Performance Analysis of Middleware Event Demultiplexing Patterns in
Distributed High Performance Software Systems

Swapna S. Gokhale
Dept. of Computer Science
and Engineering
University of Connecticut
Storrs, CT
{ssg@cse.uconn.edu}

Aniruddha Gokhale

Dept. of Electrical Engineering

and Computer Science

Vanderbilt University

Nashville, TN 37235
{a.gokhale @vanderbilt.edu}

Jeff Gray
Dept. of Computer
and Information Science
Univ. of Alabama at Birmingham
Birmingham, AL
{gray @cis.uab.edu}

Abstract

Some of the most challenging problems in high perfor-
mance computing are those associated with producing soft-
ware for distributed, high performance software (DHPS)
systems in which distributed resources, such as proces-
sors, sensors and networks coordinate to address high per-
formance computing needs of different domains. Support-
ing the multiple simultaneous quality of service (QoS) and
functional requirements of DHPS systems is particularly
vexing for DHPS system developers and integrators, who
must address these QoS and functional requirements with-
out overcomplicating their solutions, degrading software
quality, and exceeding project time and effort constraints.
A key enabler in recent successes with small- to medium-
scale DHPS systems has been middleware, which provides
reusable building blocks. However, as DHPS systems scale
to form large “composable systems of systems,” the design
space comprising available choices of reusable building
blocks and services in middleware grows substantially. This
limits the ability of the DHPS developers to make the right
design choices, which adversely impacts validation and ver-
ification of performance of end systems, and hence project
costs.

To enable DHPS developers to make the right design
choices, a systematic methodology to analyze the perfor-
mance of DHPS systems at design time is necessary. Such
a methodology may consist of models to analyze the perfor-
mance of individual building blocks comprising the middle-

ware and the composition of these building blocks. As a first
step towards building this methodology, in this paper we
present a model of the Reactor pattern, which provides the
very important synchronous demultiplexing and dispatch-
ing capabilities in DHPS systems. The model is based on the
Stochastic Reward Net (SRN) modeling paradigm. We illus-
trate how the model could be used relatively easily to ob-
tain estimates of key performance metrics and for the sensi-
tivity analysis of the Reactor pattern.

1. Introduction
Emerging Trends and Challenges

Large-scale, distributed, high performance software
(DHPS) systems form the basis of numerous scientific grid
computing applications. DHPS systems comprise many in-
terdependent artifacts, such as network/bus interconnects,
many coordinated local and remote endsystems, and mul-
tiple layers of software. DHPS systems demand multiple
simultaneous quality of service (QoS) properties includ-
ing predictability, controllability, and adaptability of oper-
ating characteristics for applications with respect to such
features as time, throughput, accuracy, confidence, secu-
rity and synchronization. All these issues become highly
volatile in large-scale DHPS systems, due to the dy-
namic interplay of the many interconnected parts that are
often constructed from smaller parts.

Although it is possible in theory to develop these
types of complex DHPS systems from scratch, contempo-
rary economic and organizational constraints, as well as
increasingly complex requirements and competitive pres-
sures, make it infeasible to do so in practice. A key en-
abler in recent successes with DHPS systems has been
QoS-enabled middleware [20], such as Globus [3].

Middleware comprises software layers that pro-
vide platform-independent execution semantics and
reusable services that coordinate how application compo-
nents are composed and interoperate. The primary role
of middleware is to (1) functionally bridge the gap be-
tween application programs and the lower-level hard-
ware and software infrastructure in order to coordinate
how parts of applications are connected and how they in-
teroperate, (2) enable and simplify the integration of com-
ponents developed by multiple technology suppliers, and
(3) provide common reusable accessibility for functional-
ity and patterns by factoring out artifacts from applications
into reusable code.

The flexibility and configurability offered by middle-
ware is manifested in the large number of reusable soft-
ware building blocks and configuration options, which can
be used to compose and build large systems end to end.
These building blocks embody good design practices called
patterns [4, 22]. The choice of the pattern to use is depen-
dent on the context and the consequences of using the pat-
tern.

