PAGE

Domain-Specific Modeling
1Jeff Gray, 2Juha-Pekka Tolvanen, 2Steven Kelly, 3Aniruddha Gokhale, 3Sandeep Neema, and 4Jonathan Sprinkle
1University of Alabama at Birmingham, Computer and Information Sciences,
Birmingham, Alabama USA, gray@cis.uab.edu
2MetaCase,

Jyväskylä, Finland, {jpt, stevek}@metacase.com

3Vanderbilt University, Institute for Software Integrated Systems,
Nashville, Tennessee USA, {a.gokhale, sandeep.k.neema}@vanderbilt.edu

4University of California Berkeley, Electrical Engineering and Computer Science,
Berkeley, California USA, sprinkle@eecs.berkeley.edu
Introduction to Domain-Specific Modeling
Since the inception of the software industry, modeling tools have been a core product offered by commercial vendors. In fact, the first software product sold independently of a hardware package was Autoflow, which was a flowchart modeling tool developed in 1964 by Martin Goetz of Applied Data Research (Johnson 1998). Although modeling tools have historical relevance in terms of offering productivity benefits, there are a few limitations that have narrowed their potential.
Fixed notation
Differences with “fixed” general purpose languages and modeling tools

Start with AUTOFLOW

Concept of raising abstraction layer to problem domain, rather than code

Overview of chapter

http://www.dsmforum.org/
UML profiles versus DSLs (Keith Duddy)
(Bézivin 2005)
(Pohjonen and Kelly 2002) (Gray et al. 2004)
Essential Components of a Domain-Specific Modeling Environment
Domain-specific languages (DSLs) that are of a textual nature have been deeply investigated over the past several decades (van Deursen et al. 2000). Language-based tools for textual DSLs are typically tied to a grammar-based system that supports the definition of new languages (Henriques et. al 2005). A set of patterns to guide the construction of DSLs exists (Spinellis 2001) as well as principles for general use of DSLs (Mernik et. al 2003). In comparison, this section offers a description of the essential characteristics of Domain-specific Modeling (DSM), which is typically focused on graphical models as opposed to the textual representation of a DSL.

As illustrated in Table 1, there are several similarities that can be observed between DSM and other artifacts that are specified by a meta-definition (e.g., programming languages and databases). In DSM, the highest layer of the meta stack is a meta-metamodel that defines the notation to be used to describe the modeling language of a specific domain (e.g., the metamodel). Instances of the metamodel represent a real system that can also be translated into an executable application. This four-layered meta stack
is also evident in programming language specification (where the meta-meta level is typically Extended Backus-Naur Form used to define a grammar) and database table definition (where the SQL Data Definition Language is the meta-meta level that defines the schema of a database). Despite these similarities, there exist core differences between metamodeling and other schema definition approaches. This section highlights some of the essential parts of a modeling environment to support the concepts of DSM.
<INSERT TABLE 1 HERE>
Language Definition Formalism

A language, L, in its most basic form, provides a set of usable expressions as well as rules for their composition. Well-formed composed expressions define a program that may be executed. We define a language to be (eq. 1.1), where C is the concrete syntax of the language, A, is the abstract syntax, S is the semantics of program execution, Ms is the semantic mapping (a function mapping from the abstract syntax to the semantics, as in eq. 1.2), and Mc is the syntactic mapping (a function mapping from the concrete syntax to the abstract syntax, as in eq. 1.3). The composition rules are found in Ms, the well-formedness rules found in S as execution errors, and in A as a constraint layer.

[image: image1.wmf]sc

C,A,S,M,M

L

=áñ

(1.1)

[image: image2.wmf]:

s

MAS

®

(1.2)

[image: image3.wmf]:

c

MCA

®

(1.3)
The concrete syntax of a language defines how expressions are created, and their appearance. It is the concrete syntax that programmers see when using a language. Concrete syntax can be textual or graphical. The abstract syntax of a language defines the set of all possible expressions that can be created (note that it also defines possible expressions that may not be well-formed under the execution rules of S). The abstract and concrete syntax, along with the function Mc, make up the structural portion of a language. The semantics S makes up the semantic domain portion of the language, and the function Ms makes up the semantic mapping portion of the language.
Domain-specific modeling requires a language that is by definition linked to the domain over which it is valid. A domain-specific modeling language (DSML) is a language that includes domain concepts as members of the sets A and/or C; i.e., first-class objects of the language. The presence of other concepts that are not domain-specific affects the restrictiveness
 of the DSML. A DSML can be defined in more than one way. For instance, it can be layered on top of an existing language using subtyping. Examples of this kind include programming libraries that define new classes with behaviors that reflect domain concepts. This layered style of DSML design is very unrestrictive, because it does not preclude the use of non-DSML expressions. DSMLs that use this layered style are often accompanied by a coding style guide. Implementation of a DSML via definition of a new language from scratch is also possible. Examples of this kind include VHDL, for hardware description, and SPICE/PSPICE, for circuit design. This language style of DSML design is very restrictive, because the language is self-contained.

