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{gray�is.uab.edu}AbstratSome of the most hallenging problems in high perfor-mane omputing are those assoiated with produing soft-ware for distributed, high performane software (DHPS)systems in whih distributed resoures, suh as proes-sors, sensors and networks oordinate to address high per-formane omputing needs of different domains. Support-ing the multiple simultaneous quality of servie (QoS) andfuntional requirements of DHPS systems is partiularlyvexing for DHPS system developers and integrators, whomust address these QoS and funtional requirements with-out overompliating their solutions, degrading softwarequality, and exeeding projet time and effort onstraints.A key enabler in reent suesses with small- to medium-sale DHPS systems has been middleware, whih providesreusable building bloks. However, as DHPS systems saleto form large �omposable systems of systems,� the designspae omprising available hoies of reusable buildingbloks and servies in middleware grows substantially. Thislimits the ability of the DHPS developers to make the rightdesign hoies, whih adversely impats validation and ver-i�ation of performane of end systems, and hene projetosts.To enable DHPS developers to make the right designhoies, a systemati methodology to analyze the perfor-mane of DHPS systems at design time is neessary. Suha methodology may onsist of models to analyze the perfor-mane of individual building bloks omprising the middle-

ware and the omposition of these building bloks. As a �rststep towards building this methodology, in this paper wepresent a model of the Reator pattern, whih provides thevery important synhronous demultiplexing and dispath-ing apabilities in DHPS systems. The model is based on theStohasti Reward Net (SRN) modeling paradigm. We illus-trate how the model ould be used relatively easily to ob-tain estimates of key performane metris and for the sensi-tivity analysis of the Reator pattern.1. IntrodutionEmerging Trends and ChallengesLarge-sale, distributed, high performane software(DHPS) systems form the basis of numerous sienti� gridomputing appliations. DHPS systems omprise many in-terdependent artifats, suh as network/bus interonnets,many oordinated loal and remote endsystems, and mul-tiple layers of software. DHPS systems demand multiplesimultaneous quality of servie (QoS) properties inlud-ing preditability, ontrollability, and adaptability of oper-ating harateristis for appliations with respet to suhfeatures as time, throughput, auray, on�dene, seu-rity and synhronization. All these issues beome highlyvolatile in large-sale DHPS systems, due to the dy-nami interplay of the many interonneted parts that areoften onstruted from smaller parts.



Although it is possible in theory to develop thesetypes of omplex DHPS systems from srath, ontempo-rary eonomi and organizational onstraints, as well asinreasingly omplex requirements and ompetitive pres-sures, make it infeasible to do so in pratie. A key en-abler in reent suesses with DHPS systems has beenQoS-enabled middleware [20℄, suh as Globus [3℄.Middleware omprises software layers that pro-vide platform-independent exeution semantis andreusable servies that oordinate how appliation ompo-nents are omposed and interoperate. The primary roleof middleware is to (1) funtionally bridge the gap be-tween appliation programs and the lower-level hard-ware and software infrastruture in order to oordinatehow parts of appliations are onneted and how they in-teroperate, (2) enable and simplify the integration of om-ponents developed by multiple tehnology suppliers, and(3) provide ommon reusable aessibility for funtional-ity and patterns by fatoring out artifats from appliationsinto reusable ode.The �exibility and on�gurability offered by middle-ware is manifested in the large number of reusable soft-ware building bloks and on�guration options, whih anbe used to ompose and build large systems end to end.These building bloks embody good design praties alledpatterns [4, 22℄. The hoie of the pattern to use is depen-dent on the ontext and the onsequenes of using the pat-tern.Current ad ho tehniques based on manually hoosingthe right set of building bloks are error-prone and may ad-versely impat performane, system osts and shedules,sine most errors are aught very late in the lifeyle ofDHPS development. It is desirable to have the ability toanalyze the performane of individual building bloks andthe omposed system muh earlier in the lifeyle of DHPSsystems, thereby signi�antly lowering system testing ostsas well as improving orretness of the �nal developed sys-tem.To address the hallenges of performane evaluation ofDHPS systems design, a systemati performane analy-sis methodology is neessary. This methodology wouldomprise performane models of the individual buildingbloks and the omposition of the building bloks. Theperformane models are based upon well-known analyti-al/numerial modeling paradigms [18, 2, 8℄ and simula-tion tehniques [25℄. As a �rst step towards the develop-ment of suh a methodology, this paper presents a modelof the Reator pattern [22℄, whih provides the very impor-tant synhronous demultiplexing and dispathing apabili-ties in DHPS systems. The model is based on the StohastiReward Net (SRN) modeling paradigm [18℄. We illustratehow the model an be used to obtain estimates of key per-formane metris and for the sensitivity analysis of the Re-