Current ad hoc techniques based on manually choosing
the right set of building blocks are error-prone and may ad-
versely impact performance, system costs and schedules,
since most errors are caught very late in the lifecycle of
DHPS development. It is desirable to have the ability to
analyze the performance of individual building blocks and
the composed system much earlier in the lifecycle of DHPS
systems, thereby significantly lowering system testing costs
as well as improving correctness of the final developed sys-
tem.

To address the challenges of performance evaluation of
DHPS systems design, a systematic performance analy-
sis methodology is necessary. This methodology would
comprise performance models of the individual building
blocks and the composition of the building blocks. The
performance models are based upon well-known analyti-
cal/numerical modeling paradigms [18, 2, 8] and simula-
tion techniques [25]. As a first step towards the develop-
ment of such a methodology, this paper presents a model
of the Reactor pattern [22], which provides the very impor-
tant synchronous demultiplexing and dispatching capabili-
ties in DHPS systems. The model is based on the Stochastic
Reward Net (SRN) modeling paradigm [18]. We illustrate
how the model can be used to obtain estimates of key per-
formance metrics and for the sensitivity analysis of the Re-

actor pattern with relative ease.

Paper Organization

This paper is organized as follows: Section 2 provides an
overview of performance modeling techniques we use fol-
lowed by related work; Section 3 presents the SRN model
of the Reactor pattern, and illustrates the use of the model
through examples; and finally Section 4 offers concluding
remarks and directions for future research.

2. Background and Related Work

This section provides an overview of the Stochastic Re-
ward Nets (SRN) analytical modeling techniques we have
used for performance modeling of DHPS systems. We also
describe the related work in this area.

2.1. Stochastic Reward Nets (SRNs)

This section describes the background on the Stochastic
Reward Net (SRN) modeling paradigm [18] used for per-
formance analysis of the Reactor pattern. SRNs represent
a powerful modeling technique that is concise in its spec-
ification and whose form is closer to a designer’s intuition
about what a model should look like. Since SRN specifica-
tion is closer to a designer’s intuition of system behavior,
it is also easier to transfer the results obtained from solv-
ing the models and interpret them in terms of the entities
that exist in the system being modeled.

SRNSs are an extension to Petri nets [15]. Petri nets were
proposed to represent formally the flow of control in a sys-
tem. A Petri net is a directed graph which comprises two
types of elements, namely, places and transitions. A di-
rected arc connecting a place to a transition is called an in-
put arc. Conversely, an output arc connects a transition to a
place. Arcs have a positive integer number called multiplic-
ity associated with them, with the default multiplicity asso-
ciated with an arc being 1. Places can contain tokens that
move from one place to another through transitions. A tran-
sition is enabled when each of the places connected to it by
its input arcs have at least the number of tokens equal to the
multiplicity of those arcs. When an enabled transition fires,
a number of tokens equal to the input arc multiplicity is re-
moved from each one of the corresponding input places and
anumber of tokens equal to the output arc multiplicity is de-
posited in each one of the corresponding output places. The
state of a Petri net with p places is represented by a vec-
tor (mi, ma,...,my), where m,; is the number of tokens
in place ¢. The state of a Petri net is often referred to as its
marking. When a Petri net is specified, it can be made to
start at a particular marking called the initial marking. Sub-
sequently, the net evolves by the successive enabling and

firing of transitions which causes the tokens to flow among
places.

Stochastic Petri nets [18] extend Petri nets by allow-
ing timed transitions that have exponentially distributed fir-
ing times. Generalized stochastic Petri nets (GSPNs) [18]
also allow immediate transitions which fire instantaneously.
GSPNs include an inhibitor arc which can also have a mul-
tiplicity associated with it. An inhibitor arc inhibits the tran-
sition it is connected to if the place it is connected to at its
other end has a number of tokens equal to at least its multi-
plicity. The default multiplicity is 1. A GSPN marking with
at least one immediate transition enabled is called a vanish-
ing marking, and a marking with no immediate transitions
enabled is called a tangible marking.

