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Applications and services for next-generation distributed systems must be reliable,

flexible, reusable, and capable of providing low latency to delay-sensitive applications (such

as avionics, and telecommunication systems), and high bandwidth to bandwidth-intensive

applications (such as medical imaging, satellite surveillance, and teleconferencing) running

over high-speed networks. Requirements for reliability, flexibility, and reusability motivate

the use of object-oriented middleware like the Common Object Request Broker Architecture

(CORBA).

However, the empirical studies we conducted measuring the performance of CORBA

implementations revealed that current CORBA implementations incur a number of over-

heads stemming from excessive presentation layer conversions, data copying, and inefficient

server demultiplexing techniques.



This dissertation describes our work implementing a high performance, real-time

ORB called ”The ACE ORB” (TAO). This dissertation provides three contributions to

building a high performance, real-time ORB. First, we will describe the optimizations we

developed to improve the performance of the IIOP interpretive marshaling engine. Second,

we will describe the efficient demultiplexing strategies we developed to reduce latency while

improving scalability, predictability and consistency of request demultiplexing. Finally,

we describe the design and implementation of the OMG IDL compiler we developed that

generates efficient stubs and skeletons.
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Chapter 1

Introduction

1.1 Emerging Trends in Distributed Real-time Systems

Applications and services for next-generation distributed systems must be flexible, reusable,
robust, and capable of providing scalable, low-latency quality of service to delay-sensitive
applications. In addition, communication software must allow bandwidth-sensitive appli-
cations to transfer data efficiently over high-speed networks. Robustness, flexibility, and
reusability are essential to respond rapidly to changing application requirements that span
an increasingly wide range of media types and access patterns [7]. Distributed and real-time
applications, such as video-on-demand, teleconferencing, and avionics, require endsystems
that can provide statistical and deterministic quality of service (QoS) guarantees for la-
tency [28], bandwidth, and reliability [42]. The following trends are shaping the evolution
of software development techniques for these distributed real-time applications and endsys-
tems:

• Increased focus on middleware and integration frameworks: There is a general
industry trend away from programming real-time applications from scratch to integrating
applications using reusable components based on object-oriented (OO) middleware [38].

• Increased focus on QoS-enabled components and open systems: There is in-
creasing demand for remote method invocation and messaging technology to simplify the
collaboration of open distributed application components [8] that possess stringent QoS
requirements.

• Increased focus on standardizing real-time middleware: Several international
efforts are currently addressing QoS for OO middleware. The most prominent is the Ob-
ject Management Group’s (OMG) Common Object Request Broker Architecture (CORBA)
standardization effort [51].

Communication middleware based on the Common Object Request Broker Archi-
tecture (CORBA) [51] is a promising approach for improving the flexibility, reliability, and
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portability of communication software. CORBA is designed to enhance distributed appli-
cations by automating common networking tasks such as object registration, location, and
activation; request demultiplexing; framing and error-handling; parameter marshaling and
demarshaling; and operation dispatching. CORBA is OO middleware that allows clients to
invoke operations on objects without concern for where the objects reside, what language
the objects are written in, what OS/hardware platform they run on, or what communi-
cation protocols and networks are used to interconnect distributed objects [76]. CORBA
also provides the basis for defining higher layer distributed services such as naming, events,
replication, transactions, and security [48].

There has been recent progress towards standardizing CORBA for real-time [50] and
embedded [49] systems. Several OMG groups, most notably the Real-Time Special Interest
Group (RT SIG), are actively investigating standard extensions to CORBA to support
distributed real-time applications. The intent of the real-time CORBA standardization
effort is to enable real-time applications to interwork throughout embedded systems and
heterogeneous distributed environments such as the Internet.

Although some operating systems, networks, and protocols now support real-time
scheduling, they do not provide integrated end-to-end real-time ORB endsystem solu-
tions [69]. Moreover, relatively little systems research has focused on strategies and tactics
for real-time CORBA. In particular, QoS research at the network and OS layers has not ad-
dressed key requirements and programming aspects of CORBA middleware. For instance,
research on QoS for ATM networks has focused largely on policies for allocating bandwidth
on a virtual circuit basis [10]. Likewise, research on real-time operating systems has focused
largely on avoiding priority inversions in synchronization and dispatching mechanisms for
multi-threaded applications [60].

