
Design Architectures and Performance Evaluation of Publisher/Subscriber
Services in QoS-enabled Component Middleware∗

George Edwards, Gan Deng and Aniruddha Gokhale
{george.t.edwards,gan.deng,a.gokhale}@vanderbilt.edu

Department of Electrical Engineering and Computer Science, Vanderbilt University

Nashville, TN 37235, USA

Abstract

The publisher/subscriber communication paradigm, such as
the one provided by event-based communication services, is
inherently well-suited to support large-scale distributed real-
time and embedded (DRE) systems, such as avionics mis-
sion computing or distributed audio/video processing. Re-
cent trends indicate that DRE systems are increasingly be-
ing developed by means of the component-based software de-
velopment paradigm, in particular, using quality of service
(QoS)-enabled implementations of the CORBA Component
Model. However, these platforms do not yet provide any stan-
dard support for incorporating real-time event-based com-
munication services and optimizations that have previously
been developed and tested for object-oriented middleware like
CORBA. The result is that developers of these large and com-
plex DRE systems must custom-build publisher/subscriber so-
lutions within component middleware. Applications that are
developed in this ad hoc, tedious, and error-prone way are
costly to design, implement and maintain, and more impor-
tantly, may not satisfy real-time requirements of DRE systems
scalably. Therefore, DRE system developers urgently require
real-time event services that support component-based appli-
cations while simultaneously preserve the performance opti-
mizations required by DRE applications.

This paper makes three contributions to the R&D on sup-
porting component-based real-time event services scalably for
DRE systems. First, we outline three different design choices
for incorporating publisher/subscriber services within QoS-
enabled component middleware. Second, we describe our
novel approach that draws on the strengths of using a patterns-
driven solution to integrating, configuring and deploying real-
time event services scalably in QoS-enabled component mid-
dleware. Third, we illustrate via empirical benchmarking re-
sults how component-based real-time event services satisfy the
QoS and scalability requirements of DRE applications.

Keywords: Real-time Publisher/Subscriber Service, Compo-
nent Middleware, CORBA Component Model, Model-based
Systems, Patterns.

∗This work was sponsored in part by grants from NSF ITR CCR-0312859,
Siemens, and DARPA/AFRL contract #F33615-03-C-4112

1 Introduction

Large-scale, distributed real-time and embedded (DRE) sys-
tems are increasingly being used to control critical aspects
of global infrastructure. For instance, DRE systems are now
deployed in commercial air traffic control, military systems,
electrical power grid, industrial process control, and medical
imaging domains. Below we illustrates current trends in the
software development of DRE systems while identifying core
requirements of DRE systems that must be addressed to fulfil
the promise held by these trends.

1.1 Increasing Use of Component Middleware
for DRE Systems Software Development

To meet the challenges of developing and maintaining DRE
systems, research over the past decade has focused on de-
veloping, optimizing, and standardizingobject-oriented mid-
dleware [1], which is systems software that (1) resides be-
tween applications and the underlying operating systems, net-
work protocol stacks, and hardware and (2) helps shield DRE
applications from the accidental complexities of heteroge-
neous platforms by defining communication abstractions that
can be implemented over a variety of networks and operat-
ing systems. Object-oriented middleware also implements
reusableservices(such as asynchronous event-based commu-
nication, global scheduling, and dynamic resource manage-
ment) that provide functionality common to many DRE ap-
plications. Examples of object-oriented middleware for DRE
systems include Real-time Java [2] run-time environments
(e.g., jRate [3]) and Real-time CORBA object request brokers
(ORBs) [4] (e.g., TAO [5]).

More recently,component middleware[6, 7] has defined ad-
ditional capabilities that enhance object-oriented middleware
for DRE systems, as follows:

• It defines a component abstraction that consists of a col-
lection of (1) interface ports, exposing operations that
clients can invoke to use a service provided by the compo-
nent, or indicating the methods/services that the compo-
nent itself depends on to achieve its functionality and (2)
event portsthat are used to publish and consume events.

• It allows developers to focus on programming their ap-
plication “core logic” (i.e., primary functionality), rather

1



than wrestling with lower-level tasks (e.g., network pro-
gramming, scheduling, security, and event processing).
Instead, the application functionality is associated with
the configuration-related capabilities via auto-generated
component “glue code” that standardizes the interaction
with other components and the middleware.

• It supports componentcontainersthat define a common
operating environment in which a set of related com-
ponents execute. Containers also provide components
with key resources (e.g., priority levels, real-time threads
of control, and transparent state replication) and shield
components from many tedious, error-prone, and non-
portable complexities of the underlying networks, oper-
ating systems, and object-oriented middleware.

• It makes a significant attempt to address problems of con-
figuring and deploying DRE applications throughout net-
works of heterogeneous computing nodes by providing
standardized component assembly, packaging, and dis-
tribution formats. These configuration and deployment
mechanisms enable the core functional issues to be de-
coupled from QoS-related issues so that QoS properties
can be developed, configured, monitored, and managed
not by those developing application functionality, but by
a separate set of specialists (e.g., middleware develop-
ers, systems engineers, and administrators) who are often
much better positioned to make the appropriate configu-
ration and deployment choices.

Examples of component middleware for DRE systems in-
cludes Prism [8] and the Lightweight CORBA Component
Model (CCM) [9] (e.g., CIAO [10]). Appendix A provides
an overview of the capabilities of CCM.

1.2 Importance of Publisher/Subscriber Com-
munication Paradigm in DRE Systems

An increasing number of DRE systems require real-time trans-
fer of control and data among large number of heteroge-
neous entities that coordinate with each other in a loosely
coupled fashion. Examples of such systems include military
systems like the Joint Battlespace Infosphere (JBI), telecom-
munications systems involving large scale network monitor-
ing and management, environmental emergency response sys-
tems requiring real-time coordination between various civil-
ian emergency response units, industrial process control re-
quiring large scale automated system instrumentation and
sensing/actuation, or supervisory control and data acquisition
(SCADA) systems requiring real-time robust control and data
communications.

