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tSome of the most 
hallenging problems in high perfor-man
e 
omputing are those asso
iated with produ
ing soft-ware for distributed, high performan
e software (DHPS)systems in whi
h distributed resour
es, su
h as pro
es-sors, sensors and networks 
oordinate to address high per-forman
e 
omputing needs of different domains. Support-ing the multiple simultaneous quality of servi
e (QoS) andfun
tional requirements of DHPS systems is parti
ularlyvexing for DHPS system developers and integrators, whomust address these QoS and fun
tional requirements with-out over
ompli
ating their solutions, degrading softwarequality, and ex
eeding proje
t time and effort 
onstraints.A key enabler in re
ent su

esses with small- to medium-s
ale DHPS systems has been middleware, whi
h providesreusable building blo
ks. However, as DHPS systems s
aleto form large �
omposable systems of systems,� the designspa
e 
omprising available 
hoi
es of reusable buildingblo
ks and servi
es in middleware grows substantially. Thislimits the ability of the DHPS developers to make the rightdesign 
hoi
es, whi
h adversely impa
ts validation and ver-i�
ation of performan
e of end systems, and hen
e proje
t
osts.To enable DHPS developers to make the right design
hoi
es, a systemati
 methodology to analyze the perfor-man
e of DHPS systems at design time is ne
essary. Su
ha methodology may 
onsist of models to analyze the perfor-man
e of individual building blo
ks 
omprising the middle-

ware and the 
omposition of these building blo
ks. As a �rststep towards building this methodology, in this paper wepresent a model of the Rea
tor pattern, whi
h provides thevery important syn
hronous demultiplexing and dispat
h-ing 
apabilities in DHPS systems. The model is based on theSto
hasti
 Reward Net (SRN) modeling paradigm. We illus-trate how the model 
ould be used relatively easily to ob-tain estimates of key performan
e metri
s and for the sensi-tivity analysis of the Rea
tor pattern.1. Introdu
tionEmerging Trends and ChallengesLarge-s
ale, distributed, high performan
e software(DHPS) systems form the basis of numerous s
ienti�
 grid
omputing appli
ations. DHPS systems 
omprise many in-terdependent artifa
ts, su
h as network/bus inter
onne
ts,many 
oordinated lo
al and remote endsystems, and mul-tiple layers of software. DHPS systems demand multiplesimultaneous quality of servi
e (QoS) properties in
lud-ing predi
tability, 
ontrollability, and adaptability of oper-ating 
hara
teristi
s for appli
ations with respe
t to su
hfeatures as time, throughput, a

ura
y, 
on�den
e, se
u-rity and syn
hronization. All these issues be
ome highlyvolatile in large-s
ale DHPS systems, due to the dy-nami
 interplay of the many inter
onne
ted parts that areoften 
onstru
ted from smaller parts.



Although it is possible in theory to develop thesetypes of 
omplex DHPS systems from s
rat
h, 
ontempo-rary e
onomi
 and organizational 
onstraints, as well asin
reasingly 
omplex requirements and 
ompetitive pres-sures, make it infeasible to do so in pra
ti
e. A key en-abler in re
ent su

esses with DHPS systems has beenQoS-enabled middleware [20℄, su
h as Globus [3℄.Middleware 
omprises software layers that pro-vide platform-independent exe
ution semanti
s andreusable servi
es that 
oordinate how appli
ation 
ompo-nents are 
omposed and interoperate. The primary roleof middleware is to (1) fun
tionally bridge the gap be-tween appli
ation programs and the lower-level hard-ware and software infrastru
ture in order to 
oordinatehow parts of appli
ations are 
onne
ted and how they in-teroperate, (2) enable and simplify the integration of 
om-ponents developed by multiple te
hnology suppliers, and(3) provide 
ommon reusable a

