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Abstract 1 Introduction

The publisher/subscriber communication paradigm, such Large-scale, distributed real-time and embedded (DRE) sys-

the one provided by event-based communication serviced€f8S aré increasingly being used to control critical aspects

inherently well-suited to support large-scale distributed rea®f 9lobal infrastructure. For instance, DRE systems are now

time and embedded (DRE) systems, such as avionics Iq%p_loyed in comm_erc_ial air t_raﬁ‘ic control, military systems,
sion computing or distributed audio/video processing. Rgl€ctrical power grid, industrial process control, and medical
cent trends indicate that DRE systems are increasingly &29ing domains. Below we illustrates current trends in the
ing developed by means of the component-based softwareS@fware development of DRE systems while identifying core
velopment paradigm, in particular, using quality of Servic@aquwemgnts of DRE systems that must be addressed to fulfil
(QoS)-enabled implementations of the CORBA Componkift Promise held by these trends.

Model. However, these platforms do not yet provide any stan-

dard support for incorporating real-time event-based cond~1 Increasing Use of Component Middleware
munication services and optimizations that have previously  for DRE Systems Software Development

been developed and tested for object-oriented middleware like _ S
CORBA. The result is that developers of these large and coff-meet the challenges of developing and maintaining DRE
plex DRE systems must custom-build publisher/subscriber 8¢3tems, research over the past decade has focused on de-
lutions within component middleware. Applications that aXéloPing, optimizing, and standardizirpject-oriented mid-
developed in this ad hoc, tedious, and error-prone way af#eware[1], which is systems software that (1) resides be-
costly to design, implement and maintain, and more impd¥€en applications and the underlying operating systems, net-
tantly, may not satisfy real-time requirements of DRE systefark protocol stacks, and hardware and (2) helps shield DRE
scalably. Therefore, DRE system developers urgently requiRplications from the accidental complexities of heteroge-
real-time event services that Support Component-based apBﬁQUS platforms by dEflnlng communication abstractions that

cations while simultaneously preserve the performance o be implementgd over a varigty of networks gnd operat-
mizations required by DRE applications. ing systems. Object-oriented middleware also implements

reusableserviceqsuch as asynchronous event-based commu-

ication, global scheduling, and dynamic resource manage-
ént) that provide functionality common to many DRE ap-
itations. Examples of object-oriented middleware for DRE
, _ ystems include Real-time Java [2] run-time environments
enabled component middleware. ~Second, we describe .E;,jRate [3]) and Real-time CORBA object request brokers
novel approach that draws on the strengths of using a patter RBS) [4] .9, TAO [5]).
driven solution to integrating, configuring and deploying rea _'ﬁfﬂore recentI;/pomponent middlewaié, 7] has defined ad-

0

time event s'erwces'scalably n QoS—'e'nabIed compoqent Wtional capabilities that enhance object-oriented middleware
dleware. Third, we illustrate via empirical benchmarking "&or DRE systems, as follows:

sults how component-based real-time event services satisfy the
QoS and scalability requirements of DRE applications. ¢ It defines a component abstraction that consists of a col-

Keywords: Real-time Publisher/Subscriber Service, Compo- €Ction of (1)interface ports exposing operations that

nent Middleware, CORBA Component Model, Model-based clients can invoke to use a service provided by the compo-
Systems, Patterns nent, or indicating the methods/services that the compo-

nent itself depends on to achieve its functionality and (2)
event portghat are used to publish and consume events.

*This work was sponsored in part by grants from NSF ITR CCR-0312859,® It .aIIo'vvs developgrs to focgs on progr'amm.ing their ap-
Siemens, and DARPA/AFRL contract #F33615-03-C-4112 plication “core logic” {.e., primary functionality), rather

This paper makes three contributions to the R&D on su
porting component-based real-time event services scalably
DRE systems. First, we outline three different design choi
for incorporating publisher/subscriber services within Qo%q




than wrestling with lower-level taske.g, network pro- is a powerful architecture for event-based communication be-
gramming, scheduling, security, and event processingause it provides anonymity, by decoupling event publishers
Instead, the application functionality is associated widnd subscribers, and asynchronism, by automatically notify-
the configuration-related capabilities via auto-generatied) subscribers when a specified event is generated. Moreover,
component “glue code” that standardizes the interactitire publisher/subscriber services reduces software dependen-
with other components and the middleware. cies through anonymity and asynchrony, thereby supporting

e It supports componergontainersthat define a commonthe loose coupling required of these DRE systems. Publisher/-
operating environment in which a set of related corgubscriber services are particularly relevant for large-scale
ponents execute. Containers also provide componedRf8E systems because they can support a changing set of
with key resourcess(g, priority levels, real-time threadsrequirements and environments by defining clear and crisp
of control, and transparent state replication) and shidl@undaries between various entities of an application.
components from many tedious, error-prone, and non-One such publisher/subscriber service that supports several
portable complexities of the underlying networks, opeimportant features required by event-driven DRE applications
ating systems, and object-oriented middleware. is a real-time event service [13] available as part of the TAO [5]