Perhaps the most critical middleware service, therefore, for
the types of DRE systems outlined above are a publisher/-
subscriber service [11, 12]. The publisher/subscriber design

is a powerful architecture for event-based communication be-
cause it provides anonymity, by decoupling event publishers
and subscribers, and asynchronism, by automatically notify-
ing subscribers when a specified event is generated. Moreover,
the publisher/subscriber services reduces software dependen-
cies through anonymity and asynchrony, thereby supporting
the loose coupling required of these DRE systems. Publisher/-
subscriber services are particularly relevant for large-scale
DRE systems because they can support a changing set of
requirements and environments by defining clear and crisp
boundaries between various entities of an application.

One such publisher/subscriber service that supports several
important features required by event-driven DRE applications
is a real-time event service [13] available as part of the TAO [5]
project, which is our open-source implementation of real-time
CORBA. The real-time event service provides low-latency/-
jitter event dispatching, support for periodic processing, cen-
tralized event filtering, and efficient use of network and com-
putational resources. Additionally, many of the requirements
of these DRE systems can be met scalably and robustly via
federations of such real-time publisher/subscriber services.

With the increasing use of QoS-enabled component mid-
dleware to develop DRE systems compounded by the need
for real-time publisher/subscriber services to support a class
of DRE systems, therefore, requires integration of real-
time publisher/subscriber services within QoS-enabled com-
ponent middleware. However, standards-based component
middleware do not specify how publisher/subscriber ser-
vices can be robustly supported within component middle-
ware. Although performance evaluation metrics for real-time
publisher/subscriber object-oriented middleware services are
available [14], there is a general lack of information and in-
sights into the design and performance evaluation of real-time
publisher/subscriber services within QoS-enabled component
middleware. This paper focuses on addressing this dimension
of research.
Our earlier work in the space of integrating publisher/-
subscriber services and supporting a federation of these within
QoS-enabled component middleware has focused on (1) how
software design patterns can be used to provide a robust in-
tegration of event-based communication services within QoS-
enabled component middleware [15], (2) how a federation of
real-time publisher/subscriber services can be configured and
deployed in the context of QoS-enabled component middle-
ware [16], and (3) how model-driven generative tools can be
used to alleviate accidental complexities in configuring and
deploying these services within QoS-enabled component mid-
dleware [17].

This paper extends our previous work by (1) analyz-
ing the pros and cons of different design choices for inte-
grating real-time publisher/subscriber services within QoS-
enabled component middleware (2) illustrating how container-

2



based RT publisher/subscriber services leverage the benefits of
the component-oriented software development paradigm, and
(3) demonstrating empirically that QoS-enabled component
middleware-based RT publisher/subscriber services (specif-
ically the TAO Real-time Event Service) can successfully
maintain the QoS requirements of large-scale DRE applica-
tions.

Paper organization. The remainder of this paper is orga-
nized as follows: Section 2 describes three different architec-
tural choices for integrating real-time publisher/subscriber ser-
vices within QoS-enabled component middleware illustrating
the pros and cons of each approach; Section 3 describes the
challenges in integrating real-time event services within com-
ponent middleware and our solutions to address these; Sec-
tion 4 provides the results of benchmarking experiments that
establish the feasibility of container-based RT event services;
Section 5 compares our results to related research; and Sec-
tion 6 presents concluding remarks.

2 Architectural Design Choices for
Composing Real-time Event Services
in QoS-enabled Component Middle-
ware

The CORBA Component Model (CCM) standard does not
specify how publisher/subscriber services can be composed
within component middleware. This issue is further compli-
cated by the need for real-time publisher/subscriber services to
be integrated within QoS-enabled implementations of CCM,
such as our Component Integrated ACE ORB (CIAO) [18].

This section describes three possible architectural choices
for integrating real-time publisher/subscriber services within
the CORBA Component Model. In this paper we focus on in-
tegration of a real-time event channel, which is a manifestation
of the publisher/subscriber communication paradigm. Fig-
ure 1 illustrates how these architectural choices vary based on
where within the component middleware architecture does an
event channel gets composed. The three architectural choices
include (1)component-based– where the event channel can be
represented as an application-level component, (2)container-
based– where the event channel can be encapsulated within
the container, and (3)component server-based– where the
event channel can reside within the component server. This
section describes each architecture choice in detail analyzing
the advantages and disadvantages of each approach. Section 4
subsequently provides empirical guidance to support our anal-
ysis.

Figure 1:Architectural Choices for Integrating Publisher/-
Subscriber Services in CCM

2.1 Component-level Event Channels

• Design The first architecture choice for providing real-
time event services in component middleware is to instantiate
event channels as application-level components as illustrated
in Figure 2. In this architecture, the interface normally pro-
vided by the event channel is exposed as a facet. This interface
contains methods to connect to the event channel, configure
real-time properties, and push events. The event channel in-
terface is transformed from that of a standard CORBA object
into that of a CORBA component.

Figure 2: Publisher/Subscriber Service As CCM Compo-
nent

• Analysis The primary advantage to this approach is its
simplicity. The complexity needed to implement an event
channel component is rudimentary since the encapsulated ser-
vice already implements the event channel functions. Also,
this architecture does not restrict event channel capabilities in
any way. The full set of event channel features is available to
other components. Instantiating and deploying multiple event

3



channels is straightforward and follows the same rules as ap-
ply to standard components.

There are a number of disadvantages to using component-
level event channels. Generally speaking, the shortcomings of
the object model remain present in this architecture. First, the
component glue-code, or servant, must manipulate event ser-
vice interfaces directly, which exposes low-level CORBA pro-
gramming details. Second, the component servant logic must
encapsulate QoS and RT properties, which inhibits the flexi-
bility and reusability of components across different operating
contexts and environments. Third, it is impossible to substitute
or interchange different publisher/subscriber services without
recompilation of components. Fourth, application level com-
ponents must now be responsible for managing event channel
lifecycles.