essibility for fun
tional-ity and patterns by fa
toring out artifa
ts from appli
ationsinto reusable 
ode.The �exibility and 
on�gurability offered by middle-ware is manifested in the large number of reusable soft-ware building blo
ks and 
on�guration options, whi
h 
anbe used to 
ompose and build large systems end to end.These building blo
ks embody good design pra
ti
es 
alledpatterns [4, 22℄. The 
hoi
e of the pattern to use is depen-dent on the 
ontext and the 
onsequen
es of using the pat-tern.Current ad ho
 te
hniques based on manually 
hoosingthe right set of building blo
ks are error-prone and may ad-versely impa
t performan
e, system 
osts and s
hedules,sin
e most errors are 
aught very late in the life
y
le ofDHPS development. It is desirable to have the ability toanalyze the performan
e of individual building blo
ks andthe 
omposed system mu
h earlier in the life
y
le of DHPSsystems, thereby signi�
antly lowering system testing 
ostsas well as improving 
orre
tness of the �nal developed sys-tem.To address the 
hallenges of performan
e evaluation ofDHPS systems design, a systemati
 performan
e analy-sis methodology is ne
essary. This methodology would
omprise performan
e models of the individual buildingblo
ks and the 
omposition of the building blo
ks. Theperforman
e models are based upon well-known analyti-
al/numeri
al modeling paradigms [18, 2, 8℄ and simula-tion te
hniques [25℄. As a �rst step towards the develop-ment of su
h a methodology, this paper presents a modelof the Rea
tor pattern [22℄, whi
h provides the very impor-tant syn
hronous demultiplexing and dispat
hing 
apabili-ties in DHPS systems. The model is based on the Sto
hasti
Reward Net (SRN) modeling paradigm [18℄. We illustratehow the model 
an be used to obtain estimates of key per-forman
e metri
s and for the sensitivity analysis of the Re-

a
tor pattern with relative ease.Paper OrganizationThis paper is organized as follows: Se
tion 2 provides anoverview of performan
e modeling te
hniques we use fol-lowed by related work; Se
tion 3 presents the SRN modelof the Rea
tor pattern, and illustrates the use of the modelthrough examples; and �nally Se
tion 4 offers 
on
ludingremarks and dire
tions for future resear
h.2. Ba
kground and Related WorkThis se
tion provides an overview of the Sto
hasti
 Re-ward Nets (SRN) analyti
al modeling te
hniques we haveused for performan
e modeling of DHPS systems. We alsodes
ribe the related work in this area.2.1. Sto
hasti
 Reward Nets (SRNs)This se
tion des
ribes the ba
kground on the Sto
hasti
Reward Net (SRN) modeling paradigm [18℄ used for per-forman
e analysis of the Rea
tor pattern. SRNs representa powerful modeling te
hnique that is 
on
ise in its spe
-i�
ation and whose form is 
loser to a designer's intuitionabout what a model should look like. Sin
e SRN spe
i�
a-tion is 
loser to a designer's intuition of system behavior,it is also easier to transfer the results obtained from solv-ing the models and interpret them in terms of the entitiesthat exist in the system being modeled.SRNs are an extension to Petri nets [15℄. Petri nets wereproposed to represent formally the �ow of 
ontrol in a sys-tem. A Petri net is a dire
ted graph whi
h 
omprises twotypes of elements, namely, pla
es and transitions. A di-re
ted ar
 
onne
ting a pla
e to a transition is 
alled an in-put ar
. Conversely, an output ar
 
onne
ts a transition to apla
e. Ar
s have a positive integer number 
alled multipli
-ity asso
iated with them, with the default multipli
ity asso-
iated with an ar
 being 1. Pla
es 
an 
ontain tokens thatmove from one pla
e to another through transitions. A tran-sition is enabled when ea
h of the pla
es 
onne
ted to it byits input ar
s have at least the number of tokens equal to themultipli
ity of those ar
s. When an enabled transition �res,a number of tokens equal to the input ar
 multipli
ity is re-moved from ea
h one of the 
orresponding input pla
es anda number of tokens equal to the output ar
 multipli
ity is de-posited in ea
h one of the 
orresponding output pla
es. Thestate of a Petri net with p pla
es is represented by a ve
-tor (m1, m2, . . . , mp), where mi is the number of tokensin pla
e i. The state of a Petri net is often referred to as itsmarking. When a Petri net is spe
i�ed, it 
an be made tostart at a parti
ular marking 
alled the initial marking. Sub-sequently, the net evolves by the su