Implementation of a language coupled with its own development environment, through rigorous planning and software engineering is also possible. In this case, an application with an interface for accessing the concrete syntax items of the language is the programming environment. This integrated development environment, or IDE style, of DSML design is also very restrictive, though it is important to note that the language definition is often obscured in the environment design, rather than decoupled from it. Regardless, when this programming environment is domain-specific, we call it a domain-specific modeling environment (DSME). The difference between a DSME and a DSML is that the DSME will provide interfaces for such activities as expression building, model execution, and well-formedness checking (among others).

The final way to define a DSML involves the co-creation and synthesis of the structural portion (i.e., C, A, and Mc) of the language (DSML), and DSME through the use of a metamodeling environment. This metamodeling style of DSML design is also somewhat restrictive. This style produces similar results from the IDE style of design, though it is significantly more sophisticated since the definition of the language is used to define the DSME, rather than a design-time result of the development of the DSME.

Domain-Specific Modeling Environment
Domain-specific Modeling Environments (DSMEs) provide the tools necessary for a system developer to rapidly build systems belonging to a specific domain and which are syntactically correct-by-construction. DSMEs leverage the power of domain-specific modeling languages to provide the model engineers with the building blocks necessary to develop systems rapidly and correctly. To enable syntactically correct by construction systems, a DSME must incorporate only those syntactic elements that are defined by the DSML while strictly abiding by the semantics. The modeling elements, which form the building blocks provided by the DSME, correspond to the concrete syntax defined in a DSML. The DSMEs must permit the composition and associations between these building blocks, which is guided by the syntax of the language.
A powerful DSME provides a complete integrated development environment (IDE) and often has the following characteristics:

· Metamodeling support – a DSME must include the metamodel representing the DSML along with its syntactic elements, semantics and constraints. Only then can a DSME enable a developer to use only those artifacts that belong to the desired domain and build systems that are syntactically correct by construction.
· Separation of concerns – the DSME should enable separation of concerns, wherein it can provide multiple views corresponding to the different stakeholders and their concerns. For example, different development teams of a large project must be able to view only those artifacts that are part of their responsibility. At the same time the DSME must maintain seamless coordination between the different views.

· Change management – A DSME must provide runtime support for issues such as change notification. For example, a DSME must be able to reflect changes made to the models in one view to appear in other views.
· Generative capabilities – A DSME must be able to provide the capabilities to transform the models into the desired artifacts. These could include code, configuration and deployment details, or testing scripts. This feature requires that a single DSME be able to support multiple model compilers, each of which performs a different task. Note that the modeling editor of a DSME will enable a developer to create syntactically correct systems. However, this does not ensure that the behavior and the output of a system will be correct. To validate and verify that systems perform correctly will require the generative capabilities in a DSME to transform the models into artifacts that are useful by third-party verification and validation tools.

· Model serialization – A DSME must ideally provide capabilities for serializing the models so that they can be made persistent. This capability is important since unlike other software processes that use UML modeling where models and code artifacts are usually entirely decoupled, in a DSME the models are the most important part of the system design and implementation. Code and other artifacts, such as those related to configuration and deployment, are all generated. Thus, it is the models and their generators that must be maintained over time. Additional benefits of serialization are driven by the desire to share models among different tools.
· Plugin capabilities – Although not a strictly required feature, a DSME could provide the capabilities to plug in third party tools, such as model checkers and simulation tools.

Model Generators
Model generators are at the heart of model-driven development by forming the generative programming capabilities of a DSME. A fundamental benefit of generative programming is to increase the productivity, quality and time-to-market of software by generating portions of a system from higher level abstractions (Czarnecki and Eisenecker 2000). This concept is particularly applicable to the realm of product line architectures, which are software product families that illustrate numerous commonalities in system design. Product variants within the software family represent the parameterization points for customization. Generative programming makes it easier to manage large product line architectures by generating product variants rapidly and correctly. This vision is being explored in further depth by the software factories movement (Greenfield et al. 2005).

Generative capabilities provided by generators are useful in synthesizing code artifacts or metadata used for deployment and configuration. There are numerous challenges in this space. For example, a modeled system may need to be deployed across a heterogeneous distributed system. This will require the generated code artifacts to be tailored to and optimized for the platform on which the systems will execute. Deployment and configuration metadata will need to address the heterogeneity in configuring and fine tuning the platforms on which the systems will execute. The platforms will typically include the hardware, networks, operating systems and middleware stacks. Thus, generators will need to incorporate optimizers and intelligent decision logic so that the generated artifacts are highly optimized for the target platforms.

