML). CBML is a DSML based on the
mathematical formalism of input/output (I/O) automata [18]
(details of I/O automata are beyond the scope of this paper).
We chose I/O automata as its basis because, analogous to
component behavior, I/O automata is ideal for asynchronous
and reactive systems. We developed CBML in the Generic
Modeling Environment (GME) [23], which is a metamodeling
environment that allows the creation of DSMLs and its models.
CBML, however, is not coupled to GME since it can be
ported to any MDE tool that supports metamodel specifica-
tion (e.g., Eclipse Modeling Framework (EMF) [27], Generic
Eclipse Modeling System (GEMS) [24], or Microsoft DSML
tools [28]). Developers use CBML to capture component
behavior at a high-level of abstraction and use model inter-
preters to generate configuration and source files for backend
emulation (see Section IV) and simulation (see Section V)
tools.

1) Structure of CBML: As explained in Section III-A, we
developed CBML based on the mathematical formalism called
I/O automata [18]. We defined CBML so that it has the
necessary subset of elements from I/O automata that will
preserve its formal semantics. Users of CBML do not need
prior knowledge of I/O automata to use CBML. Keeping that
in mind, we formally define the behavioral model BM =
(V,8,0,1,0,A,T,E) of a component in CBML as:

o A set V of internal variables.

o Aset S Cwal(V) of states where val(V') is the value of
the internal variables at any given point in time, or the
current state of the component.

o A nonempty set © C S of start states.

o A set I of input actions, which are events received from
an external source, e.g., a connected component.

o A set O of output actions, which are events sent to an
external destination, e.g., a connected component.

e A set A of actions, which are events (or actions) visible
only to the component hosting the behavior, i.e., internal
operations.

Figure 2 highlights each of these elements in BM as their
representative artifacts in CBML.

o) e o X3

Input Action State Action Output Action Variable

Fig. 2. Primary elements for constructing behavioral models in CBML.

In order to construct valid behavioral models in CBML,
developers must specify a sequential flow between different
actions 2 = (I UO U A) where Q is a disjoint union and
states S. Behavioral models BM, therefore, contain two sets
of functions that allow developers to define sequential flows
as follows:

o A set T of transitions such that given A € T and s € S:

A(s) = a, (D

where o € (AU O).
o A set E of effects such that given I' € E and a € {2

I'(a) — s, 2)

where s € S.

Figure 3 shows the complete realization of BM using the
respective CBML artifacts illustrated in Figure 2, Equation (1)
and Equation (2) in the context of the DSA database com-
ponent. In CBML, all behavioral specification begins with an
Input Action element. Each Input Action in the behavior model
is connected to an initial State element. The remainder of the
behavioral specification is defined by a sequence of Action
to State transitions. For example, the behavioral model for the
database component in Figure 3 illustrates that an input action
causes a query for stock information.

F(“'%Mr_)

hquery stock_info

Fig. 3. Example CBML behavioral model in GME.

To specify the end of a behavior sequence in the modeling
realm, a Finish connection (i.e., the dashed line) is used
to connect the final State to the starting Input Action. We
require this connection because we allow sharing of behavioral
sequences to simplify modeling (illustrated in Figure 4). For
example, the DSA has two type of users who have the
same behavior. It is possible to model each person’s input
to the database component (or any component) separately
but share the same behavior as illustrated in Figure 4.! The
explicit finish connections therefore help resolve ambiguity
when determining where each user type’s behavior terminates.

BasicType_Input

VP J n r
query_stocl—c info }

GoIdTyg._anut 3

Fig. 4. Example of sharing behavior in CBML.

During the interpretation process of CBML, we treat shared
behavioral sequences as separate sequential flows to preserve
the validity of Equation (1) and Equation (2). Figure 5
illustrates how Figure 4 is handled during the interpretation
process to generate either emulation or simulation files. As
shown in Figure 5, there are now 4 different states and 2
different actions, thus preserving the validity of Equation (1)
and Equation (2).

I'Shared behavior is a modeling optimization we allow to help reduce the
size of constructed models because automata-based models are affected by
state-space explosion as they grow in the number of elements.

_ W/
BasicType_Input query_stock_info

\
GoldType_Input — query_stock_info

Fig. 5. View of shared behavior in CBML from the interpretation perspective.

Specifying output actions in CBML: CBML defines be-
havior as an input action that causes a series of “internal”
operations and results in a set of output actions, if any. Based
on the definitions of a transition A from Equation (1), it is
clear that output actions O have the same modeling semantics
as actions A.

Figure 6 illustrates an example behavioral model with
output actions, which are represented by the three rightmost
squares labeled basic_response, gold_response and
log-status for the database component in the DSA. After
the component completes its query to the database for stock
information, it outputs information back to the requester, and
outputs a status message to the external logging component.