e It makes a significant attempt to address problems of cfoject, which is our open-source implementation of real-time
figuring and deploying DRE applications throughout netORBA. The real-time event service provides low-latency/-
works of heterogeneous computing nodes by providifiier event dispatching, support for periodic processing, cen-
standardized component assembly, packaging, and #ialized event filtering, and efficient use of network and com-
tribution formats. These configuration and deploymeRttational resources. Additionally, many of the requirements
mechanisms enable the core functional issues to be @ethese DRE systems can be met scalably and robustly via
coupled from QoS-related issues so that QoS propenﬂggerations of such real-time publisher/subscriber services.
can be developed, configured, monitored, and managedVith the increasing use of QoS-enabled component mid-
not by those developing application functionality, but b§leware to develop DRE systems compounded by the need
a separate set of specialisesg, middleware develop- for real-time publisher/subscriber services to support a class
ers, systems engineers, and administrators) who are ofErPRE systems, therefore, requires integration of real-

much better positioned to make the appropriate configline publisher/subscriber services within QoS-enabled com-
ration and deployment choices. ponent middleware. However, standards-based component

middleware do not specify how publisher/subscriber ser-
Wces can be robustly supported within component middle-
%are. Although performance evaluation metrics for real-time
publisher/subscriber object-oriented middleware services are
available [14], there is a general lack of information and in-
sights into the design and performance evaluation of real-time

1.2 Importance of Publisher/Subscriber Com- publisher/subscriber services within QoS-enabled component
munication Paradigm in DRE Systems middleware. This paper focuses on addressing this dimension
of research.

An increasing number of DRE systems require real-time trai@dr earlier work in the space of integrating publisher/-
fer of control and data among large number of heterogribscriber services and supporting a federation of these within
neous entities that coordinate with each other in a loos€wS-enabled component middleware has focused on (1) how
coupled fashion. Examples of such systems include militagftware design patterns can be used to provide a robust in-
systems like the Joint Battlespace Infosphere (JBI), telecamgration of event-based communication services within QoS-
munications systems involving large scale network monit@nabled component middleware [15], (2) how a federation of
ing and management, environmental emergency response ma-time publisher/subscriber services can be configured and
tems requiring real-time coordination between various civideployed in the context of QoS-enabled component middle-
ian emergency response units, industrial process controlwere [16], and (3) how model-driven generative tools can be
quiring large scale automated system instrumentation arsgd to alleviate accidental complexities in configuring and
sensing/actuation, or supervisory control and data acquisita®ploying these services within QoS-enabled component mid-
(SCADA) systems requiring real-time robust control and dadigeware [17].
communications. This paper extends our previous work by (1) analyz-
Perhaps the most critical middleware service, therefore, fing the pros and cons of different design choices for inte-
the types of DRE systems outlined above are a publishepvating real-time publisher/subscriber services within QoS-
subscriber service [11, 12]. The publisher/subscriber des@gmabled component middleware (2) illustrating how container-

Examples of component middleware for DRE systems

Model (CCM) [9] (e.g, CIAO [10]). Appendix A provides
an overview of the capabilities of CCM.



based RT publisher/subscriber services leverage the benefits of Component Server
the component-oriented software development paradigm, and

Contai
(3) demonstrating empirically that QoS-enabled component ey
middleware-based RT publisher/subscriber services (specif-

CORBA
Component

ically the TAO Real-time Event Service) can successfully
maintain the QoS requirements of large-scale DRE applica-

Reflect
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tions. -based Adaptor
Paper organization. The remainder of this paper is orga- container-
nized as follows: Section 2 describes three different architec- based > 5
tural choices for integrating real-time publisher/subscriber ser- QoS
vices within QoS-enabled component middleware illustrating RT-ORB Mechanism
the pros and cons of each approach; Section 3 describes the Plug-ins
challenges in integrating real-time event services within com- COMPONEN!  eomp—

server-based

ponent middleware and our solutions to address these; Sec-
tion 4 provides the results of benchmarking experiments that ] . . . .
establish the feasibility of container-based RT event servic§§usrgrilt;:rrcsh;tri?ézgncggﬁeS for Integrating Publisher/-
Section 5 compares our results to related research; and é"(p-

tion 6 presents concluding remarks.

2.1 Component-level Event Channels

e Design The first architecture choice for providing real-
2 Architectural Design Choices for time event services in component middleware is to instantiate

. . . event channels as application-level components as illustrated
Composmg Real-time Event Serwcesin Figure 2. In this architecture, the interface normally pro-

in QoS-enabled Component Middle- vided by the event channel is exposed as a facet. This interface
contains methods to connect to the event channel, configure
ware real-time properties, and push events. The event channel in-
terface is transformed from that of a standard CORBA object
The CORBA Component Model (CCM) standard does nito that of a CORBA component.
specify how publisher/subscriber services can be composed
within component middleware. This issue is further compli-
cated by the need for real-time publisher/subscriber services to
be integrated within QoS-enabled implementations of CCM,

such as our Component Integrated ACE ORB (CIAQO) [18]. 5T Evert N
This section describes three possible architectural choices Service Service
for integrating real-time publisher/subscriber services within gomponent gomponent
the CORBA Component Model. In this paper we focus on in- Containers (TG Containers
tegration of a real-time event channel, which is a manifestation
of the publisher/subscriber communication paradigm. Fig- Component Server

ure 1 illustrates how these architectural choices vary based on
where within the component middleware architecture does&
event channel gets composed. The three architectural choic
include (1)component-basedwhere the event channel can peen

represented as an application-level componentc@gjainer-

based- where the event channel can be encapsulated withi\nalysis The primary advantage to this approach is its
the container, and (3jomponent server-basedwhere the simplicity. The complexity needed to implement an event
event channel can reside within the component server. Ttimnnel component is rudimentary since the encapsulated ser-
section describes each architecture choice in detail analyange already implements the event channel functions. Also,
the advantages and disadvantages of each approach. Sectibis 4rchitecture does not restrict event channel capabilities in
subsequently provides empirical guidance to support our araly way. The full set of event channel features is available to
ysis. other components. Instantiating and deploying multiple event

ggre 2: Publisher/Subscriber Service As CCM Compo-



channels is straightforward and follows the same rules as a
ply to standard components.