However, despite dramatic increases in the performance of networks and computers,
designing and implementing flexible and efficient communication software remains hard.
Substantial time and effort has traditionally been required to develop this type of soft-
ware; yet all too frequently communication software fails to achieve its performance and
functionality requirements.

Furthermore, notwithstanding the significant efforts of the OMG RT SIG, however,
developing and standardizing distributed real-time CORBA ORBs remains hard. There
are few successful exemplars of standard, commercially available distributed real-time ORB
middleware. In particular, conventional CORBA ORBs are not well suited for performance-
sensitive, distributed real-time applications due to (1) lack of QoS specification interfaces,
(2) lack of QoS enforcement, (3) lack of real-time programming features, and (4) general
lack of performance and predictability [67].



3

The success of CORBA in mission-critical distributed computing environments de-
pends heavily on the ability of the ORBs to provide the necessary quality of service (QoS)
to applications. Common application QoS requirements include:

• High bandwidth CORBA ORBs must provide high throughput to bandwidth-sensitive
applications such as medical imaging, satellite surveillance, or teleconferencing systems;

• Low latency CORBA ORBs must support low latency for delay-sensitive applications
such as real-time avionics, distributed interactive simulations, and telecom call processing
systems;

• Scalability of endsystems and distributed systems CORBA ORBs must scale
efficiently and predictably as the number of objects in endsystems and distributed systems
increases. Scalability is important for large-scale applications that handle large numbers of
objects on each network node, as well as a large number of nodes throughout a distributed
computing environment.

Experience over the past several years [59] indicates CORBA is well-suited for re-
quest/response applications over lower-speed networks (such as Ethernet and Token Ring).
However, earlier studies [57, 68], and our results shown in Chapters 2, 3, and 4, demon-
strate that conventional implementations of CORBA incur considerable overhead when used
for performance-sensitive applications over high-speed networks. As users and organizations
migrate to networks with gigabit data rates, the inefficiencies of current communication mid-
dleware (like CORBA) will force developers to choose lower-level mechanisms (like sockets)
to achieve the necessary transfer rates. The use of low-level mechanisms increases develop-
ment effort and reduces system reliability, flexibility, and reuse. This is a serious problem for
mission/life-critical applications (such as satellite surveillance and medical imaging [3, 11]).
Therefore, it is imperative that performance of high-level, but inefficient, communication
middleware be improved to match that of low-level, but efficient, tools.

1.2 Research Contributions

Section 1.1 described the emerging trends in developing distributed, real-time systems and
emphasized middleware-based solutions to implement these. Figures 1.1 and 1.2 depict
some examples of performance-sensitive, large-scale, distributed applications. This research
addresses the following questions pertinent to developing such applications:

• Can CORBA be used for performance-sensitive applications (e.g., telecommunica-
tions, satellite surveillance, medical imaging, avionics) on high-speed networks?

– We determine this empirically as described in Chapters 2, 3, and 4.
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• Develop optimizations required to build high-performance ORBs with the following
constraints:

– Ability to support very high bandwidth, and low and predictable latency to
applications;

– Maintain strict CORBA compliance.

• Identify features and architectural patterns needed for real-time ORBs, and develop
optimized components to support the following:

– Both hard real-time and statistical real-time applications must be supported.

1.2.1 Limitations of CORBA for Real-time Applications

Prior experience using CORBA on telecommunication [65], avionics [31], and medical imag-
ing projects [58] indicates that it is well-suited for conventional request/response applica-
tions with best-effort QoS requirements. However, CORBA is not yet suited for high-
performance, real-time applications for the following reasons:

Lack of QoS specification interfaces: The CORBA standard does not provide inter-
faces to specify end-to-end QoS requirements. For instance, there is no standard way for
clients to indicate the relative priorities of their requests to an ORB. Likewise, there is
no interface for clients to inform an ORB how frequently to execute operations that have
periodic processing deadlines.

The CORBA standard also does not define interfaces that allow applications to
specify their admission control policies. For instance, a video server might prefer to use
available network bandwidth to serve a limited number of clients and refuse service to
additional clients, rather than admit all clients and provide poor video quality. Conversely,
a stock quote service might want to admit a large number of clients and distribute all
available bandwidth and processing time equally among them.