ator pattern with relative ease.Paper OrganizationThis paper is organized as follows: Setion 2 provides anoverview of performane modeling tehniques we use fol-lowed by related work; Setion 3 presents the SRN modelof the Reator pattern, and illustrates the use of the modelthrough examples; and �nally Setion 4 offers onludingremarks and diretions for future researh.2. Bakground and Related WorkThis setion provides an overview of the Stohasti Re-ward Nets (SRN) analytial modeling tehniques we haveused for performane modeling of DHPS systems. We alsodesribe the related work in this area.2.1. Stohasti Reward Nets (SRNs)This setion desribes the bakground on the StohastiReward Net (SRN) modeling paradigm [18℄ used for per-formane analysis of the Reator pattern. SRNs representa powerful modeling tehnique that is onise in its spe-i�ation and whose form is loser to a designer's intuitionabout what a model should look like. Sine SRN spei�a-tion is loser to a designer's intuition of system behavior,it is also easier to transfer the results obtained from solv-ing the models and interpret them in terms of the entitiesthat exist in the system being modeled.SRNs are an extension to Petri nets [15℄. Petri nets wereproposed to represent formally the �ow of ontrol in a sys-tem. A Petri net is a direted graph whih omprises twotypes of elements, namely, plaes and transitions. A di-reted ar onneting a plae to a transition is alled an in-put ar. Conversely, an output ar onnets a transition to aplae. Ars have a positive integer number alled multipli-ity assoiated with them, with the default multipliity asso-iated with an ar being 1. Plaes an ontain tokens thatmove from one plae to another through transitions. A tran-sition is enabled when eah of the plaes onneted to it byits input ars have at least the number of tokens equal to themultipliity of those ars. When an enabled transition �res,a number of tokens equal to the input ar multipliity is re-moved from eah one of the orresponding input plaes anda number of tokens equal to the output ar multipliity is de-posited in eah one of the orresponding output plaes. Thestate of a Petri net with p plaes is represented by a ve-tor (m1, m2, . . . , mp), where mi is the number of tokensin plae i. The state of a Petri net is often referred to as itsmarking. When a Petri net is spei�ed, it an be made tostart at a partiular marking alled the initial marking. Sub-sequently, the net evolves by the suessive enabling and



�ring of transitions whih auses the tokens to �ow amongplaes.Stohasti Petri nets [18℄ extend Petri nets by allow-ing timed transitions that have exponentially distributed �r-ing times. Generalized stohasti Petri nets (GSPNs) [18℄also allow immediate transitions whih �re instantaneously.GSPNs inlude an inhibitor ar whih an also have a mul-tipliity assoiated with it. An inhibitor ar inhibits the tran-sition it is onneted to if the plae it is onneted to at itsother end has a number of tokens equal to at least its multi-pliity. The default multipliity is 1. A GSPN marking withat least one immediate transition enabled is alled a vanish-ing marking, and a marking with no immediate transitionsenabled is alled a tangible marking.Stohasti reward nets (SRNs) extend GSPNs further byallowing the assoiation of a reward rate to eah tangiblemarking. The SRN models allow the onise spei�ationof various reward funtions. To extend the power of spei-�ation, SRN inludes spei�ation of enabling (or guard)funtions for eah transition. The transition is enabled onlyif the enabling funtion returns �1.� SRNs also allow mark-ing dependent ar multipliities and enabling funtions. An-other feature of SRNs is the provision of priorities and prob-abilities to determine whih of a set of simultaneously en-abled transitions will �re �rst: the transition with the high-est priority is �red �rst. If the ompeting transitions havethe same priority the one to �re �rst is hosen probabilisti-ally.In a graphial representation of a SRN, a plae is rep-resented as a irle, n tokens in a plae are represented by
n dots or the number n within the plae, immediate tran-sitions are represented by thin lines, and exponentially dis-tributed timed transitions are represented by empty retan-gles. An inhibitor ar is represented by a irle instead of anarrow at the terminating end. An ar with multipliity m isrepresented by a �|m� on the ar, and an ar with a mark-ing dependent multipliity funtion is indiated by a �N� oran inverted �N� in it. The number of tokens in plae p is in-diated as p.2.2. Related WorkStohasti reward nets have been extensively used forperformane, reliability and performability analysis of a va-riety of systems [19, 9, 10, 24, 11, 14℄. The work losestto the proposed researh is reported by Ramani et al. [19℄,where SRNs are used for the performane analysis of theCORBA event servie. UML representations of appliationarhiteture have been mapped to Queuing networks [26, 7,13, 16, 17℄ and Petri nets [12, 1℄.Several other analysis tools exist. The Virginia Embed-ded System Toolkit (VEST) [23℄ is a model-based embed-ded system omposition tool that heks whether ertain