There are a number of disadvantages to using compone
level event channels. Generally speaking, the shortcomings
the object model remain present in this architecture. First, tt
component glue-code, or servant, must manipulate event s
vice interfaces directly, which exposes low-level CORBA pro:
gramming details. Second, the component servant logic must

encapsulate QoS and RT properties, which inhibits the fleﬁ- ure 3:Publisher/Subscriber Service Within CCM Con-
bility and reusability of components across different operati @g '

Container

Container
CIAO
CORBA ¥ 1
Component —O contalner Cocn?l;Ran:nl
—© Framework O
QoS Policies QoS Polic
Real-time

Event Service |-I Event Service H Notification Service

Publisher/SubscribérService Framework

X A . . taner
contexts and environments. Third, it is impossible to substitute

or interchange different publisher/subscriber services without
recompilation of components. Fourth, application level cormprint of individual components and preserves their lightweight
ponents must now be responsible for managing event chamaglire. Although the component deployment framework is
lifecycles. exposed to the implementation details of the real-time event
The net result of these effects is that component-level coservice (since the deployment framework must instantiate
position of event channel configurations must be decidedaad configure channels) rather than component servant glue
design-time, rather than at deployment time. Additionally, tltede, it is not important for the deployment framework to be
event channel component architecture conflicts with the stéightweight.
dard CCM container programming model, which establishesSecond, QoS properties are specified via XML and encapsu-
the container to be sole mediator between application-lelased within the container. This maximizes the flexibility and
components and common middleware services, such as relsability of components by allowing them to be reconfig-
time event services. lronically, in this case the event serviged with different QoS properties and/or services as required
itself is encapsulated within the component. Finally, this dry new and changing operating contexts, without making any
chitecture always results in a remote call to transmit an evehainges to the component logic or glue-code thereby obviat-
to the event channel component, which must be handlediby the need for recompilation. Third, this architecture aligns
the ORB and requires additional processing and levels of ith the CCM container programming model and delays event
direction. Given the number of unfavorable consequencescofifiguration-related decisions until deployment time, which
utilizing this architecture, it is not appropriate for the majoritgllows additional optimizations to be incorporated depending
of component-based DRE applications that require stringentthe knowledge of the deployment context. For example, it
QoS guarantees at a low cost. may not be known until deployment time which network links
have high latency or low reliability, yet this information is crit-
. ical to determining the best possible real-time event service
2.2 Container-level Event Channels configuration.

« Design Figure 3 depicts a second possible architecture for1 he disadvantage to the container-level event channel archi-

providing real-time event services in component middlewefreecwre is the difficulty encountered in actually implementing

where an event channel is encapsulated within the contaiffefffectively and efficiently for multiple dissimilar services.

In this architecture, the container is responsible for managihige"® &re @ number of design challenges that arise when pur-
ng this method of event channel integration. The various

event channel lifecycles, initializing channels and gatewasy/d" X :
that are necessary in the context of a federation, connecffig!9n challenges and patterns-based solutions appear in Sec-
10N 3

publishers and subscribers, configuring QoS and RT propté‘?-
ties, implementing publisher and subscriber servants, and ter-

minating services. The container also exposes two distinct i3 Component Server-level Event Channels
terfaces. One interface provides configuration methods and . , , . o

is invoked by the component deployment framework basé(lj)e&gn The .thlrd.possmle archltgcture for prowdmg real-
on the properties specified in XML descriptors that descriBB1€ €vent services in component middieware is to place event

configuration decisions. The second interface provides a pﬁgﬁnnels within the ‘?Ompone”t SEIVer. "_1 this arch|tecture,
method and is invoked by application-level components. event channels are still accessed and manipulated via the con-

tainer. However, the component server-level architecture is
e Analysis There are many advantages to this architectufendamentally different from the container-level architecture
First, application components are totally isolated from evdmtcause the component server is a lower-level entity. Only a
service implementation details. This reduces the memory fositagle component server exists on each host in the distributed



computing environment, so this architecture results in all thaently, the container-based architecture will be useful for the
components that execute on a given host sharing the sawdest range of DRE component applications.
event channel.

Component Server 3 CIAO Container Framework Design
: Goals and Implementation Strategies

Component

This section describes how the CIAO publisher/subscriber
service architecture, shown in Figure 3, employs patterns
to address the design goals of the container programming
model outlined in Section 2. For example, while maintain-
ing efficiency and reliability requirements, CIAO preserves the
lightweight nature of components. An individual component
need know nothing about the services that implement event-
passing — the container encapsulates that complexity. It there-
fore follows that component application developers need not
be concerned with these details, further simplifying the design
of the core component logic.
Figure 4:Publisher/Subscriber Service Within Component ~ FOr each design goal mandated by the CCM container pro-
Server gramming model, our pattern-oriented solution is detailed be-
low. Figure 5 illustrates a pattern language [19] demonstrating
. . . the interactions between patterns in the publisher/subscriber
e Analysis The advantages present in the container-level ar-

. ) service framework integrated within a container.
chitecture are also applicable to the component server-level

eflect

"}-‘g?;.