Stochastic reward nets (SRNs) extend GSPNs further by
allowing the association of a reward rate to each tangible
marking. The SRN models allow the concise specification
of various reward functions. To extend the power of speci-
fication, SRN includes specification of enabling (or guard)
functions for each transition. The transition is enabled only
if the enabling function returns “1.” SRNs also allow mark-
ing dependent arc multiplicities and enabling functions. An-
other feature of SRNs is the provision of priorities and prob-
abilities to determine which of a set of simultaneously en-
abled transitions will fire first: the transition with the high-
est priority is fired first. If the competing transitions have
the same priority the one to fire first is chosen probabilisti-
cally.

In a graphical representation of a SRN, a place is rep-
resented as a circle, n tokens in a place are represented by
n dots or the number n within the place, immediate tran-
sitions are represented by thin lines, and exponentially dis-
tributed timed transitions are represented by empty rectan-
gles. An inhibitor arc is represented by a circle instead of an
arrow at the terminating end. An arc with multiplicity m is
represented by a “|m” on the arc, and an arc with a mark-
ing dependent multiplicity function is indicated by a “N” or
an inverted “N” in it. The number of tokens in place p is in-
dicated as p.

2.2. Related Work

Stochastic reward nets have been extensively used for
performance, reliability and performability analysis of a va-
riety of systems [19, 9, 10, 24, 11, 14]. The work closest
to the proposed research is reported by Ramani et al. [19],
where SRNs are used for the performance analysis of the
CORBA event service. UML representations of application
architecture have been mapped to Queuing networks [26, 7,
13, 16, 17] and Petri nets [12, 1].

Several other analysis tools exist. The Virginia Embed-
ded System Toolkit (VEST) [23] is a model-based embed-
ded system composition tool that checks whether certain

real-time, memory, power, and cost constraints of DPSS ap-
plications are satisfied. The Cadena [5] tool suite provide
static analysis, model-checking, and other light-weight for-
mal methods for component middleware-based DPSS sys-
tems. While these tools are important, they either deal with
other systems features (e.g., power consumption) or have
a narrow focus (e.g., embedded systems). Moreover, these
tools are applicable once the system composition decisions
are made.

3. Performance Evaluation of the Reac-

tor Pattern

In this section we describe the process of constructing
a SRN model for the Reactor pattern. Towards this end, we
first provide an overview of the Reactor pattern and describe
its characteristics and the relevant performance measures. A
SRN model of the Reactor pattern is presented along with
a discussion of how the performance measures can be ob-
tained by assigning reward rates at the net level. We con-
clude the section with illustrative examples of how the SRN
model can be used to obtain an estimate of the performance
metrics as well as to analyze the sensitivity of the perfor-
mance metrics for different values of the input parameters
and configuration options.

3.1. Reactor Pattern in Middleware Implementa-
tions

Figure 1 depicts a typical event demultiplexing and dis-
patching mechanism documented in the Reactor pattern.
The application registers an event handler with the event de-
multiplexer and delegates to it the responsibility of listening
for incoming events. On the occurrence of an event, the de-
multiplexer dispatches the event by making a callback to
the correct application-supplied event handler. This is the
idea behind the Reactor pattern, which provides synchro-
nous event demultiplexing and dispatching capabilities.

The Reactor pattern could be implemented in many dif-
ferent ways depending on the event demultiplexing capabil-
ities provided by the operating systems and the concurrency
requirements of the applications. For example, the demulti-
plexing capabilities of a Reactor could be based on the se-
lect or poll system calls provided by POSTX-compliant op-
erating systems or WaitForMultipleObject as found in the
different flavors of Win32 operating systems. Moreover, the
handling of the event in the event handler could be man-
aged by the same thread of control that was listening for
events giving rise to a single-threaded Reactor implementa-
tion. Alternately, the event could be delegated to a pool of
threads to handle the events to give rise to a thread-pool Re-
actor.