. (

BasicType_| \nput query_stock_j mfg basic_response

‘—"ﬂ—*f
Iog status ﬁ
(O —— :

GO‘dTWQ_.‘DQUT....query stock.| mm__gol_d_r_e_anon_s_e _______________ i

I

Fig. 6. Example CBML behavioral model with output actions.

Preconditions, postconditions, and variables in CBML:
CBML allows users to define variables V' in behavioral models
to preserve information that represents the current state of the
component, val(V'). Preconditions, which are associated with
transitions A, operate on the variables to enable and/or disable
the execution of individual transitions. Likewise, postcondi-
tions, which are associated with effects I', modify the values
of variables to change the current state of the component, or
system. Formally, preconditions and postconditions are defined
as follows:

o For preconditions:

A(s) « pre(val(V)) €))

where pre(X) determines if the current value of X is
true.
« Upon execution of effect I' associated with action a

post(a) — val(V)', 4)

where a € Q and val(V)’ is the new state of the system
such that S C val(V)'.

As illustrated in Figure 7 in the context of CBML, a
variable is represented by the element with the star image.
Users use variables in their behavioral model by referencing
them in the preconditions and postconditions of the transition
(i.e., connection from a state to an action), and effect (i.e.,
connection from an action to a state) connections, respectively.

Postcondition:
basic_count ++

%

pasic_count

L

u .'_'-.I
BasicType_Input qU@W st ck mfo basm respo se

.- y
/

Paostcondition: “--'

* ‘O g S

gold_count
Lnto gold response

GOIdTSfF,J.B_mput - uary. sto

Fig. 7. Example CBML behavioral model with variables.

This allows developers to create more “realistic” behavioral
models, such as counting the number of users of each type
executing queries on the database and/or guarding a workload
until the system reaches a certain state.

Domain-specific extensions in CBML: Some input events
that are critical in the domain of component-based systems
(e.g., lifecycle events such as activation and passivation or
monitoring notification events such as degradation of QoS)
are not first class entities in I/O automata. I/O automata does
not distinguish between these kinds of events because it is
a general-purpose language that is not tied to any particular
domain (e.g., component-based systems). We therefore ex-
tended I/O automata (without affecting its formal semantics)
in CBML to capture this aspect of component behavior more
expressively as discussed below and illustrated in Figure 8:

o Environment Events, £ C [, represent input actions
to a component that are triggered by the hosting system
rather than another component (e.g., lifecycle events from
the hosting container or fault-tolerance notifications to
serialize the state of a component).

o Periodic Events, P C [, represent input actions from
the hosting environment that occur periodically (e.g.,
setting/receiving a timeout event to periodically transmit
status updates). We also allow a probability to be asso-
ciated with periodic events to provide non-deterministic
behavior.

(database component)

£
—06—0)

activate open_connection

gold_user gold_request

@ """"" B—0—0—0
basic; user basic request
(user component)

Fig. 8. CBML’s domain-specific extensions to I/O automata

In the context of the DSA, when the database component
is activated it creates an initial connection to the database
(illustrated in Figure 8). Likewise, we can use periodic events
to model the behavior of each user type by associating each
one with correct probability (e.g., 0.35 and 0.65 for Gold and

Basic type, respectively) and sequencing it with an output
event within a “user” component (also illustrated in Figure 8).

Usability extensions in CBML: One of the main goals of
defining behavior at a high-level of abstraction is simplicity
and ease of use. If the size of the behavioral model is
“huge” and CBML adheres strictly to its current representation
of I/O automata, its ease of use is compromised because
one of the major drawbacks of many automata languages is
scalability [25]. To address this issue we defined the following
usability extensions, which does not violate the definition of
BM in CBML.:

o Composite Action, C'A € A, is a modeling element that
allows developers to create reusable behavior workflows
that can help reduce the amount of clutter in the model. A
composite action has the same definition as BM, however,
we defined a constraint that requires composite actions to
contain only a single input action, i.e., |I| = 1. This is
necessary because composite actions encapsulate a single,
reusable behavior workflow, and not multiple behavior
workflows.

o Log Action is an attribute of an Action element that de-
termines if the action should be logged. The semantics of
“logged” are dependent on how the model is interpreted.
For example, a modeler might choose to log “network
send” actions and not “memory allocation” actions.

To address the usability concerns in the modeling aspect, we
also developed a GME add-on that assists users in creating
models rapidly by auto-generating required elements (e.g.,
states) and connections depending upon the context. Although
this feature is GME-specific, most MDE tools provide support
for implementing features that help improve user experi-
ence [29].