Real-time POA
ol

architecture: components are still isolated from event servicr- Camponents
in such a way that they remain configurable after compile] _corsa i Nerrer] PublisheriSubscriber Service Framevork
tion, their memory footprint is minimized, and push operation, Facste' -
result in only local method invocations. However, the com Adapter i i
ponent server-level architecture is more coarse-graieech T strategy
large number of components may be required to share a s| Semeenent |, le: geiegates Bullder
gle channel. This result may be an advantage or disadvante e eE Strategy Strateqy
depending on the specific component application. .
For applications that require either multiple event channe  configurator gm,,m
on a single host or that wish to maximize component flexi  dynamic ibrarics perticelL ibrarics
bility to allow for future enhancements or modifications, the : Thor Service Repository

component server-level architecture may be too restrictive. On
the other hand, for applications that do not require these
pabilities, the component server-level architecture results iﬂ
simpler configuration and deployment process, which reduces

developer effort. In the case of very large-scale DRE systems, ) o ]
the savings may be substantial. Ultimately, the question [gsign goal 1 Proyldeaserwce-mdependent representation
whether to employ container or component server event ch@ht€al-time properties.

nels can only be answered by the application developer. Solution approach — Adapter pattern: Different

Based on our analysis of the pros and cons of each deé?blhlisher/supscriber seryices depend on diff'eren.t representa-
choice, we have selected the container-based event chaHRBp Of real-time properties. The CIAO container implements
as the target to obtain additional guidance on its applicabiltf) @dapter that converts a service-independent representa-
and performance. The container-based architecture provi Q,Of real-t_lme propemes_ (as specmeq In XML) m'Fo a
the most flexible real-time event service, while preserving tR"vice-specific representation. The benefits of this design are
benefits of the CCM container programming model. As givofold: (1) component developers need not concern them-
scribed in [15], this architecture can be implemented in a w& Ives with peculiar configuration mte_rfaces a_nd (2) no ma_tter
that is very fast, lightweight, and flexible enough to accommi@t changes occur to the underlying publisher/subscriber

date new services in the future with little modification. Cons@ErVices’ the interface exposed to components does not
change.

jure 5: Pattern Interactions in the CIAO Pub-
er/Subscriber Service Framework



Design goal 2 : Enhance reuse and extensibility by allowinthe real-time performance of QoS-enabled component middle-
new publisher/subscriber services to be easily plugged-in. ware, in particular that of real-time publisher/subscriber ser-
Solution approach — Strategy pattern: This design re- Vices integrated within QoS-enabled component middleware.
sults in service implementations that are interchangeable fréfis section provides results of empirically evaluating perfor-
the container perspective. After object creation, the contaifiéance of a real-time event channel in CIAO, which is our
has no knowledge of the actual algorithm being used, whi@®S-enabled component middleware implementation. Our re-

enables fast operation delegations and simplifies container@#ts focus on the container-level integration of event channels
sign. described in Section 2.2.

Design goal 3: Reduce the memory footprint of the con-
tainer by decoupling the creation of publisher/subscriber ser- . )
vice instances from their representation. 4.1 Experiment Domain

Solution approach — Builder patter: The creation of The domain we used for our experiments to empirically bench-
real-time event channel instances is somewhat complex ,?1 P empiricatly benc
ark performance of RT event channel integration within

CIAO since they must be initialized properly. CIAO define S-enabled component middieware comprises a hypotheti-
a builder class that encapsulates the complexity of creati F\%aerial battlefield theatre depicted in Figure 6.

and initializing event channels. The result is finer control §
the construction process, isolation of construction code, and
the ability to vary the publisher/subscriber service implemer AWACS ‘&\

t ati on. Vai(zl::‘l & Sl UAVs UCAVs

s —

Design Goal 4: Ensure components incur only the cost of G = NN g
services that are required by deferring publisher/subscrib 4
service selection and configuration decisions until run—time(@

BATTLE

Solution approach — Component Configurator pattern: @\ﬁ\v“ -&

In CIAO, publisher/subscriber service libraries are loaded dy
namically on-demand to avoid encumbering the applicatio
with unused services, while still allowing components to wai.
until deployment time to select a particular service. This . ) ] ]
mechanism provides the flexibility to initiate, suspend, re- Figure 6:Hypothetical Aerial Warfare Scenario
sume, and terminate services.

CAOC

Design Goal 5: Enable component access to the ful set !N this military application scenario, a number of Unmanned

of QoS features available in publisher/subscriber services‘% lal Vehicles (UAVs) simultaneously ransmit surveillance

encapsulating service-specific QoS specification operatief eo from d|fferent_ regions in a battleﬁelq. A UAV is a
within a high-level interface. remote-controlled aircraft that is launched in order to obtain

Solution roach Wr ¢ Facad tern: Th a view of an engagement and performs such functions as spot-
olution approach — apper racade patiern. e ting enemy movements and locating targets in a battlefield.
CIAO container framework implements a high-level configu- o _ i
Distributor node receives video streams from UAVs and

ration interface that forwards invocations to the correspondin ) ) .
p_/vards it to different receivers on tli@mmand and Opera-

service-specific operations for each publisher/subscriber §8 ) ) .
vice. This design results in a concise and robust programmitgj's €ontrol(CAOC). The CAOC entity monitors these video

interface capable of configuring the QoS features in multipﬁgef"‘ms and is responsible for making tacti'cal decisions about
dissimilar publisher/subscriber services. vehicle deployment and weapon system guidance. Some of the

CAOC receivers perform automatic target recognition to guide
Unmanned Combat Aerial Vehicles (UCAV), while others pro-

4 Performance Evaluation of Com- Vvide commands to launch weapons from ground stations.

: _ 4 This application possesses features that make it a complex
ponent Middleware-based Real-time and challenging problem, including large-scale, stringent real-

Event Services time requirements, resource constraints, and the distributed
communication environment (which includes low-bandwidth,
With increasing use of QoS-enabled component middlewaréitgh-loss wireless links) that requires the use of publisher/-
develop and deploy DRE systems, it is important to ascertairbscriber paradigm.