The net result of these effects is that component-level com-
position of event channel configurations must be decided at
design-time, rather than at deployment time. Additionally, the
event channel component architecture conflicts with the stan-
dard CCM container programming model, which establishes
the container to be sole mediator between application-level
components and common middleware services, such as real-
time event services. Ironically, in this case the event service
itself is encapsulated within the component. Finally, this ar-
chitecture always results in a remote call to transmit an event
to the event channel component, which must be handled by
the ORB and requires additional processing and levels of in-
direction. Given the number of unfavorable consequences of
utilizing this architecture, it is not appropriate for the majority
of component-based DRE applications that require stringent
QoS guarantees at a low cost.

2.2 Container-level Event Channels

• Design Figure 3 depicts a second possible architecture for
providing real-time event services in component middleware
where an event channel is encapsulated within the container.
In this architecture, the container is responsible for managing
event channel lifecycles, initializing channels and gateways
that are necessary in the context of a federation, connecting
publishers and subscribers, configuring QoS and RT proper-
ties, implementing publisher and subscriber servants, and ter-
minating services. The container also exposes two distinct in-
terfaces. One interface provides configuration methods and
is invoked by the component deployment framework based
on the properties specified in XML descriptors that describe
configuration decisions. The second interface provides a push
method and is invoked by application-level components.

• Analysis There are many advantages to this architecture.
First, application components are totally isolated from event
service implementation details. This reduces the memory foot-

Figure 3:Publisher/Subscriber Service Within CCM Con-
tainer

print of individual components and preserves their lightweight
nature. Although the component deployment framework is
exposed to the implementation details of the real-time event
service (since the deployment framework must instantiate
and configure channels) rather than component servant glue
code, it is not important for the deployment framework to be
lightweight.

Second, QoS properties are specified via XML and encapsu-
lated within the container. This maximizes the flexibility and
reusability of components by allowing them to be reconfig-
ured with different QoS properties and/or services as required
by new and changing operating contexts, without making any
changes to the component logic or glue-code thereby obviat-
ing the need for recompilation. Third, this architecture aligns
with the CCM container programming model and delays event
configuration-related decisions until deployment time, which
allows additional optimizations to be incorporated depending
on the knowledge of the deployment context. For example, it
may not be known until deployment time which network links
have high latency or low reliability, yet this information is crit-
ical to determining the best possible real-time event service
configuration.

The disadvantage to the container-level event channel archi-
tecture is the difficulty encountered in actually implementing
it effectively and efficiently for multiple dissimilar services.
There are a number of design challenges that arise when pur-
suing this method of event channel integration. The various
design challenges and patterns-based solutions appear in Sec-
tion 3.

2.3 Component Server-level Event Channels

• Design The third possible architecture for providing real-
time event services in component middleware is to place event
channels within the component server. In this architecture,
event channels are still accessed and manipulated via the con-
tainer. However, the component server-level architecture is
fundamentally different from the container-level architecture
because the component server is a lower-level entity. Only a
single component server exists on each host in the distributed

4



computing environment, so this architecture results in all the
components that execute on a given host sharing the same
event channel.

Figure 4:Publisher/Subscriber Service Within Component
Server

• Analysis The advantages present in the container-level ar-
chitecture are also applicable to the component server-level
architecture: components are still isolated from event services
in such a way that they remain configurable after compila-
tion, their memory footprint is minimized, and push operations
result in only local method invocations. However, the com-
ponent server-level architecture is more coarse-grainedi.e., a
large number of components may be required to share a sin-
gle channel. This result may be an advantage or disadvantage
depending on the specific component application.

For applications that require either multiple event channels
on a single host or that wish to maximize component flexi-
bility to allow for future enhancements or modifications, the
component server-level architecture may be too restrictive. On
the other hand, for applications that do not require these ca-
pabilities, the component server-level architecture results in a
simpler configuration and deployment process, which reduces
developer effort. In the case of very large-scale DRE systems,
the savings may be substantial. Ultimately, the question of
whether to employ container or component server event chan-
nels can only be answered by the application developer.

Based on our analysis of the pros and cons of each design
choice, we have selected the container-based event channel
as the target to obtain additional guidance on its applicability
and performance. The container-based architecture provides
the most flexible real-time event service, while preserving the
benefits of the CCM container programming model. As de-
scribed in [15], this architecture can be implemented in a way
that is very fast, lightweight, and flexible enough to accommo-
date new services in the future with little modification. Conse-

quently, the container-based architecture will be useful for the
widest range of DRE component applications.

3 CIAO Container Framework Design
Goals and Implementation Strategies

This section describes how the CIAO publisher/subscriber
service architecture, shown in Figure 3, employs patterns
to address the design goals of the container programming
model outlined in Section 2. For example, while maintain-
ing efficiency and reliability requirements, CIAO preserves the
lightweight nature of components. An individual component
need know nothing about the services that implement event-
passing – the container encapsulates that complexity. It there-
fore follows that component application developers need not
be concerned with these details, further simplifying the design
of the core component logic.

For each design goal mandated by the CCM container pro-
gramming model, our pattern-oriented solution is detailed be-
low. Figure 5 illustrates a pattern language [19] demonstrating
the interactions between patterns in the publisher/subscriber
service framework integrated within a container.

Figure 5: Pattern Interactions in the CIAO Pub-
lisher/Subscriber Service Framework

Design goal 1: Provide a service-independent representation
of real-time properties.
Solution approach → Adapter pattern: Different
publisher/subscriber services depend on different representa-
tions of real-time properties. The CIAO container implements
an adapter that converts a service-independent representa-
tion of real-time properties (as specified in XML) into a
service-specific representation. The benefits of this design are
twofold: (1) component developers need not concern them-
selves with peculiar configuration interfaces and (2) no matter
what changes occur to the underlying publisher/subscriber
services, the interface exposed to components does not
change.

5



Design goal 2 : Enhance reuse and extensibility by allowing
new publisher/subscriber services to be easily plugged-in.