essive enabling and



�ring of transitions whi
h 
auses the tokens to �ow amongpla
es.Sto
hasti
 Petri nets [18℄ extend Petri nets by allow-ing timed transitions that have exponentially distributed �r-ing times. Generalized sto
hasti
 Petri nets (GSPNs) [18℄also allow immediate transitions whi
h �re instantaneously.GSPNs in
lude an inhibitor ar
 whi
h 
an also have a mul-tipli
ity asso
iated with it. An inhibitor ar
 inhibits the tran-sition it is 
onne
ted to if the pla
e it is 
onne
ted to at itsother end has a number of tokens equal to at least its multi-pli
ity. The default multipli
ity is 1. A GSPN marking withat least one immediate transition enabled is 
alled a vanish-ing marking, and a marking with no immediate transitionsenabled is 
alled a tangible marking.Sto
hasti
 reward nets (SRNs) extend GSPNs further byallowing the asso
iation of a reward rate to ea
h tangiblemarking. The SRN models allow the 
on
ise spe
i�
ationof various reward fun
tions. To extend the power of spe
i-�
ation, SRN in
ludes spe
i�
ation of enabling (or guard)fun
tions for ea
h transition. The transition is enabled onlyif the enabling fun
tion returns �1.� SRNs also allow mark-ing dependent ar
 multipli
ities and enabling fun
tions. An-other feature of SRNs is the provision of priorities and prob-abilities to determine whi
h of a set of simultaneously en-abled transitions will �re �rst: the transition with the high-est priority is �red �rst. If the 
ompeting transitions havethe same priority the one to �re �rst is 
hosen probabilisti-
ally.In a graphi
al representation of a SRN, a pla
e is rep-resented as a 
ir
le, n tokens in a pla
e are represented by
n dots or the number n within the pla
e, immediate tran-sitions are represented by thin lines, and exponentially dis-tributed timed transitions are represented by empty re
tan-gles. An inhibitor ar
 is represented by a 
ir
le instead of anarrow at the terminating end. An ar
 with multipli
ity m isrepresented by a �|m� on the ar
, and an ar
 with a mark-ing dependent multipli
ity fun
tion is indi
ated by a �N� oran inverted �N� in it. The number of tokens in pla
e p is in-di
ated as p.2.2. Related WorkSto
hasti
 reward nets have been extensively used forperforman
e, reliability and performability analysis of a va-riety of systems [19, 9, 10, 24, 11, 14℄. The work 
losestto the proposed resear
h is reported by Ramani et al. [19℄,where SRNs are used for the performan
e analysis of theCORBA event servi
e. UML representations of appli
ationar
hite
ture have been mapped to Queuing networks [26, 7,13, 16, 17℄ and Petri nets [12, 1℄.Several other analysis tools exist. The Virginia Embed-ded System Toolkit (VEST) [23℄ is a model-based embed-ded system 
omposition tool that 
he
ks whether 
ertain

real-time, memory, power, and 
ost 
onstraints of DPSS ap-pli
ations are satis�ed. The Cadena [5℄ tool suite providestati
 analysis, model-
he
king, and other light-weight for-mal methods for 
omponent middleware-based DPSS sys-tems. While these tools are important, they either deal withother systems features (e.g., power 
onsumption) or havea narrow fo
us (e.g., embedded systems). Moreover, thesetools are appli
able on
e the system 
omposition de
isionsare made.3. Performan
e Evaluation of the Rea
-tor PatternIn this se
tion we des
ribe the pro
ess of 
onstru
tinga SRN model for the Rea
tor pattern. Towards this end, we�rst provide an overview of the Rea
tor pattern and des
ribeits 
hara
teristi
s and the relevant performan
emeasures. ASRN model of the Rea
tor pattern is presented along witha dis
ussion of how the performan
e measures 
an be ob-tained by assigning reward rates at the net level. We 
on-
lude the se
tion with illustrative examples of how the SRNmodel 
an be used to obtain an estimate of the performan
emetri
s as well as to analyze the sensitivity of the perfor-man
e metri
s for different values of the input parametersand 
on�guration options.3.1. Rea
tor Pattern in Middleware Implementa-tionsFigure 1 depi
ts a typi
al event demultiplexing and dis-pat
hing me
hanism do
umented in the Rea
tor pattern.The appli
ation registers an event handler with the event de-multiplexer and delegates to it the responsibility of listeningfor in
oming events. On the o