Generative capabilities at the modeling level are useful in transforming models into numerous other artifacts (e.g., input to model checking tools to verify properties like deadlock and race conditions; simulations for validating system performance and tolerance to failures; or, empirical testing used for systems regression testing). These capabilities are important in the overall verification and validation of the modeled software systems, so that ultimately the systems developed using DSMEs and their generative capabilities can produce systems that are truly correct by construction.
Key Application Areas of DSM
As with all technologies, it is helpful to understand the situations where it is most likely to succeed, as well as the limitations that prevent the technology from offering benefit in some scenarios.
Areas where DSM is most applicable: From our collective experience, DSM has been very successful in the following domains:
· Factory automation systems, where a tight coupling between the hardware configuration and software exists. As an example, the configuration of an automotive factory may be changed several times during a year in order to manufacture different models of a product line (Long et al. 1998). In a manual approach to software evolution, the associated software needs to be written in an unproductive and error prone fashion. By applying DSM, the hardware configuration can be captured in models and the associated software generated automatically from hardware configuration changes.
· Deeply embedded microcontroller systems, where the embedded systems control logic is developed using higher level abstractions, such as VHDL, and low-level code, possibly, assembly language is generated and burned into microprocessor chips (EPROMS) (REF HERE).

· Large systems – particularly those that are heterogeneous, network-centric and distributed, having stringent performance and dependability requirements, and are developed and deployed using middleware solutions (Gokhale et al. 2004).
The third class of systems are much more interesting and applicable for DSM because getting all the answers right so the systems can perform per their specifications is very hard to accomplish using ad hoc techniques, based on low-level manual coding. This makes a system brittle because of the tight coupling to the execution platform. Moreover, these systems are constantly evolving by virtue of changes in the hardware and software platform, and due to changes in requirements. Therefore, there is a need to incorporate several degrees of separation of concerns, something that is not feasible without using higher levels of system representation.
Recently, DSM has had success in product line modeling because the commonalities and variabilities of a software product line are best captured and represented in model forms, while the generative techniques in MDD can be used to tailor a product to a platform. The commonalities and variabilities of product lines represent the different configurations of the systems belonging to the family. MDD techniques help decouple these systems from the specific platforms on which they are deployed. MDD generative techniques can then seamlessly synthesize platform-specific configurations.

Other uses of DSM arise when the same high-level representation of a system can also be used to accomplish a variety of other activities, such as regression testing where such code can be auto generated, or model checking for behavioral correctness. Verifying the correctness of a system is of paramount importance particularly for large and complex mission critical systems, such as avionics mission computing.
Situations where DSM is not very useful: We have found that DSM is not useful in systems that are very static and do not evolve much over time. In such systems, even though it is conceivable to have product families, the range of configurations is very limited and/or the choice of platforms usually does not exist. Therefore, most of the systems development begins from scratch using low-level artifacts.
DSM can be difficult to use in autonomous systems, which entail self-healing and self-optimization. In such systems, the DSME is required to be used during systems runtime where the modeling environment is driven by systemic conditions as input from which the system must infer the next course of action. Dynamic changes to models and subsequent autonomous actions are a significant area of research.