B. Supporting Timing Semantics in CBML

Input/Output (I/O) automata is ideal for modeling asyn-
chronous, reactive systems, such as large-scale component-
based DRE systems. When trying to evaluate QoS, however,
I/O automata lacks several aspects, such as timing, that would
allow developers to verify QoS properties about components,
and the system (e.g., end-to-end deadlines, expected execution
time, etc.).

To address this limitation, Timed Input/Output Automata
(TIOA) [30] was defined as an extension I/O automata to
support timing aspects. TIOA has the same formal semantics
as I/O automata, but it is extended to support both discrete and
continuous variables. The continuous variables (e.g., a clock
or temperature) define how the state of the system changes
with respect to time.

Because CBML was originally based on the semantics of
I/O automata, it also lacked the same properties that would
allow developers to verify QoS properties from a simulation
standpoint. We, therefore, extended CBML to support the
notion of timing to be consistent with TIOA. In CBML, timing
is defined by the following equation:

clock’ = clock + time(a) (5)

where clock is the current timing variable for the component,
time(a) is the execution duration of a € A, and clock’ is
the new clock time after completing a. In CBML, we only
associate timing with internal actions A because we, currently,
make the assumption that all input I and output O actions are
instantaneous.

IV. INTEGRATING BEHAVIORAL AND STRUCTURAL
DSMLs

In Section III, we described a behavioral DSML named
CBML and illustrated how it allows us to capture the behavior
(Challenge 1 of Section II-B) and map the behavior to realistic
operations (Challenge 2 of Section II-B). Although CBML
allows us to capture the behavior of a component, the models
are insufficient to generate simulation code directly without
knowing the structural composition of the system and its
components for QoS validation since the latter determines the
end-to-end workflows.

We, therefore, integrated CBML with the Platform Inde-
pendent Component Model Language (PICML) [31] because
PICML captures the structural aspects of a system and its
components. Moreover, since both PICML and CBML provide
platform and programming language independent modeling
capabilities, their integration and model interpretations pro-
vide a technology independent approach to continuous QoS
evaluation (Challenge 3 in Section II-B).

Although we chose PICML as the structural DSML to
integrate CBML, the concepts presented in Section IV-A can
be applied to any structural DSML provided that it clearly
differentiates between input and output ports of a component.
The remainder of this section discusses integration of CBML
with existing languages (e.g., PICML in CoSMIC), and how
our approach to generating simulation logic for components
that mimics their real capabilities is decoupled from the
underlying platform and programming language technology.

A. Integrating CBML and PICML

Domain-specific modeling languages (DSMLs), such as
PICML, allow developers to model different ports of a com-
ponent (e.g., facet/receptacles and event sources/sinks). The
facets/event sinks represent inputs to a component, while
receptacles/event sources represent outputs from a component.
Formally, a basic component C = (M, N) from the structural
aspect can be defined as:

o A set M of input ports for receiving events from external

sources, e.g., connected components.

o« A set N of output ports for sending evens to external

destinations, e.g., connected components.

Structural DSMLs, however, capture structural input/output
(I/0) elements without any correlating behavior (i.e., there is
no clean representation to associate the I/O elements of struc-
tural models with the I/O actions in behavioral models). We,
therefore, extended the structural definition of a component
C = (M,N,®,7) to define a set of functions that enable
developers to connect the I/O elements in the structural model
with corresponding I/O elements in the behavioral model BM
(see Section III-A.1) based on the following equations:

e Let me M, i €1 and ¢ € P, then

p(m) — i. (6)
e Letn e N, o€ O and ¢ € U, then
P(0) — n. (7)

Figure 9 illustrates how structural DSMLs (e.g., PICML)
that define components that have I/O ports and behavioral
DSMLs (e.g., CBML) that have I/O actions can be integrated
by having the structural DSML “contain” the behavioral
DSML and applying Equation (6) to the structural DSML and
Equation (7) to the behavioral DSML.

{structural model)

1

(behavioral model)

Fig. 9. Conceptual model of integrating behavioral and structural DSMLs.

In the modeling realm, we require a component to contain
the behavior. Additionally, we define a modeling connec-
tion between the input port and input action to implement
Equation (6), but require that the name of the output action
match the name of the corresponding output port to implement
Equation (7). We made this design decision because explicitly
defining a connection between an output action and port
will clutter the model since there is a many-to-one mapping
between an output action and an output port.

To further illustrate this concept, Figure 10 shows the
realization of integrating a behavioral and structural DSML.
The outer rectangle of Figure 10 illustrates the PICML model
of the database component. The inner rectangle highlights
the same database component with CBML from Figure 7
integrated into PICML, thus allowing us to model the same
behavior exemplified in Section III with its respective structure
(e.g., interface and attributes).