Solution approach → Strategy pattern: This design re-
sults in service implementations that are interchangeable from
the container perspective. After object creation, the container
has no knowledge of the actual algorithm being used, which
enables fast operation delegations and simplifies container de-
sign.

Design goal 3: Reduce the memory footprint of the con-
tainer by decoupling the creation of publisher/subscriber ser-
vice instances from their representation.

Solution approach → Builder pattern: The creation of
real-time event channel instances is somewhat complex in
CIAO since they must be initialized properly. CIAO defines
a builder class that encapsulates the complexity of creating
and initializing event channels. The result is finer control of
the construction process, isolation of construction code, and
the ability to vary the publisher/subscriber service implemen-
tation.

Design Goal 4: Ensure components incur only the cost of
services that are required by deferring publisher/subscriber
service selection and configuration decisions until run-time.

Solution approach → Component Configurator pattern:
In CIAO, publisher/subscriber service libraries are loaded dy-
namically on-demand to avoid encumbering the application
with unused services, while still allowing components to wait
until deployment time to select a particular service. This
mechanism provides the flexibility to initiate, suspend, re-
sume, and terminate services.

Design Goal 5: Enable component access to the full set
of QoS features available in publisher/subscriber services by
encapsulating service-specific QoS specification operations
within a high-level interface.

Solution approach → Wrapper Facade pattern: The
CIAO container framework implements a high-level configu-
ration interface that forwards invocations to the corresponding
service-specific operations for each publisher/subscriber ser-
vice. This design results in a concise and robust programming
interface capable of configuring the QoS features in multiple
dissimilar publisher/subscriber services.

4 Performance Evaluation of Com-
ponent Middleware-based Real-time
Event Services

With increasing use of QoS-enabled component middleware to
develop and deploy DRE systems, it is important to ascertain

the real-time performance of QoS-enabled component middle-
ware, in particular that of real-time publisher/subscriber ser-
vices integrated within QoS-enabled component middleware.
This section provides results of empirically evaluating perfor-
mance of a real-time event channel in CIAO, which is our
QoS-enabled component middleware implementation. Our re-
sults focus on the container-level integration of event channels
described in Section 2.2.

4.1 Experiment Domain

The domain we used for our experiments to empirically bench-
mark performance of RT event channel integration within
QoS-enabled component middleware comprises a hypotheti-
cal aerial battlefield theatre depicted in Figure 6.

Figure 6:Hypothetical Aerial Warfare Scenario

In this military application scenario, a number of Unmanned
Aerial Vehicles (UAVs) simultaneously transmit surveillance
video from different regions in a battlefield. A UAV is a
remote-controlled aircraft that is launched in order to obtain
a view of an engagement and performs such functions as spot-
ting enemy movements and locating targets in a battlefield.

A Distributor node receives video streams from UAVs and
forwards it to different receivers on theCommand and Opera-
tions Control(CAOC). The CAOC entity monitors these video
streams and is responsible for making tactical decisions about
vehicle deployment and weapon system guidance. Some of the
CAOC receivers perform automatic target recognition to guide
Unmanned Combat Aerial Vehicles (UCAV), while others pro-
vide commands to launch weapons from ground stations.

This application possesses features that make it a complex
and challenging problem, including large-scale, stringent real-
time requirements, resource constraints, and the distributed
communication environment (which includes low-bandwidth,
high-loss wireless links) that requires the use of publisher/-
subscriber paradigm.

6



4.2 Experiment Description

This section describes our experiment by detailing the role of
various entities. Figure 7 shows the topology of our aerial
warfare theatre prototype. We modeled this topology using our
EQAL modeling tool [15, 16]. EQAL is a modeling tool that
resolves accidental complexities of configuring and deploying
large-scale publisher/subscriber component middleware-based
DRE systems. We applied our container-based real-time event
service [20] to the prototype system.

Figure 7:BBN UAV Scenario

In the prototype system shown in Figure 7, we have
modeled and implemented seven different types of CIAO
CCM components: Satellite component (Satellite ),
CAOC component (CAOC), UAV Ground Station component
(UAVGS), UAV component (UAV), Engagement System com-
ponent (Engagement Sys ), Battle System (Battle Sys ),
UCAV Ground Station component (UCAVGS) and UCAV
component (UCAV).

The interactions among these components is described be-
low:

• Satellite: Satellite is a component that is deployed for
a surveillance task. Whenever it detects abnormal sit-
uations in the battlefield, it will emit an event of type
TargetAbnormal . The CAOC component is the only
subscriber for such events.

• CAOC: The CAOC component acts as the command
and control center for the battle. Whenever it receives
a TargetAbnormal event, it will emit an event of
type PrepareCapture to instruct the UAV Ground
Station (UAV GS) to prepare to capture an image in
the field. The UAVGS is the only subscriber for this
event type. Also, whenever there is any military need
to engage the battle systems, the CAOC will emit a
Prepare Engage event type to the Engagement Sys-
tem (EngagementSys).

• UAV GS: When UAV GS component receives
a PrepareCapture event, it publishes a
CaptureImage event. Only those UAVs that
are in the surrounding target field will receive the
CaptureImage event.

• UAV When a UAV component receives aCaptureImage
event, it will begin to execute the surveillance task by
capturing images of the target field and transmitting the
image back to the CAOC through the A/V Distributor.
The image transmission is implemented via the CORBA
A/V stream service.

• EngagementSys: Whenever the EngagementSys com-
ponent receives aPrepare Engage type of event, it
will publish anEngage event to the UCAV Ground Sta-
tion (UCAV GS) and Battle System (BattleSys). The
UCAV GS and BattleSys are the only components that
are the subscribers forEngage events.

• Battle Sys: Whenever the BattleSys component re-
ceives anEngage event, it will initiate engagement by
preparing for weapon launching.

• UCAV GS: Whenever the UCAVGS component
receives an Engage event, it will dispatch a
StartLaunch event to the appropriate UCAV
components.

• UCAV: Whenever a UCAV component receives a
StartLaunch event, it will direct itself to the target
location.