Lack of QoS enforcement: Conventional ORBs do not provide end-to-end QoS enforce-
ment, i.e., from application-to-application across a network. For instance, most ORBs use
a FIFO strategy to transmit, schedule, and dispatch client requests. However, FIFO strate-
gies can yield unbounded priority inversions [60, 40], which occur when a lower priority
request blocks the execution of a higher priority request for an indefinite period. Likewise,
conventional ORBs do not allow applications to specify the priority of internal threads that
process requests.

Standard ORBs also do not control servant execution. For instance, they do not
terminate servants that consume excess resources. Thus, most existing ORBs use ad hoc
resource allocation. Consequently, a single client can consume all available network band-
width and a misbehaving servant can monopolize a server’s CPU.
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Lack of real-time programming features: The CORBA specification does not de-
fine key features that are necessary to support real-time programming. For instance, the
CORBA General Inter-ORB Protocol (GIOP) supports asynchronous messaging. However,
no standard programming language mapping yet exists for transmitting client requests
asynchronously, though there is one under review by the OMG. Likewise, the CORBA
specification does not require an ORB to notify clients when transport layer flow control
occurs, nor does it support timed operations [15]. As a result, it is hard to develop portable
and efficient real-time applications that behave deterministically when ORB endsystem or
network resources are temporarily unavailable.

Lack of performance optimizations: Conventional ORB endsystems incur significant
throughput [58] and latency [23] overhead, as well as exhibiting many priority inversions
and sources of non-determinism [41], as shown in Figure 1.3.
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Figure 1.3: Sources of Latency and Priority Inversion in Conventional ORBs

These overheads stem from

1. non-optimized presentation layer conversions and monolithic presentation code that
copies data excessively [13] and overflows processor caches [25];

2. internal buffering strategies that produce non-uniform behavior for different message
sizes [21];

3. inefficient demultiplexing and dispatching algorithms [24];
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4. long chains of intra-ORB virtual method calls [20];

5. lack of integration with underlying real-time OS and network QoS mechanisms [67].

1.2.2 Scope of the Research

The primary contribution of this dissertation has been pinpointing precisely where the
key sources of overhead exist in higher-level communication middleware such as CORBA
toolkits and developing optimizations to significantly reduce these overheads.

This research employs a measurement-driven approach. The findings from these
measurements drive our optimizations. Different components of the CORBA middleware
architecture are tested for performance and the sources of overhead are quantified and an-
alyzed. Detailed measurements of throughput, latency, and scalability of existing ORBs
appear in our preliminary work [20, 21, 23]. We have used two widely used CORBA imple-
mentations - Orbix 2.1 and VisiBroker 2.0 - in our experiments. Our findings indicate that
existing ORBs incur significant overhead stemming from a variety of sources including:

1. non-optimized presentation layer conversions, data copying, and memory manage-
ment;

2. inefficient and inflexible receiver-side demultiplexing and dispatching operations;

3. long chains of intra-ORB function calls;

4. generation of non-word boundary aligned data structures by stub compilers;

5. excessive control information carried in request messages;

6. lack of integration with underlying operating system mechanisms.

Our goal in precisely pinpointing the sources of overhead for communication mid-
dleware is to develop scalable and flexible CORBA implementations that can deliver the
required QoS to applications [30].

We provide these results and our analysis in Chapters 2, 3, and 4. Based on these
analyses, we have developed a number of optimizations to eliminate the different sources
of overhead present in existing ORBs [25, 24]. Our optimizations are incorporated in a
high-performance, real-time ORB called TAO (The ACE ORB) [69]. The optimizations
developed as part of this dissertation and applied to TAO are shown shaded in Figure 1.4.

The optimizations reported in this dissertation include

1. a high-performance, interpretive Internet Inter-ORB Protocol (IIOP)’s Common Data
Representation (CDR) marshaling engine - a feature that reduces the latency (de-
scribed in Chapter 5)
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2. a highly scalable request demultiplexing engine whose performance is predictable and
consistent - a feature that is highly desirable for large-scale, real-time applications
(described in Chapter 6)

3. an OMG IDL compiler back-end that produces efficient stubs and skeletons that use
the IIOP CDR marshaling engine (described in Chapter 7)

1.2.3 Impact of the Research

Our research has had a significant impact on the ORB vendors, the industry, and the
research community. Some of our findings and solutions have been incorporated in the
responses to the Request for Proposals (RFP) [50] submitted by the Object Management
Group’s (OMG) special interest group on real-time CORBA. In addition, our performance
results and the analysis has influenced the ORB vendors to improve the performance of
their ORBs in their later releases.