4.2 Experiment Description e UAV.GS: When UAV.GS component receives
a PrepareCapture event, it publishes a
Capturelmage  event. Only those UAVs that
are in the surrounding target field will receive the
Capturelmage event.

UAV When a UAV component receivesGapturelmage

event, it will begin to execute the surveillance task by

capturing images of the target field and transmitting the
image back to the CAOC through the A/V Distributor.

The image transmission is implemented via the CORBA

A/V stream service.

e EngagementSys: Whenever the Engageme8i/s com-
ponent receives Rrepare _Engage type of event, it
will publish anEngage event to the UCAV Ground Sta-
tion (UCAV_GS) and Battle System (Battlsys). The
UCAV_GS and BattleSys are the only components that
are the subscribers f@ngage events.

e Battle_Sys: Whenever the Battl&ys component re-
ceives arEngage event, it will initiate engagement by
preparing for weapon launching.

e UCAV_GS: Whenever the UCAWGS component
receives an Engage event, it will dispatch a
StartLaunch event to the appropriate UCAV
components.

Figure 7:BBN UAV Scenario e UCAV: Whenever a UCAV component receives a

StartLaunch  event, it will direct itself to the target
In the prototype system shown in Figure 7, we have |gcation.

modeled and implemented seven different types of CIAO ) ) ) o
CCM components: Satellite componenSatellite ), There are a few interesting observations to note in this sce-
CAOC componentQAOQ, UAV Ground Station componentna”O:

(UAV.GS, UAVY component JAV), Engagement System com-
ponent Engagement _Sys), Battle SystemBattle _Sys),
UCAV Ground Station componenUCAVGS and UCAV

This section describes our experiment by detailing the role of
various entities. Figure 7 shows the topology of our aerial
warfare theatre prototype. We modeled this topology using our
EQAL modeling tool [15, 16]. EQAL is a modeling tool that .
resolves accidental complexities of configuring and deploying
large-scale publisher/subscriber component middleware-based
DRE systems. We applied our container-based real-time event
service [20] to the prototype system.

e most transmission links are wireless links imposing strin-
gent bandwidth and latency constraints,

o there is a need for prioritization between different types

componentyCAY. of event transmissions, and
The interactions among these components is described be- = 7 7' . '
low: o reliability of delivery of event must be guaranteed.

o Satellite: Satellite is a component that is deployed for Building flexible application software and object-oriented
a surveillance task. Whenever it detects abnormal sitiddleware that meets these requirements is challenging be-
uations in the battlefield, it will emit an event of typeause the need for determinism and predictability often re-
TargetAbnormal . The CAOC component is the onlysults in tightly-coupled designs. For instance, conventional
subscriber for such events. mission-critical applications built with object-oriented mid-

e CAOC: The CAOC component acts as the commarttleware consist of closely integrated responsibilities; each
and control center for the battle. Whenever it receiveemponent, even with the benefit of a real-time event service,
a TargetAbnormal  event, it will emit an event of will still have to write application code to handle multiple as-
type PrepareCapture  to instruct the UAV Ground pects, such as real-time event dispatching, scheduling and pe-
Station (UAV.GS) to prepare to capture an image iriodic event processing. Tight coupling often yields inflexi-
the field. The UAVGS is the only subscriber for thisbility and thus can substantially increase the effort and cost
event type. Also, whenever there is any military neaxf integrating new and improved system features. By using
to engage the battle systems, the CAOC will emitthe container-based real-time event service, however, it is still
Prepare _Engage event type to the Engagement Sygossible to build flexible and loosely-coupled components, yet
tem (Engagemens®ys). simultaneously meet QoS requirements.



As shown in the Figure 7, there are three event propagatidga a special register that counts the number of clock ticks
chains in the system. The first one begins when the Sasdhce the CPU was reset.
lite component emits &argetAbnormal  event and ends
when the UCAV components recgive tﬁzapturelmag_e_ 4.4 Metrics for Collocated Components
events. The second one starts with the CAOC emitting the
PrepareEngage event and terminates with the Battle SyBefore we tested our prototype system and measured results
tem receiving th€Engage event. The third one begins wherin the experiment situations where all CCM components are
the CAOC emits thérepareEngage event and ends whendistributed into different hosts, we first show our results where
the UCAVSs receive th&tartLaunch  events. all the components are collocated in the same host and same
The most important metric for any event service is eveprocessj.e., within the same component server. By doing so
latency, i.e., the time elapsed from when a supplier servde are able to mask the effects of network latencies, data rate
an event until the last consumer interested in the evéess and distribution, thereby, permitting us to gauge the actual
receives it. Our goal is to demonstrate and benchma&rformance of the real-time event dispatching within a QoS-
the publisher/subscriber features in the experiment descrie@dbled component middleware. Figures 9, 10 and 11 show
above when used in the context of a component middlew#ne collocated event propagation delays for the three event
and a container-based event channel. The rest of the sedd@ipagation chains described earlier, respectively.
presents our experiment results with different real-time event

service settings, illustrating their effect on the provisioning of Event Propagation Delay -UAV Capture Image
event communication QoS in the DRE system. o000
4.3 Experimental Measurement Approach o 13t | i