‘Application Code

run event
loop

dispatch
callbacks

Event Sources

Figure 1. Event Demultiplexers in Middleware

3.2. Characteristics of the Reactor Pattern

We consider a single-threaded, select-based implemen-
tation of the Reactor pattern with the following characteris-
tics:

e The Reactor receives two types of input events with
one event handler for each type of event registered with
the Reactor.

e Each event type has a separate queue, which holds the
incoming events of that type. The buffer capacity for
the queue of type #1 events is denoted N; and of type
#2 events is denoted Ns.

e Events of type #1 are serviced with a higher priority
over events of type #2.

e Event arrivals for both types of events follow a Pois-
son distribution with rates A1 and Ao, while the service
times of the events are exponentially distributed with
rates p11 and po.

e In a snapshot, when event handles corresponding to
both event types are enabled, the event corresponding
to type #1 is serviced with a priority over event han-
dle of type #2 event.

3.3. Performance Metrics

The following performance metrics are of interest for
each one of the event types in the Reactor pattern described
in Section 3.2:

e Expected throughput — which provides an estimate of
the number of events that can be processed by the sin-
gle threaded event demultiplexing framework. These
estimates are important for many applications, such as
telecommunications call processing.

e Expected queue length — which provides an estimate
of the queuing for each of the event handler queues.

These estimates are important since it is possible to de-
velop appropriate scheduling policies for applications
with real-time requirements.

e Expected total number of events — which provides
an estimate of the total number of events in a sys-
tem. These estimates are also tied to scheduling de-
cisions. In addition, these estimates will determine the
right levels of resource provisioning required to sus-
tain the system demands.

e Probability of event loss — which indicates how many
events will have to be discarded due to lack of buffer
space. These estimates are important particularly for
safety-critical systems, which cannot afford to lose
events. Alternately, these also give an estimate on the
desired levels of resource provisioning.

3.4. SRN Model

Figure 2 shows the SRN model for the Reactor pattern
with the characteristics described in Section 3.2. Part (a)
models the arrival, queuing and service of the two types of
events, where transitions A1 and A2 represent the arrival of
the events of type #1 and #2, respectively. Places B1 and
B2 represent the queue for the two types of events. Tran-
sitions Snl and Sn2 are immediate transitions that are en-
abled when a snapshot is taken. Places S1 and S2 represent
the enabled handles of the two types of events, whereas tran-
sitions S71 and transition Sr2 represent the execution of the
enabled event handlers of the two types of events. An in-
hibitor arc from place B1 to transition A1 with multiplic-
ity N1 prevents the firing of transition A1 when there are
N1 tokens in place B1. The presence of N1 tokens in place
B1 indicates that the buffer space to hold the incoming in-
put events of the first type is full, and no additional incom-
ing events can be accepted. The inhibitor arc from place
B2 to transition A2 achieves the same purpose for type #2
events. The inhibitor arc from place S1 to transition S72
prevents the firing of transition S72 when there is a token in
place S1. This models the prioritized service for the events
of type #1 over events of type #2.

Part (b) of the net models the process of taking succes-
sive snapshots and prioritized service of the event handle
corresponding to type #1 events in each snapshot. Transition
Snl is enabled when there is a token in place StSnpSht,
at least one token in place B1, and no tokens in place S1.
Similarly, transition Sn2 is enabled when there is a token in
place StSnpSht, at least one token in place B2, and no
tokens in place S2. Transition T_SrvSnpSht is enabled
when there is a token in either one of the places S1 and
52, and the firing of this transition deposits a token in place
SnpShtinProg.

The presence of a token in the place SnpShtInProg
indicates that the event handles that were enabled in the

N1

B1

v

Sn2

Snl
Sl /_X
S Y — Sr2

A2
N2 StSnpsht

B2 \
T_SrvSnpsht 7—T_End$npsht

SnpShtinProg

Figure 2. SRN model for the Reactor pattern

current snapshot are being serviced. Once these event han-
dles complete execution, the current snapshot is complete
and it is time to take another snapshot. This is accom-
plished by enabling the transition T_EndSnpSht. Tran-
sition T_EndSnpSht is enabled when there are no to-
kens in both places S1 and S2. Firing of the transition
T_EndSnpSht deposits a token in place StSnpSht, indi-
cating that the service of the enabled handles in the present
snapshot is complete, which marks the initiation of the next
snapshot. Table 1 summarizes the enabling/guard functions
for the transitions in the net.