urren
e of an event, the de-multiplexer dispat
hes the event by making a 
allba
k tothe 
orre
t appli
ation-supplied event handler. This is theidea behind the Rea
tor pattern, whi
h provides syn
hro-nous event demultiplexing and dispat
hing 
apabilities.The Rea
tor pattern 
ould be implemented in many dif-ferent ways depending on the event demultiplexing 
apabil-ities provided by the operating systems and the 
on
urren
yrequirements of the appli
ations. For example, the demulti-plexing 
apabilities of a Rea
tor 
ould be based on the se-le
t or poll system 
alls provided by POSIX-
ompliant op-erating systems or WaitForMultipleObje
t as found in thedifferent �avors of Win32 operating systems. Moreover, thehandling of the event in the event handler 
ould be man-aged by the same thread of 
ontrol that was listening forevents giving rise to a single-threaded Rea
tor implementa-tion. Alternately, the event 
ould be delegated to a pool ofthreads to handle the events to give rise to a thread-pool Re-a
tor.



Figure 1. Event Demultiplexers in Middleware3.2. Chara
teristi
s of the Rea
tor PatternWe 
onsider a single-threaded, sele
t-based implemen-tation of the Rea
tor pattern with the following 
hara
teris-ti
s:
• The Rea
tor re
eives two types of input events withone event handler for ea
h type of event registered withthe Rea
tor.
• Ea
h event type has a separate queue, whi
h holds thein
oming events of that type. The buffer 
apa
ity forthe queue of type #1 events is denoted N1 and of type#2 events is denoted N2.
• Events of type #1 are servi
ed with a higher priorityover events of type #2.
• Event arrivals for both types of events follow a Pois-son distribution with rates λ1 and λ2, while the servi
etimes of the events are exponentially distributed withrates µ1 and µ2.
• In a snapshot, when event handles 
orresponding toboth event types are enabled, the event 
orrespondingto type #1 is servi
ed with a priority over event han-dle of type #2 event.3.3. Performan
e Metri
sThe following performan
e metri
s are of interest forea
h one of the event types in the Rea
tor pattern des
ribedin Se
tion 3.2:
• Expe
ted throughput � whi
h provides an estimate ofthe number of events that 
an be pro
essed by the sin-gle threaded event demultiplexing framework. Theseestimates are important for many appli
ations, su
h astele
ommuni
ations 
all pro
essing.
• Expe
ted queue length � whi
h provides an estimateof the queuing for ea
h of the event handler queues.

These estimates are important sin
e it is possible to de-velop appropriate s
heduling poli
ies for appli
ationswith real-time requirements.
• Expe
ted total number of events � whi
h providesan estimate of the total number of events in a sys-tem. These estimates are also tied to s
heduling de-
isions. In addition, these estimates will determine theright levels of resour
e provisioning required to sus-tain the system demands.
• Probability of event loss � whi
h indi
ates how manyevents will have to be dis
arded due to la
k of bufferspa
e. These estimates are important parti
ularly forsafety-
riti
al systems, whi
h 
annot afford to loseevents. Alternately, these also give an estimate on thedesired levels of resour
e provisioning.3.4. SRNModelFigure 2 shows the SRN model for the Rea
tor patternwith the 
hara
teristi
s des
ribed in Se
tion 3.2. Part (a)models the arrival, queuing and servi
e of the two types ofevents, where transitions A1 and A2 represent the arrival ofthe events of type #1 and #2, respe
tively. Pla
es B1 and

B2 represent the queue for the two types of events. Tran-sitions Sn1 and Sn2 are immediate transitions that are en-abled when a snapshot is taken. Pla
es S1 and S2 representthe enabled handles of the two types of events, whereas tran-sitions Sr1 and transitionSr2 represent the exe
ution of theenabled event handlers of the two types of events. An in-hibitor ar
 from pla
e B1 to transition A1 with multipli
-ity N1 prevents the �ring of transition A1 when there are
N1 tokens in pla
e B1. The presen
e of N1 tokens in pla
e
B1 indi
ates that the buffer spa
e to hold the in
oming in-put events of the �rst type is full, and no additional in
om-ing events 
an be a

epted. The inhibitor ar
 from pla
e
B2 to transition A2 a
hieves the same purpose for type #2events. The inhibitor ar
 from pla
e S1 to transition Sr2prevents the �ring of transition Sr2 when there is a token inpla
e S1. This models the prioritized servi
e for the eventsof type #1 over events of type #2.Part (b) of the net models the pro
ess of taking su