real-time, memory, power, and ost onstraints of DPSS ap-pliations are satis�ed. The Cadena [5℄ tool suite providestati analysis, model-heking, and other light-weight for-mal methods for omponent middleware-based DPSS sys-tems. While these tools are important, they either deal withother systems features (e.g., power onsumption) or havea narrow fous (e.g., embedded systems). Moreover, thesetools are appliable one the system omposition deisionsare made.3. Performane Evaluation of the Rea-tor PatternIn this setion we desribe the proess of onstrutinga SRN model for the Reator pattern. Towards this end, we�rst provide an overview of the Reator pattern and desribeits harateristis and the relevant performanemeasures. ASRN model of the Reator pattern is presented along witha disussion of how the performane measures an be ob-tained by assigning reward rates at the net level. We on-lude the setion with illustrative examples of how the SRNmodel an be used to obtain an estimate of the performanemetris as well as to analyze the sensitivity of the perfor-mane metris for different values of the input parametersand on�guration options.3.1. Reator Pattern in Middleware Implementa-tionsFigure 1 depits a typial event demultiplexing and dis-pathing mehanism doumented in the Reator pattern.The appliation registers an event handler with the event de-multiplexer and delegates to it the responsibility of listeningfor inoming events. On the ourrene of an event, the de-multiplexer dispathes the event by making a allbak tothe orret appliation-supplied event handler. This is theidea behind the Reator pattern, whih provides synhro-nous event demultiplexing and dispathing apabilities.The Reator pattern ould be implemented in many dif-ferent ways depending on the event demultiplexing apabil-ities provided by the operating systems and the onurrenyrequirements of the appliations. For example, the demulti-plexing apabilities of a Reator ould be based on the se-let or poll system alls provided by POSIX-ompliant op-erating systems or WaitForMultipleObjet as found in thedifferent �avors of Win32 operating systems. Moreover, thehandling of the event in the event handler ould be man-aged by the same thread of ontrol that was listening forevents giving rise to a single-threaded Reator implementa-tion. Alternately, the event ould be delegated to a pool ofthreads to handle the events to give rise to a thread-pool Re-ator.



Figure 1. Event Demultiplexers in Middleware3.2. Charateristis of the Reator PatternWe onsider a single-threaded, selet-based implemen-tation of the Reator pattern with the following harateris-tis:
• The Reator reeives two types of input events withone event handler for eah type of event registered withthe Reator.
• Eah event type has a separate queue, whih holds theinoming events of that type. The buffer apaity forthe queue of type #1 events is denoted N1 and of type#2 events is denoted N2.
• Events of type #1 are servied with a higher priorityover events of type #2.
• Event arrivals for both types of events follow a Pois-son distribution with rates λ1 and λ2, while the servietimes of the events are exponentially distributed withrates µ1 and µ2.
• In a snapshot, when event handles orresponding toboth event types are enabled, the event orrespondingto type #1 is servied with a priority over event han-dle of type #2 event.3.3. Performane MetrisThe following performane metris are of interest foreah one of the event types in the Reator pattern desribedin Setion 3.2:
• Expeted throughput � whih provides an estimate ofthe number of events that an be proessed by the sin-gle threaded event demultiplexing framework. Theseestimates are important for many appliations, suh asteleommuniations all proessing.
• Expeted queue length � whih provides an estimateof the queuing for eah of the event handler queues.