1000000

Measuring the latency in the event service is hard since events
are delivered via a uni-directional flow of communication from
suppliers to consumers. As shown below, event delivery time
and jitter is comparable to the network propagation delay,
because a distributed clock precision is bounded by the jit-
ter [21], measuring the latency of event propagation, where O T —————-————— s
event supplier and event consumer are deployed in different

hosts, is impossible. Fortunately, the latency for the central- g Uni Nanosecands
ized configuration can be measured directly using a consumer

located in the same host as the supplier and measuring the
roundtrip delay as shown in Figure 8.
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Figure 9:Collocated UAV Results
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Figure 8: Experimental Setup to Measure Event Service
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The performance tests were conducted on a testbed where Thale
each machine was a dual Intel Xeon 2.4G CPU, with 1G RAM Delay Jiter: 131383, 11 Nanoseconds

Variance: 17,300,976,128

running Windows XP Professional, and all these machines
are connected through 100M LAN. For all our measures we
use the high-resolution timer (under 2 nanosecond resolution) Figure 10:Collocated UCAV Results
available on Pentium processors. This timer is implemented
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Figure 11:Collocated Battle Results

Figure 12: The Network Topology of Experiment for Dis-
Our collocation experiment results indicate that the evafibuted Case
dispatching overhead is minimal thereby confirming that per-
formance optimizations of object-oriented real-time event dis-

patching are preserved within a container-based solution. ) ) .
In many real-world situations, multiple components are Jaased real-time event service provides the performance pre-

ployed within the same process but still communicate wilictability needed by a representative DRE application. De-

each other through CCM portse,, facets, receptacles, evenidys for the same three event propagation chains are given be-

sources, and event sinks. To improve the performance uos
predictability of collocated component communication, the
process-collocation optimization was applied to CIAO’s im-
plementation. Process-collocation improves the performance| ...
and predictability transparencies for objects that reside in
the same address space as the servant implementation, whilt ‘
maintaining locality transparency. To implement process- | “= it
collocation, the ORB must identify the location of the com- i
ponent’s reference without explicit application programmer | £ __ [~ sarsst]
intervention and without violating the policies specified by
POAs and the component containers. Once the ORB deter-
mines that a reference is collocated in the same process, all op:| =
eration invocations can be forwarded to a special collocation | e

stub. The goal of process-collocation optimization is to en- TR e e R
sure the performance of accessing in-process collocated com- Deley ST IBINL noseconds
ponents is comparable to accessing standard C++ components.

while still providing predictability transparency in the frame-

work. Figure 13:Distributed Case UAV Results
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4.5 Metrics for Distributed Components ,
As can be seen from the above figures, the performance

In this experiment, we performed latency and jitter measurd-the federation of event channels integrated within differ-

ments on the prototyped UAV application where componermst containers continues to be predictable with minimal jitter,

are deployed across multiple hosts. This experiment providesvever, with an additional cost of network latencies. Our

a realistic picture of the system performance in a typical cotestbed comprised networks (LANs) that were lightly loaded.

puting environment. The network topology is shown in Fighle are currently performing additional experiments on the

urereffig:network-topology. Emulab [22] testbed, where we can emulate different network
Our measurements demonstrate that CIAO’s containgmpes and link characteristics.



Event Propagation Delay - UCAV Start Move quires an event and supply one if the event is available. Like-
wise, the CORBA Event Service us€snsumergo play the
Subscriber role. Consumers can also be pull-style or push-
style, the first style requires consumers to periodically or pro-
actively query events from the event service. Push-style con-
sumers are simply notified when a new event is available. Both
styles can be mixed, in other words, push-style consumers can
receive events generated by pull-style suppliers, or vice-versa.
5000000 The CORBA Event Service does not provide any mechanisms
to control QoS behavior, and filtering is limited to the so-
O ————————"w called Typed Event Channelghere consumers and suppliers
Tials can receive a specific IDL-type. However, Typed Events is an
Detay Jiter: 1238856 i Nanossconds optional compliance point in the CORBA Event Service and
Yoranee 2R very few implementations for this variant of the service exist.
Therefore, in practice, filtering is not supported.
Figure 14:Distributed Case UCAV Results There are several commercial CORBA-compliant Event
Service implementations available from multiple vendors,
Event Propagation Delay Latency ~ Battle System Engagement such as IONA and Borland. IONA also produces OrbixTalk,
500000 which is a messaging service based on UDP/IP multicast.
0000 Since the CORBA Event Service specification does not ad-
OO PR B APOPO e 2 I O 1 dress issues critical for real-time applications, the QoS behav-
et MWW% ior of these implementations are not acceptable solutions for

12000000 . . .
many application domains.
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000000 e The CORBA Natification Service The OMG has issued

000000 a specification for a Notification Service [23], which is a su-
I perset of the CORBA Event Service. This specification adds
interfaces for event filtering, configurable event delivery se-
mantics (e.g., at least once or at most once), security, and event
12 34 45 5 07 70 69 100111 2213 k15 10017 100190210221 2220 24 delivery QoS.