es-sive snapshots and prioritized servi
e of the event handle
orresponding to type #1 events in ea
h snapshot. Transition
Sn1 is enabled when there is a token in pla
e StSnpSht,at least one token in pla
e B1, and no tokens in pla
e S1.Similarly, transition Sn2 is enabled when there is a token inpla
e StSnpSht, at least one token in pla
e B2, and notokens in pla
e S2. Transition T SrvSnpSht is enabledwhen there is a token in either one of the pla
es S1 and
S2, and the �ring of this transition deposits a token in pla
e
SnpShtInProg.The presen
e of a token in the pla
e SnpShtInProgindi
ates that the event handles that were enabled in the
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Figure 2. SRN model for the Rea
tor pattern
urrent snapshot are being servi
ed. On
e these event han-dles 
omplete exe
ution, the 
urrent snapshot is 
ompleteand it is time to take another snapshot. This is a

om-plished by enabling the transition T EndSnpSht. Tran-sition T EndSnpSht is enabled when there are no to-kens in both pla
es S1 and S2. Firing of the transition
T EndSnpSht deposits a token in pla
e StSnpSht, indi-
ating that the servi
e of the enabled handles in the presentsnapshot is 
omplete, whi
h marks the initiation of the nextsnapshot. Table 1 summarizes the enabling/guard fun
tionsfor the transitions in the net.The pro
ess of taking a single snapshot is modeled bythe example SRN model presented in Figure 2. The exam-ple �gure 
onsiders the s
enario where there is one token inea
h one of the pla
es B1 and B2, and there is a token inthe pla
e StSnpSht. Also, there are no tokens in pla
es S1and S2. In this s
enario, transitions Sn1 and Sn2 are en-abled. Both of these transitions are assigned the same pri-ority, and any one of these transitions 
an �re �rst. Also,sin
e these transitions are immediate, their �ring o

urs in-stantaneously. Without loss of generality, it 
an be assumedthat transition Sn1 �res before Sn2, whi
h deposits a to-ken in pla
e S1.When a token is deposited in pla
e S1, transi-tion T SrvSnpSht is enabled. In addition, transition
Sn2 is already enabled. If transition T SrvSnpSht wereto �re before transition Sn2, it would disable transi-tion Sn2, and prevent the handle 
orresponding to these
ond event type from being enabled. In order to pre-vent transition T SrvSnpSht from �ring before transition
Sn2, transition T SrvSnpSht is assigned a lower prior-ity than transition Sn2. Be
ause transitions Sn1 and Sn2have the same priority, this also implies that the transi-tion T SrvSnpSht has a lower priority than transition
Sn1. This ensures that in a given snapshot, event han-dles 
orresponding to ea
h event type are enabled whenthere is at least one event in the queue.

After both the event handles are enabled, transi-tion T SrvSnpSht �res and deposits a token in pla
e
SnpShtInProg. The presen
e of a token in the pla
e
SnpShtInProg indi
ates that the event handles thatwere enabled in the 
urrent snapshot are being servi
ed.The event handle 
orresponding to type one event is ser-vi
ed �rst, whi
h 
auses transition Sr1 to �re and theremoval of the token from pla
e S1. Subsequently, tran-sition Sr2 �res and the event handle 
orresponding tothe event of type two is servi
ed. This 
auses the re-moval of the token from pla
e S2. After both events areservi
ed and there are no tokens in pla
es S1 and S2, tran-sition T EndSnpSht �res, whi
h marks the end of thepresent snapshot and the beginning of the next one.The performan
e measures des
ribed in Se
tion 3.3 
anbe 
omputed by assigning reward rates at the net level assummarized in Table 2. The throughputs T1 and T2 aregiven by the rate at whi
h transitions Sr1 and Sr2 �re. Thequeue lengths Q1 and Q2 are given by the number of to-kens in pla
es B1 and B2, respe
tively. The total numberof events E1 is given by the sum of the number of tokensin pla
es B1 and S1. Similarly, the total number of events
E2 is given by the sum of the number of tokens in pla
es
B2 and S2. The loss probability L1 is given by the proba-bility of N1 tokens in pla
e B1. Similarly, the loss proba-bility L2 is given by the probability of N2 tokens in pla
e
B2.3.5. IllustrationThis se
tion illustrates how the SRN model presented inSe
tion 3.4 
an be used to determine the impa
t of differ-ent parameters on the performan
e measures by 
areful de-sign of experiments. The SRN is solved using SPNP [6℄ toobtain the expe
ted values of the performan
e measures inall of the experiments des
ribed below.In the �rst experiment, the impa
t of buffer 
apa
ity isdetermined on the performan
e measures. For this experi-