These estimates are important sine it is possible to de-velop appropriate sheduling poliies for appliationswith real-time requirements.
• Expeted total number of events � whih providesan estimate of the total number of events in a sys-tem. These estimates are also tied to sheduling de-isions. In addition, these estimates will determine theright levels of resoure provisioning required to sus-tain the system demands.
• Probability of event loss � whih indiates how manyevents will have to be disarded due to lak of bufferspae. These estimates are important partiularly forsafety-ritial systems, whih annot afford to loseevents. Alternately, these also give an estimate on thedesired levels of resoure provisioning.3.4. SRNModelFigure 2 shows the SRN model for the Reator patternwith the harateristis desribed in Setion 3.2. Part (a)models the arrival, queuing and servie of the two types ofevents, where transitions A1 and A2 represent the arrival ofthe events of type #1 and #2, respetively. Plaes B1 and

B2 represent the queue for the two types of events. Tran-sitions Sn1 and Sn2 are immediate transitions that are en-abled when a snapshot is taken. Plaes S1 and S2 representthe enabled handles of the two types of events, whereas tran-sitions Sr1 and transitionSr2 represent the exeution of theenabled event handlers of the two types of events. An in-hibitor ar from plae B1 to transition A1 with multipli-ity N1 prevents the �ring of transition A1 when there are
N1 tokens in plae B1. The presene of N1 tokens in plae
B1 indiates that the buffer spae to hold the inoming in-put events of the �rst type is full, and no additional inom-ing events an be aepted. The inhibitor ar from plae
B2 to transition A2 ahieves the same purpose for type #2events. The inhibitor ar from plae S1 to transition Sr2prevents the �ring of transition Sr2 when there is a token inplae S1. This models the prioritized servie for the eventsof type #1 over events of type #2.Part (b) of the net models the proess of taking sues-sive snapshots and prioritized servie of the event handleorresponding to type #1 events in eah snapshot. Transition
Sn1 is enabled when there is a token in plae StSnpSht,at least one token in plae B1, and no tokens in plae S1.Similarly, transition Sn2 is enabled when there is a token inplae StSnpSht, at least one token in plae B2, and notokens in plae S2. Transition T SrvSnpSht is enabledwhen there is a token in either one of the plaes S1 and
S2, and the �ring of this transition deposits a token in plae
SnpShtInProg.The presene of a token in the plae SnpShtInProgindiates that the event handles that were enabled in the
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Figure 2. SRN model for the Reator patternurrent snapshot are being servied. One these event han-dles omplete exeution, the urrent snapshot is ompleteand it is time to take another snapshot. This is aom-plished by enabling the transition T EndSnpSht. Tran-sition T EndSnpSht is enabled when there are no to-kens in both plaes S1 and S2. Firing of the transition
T EndSnpSht deposits a token in plae StSnpSht, indi-ating that the servie of the enabled handles in the presentsnapshot is omplete, whih marks the initiation of the nextsnapshot. Table 1 summarizes the enabling/guard funtionsfor the transitions in the net.The proess of taking a single snapshot is modeled bythe example SRN model presented in Figure 2. The exam-ple �gure onsiders the senario where there is one token ineah one of the plaes B1 and B2, and there is a token inthe plae StSnpSht. Also, there are no tokens in plaes S1and S2. In this senario, transitions Sn1 and Sn2 are en-abled. Both of these transitions are assigned the same pri-ority, and any one of these transitions an �re �rst. Also,sine these transitions are immediate, their �ring ours in-stantaneously. Without loss of generality, it an be assumedthat transition Sn1 �res before Sn2, whih deposits a to-ken in plae S1.When a token is deposited in plae S1, transi-tion T SrvSnpSht is enabled. In addition, transition
Sn2 is already enabled. If transition T SrvSnpSht wereto �re before transition Sn2, it would disable transi-tion Sn2, and prevent the handle orresponding to theseond event type from being enabled. In order to pre-vent transition T SrvSnpSht from �ring before transition
Sn2, transition T SrvSnpSht is assigned a lower prior-ity than transition Sn2. Beause transitions Sn1 and Sn2have the same priority, this also implies that the transi-tion T SrvSnpSht has a lower priority than transition
Sn1. This ensures that in a given snapshot, event han-dles orresponding to eah event type are enabled whenthere is at least one event in the queue.

After both the event handles are enabled, transi-tion T SrvSnpSht �res and deposits a token in plae
SnpShtInProg. The presene of a token in the plae
SnpShtInProg indiates that the event handles thatwere enabled in the urrent snapshot are being servied.The event handle orresponding to type one event is ser-vied �rst, whih auses transition Sr1 to �re and theremoval of the token from plae S1. Subsequently, tran-sition Sr2 �res and the event handle orresponding tothe event of type two is servied. This auses the re-moval of the token from plae S2. After both events areservied and there are no tokens in plaes S1 and S2, tran-sition T EndSnpSht �res, whih marks the end of thepresent snapshot and the beginning of the next one.The performane measures desribed in Setion 3.3 anbe omputed by assigning reward rates at the net level assummarized in Table 2. The throughputs T1 and T2 aregiven by the rate at whih transitions Sr1 and Sr2 �re. Thequeue lengths Q1 and Q2 are given by the number of to-kens in plaes B1 and B2, respetively. The total numberof events E1 is given by the sum of the number of tokensin plaes B1 and S1. Similarly, the total number of events
E2 is given by the sum of the number of tokens in plaes
B2 and S2. The loss probability L1 is given by the proba-bility of N1 tokens in plae B1. Similarly, the loss proba-bility L2 is given by the probability of N2 tokens in plae
B2.3.5. IllustrationThis setion illustrates how the SRN model presented inSetion 3.4 an be used to determine the impat of differ-ent parameters on the performane measures by areful de-sign of experiments. The SRN is solved using SPNP [6℄ toobtain the expeted values of the performane measures inall of the experiments desribed below.In the �rst experiment, the impat of buffer apaity isdetermined on the performane measures. For this experi-