There are a few interesting observations to note in this sce-
nario:

• most transmission links are wireless links imposing strin-
gent bandwidth and latency constraints,

• there is a need for prioritization between different types
of event transmissions, and

• reliability of delivery of event must be guaranteed.

Building flexible application software and object-oriented
middleware that meets these requirements is challenging be-
cause the need for determinism and predictability often re-
sults in tightly-coupled designs. For instance, conventional
mission-critical applications built with object-oriented mid-
dleware consist of closely integrated responsibilities; each
component, even with the benefit of a real-time event service,
will still have to write application code to handle multiple as-
pects, such as real-time event dispatching, scheduling and pe-
riodic event processing. Tight coupling often yields inflexi-
bility and thus can substantially increase the effort and cost
of integrating new and improved system features. By using
the container-based real-time event service, however, it is still
possible to build flexible and loosely-coupled components, yet
simultaneously meet QoS requirements.

7



As shown in the Figure 7, there are three event propagation
chains in the system. The first one begins when the Satel-
lite component emits aTargetAbnormal event and ends
when the UCAV components receive theCaptureImage
events. The second one starts with the CAOC emitting the
PrepareEngage event and terminates with the Battle Sys-
tem receiving theEngage event. The third one begins when
the CAOC emits thePrepareEngage event and ends when
the UCAVs receive theStartLaunch events.

The most important metric for any event service is event
latency, i.e., the time elapsed from when a supplier sends
an event until the last consumer interested in the event
receives it. Our goal is to demonstrate and benchmark
the publisher/subscriber features in the experiment described
above when used in the context of a component middleware
and a container-based event channel. The rest of the section
presents our experiment results with different real-time event
service settings, illustrating their effect on the provisioning of
event communication QoS in the DRE system.

4.3 Experimental Measurement Approach

Measuring the latency in the event service is hard since events
are delivered via a uni-directional flow of communication from
suppliers to consumers. As shown below, event delivery time
and jitter is comparable to the network propagation delay,
because a distributed clock precision is bounded by the jit-
ter [21], measuring the latency of event propagation, where
event supplier and event consumer are deployed in different
hosts, is impossible. Fortunately, the latency for the central-
ized configuration can be measured directly using a consumer
located in the same host as the supplier and measuring the
roundtrip delay as shown in Figure 8.

Figure 8: Experimental Setup to Measure Event Service
Latency

The performance tests were conducted on a testbed where
each machine was a dual Intel Xeon 2.4G CPU, with 1G RAM
running Windows XP Professional, and all these machines
are connected through 100M LAN. For all our measures we
use the high-resolution timer (under 2 nanosecond resolution)
available on Pentium processors. This timer is implemented

via a special register that counts the number of clock ticks
since the CPU was reset.

4.4 Metrics for Collocated Components

Before we tested our prototype system and measured results
in the experiment situations where all CCM components are
distributed into different hosts, we first show our results where
all the components are collocated in the same host and same
process,i.e., within the same component server. By doing so
we are able to mask the effects of network latencies, data rate
loss and distribution, thereby, permitting us to gauge the actual
performance of the real-time event dispatching within a QoS-
enabled component middleware. Figures 9, 10 and 11 show
the collocated event propagation delays for the three event
propagation chains described earlier, respectively.

Figure 9:Collocated UAV Results

Figure 10:Collocated UCAV Results

8



Figure 11:Collocated Battle Results

Our collocation experiment results indicate that the event
dispatching overhead is minimal thereby confirming that per-
formance optimizations of object-oriented real-time event dis-
patching are preserved within a container-based solution.

In many real-world situations, multiple components are de-
ployed within the same process but still communicate with
each other through CCM ports,i.e., facets, receptacles, event
sources, and event sinks. To improve the performance and
predictability of collocated component communication, the
process-collocation optimization was applied to CIAO’s im-
plementation. Process-collocation improves the performance
and predictability transparencies for objects that reside in
the same address space as the servant implementation, while
maintaining locality transparency. To implement process-
collocation, the ORB must identify the location of the com-
ponent’s reference without explicit application programmer
intervention and without violating the policies specified by
POAs and the component containers. Once the ORB deter-
mines that a reference is collocated in the same process, all op-
eration invocations can be forwarded to a special collocation
stub. The goal of process-collocation optimization is to en-
sure the performance of accessing in-process collocated com-
ponents is comparable to accessing standard C++ components,
while still providing predictability transparency in the frame-
work.

4.5 Metrics for Distributed Components

In this experiment, we performed latency and jitter measure-
ments on the prototyped UAV application where components
are deployed across multiple hosts. This experiment provides
a realistic picture of the system performance in a typical com-
puting environment. The network topology is shown in Fig-
urẽreffig:network-topology.

Our measurements demonstrate that CIAO’s container-

Figure 12:The Network Topology of Experiment for Dis-
tributed Case

based real-time event service provides the performance pre-
dictability needed by a representative DRE application. De-
lays for the same three event propagation chains are given be-
low.

Figure 13:Distributed Case UAV Results

As can be seen from the above figures, the performance
of the federation of event channels integrated within differ-
ent containers continues to be predictable with minimal jitter,
however, with an additional cost of network latencies. Our
testbed comprised networks (LANs) that were lightly loaded.
We are currently performing additional experiments on the
Emulab [22] testbed, where we can emulate different network
types and link characteristics.

9



Figure 14:Distributed Case UCAV Results

Figure 15:Distributed Case Battle Results

5 Related Work

This section surveys literature on Publisher/Subscriber sys-
tems, both standards based and proprietary, concentrating on
publisher/subscriber systems for real-time systems. None of
the prior work deals with component middleware withreal-
time QoS support, which is the focus of our work.