Transition Guard fun
tion
Sn1 ((#StSnpShot == 1)&&(#B1 >= 1)&&(#S1 == 0))?1 : 0
Sn2 ((#StSnpShot == 1)&&(#B2 >= 1)&&(#S2 == 0))?1 : 0

T SrvSnpSht ((#S1 == 1)||(#S2 == 1))?1 : 0
T EndSnpSht ((#S1 == 0&&(#S2 == 0))?1 : 0Table 1. Guard fun
tionsPerforman
e metri
 Notation Reward rateThroughput of event type #1 T1 return rate(Sr1)Throughput of event type #2 T2 return rate(Sr2)Queue length of event type #1 Q1 return (#B1)Queue length of event type #2 Q2 return (#B2)Loss probability of event type #1 L1 return (#B1 == N1?1 : 0)Loss probability of event type #2 L2 return (#B2 == N2?1 : 0)Total number of events of type #1 E1 return(#B1 + #S1)Total number of events of type #2 E2 return(#B2 + #S2)Table 2. Reward assignments to obtain performan
e measuresment, the values of the remaining parameters (ex
ept for thebuffer 
apa
ities) are summarized in Table 3. We 
onsidertwo values of buffer 
apa
itiesN1 andN2. In the �rst exper-iment, there is a buffer 
apa
ity of 1 for both types of events,whereas the se
ond experiment offers a buffer 
apa
ity of 5for both types of events. The performan
e metri
s for bothof the experiments are summarized in Table 4. Be
ause thevalues of the parameters of the �rst type of events (λ1, µ1and N1) are the same as the values of the parameters forthe se
ond type of events (λ2, µ1, and N2), the through-puts, queue lengths, and the loss probabilities are the samefor these two event types.The total number of events for the events of type #2, de-notedE2 is slightly higher than the total number of events oftype #1, denoted E1. Be
ause the events of type #1 are pro-vided prioritized servi
e over the events of type #2, on aver-age it takes longer to servi
e a type #2 event than it takes toservi
e a type #1 event. This results in a higher total num-ber of events of the se
ond type than of the �rst type. Theseobservations hold for both values of maximum buffer 
a-pa
ity. It 
an be observed that the loss probability is signi�-
antly higher when the buffer 
apa
ity is 1 
ompared to the
ase when the buffer spa
e is 5. Also, due to the higher lossprobability, the throughput is slightly lower when the max-imum buffer 
apa
ity is 1 than when the maximum buffer
apa
ity is 5.The sensitivity of the performan
e measures to the ar-rival rate of the events of type #1 and type #2 
an be de-termined; i.e., λ1 and λ2. For sensitivity analysis, the maxi-mum buffer 
apa
ity 
an be set for both event types to be 5.

Parameter Value
λ1 0.400/se
.
λ2 0.400/se
.
µ1 2.000/se
.
µ2 2.000/se
.Table 3. Values of parametersPerforman
e measure Buffer spa
e

N1 = 1, N2 = 1 N1 = 5, N2 = 5
T1 0.37/se
. 0.40/se

T2 0.37/se
. 0.40/se

Q1 0.065 0.12
Q2 0.065 0.12
E1 0.25 0.32
E2 0.27 0.35
L1 0.065 0.00026
L2 0.065 0.00026Table 4. Impa
t of buffer 
apa
ity on perfor-man
e measuresVariations 
an be applied to both λ1 and λ2 one at a time inthe range of 0.5/se
. to 2.0/se
. to obtain the expe
ted val-ues of the performan
e metri
s by solving the SRN modelshown in Figure 2. The remaining parameters are held at thevalues reported in Table 3.