Trials

Nanoseconds

2000000

0

Uit Nanosaconde e The CORBA Distributed Notification Service The OMG

has also issued a specification to build distributed versions of

the Notification Service via its “Management of Event Do-

Figure 15:Distributed Case Battle Results mains Specification” [24]. This document describes how mul-
tiple instances of the Notification Service can be intercon-
nected to avoid the excessive overhead and eliminate the sin
5 Related Work gle point of failure represented by the Event Channel object.
TQ_is specification, however, does not incorporate any mech-

This section surveys literature on Publisher/Subscriber s : !
y éralﬁms to reduce event delivery based on filters. Also, both

tems, both standards based and proprietary, concentratin . . o
publisher/subscriber systems for real-time systems. None bt CORBA Notification Service and the CORBA Distributed

the prior work deals with component middleware witral- Notification Service are based on Object-Oriented middleware
time QoS supportvhich is the focus of our work. rather than component middleware.

5.1 Standards-based Publisher/Subscribers 5.2 Proprietary Publisher/Subscriber Systems
e The CORBA Event Service The CORBA Event Service e Cadena Event Channel Framework Cadena Event Com-

is a specification that defines a basic Publisher/Subscribemamnication Framework [25] includes a CORBA-based event
chitecture for CORBA systems. In the CORBA Event Serviadannel which has been integrated into the OpenCCM infras-
the Publishers are calleguppliers Suppliers can be eithertructure. The framework implements a number of features of
push-style or pull-style, the first pro-actively generate evenbe event service middleware, such as event filtering, event
and send those events to the event channel for distributicorrelation, and direct-dispatching. Although this work comes
Pull-style suppliers passively wait until the event channel relose to our work, however, it does not address the problems
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such as real-time event scheduling and dispatching and paticMU SEI [29]. Their Publisher/Subscriber model is func-
odic event processing, which are crucial for a lot of missiotienally similar to the CORBA Event Service, though it defines
critical real-time applications. Our work, on the other hands own programming APIs and communication protocols. The
leverages the RT event channels and QoS-enabled compoastitors details how real-time threads and adequate synchro-
middleware to provide the properties outlined above. nization primitives can be used to implement the RT P/S model
without undue priority inversions. However, the authors also

e SIENA SIENA [26, 27] is a notification service archiy 4 recognize that adequate synchronization primitives are a

Fect';ure ;Or Internet—sbcaledevent dlskt_rlbutr:on. The arCh::eCtLchessary condition to address unbounded priority inversions,
s based orcontent- aie hetworkingvhere a n?wor (,)f but it is not a sufficient condition. For example, the authors
routers propagate packets based not on a specific destingiop; getajl how their algorithms avoid critical sections with

address, but on the contents of the packet. The authors pifa 15unds dependent on the number of participants in the
pose using an event format similar to the CORBA Notificati

Service,i.e., sequence ofname,value) tuples. Using this
format consumers use a boolean predicate on the tuple val-

ues to describe the sets of events they are interested in. $h@ Summary
authors describe algorithms to reduce the use of network o

SOurces. For example, the authors pro_pagat_e f|It_er|ng_ mf&rft there is little effort has been documented on the patterns,
mation as close to the sources as possible, likewise, filterin

. ) S S gptimizations and architectures required to implement QoS-
constraints are combined and simplified to minimize the us . . .
. . aware Publisher/Subscriber models in component-based soft-
of computation resources in the routers. ware architectures. Also, there is very little or no empirical
Both SIENA and TAO's Real-time Event Service use SIMEvidence to support the performance and predictability claims

lar technlquc?s to conserve nerork and CPU resources, h8 several of these systems, even when research concentrates
ever, SIENAs event and filtering models are more powerfg real-time applications

than the model in our Real-time Event Service. In contras{?
however, our real-time Event Service is better suited for appli-
cations with stringent latency and predictability requiremenB, Conclusions
such as avionics mission computing.

e ECO The Distributed Systems Group at Trinity Colleg5&D over the past decade on object-oriented standards mid-

Dublin has developed ECO [28], for “Events, Constraints aﬁbeware, such as CORBA, has demonstrated its effectiveness

Objects.” The authors propose building programs out of codp-developing and supporting QoS requirements of large-scale
erating objects that publish or subscribe to events as needigfributed and real-time systems. Over the past few years,
Filtering, concurrency and timeliness constraints are expresSg middleware has been evolving into component-oriented

as constraints on the events that a particular object publisRiddieware. Component-based software development has al-
or subscribes to. ready received widespread acceptance in the enterprise busi-

The authors propose extending general-purpose progr&ffsS and desktop application domains. However, developers

ming languages, such as C++ or Java, to include explicit dgg_distributed real-time and embedded (DRE) systems have

larations for events, as well as the types of events that a c/gagountered limitations with the available component mid-
can subscribe or publish. Naturally, this static publications (eware platforms, such as the CORBA Component Model

subscriptions can be further restricted at run-time, the authr&™M) and the Java 2 Enterprise Edition (J2EE). These limi-
propose using new language statements for this purpose. tations often preclude developers of DRE systems from fully

Objects can addlotify constraints to limit the objects thateprOItIng the benefits of component software. In partic-

they subscribe to, this conditions are evaluated at the sourc’élgf’ component middleware platforms lack standards-based

the event and thus are limited to constraints on the event Egphshelr/sut;scrlbgr commSumcatu_Jn mechan;slgn;éhat support
rameters or the source identity. Objects can also d€fieand ey quality-of-service (QoS) requirements o systems,