The process of taking a single snapshot is modeled by
the example SRN model presented in Figure 2. The exam-
ple figure considers the scenario where there is one token in
each one of the places B1 and B2, and there is a token in
the place StSnpSht. Also, there are no tokens in places S1
and S2. In this scenario, transitions Snl and Sn2 are en-
abled. Both of these transitions are assigned the same pri-
ority, and any one of these transitions can fire first. Also,
since these transitions are immediate, their firing occurs in-
stantaneously. Without loss of generality, it can be assumed
that transition Sn1 fires before Sn2, which deposits a to-
ken in place S1.

When a token is deposited in place S1, transi-
tion T_SrvSnpSht is enabled. In addition, transition
Sn2 is already enabled. If transition T_SrvSnpSht were
to fire before transition Sn2, it would disable transi-
tion Sn2, and prevent the handle corresponding to the
second event type from being enabled. In order to pre-
vent transition T_SrvSnpSht from firing before transition
Sn2, transition T_SrvSnpSht is assigned a lower prior-
ity than transition Sn2. Because transitions Sn1 and Sn2
have the same priority, this also implies that the transi-
tion T_SrvSnpSht has a lower priority than transition
Snl. This ensures that in a given snapshot, event han-
dles corresponding to each event type are enabled when
there is at least one event in the queue.

After both the event handles are enabled, transi-
tion T_SrvSnpSht fires and deposits a token in place
SnpShtInProg. The presence of a token in the place
SnpShtInProg indicates that the event handles that
were enabled in the current snapshot are being serviced.
The event handle corresponding to type one event is ser-
viced first, which causes transition Srl to fire and the
removal of the token from place S1. Subsequently, tran-
sition Sr2 fires and the event handle corresponding to
the event of type two is serviced. This causes the re-
moval of the token from place S2. After both events are
serviced and there are no tokens in places S1 and S2, tran-
sition T_EndSnpSht fires, which marks the end of the
present snapshot and the beginning of the next one.

The performance measures described in Section 3.3 can
be computed by assigning reward rates at the net level as
summarized in Table 2. The throughputs 77 and T3 are
given by the rate at which transitions Sr1 and S72 fire. The
queue lengths ()1 and @), are given by the number of to-
kens in places B1 and B2, respectively. The total number
of events F; is given by the sum of the number of tokens
in places B1 and S1. Similarly, the total number of events
E5 is given by the sum of the number of tokens in places
B2 and S2. The loss probability L; is given by the proba-
bility of N1 tokens in place B1. Similarly, the loss proba-
bility L, is given by the probability of N2 tokens in place
B2.

3.5. Illustration

This section illustrates how the SRN model presented in
Section 3.4 can be used to determine the impact of differ-
ent parameters on the performance measures by careful de-
sign of experiments. The SRN is solved using SPNP [6] to
obtain the expected values of the performance measures in
all of the experiments described below.

In the first experiment, the impact of buffer capacity is
determined on the performance measures. For this experi-

Transition Guard function
Snl ((#StSnpShot == 1)&&(#B1 >= 1)&&(#51==10))?1: 0
Sn2 ((#StSnpShot == 1)&&(#B2 >= 1)&&(#52==0))71:0

T_SrvSnpSht

(#S1==1)[|(#52==1))71:0

T_EndSnpSht

(#ST == 0&&(#52 ==0))71: 0

Table 1. Guard functions

Performance metric Notation Reward rate
Throughput of event type #1 Ty return rate(Sr1)
Throughput of event type #2 Ty return rate(Sr2)

Queue length of event type #1 Q1 return (#B1)
Queue length of event type #2 Q2 return (#B2)

Loss probability of event type #1

Ly return (#B1 == N171:0)

Loss probability of event type #2

Lo return (#B2 == N271:0)