The results of our performance analysis with TAO indicate that the performance of
the stubs and skeletons using the interpretive marshaling engine is almost comparable to
that of the stubs and skeletons of commercial ORBs. At the same time, the footprint of the
stubs and skeletons using interpretive marshaling is significantly smaller compared to that
using compiled marshaling as shown in Chapter 7.

1.3 Overview of CORBA

CORBA Object Request Brokers (ORBs) [76] allow clients to invoke operations on dis-
tributed objects without concern for:
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Object location: CORBA objects can be collocated with the client or distributed on a
remote server, without affecting their implementation or use.

Programming language: The languages supported by CORBA include C, C++, Java,
Ada95, COBOL, and Smalltalk, among others.

OS platform: CORBA runs on many OS platforms, including Win32, UNIX, MVS, and
real-time embedded systems like VxWorks, Chorus, and LynxOS.

Communication protocols and interconnects: The communication protocols and in-
terconnects that CORBA can run on include TCP/IP, IPX/SPX, FDDI, ATM, Ethernet,
Fast Ethernet, embedded system backplanes, and shared memory.

Hardware: CORBA shields applications from differences in hardware such as RISC vs.
CISC instruction sets.

Figure 1.5 illustrates the components in the CORBA reference model, all of which
collaborate to provide the portability, interoperability, and transparency outlined above.
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Figure 1.5: Components in the CORBA Reference Model

Each component in the CORBA reference model is outlined below:

Servant: This component implements the operations defined by an OMG Interface Defini-
tion Language (IDL) interface. In languages like C++ and Java that support object-oriented
(OO) programming, servants are implemented using one or more objects. In non-OO lan-
guages like C, servants are typically implemented using functions and structs. A servant
is identified by its object reference, which uniquely identifies the servant in a server process.

Client: This program entity performs application tasks by obtaining object references to
servants and invoking operations on the servants. Servants can be remote or collocated
relative to the client. Ideally, accessing a remote servant should be as simple as calling
an operation on a local object, i.e., object→operation(args). Figure 1.5 shows the
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components that ORBs use to transmit requests transparently from client to servant for
remote operation invocations.

ORB Core: When a client invokes an operation on a servant, the ORB Core is responsible
for delivering the request to the servant and returning a response, if any, to the client. For
servants executing remotely, a CORBA-compliant [51] ORB Core communicates via the
Internet Inter-ORB Protocol (IIOP), which is a version of the General Inter-ORB Protocol
(GIOP) that runs atop the TCP transport protocol. An ORB Core is typically implemented
as a run-time library linked into client and server applications.

ORB Interface: An ORB is a logical entity that may be implemented in various ways,
e.g., one or more processes or a set of libraries. To decouple applications from implemen-
tation details, the CORBA specification defines an abstract interface for an ORB. This
ORB interface provides standard operations that (1) initialize and shutdown the ORB, (2)
convert object references to strings and back, and (3) creates argument lists for requests
made through the Dynamic Invocation Interface (DII) described below.

OMG IDL Stubs and Skeletons: IDL stubs and skeletons serve as a “glue” between
the client and servants, respectively, and the ORB. Stubs provide a strongly-typed, static
invocation interface (SII) that marshals application data into a common packet-level repre-
sentation. Conversely, skeletons demarshal the packet-level representation back into typed
data that is meaningful to an application.

IDL Compiler: An IDL compiler automatically transforms OMG IDL definitions into
an application programming language like C++ or Java. In addition to providing language
transparency, IDL compilers eliminate common sources of network programming errors and
provide opportunities for automated compiler optimizations [13].

Dynamic Invocation Interface (DII): The DII allows clients to generate requests at
run-time. This flexibility is useful when an application has no compile-time knowledge of
the interface it is accessing. The DII also allows clients to make deferred synchronous calls,
which decouple the request and response portions of two-way operations to avoid blocking
the client until the servant responds. In contrast, SII stubs support only two-way, i.e.,
request/response, and oneway, i.e., request only operations.1

Dynamic Skeleton Interface (DSI): The DSI is the server’s analogue to the client’s
DII. The DSI allows an ORB to deliver requests to a servant that has no compile-time
knowledge of the IDL interface it is implementing. Clients making requests need not know
whether the server ORB uses static skeletons or dynamic skeletons. Likewise, servers need
not know if clients use the DII or SII to invoke requests.