Transition Guard funtion
Sn1 ((#StSnpShot == 1)&&(#B1 >= 1)&&(#S1 == 0))?1 : 0
Sn2 ((#StSnpShot == 1)&&(#B2 >= 1)&&(#S2 == 0))?1 : 0

T SrvSnpSht ((#S1 == 1)||(#S2 == 1))?1 : 0
T EndSnpSht ((#S1 == 0&&(#S2 == 0))?1 : 0Table 1. Guard funtionsPerformane metri Notation Reward rateThroughput of event type #1 T1 return rate(Sr1)Throughput of event type #2 T2 return rate(Sr2)Queue length of event type #1 Q1 return (#B1)Queue length of event type #2 Q2 return (#B2)Loss probability of event type #1 L1 return (#B1 == N1?1 : 0)Loss probability of event type #2 L2 return (#B2 == N2?1 : 0)Total number of events of type #1 E1 return(#B1 + #S1)Total number of events of type #2 E2 return(#B2 + #S2)Table 2. Reward assignments to obtain performane measuresment, the values of the remaining parameters (exept for thebuffer apaities) are summarized in Table 3. We onsidertwo values of buffer apaitiesN1 andN2. In the �rst exper-iment, there is a buffer apaity of 1 for both types of events,whereas the seond experiment offers a buffer apaity of 5for both types of events. The performane metris for bothof the experiments are summarized in Table 4. Beause thevalues of the parameters of the �rst type of events (λ1, µ1and N1) are the same as the values of the parameters forthe seond type of events (λ2, µ1, and N2), the through-puts, queue lengths, and the loss probabilities are the samefor these two event types.The total number of events for the events of type #2, de-notedE2 is slightly higher than the total number of events oftype #1, denoted E1. Beause the events of type #1 are pro-vided prioritized servie over the events of type #2, on aver-age it takes longer to servie a type #2 event than it takes toservie a type #1 event. This results in a higher total num-ber of events of the seond type than of the �rst type. Theseobservations hold for both values of maximum buffer a-paity. It an be observed that the loss probability is signi�-antly higher when the buffer apaity is 1 ompared to thease when the buffer spae is 5. Also, due to the higher lossprobability, the throughput is slightly lower when the max-imum buffer apaity is 1 than when the maximum bufferapaity is 5.The sensitivity of the performane measures to the ar-rival rate of the events of type #1 and type #2 an be de-termined; i.e., λ1 and λ2. For sensitivity analysis, the maxi-mum buffer apaity an be set for both event types to be 5.

Parameter Value
λ1 0.400/se.
λ2 0.400/se.
µ1 2.000/se.
µ2 2.000/se.Table 3. Values of parametersPerformane measure Buffer spae

N1 = 1, N2 = 1 N1 = 5, N2 = 5
T1 0.37/se. 0.40/se
T2 0.37/se. 0.40/se
Q1 0.065 0.12
Q2 0.065 0.12
E1 0.25 0.32
E2 0.27 0.35
L1 0.065 0.00026
L2 0.065 0.00026Table 4. Impat of buffer apaity on perfor-mane measuresVariations an be applied to both λ1 and λ2 one at a time inthe range of 0.5/se. to 2.0/se. to obtain the expeted val-ues of the performane metris by solving the SRN modelshown in Figure 2. The remaining parameters are held at thevalues reported in Table 3.