Case Studies in DSM

There are multiple approaches that can be adopted to achieve the goals of DSM. This section presents two separate modeling languages in two different tools in order to provide an overview of the different styles of metamodeling to support DSM.
A Customized Petri Net Modeling Language in the GME
An approach called Model Integrated Computing (MIC) has been under development since the early 1990s at Vanderbilt University to support domain-specific modeling (Sztipanovits and Karsai 1997). A core application area of MIC is computer-based systems that have a tight integration between a hardware platform and its associated software, such that changes to the hardware configuration (e.g., an automobile assembly floor) necessitate large software adaptations. In MIC, the configuration of a system from a specific domain is modeled, resulting in an application that is generated from the model specification.
The Generic Modeling Environment (GME) realizes the principles of MIC by creating domain-specific modeling environments (DSMEs) that are defined from a metamodel specified in UML/OCL (Lédeczi 2001). An overview of the process for creating a new DSME in the GME is shown in Figure 1. A metamodel definition is translated into a DSME that provides a model editor that permits creation and visualization of models using icons and abstractions appropriate to the domain (Note: Both the metamodel and the subsequent DSME are hosted within the GME.) For each DSME, one or more model interpreters may be defined to translate a model into a different representation (e.g., code or simulation scripts). The left-hand side of Figure 1 shows a metamodel for a Petri Net (Peterson 1977) language (top-left), with an instance of the Petri Net representing the dining philosophers (mid-left). An interpreter for the Petri Net language is capable of generating Java source code to allow execution of the Petri Net (bottom-left). The remainder of this sub-section presents an overview of the Petri Net modeling environment. This language is intentionally simple in nature so that the details do not overwhelm the reader in such a short overview. However, the GME has been used to create very rich DSMEs
that have several hundred modeling concepts.
<INSERT FIGURE 1 HERE>
Defining the modeling language: Figure 2 shows a screen-shot of the GME to define the metamodel for the Petri Net language. It should be noted that the metamodel is specified in MetaGME, which is the meta-metamodel for the GME representing a subset of UML class diagrams with OCL. In this metamodel, a PetriNetDiagram is defined to contain Connections, Transitions, and Places. The AbstractElement entity is a generalization of the two main diagram types that may appear in a Petri Net (i.e., places and transitions). Each place has a text attribute that represents the number of tokens that exist in a particular state at a specific moment in time. Both places and transitions have names and descriptions that are inherited from their abstract parent. A Connection associates a Transition with two Places. Visualization attributes can also be associated with each modeling entity (e.g., the Place icon will be rendered from the “place.bmp” graphic file, which represents an open circle).

<INSERT FIGURE 2 HERE>

In addition to the class diagram from Figure 2, a metamodel also contains constraints that are enforced whenever a domain model is created as an instance of the metamodel. A constraint is used to specify properties of the domain that cannot be defined in a static class diagram. For example, the metamodel of Figure 2 would actually allow a Place to connect directly to another Place, or a Transition to connect directly to another Transition. This is not allowed in a traditional Petri Net, and an OCL constraint is used to restrict such illegal connections. In the GME, constraints are specified in a different context diagram from that shown in Figure 2. The attribute panel shown in Figure 3 contains a sample constraint for the Petri Net metamodel. This constraint specifies that a Place may not have more than five tokens. The first part of the OCL equation obtains a collection of all Places that appear in a model. A quantification predicate is associated with the collection to state that all such places must have its numTokens attribute less than or equal to five.
<INSERT FIGURE 3 HERE>

The dining philosophers in the Petri Net language: After creating the metamodel, the Petri Net language can be used to create an instance of the language, such as the dining philosophers model shown in Figure 4. In this model, the states (e.g., eating, thinking, full) of five philosophers are modeled along with the representation of five forks. At this level, if the model engineer creates a Petri Net that violates the metamodel in any way (e.g., connecting a Place directly to another Place, or adding more than five tokens to any Place), an error dialog is presented to indicate that the model is in an incorrect state.
<INSERT FIGURE 4 HERE>

Generating applications: In the GME, a model interpreter is a plug-in that is associated with a particular metamodel and can be invoked from within the modeling environmet. The GME provides an API for accessing the internal structure of a model, which can be navigated like an abstract syntax tree in a compiler to generate code at each node. A model interpreter is typically written in C++ and can be compiled to a Windows DLL that is registered to the GME.
An interpreter has been written to generate Java code that simulates the execution of a Petri Net. The generated code will interact with a user to display a list of places and enabled transitions, and ask the user to select which transition to fire. Two different segments of the Petri Net interpreter are shown in Listing 1. The top part of this listing contains the portion of the interpreter that generates the Java main method, which obtains all of the Places from a model as a collection (note: the outf file stream represents the .java file that is generated). The collection of Places is then inserted into an ArrayList for future processing. Although not shown here, a similar fragment of code is used to obtain the Transitions and associated connections. The CBuilderAtomList and CBuilderAtom are generic data structures within the GME that provide access to the underlying model representation. In the case of the top portion of Listing 1, the code fragment simply iterates over the collection of atoms that correspond to Places in the model. The bottom part of Listing 1 is generates the corresponding Java code that will report to the user the names of available Places and the enabled Transitions.
<INSERT LISTING 1 HERE>

Listing 2 shows a small fragment of the Java code that was generated from the Petri Net interpreter. This particular piece of generated code represents the firing of a transition based on the transition name entered by the user. When executed, this code will check to see if the transition name exists, and if it is enabled (i.e., the proper number of tokens are available in all of its input places). After firing, this code will decrement the tokens from the input places, and increment the tokens in the output places.
<INSERT LISTING 2 HERE>

Modeling and Generating Mobile Phone Applications in MetaEdit+
This second example deals with modeling and generating enterprise applications for mobile phones based on Symbian/S60 (Nokia S60) and its Python framework. This framework provides a set of APIs and expects a specific programming model for the user interface (Nokia Python). To enable model-based generation, a modeling language and generator must follow the Nokia framework.