[
PICML

|basic_count gold_count

| I

I e T B

| D o— i asic_response
|GoldT‘ypeanull query_stock_info basm_respu-]se ti i |
| | O-n—0 D !
|

| .\og_ma:us "'Pold_r'es'punse |
= = e\ |
i —0—0—0 | @

BasicType_input] - qug.—y_sﬁ:.ck_infc',' gold_response | log_status |
h |

it PR |

Fig. 10.
CoSMIC.

Realization of integrating CBML and WML with PICML in

V. SEMANTIC ANCHORING FOR SIMULATION OF
COMPONENT-BASED SOFTWARE SYSTEMS

In Section IV, we discussed how we integrated CBML with
structural DSMLs (e.g., PICML) to associate behavior models

with structural models. In this section, we discuss how we use
semantic anchoring [15]-[17] to generate configuration files
for simulation tools based on timed I/O automata (TIOA). We
limit our discussion to the generation of configuration files for
individual components, and not the entire system (e.g., nodes,
communication channels, and etc.) because it is outside the
scope of this paper.

A. Brief Overview of Semantic Anchoring

One of the main benefits of a DSML is its ability to
allow developers to work with artifacts that are familiar to
their domain. Although a DSML can help raise the level
of abstraction — and simplify the development process by
automating tedious and error-prone tasks — many DSMLs lack
methods for proving their validity through formal specification
of their semantics. Because it can be “hard” to formally
define the semantics of a DSML in ways similar to formal
mathematical languages such as I/O automata, Timed Au-
tomata, and Statecharts, it is becoming common practice to
leverage semantic anchoring as a method to formally define
the semantics of a DSML.

In semantic anchoring, developers rely on well-defined
transformations that map elements of the DSML in question to
elements of an existing formal language. This then alleviates
the necessity to formally define the semantics of a DSML
because if the transformation functions are well-defined and
the target language is semantically valid, then one can argue
that the semantics of DSML in question is formally defined
in the context of the target language. The remainder of this
section discusses how we use semantic anchoring to map
CBML to TIOA.

B. Transforming CBML into Timed I/O Automata

When we originally designed CBML, we based its definition
on aspects from I/O automata because I/O automata possessed
many of the same characteristics of components. In order to
validate QoS from a simulation standpoint — as opposed to
an emulation standpoint — we extended CBML to support
timing so it would be consistent with TIOA. This would permit
us to start understanding QoS properties such as end-to-end
deadlines, service rates, and expected execution times, from
simulation perspective.

In TIOA, an automaton A = (3,1,0) is a tuple where

e 3=(X,Q,0,E,H,D,T) is a timed automata.

e I and O partition E into input and output actions,

respectively.

We do not present the complete definition of B and its
properties in the paper, and encourage the reader to see [30]
for more details.

In order to leverage TIOA for semantic anchoring, we must
first define a set of transformations that map CBML to TIOA.
It is obvious that many of the elements in the definition of
BM, which is used to formally define CBML, already occur
in A. Therefore, when we use the following transformation
function:

trans(Xpm) — Ya, 8)

where X is an element in the definition of BM that is being
transformed into element Y in the definition of A, we define
the following transformations:

trans(Vpar) — Xa, 9)
trans(Spuy) — Qa, (10)
trans(Oppy) — O 4, (11)
trans(Ipn) — 14, (12)
trans(Ogpr) — O4, (13)
trans(Apn) — Hoa, (14)
trans(Ten) — Da, (15)
trans(Epa) — Sa, (16)

where s4 € Q4.

To further illustrate the transformation, we have applied the
transformation functions to a simplified version of the database
component in the DSA illustrated in Figure 11. The simplified
version of the database component contains an input action
named BasicType_Input and an internal action named
(query_stock_info). It also contains a single output action
named (send.result). When we apply Equation (9) -
Equation (16) to the CBML model in Figure 11, we produce
the TIOA configuration file presented in Listing 1.

oO— — O——0O
BasicType_Input query stock info Send_resutt

Fig. 11. Simplified version of the database component in the DSA.

automaton DatabaseComponent (M:
signature

input BasicType_Input (m: M)

internal handle_BasicType_Input

type)

internal query_stock_info
output send_result (n: N)

states
next: Int := 1;
queue_BasicType_Input SeqM] := {};
clock Int := O;

transitions
input BasicType_Input (m)
eff queue_BasicType_Input :=
queue_BasicType_Input |— m;

internal handle_BasicType_Input
pre next = 1 /\
queue_BasicType_Input "=
eff queue_BasicType_Input =

{5

tail (queue_BasicType_Input);
next := 2;

internal query-stock_info

pre next = 2;

eff next := 3; clock := clock + 10;
output send-_result

pre next = 3;

eff next := 1;

trajectories
trajdef thread
evolve d(clock) = 1;

Listing 1. Timed Input/Output Automaton configuration file for the simplified
database component.