Figure 3 shows the performane measures as a funtionof λ1 and λ2. The plots in the left olumn show the variationof the performane measures with respet to λ1, whereasthe plots in the right olumn show the variation of the per-formane measures with respet to λ2. Referring to the top-most �gure in the left olumn, it an be observed that ini-tially, the throughput of type one events is nearly the sameas the arrival rate of the events, indiating that the events areservied at the same rate at whih they arrive. However, as
λ1 inreases, the throughput starts lagging the arrival rate,whih indiates that the servie rate µ1 is not suf�ientlyhigh to proess the events at the rate at whih they arrive.This may ause the event queue for type #1 events to op-erate at full apaity for an extended period of time, whihresults in a rejetion of the inoming input events.Thus, a derease in the rate at whih the throughput in-reases is marked by an inrease in the loss probability ofthe events (as shown in the third plot in the left olumn)and an inrease in the queue length (as shown in the fourthplot in the left olumn) in Figure 3. The left plot in the bot-tom row represents the total number of events of eah typeas a funtion of λ1. The plot indiates that the total numberof type #2 events in the system inreases as λ1 inreases.When λ1 inreases, the probability of having to servie atype #1 event prior to serviing a type #2 event in a givensnapshot inreases. Beause events of type #1 have prior-ity over events of type #2, the type #2 events tend to re-side longer in the system as λ1 inreases. Thus, althoughthe throughput of type #2 events is unhanged with respetto λ1, the response time of a type #2 event may inrease.The plots in the right olumn of Figure 3 indiate that simi-lar trends an be observed in the performanemeasures withrespet to λ2, exept that the roles of the two types of eventsare reversed.Similar sensitivity analysis an also be onduted withrespet to the servie rates µ1 and µ2.4. Conlusion and Future ResearhThe researh in this paper is motivated by the realiza-tion that a growing number of omputing and network-ing resoures are being expended to ontrol large-sale,distributed, high performane software (DHPS) systems.The next-generation of DHPS systems, suh as sensor net-work appliations, grid-based sienti� experiments, andemergeny response systems, evolve rapidly and must ol-laborate with multiple remote sensors, provide on-demandbrowsing and atuation apabilities for human operators,and respond �exibly to unantiipated situational fators thatarise at run-time. These harateristis render earlier statisystem development and analysis tehniques less effetive.Moreover, the availability of off-the-shelf software, hard-ware, and networking building bloks � ompounded by

eonomi and market fores � are ausing DHPS systemsto be assembled rapidly and tested by omposing buildingblok omponents. Design-time validation and veri�ationof end system performane is a neessity for the realm ofnext-generation DHPS systems.In this paper, we provided an overview of the SRNmodeling paradigm that may be valuable in developing amethodology for design time performane analysis. Fur-ther, we presented a model of an important software build-ing blok alled the Reator, whih is used in many DHPSsystems. We then demonstrated how the SRN model an beused to obtain estimates of key performane metris of theReator, as well as to analyze the sensitivity of the perfor-mane metris to the values of the input parameters and dif-ferent on�guration options with relative ease. Suh results,obtained earlier in the system lifeyle (e.g., design-time),an enable DHPS developers in making informed deisionsregarding appropriate resoure provisioning and shedula-bility.In the near term, our future work will involve validat-ing the performane metris of the Reator obtained fromthe SRN model using empirial benhmarking. Empirialbenhmarking is relatively omplex owing to the dif�ul-ties of testing the Reator as a standalone unit without theonfounding effets of underlying OS demultiplexing andqueueing mehanisms. For example, in POSIX-ompliantoperating systems, there will always be a default bufferingapability assoiated with the soket handles on whih theselet() system all is invoked. As a result, it is um-bersome to showase a Reator with a on�gurable queuesize for eah of its input event handles. Validating the Re-ator model may require development and omposition ofthe models for other building bloks with whih the Rea-tor interats. Developing performane models for other ver-sions of the Reator, inluding the thread pool [21℄ Reator,is also a topi of future researh.In the long term, we expet to develop and validate asuite of performane models for most of the middlewarebuilding bloks, as well as validation of the ompositionsof these building bloks.Referenes[1℄ A. Bondavalli, I. Mura, and I. Majzik. Automated depend-ability analysis of UML designs. In Pro. of Seond IEEE In-ternational Symposium on Objet-Oriented Real-Time Dis-tributed Computing, 1998.[2℄ H. Choi, V. Kulkarni, and K. S. Trivedi. �Markov Regener-ative Stohasti Petri Net�. Performane Evaluation, 20(1�3):337�357, 1994.[3℄ I. Foster and C. Kesselman. Globus: A metaomputing in-frastruture toolkit. International Journal of SuperomputerAppliations, 11(2):115�128, 1997.
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Figure 3. Sensitivity of performane measures to arrival rates λ1 and λ2