1The OMG has recently standardized an asynchronous method invocation interface, as well.
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Object Adapter: An Object Adapter associates a servant with an ORB, demultiplexes
incoming requests to the servant, and dispatches the appropriate operation upcall on that
servant. Recent CORBA portability enhancements [51] define the Portable Object Adapter
(POA), which supports multiple nested POAs per ORB. Object Adapters make it possible
for an ORB to support various types of servants that possess similar requirements. This
architecture results in a small and simple ORB that can still support a wide range of object
granularities, lifetimes, policies, implementation styles, and other properties.

Interface Repository: The Interface Repository provides run-time information about
IDL interfaces. Using this information, it is possible for a program to encounter an object
whose interface was not known when the program was compiled, yet, be able to determine
what operations are valid on the object and make invocations on it. In addition, the
Interface Repository provides a common location to store additional information associated
with interfaces ORB objects, such as stub/skeleton type libraries.

Implementation Repository: The Implementation Repository contains information
that allows the ORB to locate and activate servants. Most of the information in the Im-
plementation Repository is specific to an ORB or operating environment. In addition, the
Implementation Repository provides a common location to store information associated
with servants, such as administrative control, resource allocation, and security.

The use of CORBA as communication middleware enhances application flexibility
and portability by automating common network programming tasks such as object loca-
tion, object activation, and parameter marshaling. CORBA is an improvement over conven-
tional procedural RPC middleware like OSF DCE since it supports object-oriented language
features and more flexible communication mechanisms beyond standard request/response
RPC.

Object-oriented language features supported by CORBA include encapsulation, in-
terface inheritance, parameterized types, and exception handling. The flexible communi-
cation mechanisms supported by CORBA include its dynamic invocation capabilities and
object reference parameters that support distributed callbacks and peer-to-peer commu-
nication. These features enable complex distributed and concurrent applications to be
developed more rapidly and correctly.

The principal drawback to using middleware like CORBA is its potential for lower
throughput, higher latency, and lack of scalability over high-speed networks. Conventional
CORBA ORBs have not been optimized significantly. In general, ORB performance has not
generally been an issue on low-speed networks, where middleware overhead is often masked
by slow link speeds. On high-speed networks, however, this overhead becomes a significant
factor that limits communication performance and ultimately limits adoption of CORBA
by developers.
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1.4 Overview of TAO

We believe that developing real-time OO middleware requires a systematic, measurement-
driven methodology to identify and alleviate sources of ORB endsystem overhead, priority
inversion, and non-determinism. The ORB software architectures presented in this thesis
are based on our experience developing, profiling, and optimizing next-generation avion-
ics [31] and telecommunications [65] systems using OO middleware such as ACE (Adaptive
Communications Framework) [64] and TAO (The ACE ORB) [69].

ACE is an OO framework that implements core concurrency and distribution pat-
terns [18] for communication software. It provides reusable C++ wrapper facades and
framework components that support high-performance, real-time applications. ACE runs
on a wide range of OS platforms, including Win32, most versions of UNIX, and real-time
operating systems like VxWorks, Sun ClassiX, pSoS, and LynxOS.

TAO is a highly extensible ORB endsystem written using ACE. It is targeted for
applications with deterministic and statistical QoS requirements, as well as best effort re-
quirements. TAO is fully compliant with the latest OMG CORBA specifications [51] and
is the first standard CORBA ORB endsystem that can support end-to-end QoS guarantees
over ATM networks.

The TAO project focuses on the following topics related to real-time CORBA and
ORB endsystems:

• Identifying enhancements to standard ORB specifications, particularly OMG CORBA,
that will enable applications to specify their QoS requirements concisely and precisely
to ORB endsystems [22].

• Empirically determining the features required to build real-time ORB endsystems that
can enforce deterministic and statistical end-to-end application QoS guarantees [69].

• Integrating the strategies for I/O subsystem architectures and optimizations [41] with
ORB middleware to provide end-to-end bandwidth, latency, and reliability guarantees
to distributed applications.