5.1 Standards-based Publisher/Subscribers
• The CORBA Event Service The CORBA Event Service
is a specification that defines a basic Publisher/Subscriber ar-
chitecture for CORBA systems. In the CORBA Event Service
the Publishers are calledSuppliers. Suppliers can be either
push-style or pull-style, the first pro-actively generate events
and send those events to the event channel for distribution.
Pull-style suppliers passively wait until the event channel re-

quires an event and supply one if the event is available. Like-
wise, the CORBA Event Service usesConsumersto play the
Subscriber role. Consumers can also be pull-style or push-
style, the first style requires consumers to periodically or pro-
actively query events from the event service. Push-style con-
sumers are simply notified when a new event is available. Both
styles can be mixed, in other words, push-style consumers can
receive events generated by pull-style suppliers, or vice-versa.
The CORBA Event Service does not provide any mechanisms
to control QoS behavior, and filtering is limited to the so-
calledTyped Event Channelswhere consumers and suppliers
can receive a specific IDL-type. However, Typed Events is an
optional compliance point in the CORBA Event Service and
very few implementations for this variant of the service exist.
Therefore, in practice, filtering is not supported.

There are several commercial CORBA-compliant Event
Service implementations available from multiple vendors,
such as IONA and Borland. IONA also produces OrbixTalk,
which is a messaging service based on UDP/IP multicast.
Since the CORBA Event Service specification does not ad-
dress issues critical for real-time applications, the QoS behav-
ior of these implementations are not acceptable solutions for
many application domains.

• The CORBA Notification Service The OMG has issued
a specification for a Notification Service [23], which is a su-
perset of the CORBA Event Service. This specification adds
interfaces for event filtering, configurable event delivery se-
mantics (e.g., at least once or at most once), security, and event
delivery QoS.

• The CORBA Distributed Notification Service The OMG
has also issued a specification to build distributed versions of
the Notification Service via its “Management of Event Do-
mains Specification” [24]. This document describes how mul-
tiple instances of the Notification Service can be intercon-
nected to avoid the excessive overhead and eliminate the sin-
gle point of failure represented by the Event Channel object.
This specification, however, does not incorporate any mech-
anisms to reduce event delivery based on filters. Also, both
the CORBA Notification Service and the CORBA Distributed
Notification Service are based on Object-Oriented middleware
rather than component middleware.

5.2 Proprietary Publisher/Subscriber Systems
•Cadena Event Channel Framework Cadena Event Com-
munication Framework [25] includes a CORBA-based event
channel which has been integrated into the OpenCCM infras-
tructure. The framework implements a number of features of
the event service middleware, such as event filtering, event
correlation, and direct-dispatching. Although this work comes
close to our work, however, it does not address the problems

10



such as real-time event scheduling and dispatching and peri-
odic event processing, which are crucial for a lot of mission-
critical real-time applications. Our work, on the other hand,
leverages the RT event channels and QoS-enabled component
middleware to provide the properties outlined above.

• SIENA SIENA [26, 27] is a notification service archi-
tecture for Internet-scale event distribution. The architecture
is based oncontent-based networking, where a network of
routers propagate packets based not on a specific destination
address, but on the contents of the packet. The authors pro-
pose using an event format similar to the CORBA Notification
Service,i.e., sequence of(name, value) tuples. Using this
format consumers use a boolean predicate on the tuple val-
ues to describe the sets of events they are interested in. The
authors describe algorithms to reduce the use of network re-
sources. For example, the authors propagate filtering infor-
mation as close to the sources as possible, likewise, filtering
constraints are combined and simplified to minimize the use
of computation resources in the routers.

Both SIENA and TAO’s Real-time Event Service use simi-
lar techniques to conserve network and CPU resources, how-
ever, SIENA’s event and filtering models are more powerful
than the model in our Real-time Event Service. In contrast,
however, our real-time Event Service is better suited for appli-
cations with stringent latency and predictability requirements,
such as avionics mission computing.

• ECO The Distributed Systems Group at Trinity College,
Dublin has developed ECO [28], for “Events, Constraints and
Objects.” The authors propose building programs out of coop-
erating objects that publish or subscribe to events as needed.
Filtering, concurrency and timeliness constraints are expressed
as constraints on the events that a particular object publishes
or subscribes to.

The authors propose extending general-purpose program-
ming languages, such as C++ or Java, to include explicit dec-
larations for events, as well as the types of events that a class
can subscribe or publish. Naturally, this static publications or
subscriptions can be further restricted at run-time, the authors
propose using new language statements for this purpose.

Objects can addNotify constraints to limit the objects that
they subscribe to, this conditions are evaluated at the source of
the event and thus are limited to constraints on the event pa-
rameters or the source identity. Objects can also definePreand
Post constraints, this are evaluated on the destination object
and can use the state of the receiving object to affect the event
processing.Pre constraints are evaluated before the event is
delivered and can determine if the event is dropped, enqueued
or processed immediately.

• CMU Real-time Publisher/Subscriber Rajkumar,et al.,
describe a real-time publisher/subscriber prototype developed

at CMU SEI [29]. Their Publisher/Subscriber model is func-
tionally similar to the CORBA Event Service, though it defines
its own programming APIs and communication protocols. The
authors details how real-time threads and adequate synchro-
nization primitives can be used to implement the RT P/S model
without undue priority inversions. However, the authors also
fail to recognize that adequate synchronization primitives are a
necessary condition to address unbounded priority inversions,
but it is not a sufficient condition. For example, the authors
do not detail how their algorithms avoid critical sections with
time bounds dependent on the number of participants in the
system.

5.3 Summary

Much has been written about Publisher/Subscriber systems,
but there is little effort has been documented on the patterns,
optimizations and architectures required to implement QoS-
aware Publisher/Subscriber models in component-based soft-
ware architectures. Also, there is very little or no empirical
evidence to support the performance and predictability claims
of several of these systems, even when research concentrates
on real-time applications.