As shown in Listing 1, the database component is con-
verted to a single TIOA named DatabaseComponent
that has a generic message type for receiving events. Each
of the actions (i.e., input, output, and internal) are con-
verted to their equivalent TIOA element based on Equa-
tion (12), Equation (13) and Equation (14), respectively.
Lastly, there is implicit corresponding internal action named
handle BasicInput_Event that is responsible for trig-
gering the behavior sequence when an event is received on
BasicInput_Event and placed in the corresponding event
queue.

The DatabaseComponent automaton also contains three
variables that hold the current state of the component (i.e.,
val(V')). The next variable — which every component defines
— determines what action to execute next in the behavior
sequence since CBML sequences its behavior workflow. The
queue_BasicType_Input is the event queue that stores
events received on BasicType_Input. Each input action
in CBML that is associated with an input event channel of a
component always has an associated event queue. The clock
variable is a continuous variable that represents time of execu-
tion. Its evolution is defined in the trajectories section
of the automaton. Lastly, although the database component
does not contain any explicit CBML variables, if the behavior
model has any CBML variables, they are defined the states
section of the automaton.

Each of the CBML actions (i.e., input, output, and in-
ternal) are converted to their respective TIOA elements.
Because CBML forces a sequencing of the operations, we
also defined TIOA preconditions (pre statements) and ef-
fects (eff statements) that will enforce this sequencing.
As highlighted in Listing 1, handle_BasicInput_Event
is not enabled until BasicInput_Event has fired (ie.,
successfully executed its effects to change the automa-
ton’s state). Likewise, query_stock_info cannot fire un-
til handle BasicInput_Event fires and send_result
cannot fire until query_stock_info fires. Because internal
actions have a timing aspect associated with them, the effect of
firing an internal actions also modifies the c1ock variable by
the specified time, i.e., Equation (5), to simulate the execution
duration of the associated action. Lastly, it is clear that we
only allow a single event to be active per behavior sequence,
and not per component; however, we do not show this in the
presented example.

C. Simulating Timed I/O Automata Models

Once CBML models are converted to TIOA models, devel-
opers can use them to define simulations that check different
properties of individual components. The TIOA components
we generate do not define complete simulations of the compo-
nents because from a simulation standpoint, we do not know
how developers want to follow different trajectories defined
in the components. Instead, we generate the minimal sized
component that allows developers to combine them with other
TIOA models that define more trajectories, or simulations
threads, to exercise the components. Moreover, since the
models are converted to TIOA, developers can also leverage
tools such as Tempo (www.veromodo.com), which has
tools and plug-ins to convert TIOA models to Timed Automata
models, and other models types for theorem proving tools, thus
satisfying Challenge 3 in Section II-B.

VI. RELATED WORK

This section compares our work on using DSMLs for mod-
eling system behavior to evaluate component-based systems
with related research efforts.

A. Formal Languages

Statecharts [25] gained widespread usage when they were
integrated with the STATEMATE [32] modeling tool, and
since then a variant has became part of UML (i.e., UML
Statecharts) [33]. Similar to CBML, statecharts can be used to
describe behavior of large complex systems. CBML extends
Statecharts by clearly separating component behavior from
workload. The generative techniques associated with variants
of statecharts are targeted towards simulation and runtime
verification [34], [35]. Our generative techniques can be ex-
tended to simulation and runtime verification tools [36] as
well. Furthermore, our generative techniques and concepts are
not tied to a specific technology or tool, whereas the technique
presented in [37] et al., is bound to a specific tool.

The Abstract State Machine Language (AsmL) [38] de-
veloped at Microsoft Research is an executable specification
language based on the theory of Abstract State Machines.
AsmL is useful when developers need precise, non-ambiguous
methods to specify a system, either software or hardware.
AsmL, however, is not a graphical modeling language like
CBML. Furthermore, users of CBML operate at a high-level
and do not require in-depth knowledge of the underlying
formalism, whereas AsmL requires developers to have some
understanding of abstract state machines and programming
formalisms, which can restrict its applicability (e.g., for system
testers who have no knowledge of complex formalisms or
programming).

B. Process Modeling Languages

WinFX Workflow [39] is a process modeling language
developed by Microsoft et al., which is a part of the Windows
Workflow Foundation. Similar to CBML, WinFX allows de-
velopers to express workflows but it is coupled with workload.
WinFX also facilitates code generation, but is confined to the

Microsoft .NET framework whereas our generative program-
ming technique is technology and tool independent and can be
applied to multiple middleware platforms including Microsoft
.NET.