Figure 3 shows the performan
e measures as a fun
tionof λ1 and λ2. The plots in the left 
olumn show the variationof the performan
e measures with respe
t to λ1, whereasthe plots in the right 
olumn show the variation of the per-forman
e measures with respe
t to λ2. Referring to the top-most �gure in the left 
olumn, it 
an be observed that ini-tially, the throughput of type one events is nearly the sameas the arrival rate of the events, indi
ating that the events areservi
ed at the same rate at whi
h they arrive. However, as
λ1 in
reases, the throughput starts lagging the arrival rate,whi
h indi
ates that the servi
e rate µ1 is not suf�
ientlyhigh to pro
ess the events at the rate at whi
h they arrive.This may 
ause the event queue for type #1 events to op-erate at full 
apa
ity for an extended period of time, whi
hresults in a reje
tion of the in
oming input events.Thus, a de
rease in the rate at whi
h the throughput in-
reases is marked by an in
rease in the loss probability ofthe events (as shown in the third plot in the left 
olumn)and an in
rease in the queue length (as shown in the fourthplot in the left 
olumn) in Figure 3. The left plot in the bot-tom row represents the total number of events of ea
h typeas a fun
tion of λ1. The plot indi
ates that the total numberof type #2 events in the system in
reases as λ1 in
reases.When λ1 in
reases, the probability of having to servi
e atype #1 event prior to servi
ing a type #2 event in a givensnapshot in
reases. Be
ause events of type #1 have prior-ity over events of type #2, the type #2 events tend to re-side longer in the system as λ1 in
reases. Thus, althoughthe throughput of type #2 events is un
hanged with respe
tto λ1, the response time of a type #2 event may in
rease.The plots in the right 
olumn of Figure 3 indi
ate that simi-lar trends 
an be observed in the performan
emeasures withrespe
t to λ2, ex
ept that the roles of the two types of eventsare reversed.Similar sensitivity analysis 
an also be 
ondu
ted withrespe
t to the servi
e rates µ1 and µ2.4. Con
lusion and Future Resear
hThe resear
h in this paper is motivated by the realiza-tion that a growing number of 
omputing and network-ing resour
es are being expended to 
ontrol large-s
ale,distributed, high performan
e software (DHPS) systems.The next-generation of DHPS systems, su
h as sensor net-work appli
ations, grid-based s
ienti�
 experiments, andemergen
y response systems, evolve rapidly and must 
ol-laborate with multiple remote sensors, provide on-demandbrowsing and a
tuation 
apabilities for human operators,and respond �exibly to unanti
ipated situational fa
tors thatarise at run-time. These 
hara
teristi
s render earlier stati
system development and analysis te
hniques less effe
tive.Moreover, the availability of off-the-shelf software, hard-ware, and networking building blo
ks � 
ompounded by

e
onomi
 and market for
es � are 
ausing DHPS systemsto be assembled rapidly and tested by 
omposing buildingblo
k 
omponents. Design-time validation and veri�
ationof end system performan
e is a ne
essity for the realm ofnext-generation DHPS systems.In this paper, we provided an overview of the SRNmodeling paradigm that may be valuable in developing amethodology for design time performan
e analysis. Fur-ther, we presented a model of an important software build-ing blo
k 
alled the Rea
tor, whi
h is used in many DHPSsystems. We then demonstrated how the SRN model 
an beused to obtain estimates of key performan
e metri
s of theRea
tor, as well as to analyze the sensitivity of the perfor-man
e metri
s to the values of the input parameters and dif-ferent 
on�guration options with relative ease. Su
h results,obtained earlier in the system life
yle (e.g., design-time),
an enable DHPS developers in making informed de
isionsregarding appropriate resour
e provisioning and s
hedula-bility.In the near term, our future work will involve validat-ing the performan
e metri
s of the Rea
tor obtained fromthe SRN model using empiri
al ben
hmarking. Empiri
alben
hmarking is relatively 
omplex owing to the dif�
ul-ties of testing the Rea
tor as a standalone unit without the
onfounding effe
ts of underlying OS demultiplexing andqueueing me
hanisms. For example, in POSIX-
ompliantoperating systems, there will always be a default buffering
apability asso
iated with the so
ket handles on whi
h thesele
t() system 
all is invoked. As a result, it is 
um-bersome to show
ase a Rea
tor with a 
on�gurable queuesize for ea
h of its input event handles. Validating the Re-a
tor model may require development and 
omposition ofthe models for other building blo
ks with whi
h the Rea
-tor intera
ts. Developing performan
e models for other ver-sions of the Rea
tor, in
luding the thread pool [21℄ Rea
tor,is also a topi
 of future resear
h.In the long term, we expe
t to develop and validate asuite of performan
e models for most of the middlewarebuilding blo
ks, as well as validation of the 
ompositionsof these building blo
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Figure 3. Sensitivity of performan
e measures to arrival rates λ1 and λ2