The example is implemented with MetaEdit+, a commercial tool for defining and using DSMLs and generators (MetaCase). The emphasis of MetaEdit+ is to make modeling language creation fast and easy – tool support is implemented without writing a single line of code. During language definition, MetaEdit+ offers full modeling tool support. MetaEdit+ provides a metamodeling tool suite for entering the modeling concepts, their properties, associated rules and symbols. This definition is stored as a metamodel in the MetaEdit+ repository allowing future modifications, which reflect automatically to models and generators (Kelly et al. 2005). Design data can be edited and viewed in diagram, table, matrix or textual representations. Teamwork is supported with multiple concurrent users through repository integration with other tools by a SOAP/Web Services based API. XML import and export is also supported. In contrast to the graphical metamodeling approach adopted in GME, as shown in the previous case study, the MetaEdit+ metamodel is specified through interaction with a set of wizard dialogs.
Defining the modeling language: The DSML in this example aims to hide the programming details by raising the abstraction level to phone concepts. This is achieved by defining modeling concepts based directly on the phone’s services and user-interface (UI) widgets. These concepts include ‘Sending text message,’ ‘Note,’ ‘Form,’ and ‘Pop-up.’ Figure 5 shows how a language concept ‘List’ is defined in MetaEdit+. In this figure, the concept name and its properties (e.g., collection of list items, optional internal name and return variable for the selection) are entered into the form. Other main language constructs are defined in a similar manner.
<INSERT FIGURE 5 HERE>
The behavioral logic of the application is modeled using a flow model that allows user navigation to be specified in the application in a manner similar to how phone services are accessed. The navigation actions (e.g., acceptance, opening a menu and canceling a selection), are defined with connections between the modeling concepts. The language definition also includes domain rules that follow the phone’s UI programming model, supporting early error prevention, model consistency and reuse. For example, in an S60 phone, after sending a Short Message Server (SMS) message, only one UI element or phone service can be triggered. Accordingly, the DSM allows only one flow from an SMS element. This rule is defined in Figure 6. In MetaEdit+, these rules are treated as data and can be changed at any time, even while developers are using the language. MetaEdit+ also updates the models made so far and delivers the domain rules automatically to the developers.

<INSERT FIGURE 6 HERE>
Models based on a DSML are usually represented in some format using graphical models, matrices, or tables. In MetaEdit+, the symbols are drawn or imported with a Symbol Editor tool. Figure 7 shows the symbol definition for the List concept. The properties of the List symbol include shape, size, and color. A symbol definition also declares the location for the property values to be shown in a model. The selection list is displayed in the middle of the symbol, aligned to the top-left along with the font settings. This corresponds to the similar appearance of an actual list on a real S60 phone.

<INSERT FIGURE 7 HERE>
DSM in use: The DSM language is illustrated in Figure 8 using a sample application design representing a conference registration application. This design should be intuitive to any model engineer that has experience using basic phone applications (e.g., phone book or calendar applications). A user can register for a conference using text messages, choose a payment method, view program and speaker data, browse the conference program on the web, or cancel the registration.

As can be seen from the model, all of the implementation concepts are hidden and are not even necessary to know; i.e., the focus is on the specification of the problem in the domain of interest. The modeling language also ensures that the architectural rules and the required programming model are followed as defined in the metamodel. As the descriptions capture all the required static and behavioral aspects of the application, it is possible to generate the application fully from the models.
<INSERT FIGURE 8 HERE>

Generating applications: From the designs expressed in the model, a generator can be invoked to produce code that can be executed either in an emulator for testing purposes, or in the actual target device. The generator itself is structured into modules, with one generator module per each modeling concept (e.g., one generator module takes care of Lists, and another generator exists for SMS messages). A simple example of a generator definition for a Note dialog is presented in Listing 3. The Note opens a dialog with information (such as the “Conference registration: Welcome” dialog in Figure 8). Lines 1 and 6 are simply the structure for a generator. Line 2 creates the function definition signature and line 3 provides a comment. Function naming is based on an internal name that the generator can produce if the developer does not want to give each symbol its own function name.
<INSERT LISTING 3 HERE>

Line 4 produces the call for the platform service. It uses the design data from the model, like the value for the Text property of the Note element. Similarly, the modeler may choose the ‘Note type’ value in the model from a list of available notification types, such as the ‘info’ or ‘confirmation’ values that are used in the “Registration made” task of Figure 8. As several concepts require similar code to be generated, parts of the generator definitions are made into modules called by other generator modules. For example, the ‘_next element’ generator is used by other dialogs to generate transitions. The generator also includes some framework code for dispatching and for multi-view management, as shown by different tabs in the pane of the UI.