Java Workflow Tooling (JWT) [40] is a process modeling
language for J2EE applications, however, it is still under
development. Similar to CBML, JWT will allow developers
to model the process of J2EE applications at a higher-level
of abstraction using artifacts that are similar to their domain.
CBML extends JWTs efforts because unlike JWT, CBML is
not coupled to a specific programming language or technology.
Moreover, CBML has defined formal semantics that allow it
to be used either for emulation or simulation purposes.

The Business Process Modeling Notation (BPMN) [41] is
a standard developed by Business Process Management Ini-
tiative (BPMI) that allows developers draw business processes
in the form of workflows. Similar to CBML, BPMN is not
platform, programming language, or technology dependent.
CBML, however, extends BPMN by formally defining its
semantics based on semantic anchoring so that it can leverage
existing tools and techniques designed to operate on the formal
language to which it is transformed.

VII. CONCLUDING REMARKS

This paper described a model-driven generative program-
ming approach to address the challenges of evaluating
component-based system QoS throughout the development
lifecycle instead of delaying it to integration time. Our ap-
proach defined a modeling languages named CBML that
captures the behavior of application components at a high-
level. We then integrated CBML with PICML, which models
structural properties of applications. Lastly, we used model
interpreters to map the behavior specifications to operations
that leverage existing simulation frameworks.

This approach allows for continuous integration and QoS
validation of the system because as more is learned about
the components, the behavior can be refined and regenerated
for simulation. We expect the results of real versus simulated
components to match provided the behavioral models of the
simulated components closely approximate the real compo-
nent’s behavior.

A. Lessons Learned

Model-driven engineering comprising the use of DSMLs
and generative programming provides an effective solution to
address the challenges facing development lifecycles of next
generation, large-scale software systems. Several challenges
were encountered during the development of CBML and
several challenges remain to be resolved. Our experience
developing and using the MDE framework described in this
paper suggests the following benefits:

o Using a DSML based on a mathematical formalism to
define behavior of components helps in specifying un-
ambiguous behavior when generating configuration files
for simulation.

o Leveraging semantic anchoring simplifies validating a
DSML because we only had to focus on defining the

transformation to the underlying formal language as op-
posed to formally proving the validity of the DSML.

B. Future Work

Although our approach of integrating a behavior modeling
language with a structural language has many benefits and
addresses many challenges of the “serialized-phasing” process,
there is also room for improvement and future work:

o Despite the ability to capture behavior of a component
and its state, data flow of a component can only be
defined based on state variables. In real world, properties
of input actions (e.g., event values) can affect the flow
of execution in a real component. We, therefore, need
to extend CBML with a simple programming language
that will allow developers to use such properties when
defining behavior.

o Currently, we make the assumption that only a single
event can be active on a behavior sequence; and multiple
events can be active as long as each event represents
a separate behavior sequence. Components, however,
can have multiple events active in a behavior sequence
depending on the number of threads active for an input
event. We, therefore, need to extend our simulation efforts
to support the concept of multi-threaded input events.

By providing these extensions to our MDE approach, we
will be able to continue addressing many of the challenges
component-based system developers experience when they
face time-to-market and product quality pressures.

REFERENCES

[1] D. C. Schmidt, “Model-Driven Engineering,” IEEE Computer, vol. 39,
no. 2, pp. 25-31, 2006.

[2] A. Gokhale, K. Balasubramanian, J. Balasubramanian, A. S. Krishna,

G. T. Edwards, G. Deng, E. Turkay, J. Parsons, and D. C. Schmidt,

“Model Driven Middleware: A New Paradigm for Deploying and

Provisioning Distributed Real-time and Embedded Applications,” The

Journal of Science of Computer Programming: Special Issue on Model

Driven Architecture, 2007.

J. White, A. Nechypurenko, E. Wuchner, and D. C. Schmidt, “Reducing

the Complexity of Optimizing Large-scale Systems by Integrating Con-

straint Solvers with Graphical Modeling Tools,” in Designing Software-

Intensive Systems: Methods and Principles, P. F. Tiako, Ed., 2007.

openArchitectureWare, “openArchitectureWare,” WWW.

openarchitectureware.org, 2007.

[5] Robby, M. Dwyer, and J. Hatcliff, “Bogor: An Extensible and Highly-

Modular Model Checking Framework,” in Proceedings of the 4"

Joint Meeting of the European Software Engineering Conference and

ACM SIGSOFT Symposium on the Foundations of Software Engineering

(ESEC/FSE 2003). Helsinki, Finland: ACM, September 2003.

J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. Prasad, “Cadena:

An Integrated Development, Analysis, and Verification Environment for

Component-based Systems,” in Proceedings of the 25th International

Conference on Software Engineering, Portland, OR, May 2003.