Total number of events of type #1

FEq return(#B1 + #51)

Total number of events of type #2

FEo return(#B2 + #52)

Table 2. Reward assignments to obtain performance measures

ment, the values of the remaining parameters (except for the
buffer capacities) are summarized in Table 3. We consider
two values of buffer capacities [N and Ns. In the first exper-
iment, there is a buffer capacity of 1 for both types of events,
whereas the second experiment offers a buffer capacity of 5
for both types of events. The performance metrics for both
of the experiments are summarized in Table 4. Because the
values of the parameters of the first type of events (A1, 1
and Nj) are the same as the values of the parameters for
the second type of events (Ao, 1, and Ns), the through-
puts, queue lengths, and the loss probabilities are the same
for these two event types.

The total number of events for the events of type #2, de-
noted Fs is slightly higher than the total number of events of
type #1, denoted F;. Because the events of type #1 are pro-
vided prioritized service over the events of type #2, on aver-
age it takes longer to service a type #2 event than it takes to
service a type #1 event. This results in a higher total num-
ber of events of the second type than of the first type. These
observations hold for both values of maximum buffer ca-
pacity. It can be observed that the loss probability is signifi-
cantly higher when the buffer capacity is 1 compared to the
case when the buffer space is 5. Also, due to the higher loss
probability, the throughput is slightly lower when the max-
imum buffer capacity is 1 than when the maximum buffer
capacity is 5.

The sensitivity of the performance measures to the ar-
rival rate of the events of type #1 and type #2 can be de-
termined; i.e., A1 and \o. For sensitivity analysis, the maxi-
mum buffer capacity can be set for both event types to be 5.

Parameter Value
A1 0.400/sec.
Ao 0.400/sec.
1 2.000/sec.
12 2.000/sec.

Table 3. Values of parameters

Performance measure Buffer space
Ny =1,Na=1| Ny=5, Ny =5
T 0.37/sec. 0.40/sec
TS 0.37/sec. 0.40/sec
Q1 0.065 0.12
Q2 0.065 0.12
Iy 0.25 0.32
Ey 0.27 0.35
Ly 0.065 0.00026
Lo 0.065 0.00026

Table 4. Impact of buffer capacity on perfor-
mance measures

Variations can be applied to both A\; and A, one at a time in
the range of 0.5/sec. to 2.0/sec. to obtain the expected val-
ues of the performance metrics by solving the SRN model
shown in Figure 2. The remaining parameters are held at the
values reported in Table 3.

Figure 3 shows the performance measures as a function
of A1 and As. The plots in the left column show the variation
of the performance measures with respect to \;, whereas
the plots in the right column show the variation of the per-
formance measures with respect to Ao. Referring to the top-
most figure in the left column, it can be observed that ini-
tially, the throughput of type one events is nearly the same
as the arrival rate of the events, indicating that the events are
serviced at the same rate at which they arrive. However, as
A1 increases, the throughput starts lagging the arrival rate,
which indicates that the service rate py is not sufficiently
high to process the events at the rate at which they arrive.
This may cause the event queue for type #1 events to op-
erate at full capacity for an extended period of time, which
results in a rejection of the incoming input events.

Thus, a decrease in the rate at which the throughput in-
creases is marked by an increase in the loss probability of
the events (as shown in the third plot in the left column)
and an increase in the queue length (as shown in the fourth
plot in the left column) in Figure 3. The left plot in the bot-
tom row represents the total number of events of each type
as a function of A;. The plot indicates that the total number
of type #2 events in the system increases as \; increases.
When \; increases, the probability of having to service a
type #1 event prior to servicing a type #2 event in a given
snapshot increases. Because events of type #1 have prior-
ity over events of type #2, the type #2 events tend to re-
side longer in the system as \; increases. Thus, although
the throughput of type #2 events is unchanged with respect
to A1, the response time of a type #2 event may increase.
The plots in the right column of Figure 3 indicate that simi-
lar trends can be observed in the performance measures with
respect to g, except that the roles of the two types of events
are reversed.