Post constraints, this are evaluated on the destination objﬁﬂfh as low latency, bounded jitter, and end-to-end operation

and can use the state of the receiving object to affect the e\}érlll?rity propagation. QoS-enabled publisher/subscriber ser-

processing.Pre constraints are evaluated before the event{¥es are available in object middleware platforms, such as

delivered and can determine if the event is dropped, enqueﬁgﬂl't'me CORBA.’ dt:jl:t such (sjerwces havebnot t}eden |nltegrated
o processed immediately. Into component middleware due to a number of development

and configuration challenges.
e CMU Real-time Publisher/Subscriber Rajkumar.et al, This paper provides three approaches to integrating real-
describe a real-time publisher/subscriber prototype developietke publisher/subscriber services within QoS-enabled com-

ch has been written about Publisher/Subscriber systems,
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ponent middleware. The pros and cons of individual integfas] Timothy H. Harrison, David L. Levine, and Douglas C. Schmidt, “The

tion approaches are described. We also provide performanc

e Design and Performance of a Real-time CORBA Event Service,” in

Proceedings of OOPSLA '9Atlanta, GA, Oct. 1997, ACM, pp.

evaluation for the container-based integration approach, which 184-199.
provides the least intrusive and most standards-conforming @pr Douglas C. Schmidt and Carlos O’'Ryan, “Patterns and Performance of

proach. The collocated case results, which demonstrate even

tReal-time Publisher/Subscriber Architectureigurnal of Systems and

Software, Special Issue on Software Architecture - Engineering Quality

dispatching overhead, provides sufficient guidance to indicate Attributes 2002.
that all the real-time properties of real-time event channelgis] George Edwards, Douglas C. Schmidt, Aniruddha Gokhale, and Bala

preserved. The distributed case reveals the performance co

tinues to remain predictable, however, with the additional cost
of network latencies, which is expected.

Our ongoing R&D in this field involves the evaluation ofl6]
the remaining design choices and application of this technol-
ogy in the context of a variety of DRE domains, including
telecom, avionics mission computing, software radio and {7l

dustrial process control. The software described in this paper

is available for download fromvww.dre.vanderbilt.
edu/CIAO (for the CIAO QoS-enabled component middle-

ware) andvww.dre.vanderbilt.edu/cosmic

(fOI’ the [18]

CoSMIC modeling tools we used for configuring and deploy-

ing event channels within CIAO).
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Christopher D. Gill, Balachandran Natarajan, Craig Rodrigues, nent(s). Each container is respc_msmle for (1) initializing In-
Joseph P. Loyall, and Richard E. Schantz, “Total Quality of Service stances of the component types it manages and (2) connecting

Provisioning in Middleware and ApplicationsThe Journal of : ;
Microprocessors and Microsysteml. 27, no. 2, pp. 45-54, mar them to other co_mponents and common mlddleware services.
2003. Developer-specified metadata expressed in XML can be used

[33] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, to instruct CCM deployment mechanisms how to control the
B e e A 60a. € OPlectOriented SOtWare jietime of these containers and the components they manage.
The meta-data is present in XML files callddscriptors
) Component assembly.ln a distributed system, a component
Appendlces may need to be configured differently depending on the con-
text in which it is used. As the number of component con-
A Overview of CORBA Component figuration parameters and opt_ions incregse,_ it can be_co_me te-
dious and error-prone to configure applications consisting of
Model many individual components. To address this problem, the
CCM defines amassemblyentity to group components and
The CORBA Component Model (CCM) forms a key part tfharacterize the meta-data that describes these components in
the CORBA 3.0 standard [30]. CCM is designed to addregs assembly. Each component’s meta-data in turn describes
the limitations with earlier versions of CORBA 2.x middlethe features available in ite(g, its properties) or the fea-
ware that supported a distributed object computing (DOf)es that it requirese(g, its dependencies). CCM assem-
model [31]. Figure 16 depicts the layered architecture of thgag are defined using XML Schema templates, which pro-
CCM model. The remainder of this section describes the k@je an implementation-independent mechanism for describ-
ing component properties and generating default configura-

Component

(Servant) tions for CCM components. These assembly configurations
p— . ‘@:{; ¢ can preserve th_e rquired Qo_S properties_[32] and establish the
cmpe B o0 \@ § COMPONENT gsr(;epsosr?é)r/] tcsonflguratlon and interconnections among groups of
D LAYER .
@ ‘s’T“SEs , \D Com_ponent server. A compone_znt se_rveis an abstragtion
DISTRIBUTION that is responsible for aggregatipysicalentities {.e., im-
Object Adapter i plementations of component instances) itagical entities
(i.e., distributed application services and subsystems). A CCM
HOST component server is a singleton [33] that plays the role of

JRASTRUCTIRE.  a factory to create containers and standardizes the role of a

OSIKERNEL OSIKERNEL server process in the CORBA 2.x object model. Each compo-
n(_ent. server i§ typically assigned a particular set of capabilities
NETWORK within a distributed system. N

Component packaging and deployment.In addition to the
run-time building blocks outlined above, the CCM also stan-
dardizes component implementation, packaging, and deploy-
ment mechanisms. Packaging involves grouping the imple-
CCM elements in Figure 16. mentation of component functionality — typically stored in
Components. Componentin CCM are implementation enti-a dynamic link library (DLL) — together with other meta-
ties that collaborate with each other yiarts CCM supports data that describes properties of this particular implementa-
several types of ports, including (facets which define an tion. The CCM Component Implementation Framework (CIF)
interface that accepts point-to-point method invocations frdmlps generate the component implementation skeletons and
other components, (2eceptacleswhich indicate a depen-persistent state management automatically using the Compo-
dency on point-to-point method interface provided by anothaent Implementation Definition Language (CIDL).
component, and (3vent sources/sinka/hich indicate a will-
ingness to exchange typed messages with one or more compo-
nents.

Figure 16:Layered CCM Architecture
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