[71 Z. Li, W. Sun, Z. B. Jiang, and X. Zhang, “BPEL4WS Unit Testing:
Framework and Implementation,” in ICWS ’05: Proceedings of the IEEE
International Conference on Web Services (ICWS’05). Orlando, FL:
IEEE Computer Society, 2005, pp. 103-110.

[8] J. H. Hill and A. Gokhale, “Validation of Functional (In)Correctness for
Large-scale Component-based Systems using Model-driven Engineer-
ing,” in Proceeding of ACM/IEEE 10" International Conference on
Model Driven Engineering Languages and Systems (MoDELS) (poster
session), Nashville, TN, September 2007.

[9] J. H. Hill and A. Gokhale, “Continuous QoS Provisioning of Large-
scale Component-based Systems using Model Driven Engineering,”
in Proceeding of ACM/IEEE 9*" International Conference on Model
Driven Engineering Languages and Systems (MoDELS) (poster session),
Genova, Italy, October 2006.

[3

[ty

[4

=

[6

—

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

(28]

[29]

(30]

[31]

J. H. Hill, J. Slaby, S. Baker, and D. C. Schmidt, “Applying System
Execution Modeling Tools to Evaluate Enterprise Distributed Real-time
and Embedded System QoS,” in Proceedings of the 12th International
Conference on Embedded and Real-Time Computing Systems and Ap-
plications. Sydney, Australia: IEEE, Aug. 2006.

J. H. Hill, D. C. Schmidt, and J. Slaby, “System Execution Modeling
Tools for Rapid Evaluation of Enterprise Distributed Real-time and
Embedded System Quality of Service,” in Designing Software-Intensive
Systems: Methods and Principles, P. F. Tiako, Ed., 2007.

J. H. Hill, S. Tambe, and A. Gokhale, “Model-driven Engineering
for Development-time QoS Validation of Component-based Software
Systems,” in Proceedings of 14th Annual IEEE International Conference
and Workshop on the Engineering of Computer Based Systems (ECBS),
Tucson, AZ, Mar 2007.

J. Gray, J. Tolvanen, S. Kelly, A. Gokhale, S. Neema, and J. Sprinkle,
“Domain-Specific Modeling,” in CRC Handbook on Dynamic System
Modeling, (Paul Fishwick, ed.). CRC Press, May 2007.

J. H. Hill and A. Gokhale, “Using Generative Programming to Enhance
Reuse in Visitor Pattern-based DSML Model Interpreters,” Institute
for Software Integrated Systems, Vanderbilt University, Nashville, TN,
Tech. Rep. ISIS-07-810, June 2007.

K. Chen, J. Sztipanovits, and S. Neema, “Toward a Semantic Anchoring
Infrastructure for Domain-Specific Modeling Languages,” in EMSOFT
’05: Proceedings of the 5th ACM international conference on Embedded
software. New York, NY, USA: ACM Press, 2005, pp. 35-43.

K. Chen, J. Sztipanovits, S. Abdelwahed, and E. K. Jackson, “Semantic
anchoring with model transformations.” in ECMDA-FA, 2005, pp. 115-
129.

A. Narayanan and G. Karsai, “Using Semantic Anchoring to
Verify Behavior Preservation in Graph Transformations,” Electronic
Communications of the EASST, vol. 4, no. 2006, January 2006.
[Online]. Available: http://chess.eecs.berkeley.edu/pubs/279.html

N. Lynch and M. Tuttle, “An Introduction to Input/Output Automata,”
CWI-Quarterly, vol. 2, no. 3, pp. 219-246, September 1989.

R. Alur and D. L. Dill, “A Theory of Timed Automata,” Theoretical
Computer Science, vol. 126, no. 2, pp. 183-235, 1994. [Online].
Available: citeseer.ist.psu.edu/alur94theory.html

T. Taibi, L. B. Ping, N. S. Wen, L. K. Sing, and C. K. Lim, “Developing a
Distributed Stock Exchange Application using CORBA,” in Proceeding
of the Student Conference on Research and Development (SCOReD),
Putraiaya, Malaysia, 2003.

Light Weight CORBA Component Model Revised Submission, OMG
Document realtime/03-05-05 ed., Object Management Group, May
2003.

Microsoft Corporation,
msdn.microsoft.com/net/, 2002.
A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom, J. Sprinkle,
and G. Karsai, “Composing Domain-Specific Design Environments,”
IEEE Computer, pp. 44-51, November 2001.

J. White and D. C. Schmidt, “Simplifying the Development of Product-
line Customization Tools via Model Driven Development,” in Proceed-
ings of the MODELS 2005 workshop on MDD for Software Product-
lines, Half Moon Bay, Jamaica, Oct. 2005.