Similar sensitivity analysis can also be conducted with
respect to the service rates pq and po.

4. Conclusion and Future Research

The research in this paper is motivated by the realiza-
tion that a growing number of computing and network-
ing resources are being expended to control large-scale,
distributed, high performance software (DHPS) systems.
The next-generation of DHPS systems, such as sensor net-
work applications, grid-based scientific experiments, and
emergency response systems, evolve rapidly and must col-
laborate with multiple remote sensors, provide on-demand
browsing and actuation capabilities for human operators,
and respond flexibly to unanticipated situational factors that
arise at run-time. These characteristics render earlier static
system development and analysis techniques less effective.
Moreover, the availability of off-the-shelf software, hard-
ware, and networking building blocks — compounded by

economic and market forces — are causing DHPS systems
to be assembled rapidly and tested by composing building
block components. Design-time validation and verification
of end system performance is a necessity for the realm of
next-generation DHPS systems.

In this paper, we provided an overview of the SRN
modeling paradigm that may be valuable in developing a
methodology for design time performance analysis. Fur-
ther, we presented a model of an important software build-
ing block called the Reactor, which is used in many DHPS
systems. We then demonstrated how the SRN model can be
used to obtain estimates of key performance metrics of the
Reactor, as well as to analyze the sensitivity of the perfor-
mance metrics to the values of the input parameters and dif-
ferent configuration options with relative ease. Such results,
obtained earlier in the system lifecyle (e.g., design-time),
can enable DHPS developers in making informed decisions
regarding appropriate resource provisioning and schedula-
bility.

In the near term, our future work will involve validat-
ing the performance metrics of the Reactor obtained from
the SRN model using empirical benchmarking. Empirical
benchmarking is relatively complex owing to the difficul-
ties of testing the Reactor as a standalone unit without the
confounding effects of underlying OS demultiplexing and
queueing mechanisms. For example, in POSIX-compliant
operating systems, there will always be a default buffering
capability associated with the socket handles on which the
select () system call is invoked. As a result, it is cum-
bersome to showcase a Reactor with a configurable queue
size for each of its input event handles. Validating the Re-
actor model may require development and composition of
the models for other building blocks with which the Reac-
tor interacts. Developing performance models for other ver-
sions of the Reactor, including the thread pool [21] Reactor,
is also a topic of future research.

In the long term, we expect to develop and validate a
suite of performance models for most of the middleware
building blocks, as well as validation of the compositions
of these building blocks.

References

[1] A. Bondavalli, I. Mura, and I. Majzik. Automated depend-
ability analysis of UML designs. In Proc. of Second IEEE In-
ternational Symposium on Object-Oriented Real-Time Dis-
tributed Computing, 1998.

[2] H. Choi, V. Kulkarni, and K. S. Trivedi. “Markov Regener-
ative Stochastic Petri Net”. Performance Evaluation, 20(1—
3):337-357, 1994.

[3] L Foster and C. Kesselman. Globus: A metacomputing in-

frastructure toolkit. International Journal of Supercomputer
Applications, 11(2):115-128, 1997.

(4]

5]

(6]

(71

(8]

(9]

(10]

[11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

(19]

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. Prasad. Ca-
dena: An Integrated Development, Analysis, and Verification
Environment for Component-based Systems. In Proceedings
of the 25th International Conference on Software Engineer-
ing, Portland, OR, May 2003.

C. Hirel, B. Tuffin, and K. S. Trivedi. “SPNP: Stochastic
Petri Nets. Version 6.0”. Lecture Notes in Computer Science
1786, 2000.

F. Hoeben. “Using UML models for performance calcula-
tion”. In Proc. of Workshop on Software and Performance,

2000.

G. Horton, V. Kulkarni, D. Nicol, and K. S. Trivedi. “Fluid
stochastic Petri nets: Theory, application and solution tech-
niques”. Journal of Operations Research, 405, 1998.

O. Ibe, A. Sathaye, R. Howe, and K. S. Trivedi. “Stochas-
tic Petri net modeling of VAXCluster availability”. In Proc.
of Third International Workshop on Petri Nets and Perfor-
mance Models, pages 142—151, Kyoto, Japan, 1989.