Part of the generated code from the designs illustrated in Figure 8 is shown in Listing 4. The generator produces the module importing statements (lines 1-2) based on the services used (e.g., importing the messaging module that provides SMS sending services). This is followed by documentation specified in the design. Next in the listing, each service and widget is defined as a function. Lines 33-41 describe the code for the payment method selection that uses a list widget. After defining the function name and comment, the ‘Payment’ variable is declared and made available for the whole application. Line 36 shows the list values as Unicode in a local variable. Line 37 calls the List widget provided by the framework.

SMS sending (lines 85-94) is handled in a similar way to the List widget. Line 93 calls the imported SMS module and its sms_send function. Parameters to the function (e.g., recipient number, message keyword and content) are taken from the model by the generator to assist in forming the correct message syntax.
<INSERT LISTING 4 HERE>
The end of a function includes code for calling the next function based on user input. In SMS sending, the generator simply follows the application flow (line 94). In the case of list selection, the situation is a bit more complex. Depending on selections from the list, different alternatives can exist; for example, the cancel operation (i.e., pressing the cancel/back button on the phone) is also possible (lines 38-41). Where necessary, the generator creates the operation-cancel code to return to the previous widget. This choice minimizes the need to explicitly modeling this concept and guarantees that exceptions are acknowledged. As a last function, the application exit code is created based on the end-state (lines 101-103). Finally, a dispatcher starts the application by calling the first function (line 107) with tail recursion to reduce stack depth (lines 108-109).

<INSERT FIGURE 9 HERE>

The DSML and corresponding generators allow the application developers to focus on finding solutions using the problem domain concepts directly, while ignoring the low-level details and accidental complexities associated with coding in the S60 architecture. The cost and expertise needed to make other types of enterprise applications on Symbian/S60 phones is now greatly reduced. As shown in Figure 9, the generated application can be executed on a S60 simulator to observe the resulting behavior. When the applications need to be changed, it is easier to understand and make the change directly to the problem domain concepts than to the code. Additionally, if the platform changes (e.g., the API for accessing the List changes), the code generator needs to be changed in only one place, rather than manually all the List usage code. Another example that examines the benefits of DSM applied to mobile devices can be found in (Davis et al. 2005).
Overview of Supporting Tools

In addition to GME and MetaEdit+, there are several other metamodeling tools that are available, ranging from research prototypes to fully supported commercial products. From a historical context, the System Encyclopedia Manager (SEM) is one of the earliest meta-tools. SEM was developed by Dan Teichroew at the University of Michigan (Teichroew et al. 1980) and it was applied to information requirements modeling of various categories of systems. Like SEM, many of the early metatools are no longer available, but a summary of several representative examples are provided in the next subsection.

A Retrospective of Metamodeling Tools

The MetaPlex tool had a textual rather than graphical notation (Chen and Nunamaker 1989). However, it is worthy of mention as one of the earliest metaCASE
 tools. It used a textual language to define metamodels, which are interpreted rather than compiled, and even included some rudimentary functionality to generate help text for method users from the metamodel.

The Virtual Software Factory (VSF) used the set-theoretical and propositional calculus language CANTOR to define the conceptual data in metamodels and its constraints, and the Graphical and Design Language (GDL) to specify graphical representations (Pocock 1991). The latter was somewhat complicated: 15 lines of code was needed to represent a simple data flow arrow. VSF’s strong point was its ability to define complex constraints. A clear weakness was the complicated nature of metamodelling: the time to construct a metamodel in VSF would be considerably longer than with today’s leading tools.
The ToolBuilder metaCASE system was originally reported as a research tool in (Alderson 1991) and later commercialized. It consisted of three components: the specification component — used to create the specification of the tool; the generation component — used to transform the specification into parameters for the generic tool; and the run-time component — the generic CASE tool itself. The first two are contained in the METHS system, and the third is called DEASEL, which provided standard CASE functionality to support multiple users on a true repository. METHS captured four kinds of information: 1) the data model upon which data capture and output generation is based, 2) the frame model upon which the views are based, 3) the diagrammatic notation for each diagram frame, and 4) the textual presentation for each structured text frame. The data model of Toolbuilder was ER extended with some constraints and the ability to have attributes whose values are derived from other attributes. It allowed triggers on events applying to attributes and relationships.
Modern Metamodeling Tools
The GME and MetaEdit+ emerged toward the end of the first period of metaCASE tools (i.e., they each have over a decade of research and development), and are the only ones from that period that are still visible in a similar form. There are three other metamodeling tools that are much more recent, but deserve mention: AToM3, EMF, and the Microsoft DSL tools.