D. Harel, “Statecharts: A visual formalism for complex systems,”
Science of Computer Programming, vol. 8, no. 3, pp. 231-274, June
1987. [Online]. Available: citeseer.ist.psu.edu/article/harel87statecharts.
html

J. Peterson, Petri Net Theory and the Modeling of Systems.
Cliffs, NJ: Prentice Hall, 1981.

F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. J. Grose,
Eclipse Modeling Framework. Reading, MA: Addison-Wesley, 2003.
J. Greenfield, K. Short, S. Cook, and S. Kent, Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools.
New York: John Wiley & Sons, 2004.

B. Trask and A. Roman, “Model Driven Engineering Basics using
Eclipse,” in Proceeding of ACM/IEEE 9t International Conference on
Model Driven Engineering Languages and Systems (MoDELS), Genova,
Italy, October 2006.

D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, The Theory of
Timed I/O Automata, Synthesis Lectures in Computer Science. San
Rafael, CA: Morgan and Claypool Publishers, Apr. 2006.

K. Balasubramanian, J. Balasubramanian, J. Parsons, A. Gokhale, and
D. C. Schmidt, “A Platform-Independent Component Modeling Lan-
guage for Distributed Real-time and Embedded Systems,” in Proceed-
ings of the 11th Real-time Technology and Application Symposium
(RTAS ’05). San Francisco, CA: IEEE, Mar. 2005, pp. 190-199.

“Microsoft NET Development,”

Englewood

[32] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman,
A. Shtull-Trauring, and M. B. Trakhtenbrot, “STATEMATE: A Working
Environment for the Development of Complex Reactive Systems,”
Software Engineering, vol. 16, no. 4, pp. 403—414, 1990. [Online].
Available: citeseer.ist.psu.edu/harel90statemate.html

B. P. Douglass, “UML Statecharts,” www-md.e-technik.uni-rostock.de/
ma/gol/ilogix/umlsct.pdf.

D. Huang and H. Sarjoughian, “Software and Simulation Modeling for
Real-Time Software-Intensive Systems,” in Proceedings of the Eighth
IEEE International Symposium on Distributed Simulation and Real-
Time Applications (DS-RT’04). Washington, DC, USA: IEEE Computer
Society, 2004, pp. 196-203.

M. Naughton, J. McGrath, and D. Heffernan, “Real-time Software
Modelling using Statecharts and Timed Automata Approaches,” in
Proceedings of the IEE Irish Signals and Systems Conference, Dublin,
Ireland, June 2006.

K. G. Larsen, M. Mikucionis, and B. Nielsen, “Online testing of
real-time systems using uppaal,” in FATES, 2004, pp. 79-94. [Online].
Available: springerlink.metapress.com/openurl.asp?genre=article&
issn=0302-9743&volume=3395&spage=79

I. A. Niaz, “Code Generation From Uml Statecharts.”
Available: citeseer.ist.psu.edu/635920.html

Y. Gurevich, B. Rossman, and W. Schulte, “Semantic Essence of AsmL,”
Theoretical Computer Science, vol. 343, no. 3, pp. 370412, 2005.

D. Box and D. Shukla, “WinFX Workflow: Simplify Development
with the Declarative Model of Windows Workflow Foundation,” MSDN
Magazine, vol. 21, pp. 54-62, 2006.

M. Dutoo and F. Lautenbacher, “Java Workflow Tooling (JWT) Creation
Review,” www.eclipse.org/proposals/jwt/JTWT
Object Management Group, “BPMN
www.bpmn.org, 2005.

James H. Hill is a 4th year Ph.D. student in the Electrical Engineer-
ing and Computer Science Dept at Vanderbilt University, Nashville,
TN. His primary research interests include using model-driven en-
gineering techniques to assist in locating flaws related to quality-of-
service earlier in the development lifecycle as opposed to integration
time when it can require more time and effort to locate and resolve
them. He received his B.S. in Computer Science from Morehouse
College, Atlanta, GA in 2004 and M.S. in Computer Science from
Vanderbilt University in 2006. James H. Hill is a member of ACM.

[33]

[34]

[35]

[36]

[37] [Online].

(38]

[39]

[40]

[41] Information ~ Home,”

Aniruddha Gokhale is an Assistant Professor of Computer Science
and Engineering in the Electrical Engineering and Computer Science
Dept at Vanderbilt University, Nashville, TN. His primary research
interests are in investigating synergies between model-driven engi-
neering and middleware to address challenges in the deployment
and configuration of distributed real-time and embedded systems.
He received his B.E. in Computer Engineering from University of
Pune, India in 1989; M.S in Computer Science from Arizona State
University, Tempe, AZ in 1992; and D.Sc in Computer Science from
Washington University in St. Louis in 1998. Prior to his current
position, he was with Bell Labs in Murray Hill, NJ. Dr. Gokhale
is a member of the IEEE and ACM.