O. Ibe and K. S. Trivedi. “Stochastic Petri net models of
polling systems”. IEEE Journal on Selected Areas in Com-
munications, 8(9):1649-1657, December 1990.

O. Ibe and K. S. Trivedi. “Stochastic Petri net analysis of
finite—population queueing systems”. Queueing Systems:
Theory and Applications, 8(2):111-128, 1991.

P. King and R. Pooley. “Derivation of Petri net perfor-
mance models from UML. specifications of communication
software”. In Proc. of XV Performance Engineering Work-
shop, 1997.

D. A. Menasce and H. A. Gomaa. “On a language
based method for software performance engineering of
client/server systems”. In Proc. of Workshop on Software
and Performance, 1998.

J. Muppala, G. Ciardo, and K. S. Trivedi. “Stochastic re-
ward nets for reliability prediction”. Communications in
Reliability, Maintainability and Serviceability: An Interna-
tional Journal Published by SAE Internationa, 1(2):9-20,
July 1994,

J. L. Peterson. Petri Net Theory and the Modeling of Sys-
tems. Prentice-Hall, 1981.

D. Petriu, C. Shousha, and A. Jalnapurkar. “Architecture—
based performance analysis applied to a telecommunication
system”. [EEE Trans. on Software Engineering, November
2000.

R. Pooley and P. King. “The unified modeling language and
performance engineering”. /EEE Software, 1999.

A. Puliafito, M. Telek, and K. S. Trivedi. “The evolution of
stochastic Petri nets”. In Proc. of World Congress on Sys-
tems Simulation, pages 3—15, Singapore, September 1997.

S. Ramani, K. S. Trivedi, and B. Dasarathy. “Performance
analysis of the CORBA event service using stochastic reward
nets”. In Proc. of the 19th IEEE Symposium on Reliable Dis-
tributed Systems, pages 238-247, October 2000.

[20]

[21]

(22]

(23]

[24]

[25]

[26]

R. E. Schantz and D. C. Schmidt. Middleware for Distrib-
uted Systems: Evolving the Common Structure for Network-
centric Applications. In J. Marciniak and G. Telecki, editors,
Encyclopedia of Software Engineering. Wiley & Sons, New
York, 2002.

D. C. Schmidt and S. D. Huston. C++ Network Program-
ming, Volume 2: Systematic Reuse with ACE and Frame-
works. Addison-Wesley, Reading, Massachusetts, 2002.

D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture: Patterns for Con-
current and Networked Objects, Volume 2. Wiley & Sons,
New York, 2000.

J. A. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu,
M. Humphrey, and B. Ellis. VEST: An Aspect-based Com-
position Tool for Real-time Systems. In Proceedings of the
IEEE Real-time Applications Symposium, Washington, DC,
May 2003. IEEE.

H. Sun, X. Zang, and K. S. Trivedi. “A stochastic re-
ward net model for performance analysis of prioritized
DQDB MAN”. Computer Communications, Elsevier Sci-
ence, 22(9):858-870, June 1999.

The VINT Project. Network Simulator - NS-2. http://
www.1si.edu/nsnam/ns.

L. G. Williams and C. U. Smith. “Performance evaluation
of software architectures”. In Proc. of the Workshop on Soft-
ware and Performance, Santa Fe, NM, 1998.

18

16

lambda2

141

ndyBnoL

18

16

lambda2

14

12
lambda2

0.4

03

025 [

02

015 [

Aunaeqoud sso

01

0.05 [

wbua) anandy

18

16

lambdal

141

0.6 [

L
- ©
S

04

ndyBnosyL

S1UBAS 4O JaqUINU e10L.

18

16

lambdal

lambdal

03

L
&
S

02

0.15 [

Aunaeqoud sso

01

0.05 [

wbua) anandy

18

16

18

16

lambda2

3. Sensitivity of performance measures to arrival rates \; and)\,

lambdal

igure

F