AToM3 is a research metamodeling tool that has been under development at McGill University (de Lara and Vangheluwe 2002). A focus of Atom3 is multi-paradigm modeling, which is a realization of the benefits of modeling a system at multiple levels of abstraction using several different formalisms (e.g., Petri bets
, state machines, differential equations). The underlying representation of an Atom3 model is represented as graph, and the modeling environment provides a transformation system from which models can be manipulated by graph rewrite rules. A collection of pre-existing metamodels is available for download, including ER diagrams and structure charts.
The Eclipse Modeling Framework (EMF) is relevant to this chapter because of the major influence that it has made on the general modeling community (Budinsky et al. 2004). The EMF provides its own metamodel, called the ECore, which is used to describe application data models that can be fed to EMF in several formats. The native input format is an XMI file, which can be produced from UML class models by tools like Rational Rose class models. Java source code that is annotated appropriately can also be converted into ECore models. EMF provides a code generator (called JET) that is capable of translating models that conform to the ECore into Java. Based on the input to ECore, the EMF.Codegen can generate a basic model editor following the schema. The editor uses classes from the EMF.Edit framework to provide standard table and property sheet views. Most modeling projects have extended the EMF.Edit framework with customized capabilities. The EMF itself does not produce graphical editors – other Eclipse plug-ins that provide such capabilities have been integrated with EMF.
Microsoft has committed to the DSM community by initiating a metamodeling tool that is integrated within Visual Studio 2005
(Microsoft DSL) and tied to the software factory vision (Greenfield et al. 2004). At the time of this writing, this tool is still in beta mode and represents one of the newer entries in this space of representative tools. The current state of the MS DSL tools support the definition of a modeling editor as specified from a project wizard. A template-based code generator is available from which generic code can be instantiated with various placeholders representing data obtained from a model.

Given the numerous toolsuites that support DSM, it is often desirable to share models among different tools. In fact, initial consideration has been given toward bridging the gap between EMF and Microsoft DSL models (Bézivin et al. 2005). The ability to exchange models among tools has several obstacles, such as: 1) the syntactic problem of sharing the information within a model across different data formats, 2) the semantic problem of resolving the meaning of a model as expressed across different metamodels that may describe common properties of the same domain, and 3) the infrastructure problem resulting from tools that are open, but have different APIs to access the underlying representation. An approach to tool integration that addresses these problems is to consider patterns of interaction and configuration within a tool integration framework (Karsai et al. 2005).
Conclusion

This chapter presented an introduction to domain-specific modeling, including an overview of general concepts as well as case studies to illustrate the potential for application. From our own collective experience, DSM offers an order of magnitude improvement in productivity in those environments that are tied to software product lines that can be configured across multiple alternative design spaces. Although the future outlook for domain-specific modeling looks promising, there is still much research and development needed to improve the capabilities provided by supporting modeling tools. Issues related to group or team modeling (e.g., version control of models that are distributed among a globally dispersed team) are being explored, but additional functionality is needed to make DSM tools popular beyond specific niche domains. In addition to future technical developments, there is also a need to combat the organizational culture to promote adoption. This has been stymied by the stigma associated with the past failures of CASE tools; i.e., many who are first introduced to DSM mentally create a link back to the limitations of past CASE environments. This chapter described the flexibility and productivity that can be achieved by a modeling environment that can be tailored to a specific domain to generate applications from higher level abstractions.
References

Alderson, Albert. Meta-CASE Technology. In Software Development Environments and CASE Technology, Proceedings of European Symposium, Königswinter, Germany, pp. 81-91, June 1991.

Bézivin, Jean. On the unification power of models. In Journal of Software and System Modeling 4(2):171-188, May 2005.

Bézivin, Jean, Guillaume Hillairet, Frédéric Jouault, Ivan Kurtev, and William Piers. Bridging the gap between the MS/DSL tools and the Eclipse Modeling Framework. OOPSLA Software Factories Workshop, San Diego, Califorina, October 2005.

Budinsky, Frank, David Steinberg, Ed Merks, Ray Ellersick, and Timothy Grose. 2004. Eclipse Modeling Framework. Addison-Wesley.
Chen, Minder and Jay Nunamaker. METAPLEX: An integrated environment for organization and information systems development. In Proceedings of the Tenth International Conference on Information Systems, Boston Massachusetts, pp. 141-151, December 1989.

Czarnecki, Krzysztof and Ulrich Eisenecker. 2000. Generative Programming: Methods, Tools, and Applications. Addison-Wesley.