6 Conclusions

R&D over the past decade on object-oriented standards mid-
dleware, such as CORBA, has demonstrated its effectiveness
in developing and supporting QoS requirements of large-scale
distributed and real-time systems. Over the past few years,
OO middleware has been evolving into component-oriented
middleware. Component-based software development has al-
ready received widespread acceptance in the enterprise busi-
ness and desktop application domains. However, developers
of distributed real-time and embedded (DRE) systems have
encountered limitations with the available component mid-
dleware platforms, such as the CORBA Component Model
(CCM) and the Java 2 Enterprise Edition (J2EE). These limi-
tations often preclude developers of DRE systems from fully
exploiting the benefits of component software. In partic-
ular, component middleware platforms lack standards-based
publisher/subscriber communication mechanisms that support
key quality-of-service (QoS) requirements of DRE systems,
such as low latency, bounded jitter, and end-to-end operation
priority propagation. QoS-enabled publisher/subscriber ser-
vices are available in object middleware platforms, such as
Real-time CORBA, but such services have not been integrated
into component middleware due to a number of development
and configuration challenges.

This paper provides three approaches to integrating real-
time publisher/subscriber services within QoS-enabled com-

11



ponent middleware. The pros and cons of individual integra-
tion approaches are described. We also provide performance
evaluation for the container-based integration approach, which
provides the least intrusive and most standards-conforming ap-
proach. The collocated case results, which demonstrate event
dispatching overhead, provides sufficient guidance to indicate
that all the real-time properties of real-time event channels is
preserved. The distributed case reveals the performance con-
tinues to remain predictable, however, with the additional cost
of network latencies, which is expected.

Our ongoing R&D in this field involves the evaluation of
the remaining design choices and application of this technol-
ogy in the context of a variety of DRE domains, including
telecom, avionics mission computing, software radio and in-
dustrial process control. The software described in this paper
is available for download fromwww.dre.vanderbilt.
edu/CIAO (for the CIAO QoS-enabled component middle-
ware) andwww.dre.vanderbilt.edu/cosmic (for the
CoSMIC modeling tools we used for configuring and deploy-
ing event channels within CIAO).

References
[1] Michi Henning and Steve Vinoski,Advanced CORBA Programming

with C++, Addison-Wesley, Reading, MA, 1999.

[2] Greg Bollella, James Gosling, Ben Brosgol, Peter Dibble, Steve Furr,
David Hardin, and Mark Turnbull,The Real-Time Specification for
Java, Addison-Wesley, 2000.

[3] Angelo Corsaro and Douglas C. Schmidt, “The Design and
Performance of Real-time Java Middleware,”IEEE Transactions on
Parallel and Distributed Systems, 2003.

[4] Object Management Group,Real-time CORBA Specification, OMG
Document formal/02-08-02 edition, Aug. 2002.

[5] Douglas C. Schmidt, David L. Levine, and Sumedh Mungee, “The
Design and Performance of Real-Time Object Request Brokers,”
Computer Communications, vol. 21, no. 4, pp. 294–324, Apr. 1998.

[6] George T. Heineman and Bill T. Councill,Component-Based Software
Engineering: Putting the Pieces Together, Addison-Wesley, Reading,
Massachusetts, 2001.

[7] Clemens Szyperski,Component Software—Beyond Object-Oriented
Programming, Addison-Wesley, Santa Fe, NM, 1998.

[8] David C. Sharp and Wendy C. Roll, “Model-Based Integration of
Reusable Component-Based Avionics System,” inProceedings of the
Workshop on Model-Driven Embedded Systems in RTAS 2003, May
2003.

[9] Object Management Group,Light Weight CORBA Component Model
Revised Submission, OMG Document realtime/03-05-05 edition, May
2003.

[10] Nanbor Wang, Douglas C. Schmidt, Aniruddha Gokhale, Craig
Rodrigues, Balachandran Natarajan, Joseph P. Loyall, Richard E.
Schantz, and Christopher D. Gill, “QoS-enabled Middleware,” in
Middleware for Communications, Qusay Mahmoud, Ed. Wiley and
Sons, New York, 2003.

[11] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
and Michael Stal,Pattern-Oriented Software Architecture—A System of
Patterns, Wiley & Sons, New York, 1996.

[12] Real-Time Innovations, “NDDS: The Real-Time Publish-Subscribe
Middleware,” www.rti.com/products/ndds/ndwp0899.pdf, 1999.

[13] Timothy H. Harrison, David L. Levine, and Douglas C. Schmidt, “The
Design and Performance of a Real-time CORBA Event Service,” in
Proceedings of OOPSLA ’97, Atlanta, GA, Oct. 1997, ACM, pp.
184–199.

[14] Douglas C. Schmidt and Carlos O’Ryan, “Patterns and Performance of
Real-time Publisher/Subscriber Architectures,”Journal of Systems and
Software, Special Issue on Software Architecture - Engineering Quality
Attributes, 2002.

[15] George Edwards, Douglas C. Schmidt, Aniruddha Gokhale, and Bala
Natarajan, “Integrating Publisher/Subscriber Services in Component
Middleware for Distributed Real-time and Embedded Systems,” in
Proceedings of the 42nd Annual Southeast Conference, Huntsville, AL,
Apr. 2004, ACM.

[16] Gan Deng, Aniruddha Gokhale, and Bala Natarajan, “Model-driven
Integration of Federated Event Services in Real-time Component
Middleware,” inProceedings of the 42nd Annual Southeast
Conference, Huntsville, AL, Apr. 2004, ACM.

[17] George Edwards, Gan Deng, Douglas C. Schmidt, Anirudda Gokhale,
and Balachandran Natarajan, “Model-driven Configuration and
Deployment of Component Middleware Publisher/Subscriber
Services,” inSubmitted to the Third International Conference on
Generative Programming and Component Engineering (GPCE),
Vancouver, CA, Oct. 2004, ACM.

[18] Institute for Software Integrated Systems, “Component-Integrated ACE
ORB (CIAO),” www.dre.vanderbilt.edu/CIAO/, Vanderbilt University.

[19] Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max
Jacobson, Ingrid Fiksdahl-King, and Shlomo Angel,A Pattern
Language, Oxford University Press, New York, NY, 1977.

[20] David A. Karr, Craig Rodrigues, Yamuna Krishnamurthy, Irfan Pyarali,
and Douglas C. Schmidt, “Application of the QuO Quality-of-Service
Framework to a Distributed Video Application,” inProceedings of the
3rd International Symposium on Distributed Objects and Applications,
Rome, Italy, Sept. 2001, OMG.