Davis, Victoria, Jeff Gray, and Joel Jones. Generative approaches for application tailoring of mobile devices. In 43rd ACM Southeast Conference, Kennesaw, Georgia, pp. 237-241, March 2005.
van Deursen, Arie, Paul Klint, and Joost Visser. Domain-Specific Languages: An annotated bibliography. ACM SIGPLAN Notices 35 (6): 26-36, June 2000.
Duddy, Keith. UML2 must enable a family of languages. Communications of the ACM 45 (11): 76-79, November 2002.
Gokhale, Aniruddha, Douglas Schmidt, Balachandran Natarajan, Jeff Gray, and Nanbor Wang, 2004. Model-Driven Middleware. in Middleware for Communications, (Qusay Mahmoud, ed.), John Wiley and Sons, Chapter 7, pp. 163-187.
Gray, Jeff, Matti Rossi, and Juha-Pekka Tolvanen. Preface: Special issue on domain-specific modeling. In Journal of Visual Languages and Computing, 15 (3-4): 207-209, June/August 2004.
Greenfield, Jack, Keith Short, Steve Cook, and Stuart Kent. 2004. Software Factories: Assembling Applications with Patterns, Models, Frameworks, and Tools. New York: John Wiley and Sons.

Henriques, Pedro Rangel, Maria Joao Varanda Pereira, Marjan Mernik, Mitja Lenic, Jeff Gray, and Hui Wu. Automatic Generation of Language-based Tools using LISA, In IEE Proceedings – Software 152 (2): 54-69, April 2005.

Johnson, Luanne (James). A view from the 1960s: How the software industry began. IEEE Annals of the History of Computing 20(1): 36-42, January-March 1998.

Kelly, Steven, Matti Rossi, and Juha-Pekka Tolvanen. What is needed in a MetaCASE environment? Journal of Enterprise Modelling and Information Systems Architectures 1 (1):25-35, October 2005.
de Lara, Juan de Lara and Hans Vangheluwe. Using AToM3 as a Meta-Case Tool. In Proceedings of the International Conference on Enterprise Information Systems. Ciudad Real, Spain, pp. 642-649, April 2002.
Karsai, Gabor, Andras Lang, and Sandeep Neema. Design patterns for open tool integration. In Journal of Software and System Modeling 4(2):157-170, May 2005.

Lédeczi, Ákos, Arpad Bakay, Miklos Maroti, Peter Volgyesi, Greg Nordstrom, Jonathan Sprinkle, and Gábor Karsai. Composing domain-specific design environments. IEEE Computer 34 (11): 44-51, November 2001.
Long, Earl, Amit Misra, and Janos Sztipanovits. Increasing productivity at Saturn. IEEE Computer 31 (8): 35–43, August 1998.

Mernik, Marjan, Jan Heering, and Anthony Sloane. When and how to develop domain-specific languages. CWI Technical Report, SEN-E0309. ftp.cwi.nl/CWIreports/SEN/SEN-E0309.pdf

MetaCase. MetaEdit+ 4.0 User’s Guide. http://www.metacase.com
Microsoft DSL. Visual Studio Launch: Domain-Specific Language (DSL) Tools: Visual Studio 2005 Team System. http://msdn.microsoft.com/vstudio/teamsystem/workshop/DSLTools

Nokia S60. S60 SDK Documentation. http://www.forum.nokia.com
Nokia Python. Python for Series 60: API reference. http://www.forum.nokia.com
Peterson, James. Petri Nets. Computing Surveys 9(3):223-252, September 1977.

Pocock, John. VSF and its relationship to open systems and standard repositories. 1991. In Software Development Environments and CASE Technology, A. Endres, H. Weber (Ed.), Springer-Verlag, Berlin.

Pohjonen, Risto, and Steven Kelly. Domain-Specific Modeling. Dr. Dobbs Journal 27 (8):26-35, August 2002.
Spinellis, Diomidis. Notable design patterns for domain specific languages. Journal of Systems and Software 56(1): 91–99, February 2001.

Sztipanovits, Janos and Gabor Karsai. Model-Integrated Computing. IEEE Computer 30 (4):110-111, April 1997.

Teichroew, Daniel, Petar Macasovic, Ernest Hershey and Yuzo Yamamoto. 1980. Application of the entity-relationship approach to information processing systems modeling. In Entity-Relationship Approach to Systems Analysis and Design, P. P. Chen (Ed.), North-Holland.

�Need to quote/cite OMG’s MoF

�Is this the right term to use? I don’t understand what it means by restrictiveness of DSML. Does it mean it is not capturing the domain properly due to the presence of other artifacts?

�Could we cite a few papers like ESML, PICML etc

�Should this be two separate words?

�What is a Petri bet (I think this a typo, right?

�Jeff, I added the 2005 so people know which visual studio it is available under

PAGE

_1193919488.unknown

_1193919515.unknown

_1193917873.unknown