[21] Hermann Kopetz,Real-Time Systems: Design Principles for
Distributed Embedded Applications, Kluwer Academic Publishers,
Norwell, Massachusetts, 1997.

[22] Robert Ricci and Chris Alfred and Jay Lepreau, “A Solver for the
Network Testbed Mapping Problem,”SIGCOMM Computer
Communications Review, vol. 33, no. 2, pp. 30–44, Apr. 2003.

[23] Object Management Group,Notification Service Specification, Object
Management Group, OMG Document telecom/99-07-01 edition, July
1999.

[24] Object Management Group,Management of Event Domains
Specification, Object Management Group, OMG Document
formal/01-06-03 edition, June 2001.

[25] Gurdip Singh, Bob Maddula, and Qiang Zeng, “Event Channel
Configuration in Cadena,” inProceedings of the IEEE
Real-time/Embedded Technology Application Symposium (RTAS),
Toronto, Canada, May 2004, IEEE.

[26] Antonio Carzaniga, David S. Rosenblum, and Alexander L Wolf,
“Design and Evaluation of a Wide-Area Event Notification Service,”
ACM Transactions on Computer Systems, vol. 19, no. 3, pp. 332–383,
Aug. 2001.

[27] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf,
“Achieving Scalability and Expressiveness in an Internet-Scale Event
Notification Service,” inProceedings of the Nineteenth Annual ACM
Symposium on Principles of Distributed Computing, Portland, OR, July
2000, pp. 219–227.

[28] Gradimir Starovic, Vinny Cahill, and Brendan Tangney, “An event
based object model for distributed programming,” inOOIS
(Object-Oriented Information Systems) ’95, London, 1995, pp. 72–86,
Springer-Verlag.

[29] Ragunathan Rajkumar, Mike Gagliardi, and Lui Sha, “The Real-Time
Publisher/Subscriber Inter-Process Communication Model for
Distributed Real-Time Systems: Design and Implementation,” inFirst
IEEE Real-Time Technology and Applications Symposium, May 1995.

[30] Object Management Group,The Common Object Request Broker:
Architecture and Specification, 3.0.2 edition, Dec. 2002.

12



[31] Aniruddha Gokhale, Douglas C. Schmidt, Balachandra Natarajan, and
Nanbor Wang, “Applying Model-Integrated Computing to Component
Middleware and Enterprise Applications,”The Communications of the
ACM Special Issue on Enterprise Components, Service and Business
Rules, vol. 45, no. 10, Oct. 2002.

[32] Nanbor Wang, Douglas C. Schmidt, Aniruddha Gokhale,
Christopher D. Gill, Balachandran Natarajan, Craig Rodrigues,
Joseph P. Loyall, and Richard E. Schantz, “Total Quality of Service
Provisioning in Middleware and Applications,”The Journal of
Microprocessors and Microsystems, vol. 27, no. 2, pp. 45–54, mar
2003.

[33] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,
Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, Reading, MA, 1995.

Appendices

A Overview of CORBA Component
Model

The CORBA Component Model (CCM) forms a key part of
the CORBA 3.0 standard [30]. CCM is designed to address
the limitations with earlier versions of CORBA 2.x middle-
ware that supported a distributed object computing (DOC)
model [31]. Figure 16 depicts the layered architecture of the
CCM model. The remainder of this section describes the key

Figure 16:Layered CCM Architecture

CCM elements in Figure 16.
Components.Componentsin CCM are implementation enti-
ties that collaborate with each other viaports. CCM supports
several types of ports, including (1)facets, which define an
interface that accepts point-to-point method invocations from
other components, (2)receptacles, which indicate a depen-
dency on point-to-point method interface provided by another
component, and (3)event sources/sinks, which indicate a will-
ingness to exchange typed messages with one or more compo-
nents.

Container. A container in CCM provides the run-time en-
vironment for one or more components that manages various
pre-defined hooks and strategies, such as persistence, event
notification, transaction, and security, used by the compo-
nent(s). Each container is responsible for (1) initializing in-
stances of the component types it manages and (2) connecting
them to other components and common middleware services.
Developer-specified metadata expressed in XML can be used
to instruct CCM deployment mechanisms how to control the
lifetime of these containers and the components they manage.
The meta-data is present in XML files calleddescriptors.
Component assembly.In a distributed system, a component
may need to be configured differently depending on the con-
text in which it is used. As the number of component con-
figuration parameters and options increase, it can become te-
dious and error-prone to configure applications consisting of
many individual components. To address this problem, the
CCM defines anassemblyentity to group components and
characterize the meta-data that describes these components in
an assembly. Each component’s meta-data in turn describes
the features available in it (e.g., its properties) or the fea-
tures that it requires (e.g., its dependencies). CCM assem-
blies are defined using XML Schema templates, which pro-
vide an implementation-independent mechanism for describ-
ing component properties and generating default configura-
tions for CCM components. These assembly configurations
can preserve the required QoS properties [32] and establish the
necessary configuration and interconnections among groups of
components.
Component server. A component serveris an abstraction
that is responsible for aggregatingphysicalentities (i.e., im-
plementations of component instances) intological entities
(i.e., distributed application services and subsystems). A CCM
component server is a singleton [33] that plays the role of
a factory to create containers and standardizes the role of a
server process in the CORBA 2.x object model. Each compo-
nent server is typically assigned a particular set of capabilities
within a distributed system.
Component packaging and deployment.In addition to the
run-time building blocks outlined above, the CCM also stan-
dardizes component implementation, packaging, and deploy-
ment mechanisms. Packaging involves grouping the imple-
mentation of component functionality – typically stored in
a dynamic link library (DLL) – together with other meta-
data that describes properties of this particular implementa-
tion. The CCM Component Implementation Framework (CIF)
helps generate the component implementation skeletons and
persistent state management automatically using the Compo-
nent Implementation Definition Language (CIDL).

13