• Capturing and documenting the key design patterns [66] necessary to develop, main-
tain, configure, and extend real-time ORB endsystems.

This thesis contributes towards bullets 2 and 3 shown above.

1.5 CORBA Testbed Environment

In this section, we describe details of the testbed environment we used to perform all
the experiments as well as the profiling tools we used. The information provided here is
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common to all the tests we performed. Individual chapters provide additional details of the
experiment performed.

1.5.1 Hardware and Software Platforms

Our experimental ATM/CORBA testbed is depicted in Figure 1.6.
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Figure 1.6: ATM Testbed for ORB Endsystem Performance Experiments

The experiments for this research were conducted using Bay Networks LattisCell
10114 and FORE systems ASX-1000 ATM switches connected to two dual-processor SPARC-
station 20 Model 712s running SunOS 5.4 and UltraSPARC-2s running SunOS 5.5.1, re-
spectively. The former configuration was used for our preliminary work on identifying the
sources of overhead in CORBA as described in Chapters 2, 3, and 4. The latter config-
uration was used to test the results of our optimizations described in Chapters 5, 6, and
7.

The LattisCell 10114 is a 16 Port, OC-3 155 Mbs/port switch. Each SPARCsta-
tion 20 contains two 70 MHz Super SPARC CPUs with a 1 Megabyte cache per-CPU.
The SunOS 5.4 TCP/IP protocol stack is implemented using the STREAMS communication
framework [62]. Each SPARCstation has 128 Mbytes of RAM and an ENI-155s-MF ATM
adaptor card, which supports 155 Megabits per-sec (Mbps) SONET multimode fiber. The
Maximum Transmission Unit (MTU) on the ENI ATM adaptor is 9,180 bytes. Each ENI
card has 512 Kbytes of on-board memory. A maximum of 32 Kbytes is allotted per ATM
virtual circuit connection for receiving and transmitting frames (for a total of 64 K). This
allows up to eight switched virtual connections per card.

The ASX-1000 is a 96 Port, OC-12 622 Mbps/port switch. Each UltraSparc-2 con-
tains two 168 MHz Super SPARC CPUs with a 1 Megabyte cache per-CPU. The SunOS 5.5.1
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TCP/IP protocol stack is also implemented using the STREAMS communication frame-
work. Each UltraSPARC-2 has 256 Mbytes of RAM and an ENI-155s-MF ATM adaptor
card, which supports 155 Megabits per-sec (Mbps) SONET multimode fiber. The MTU
and on-board memory on the ENI card is the same as before.

1.5.2 Profiling Tools

Detailed timing measurements used to compute latency were made with the gethrtime

system call available on SunOS 5.5. This system call uses the SunOS 5.5 high-resolution
timer, which expresses time in nanoseconds from an arbitrary time in the past. The time
returned by gethrtime is very accurate since it does not drift.

The profile information for the empirical analysis was obtained using the Quantify [35]
performance measurement tool. Quantify analyzes performance bottlenecks and identifies
sections of code that dominate execution time. Unlike traditional sampling-based profil-
ers (such as the UNIX gprof tool), Quantify reports results without including its own
overhead. In addition, Quantify measures the overhead of system calls and third-party
libraries without requiring access to source code. All data is recorded in terms of machine
instruction cycles and converted to elapsed times according to the clock rate of the machine.
The collected data reflect the cost of the original program’s instructions and automatically
exclude any Quantify counting overhead.

Additional information on the run-time behavior of the code such as system calls
made, their return values, signals, number of bytes written to the network interface, and
number of bytes read from the network interface are obtained using the UNIX truss utility,
which traces the system calls made by an application. truss was used to observe the return
values of system calls such as write and read, which indicates the number of times that
buffers were written and read from the network.

1.6 Organization

The dissertation is organized as follows: Chapters 2 and 3 evaluate the throughput perfor-
mance of conventional CORBA implementations using the static (SII) and dynamic (DII)
invocation interfaces, respectively. Chapter 4 evaluates the performance of CORBA ORBs
in terms of their end-to-end latency and scalability; Chapter 5 describes the optimizations
we developed to significantly reduce the IIOP CDR marshaling engine overhead; Chapter 6
describes optimizations we developed to eliminate the unpredictability and inconsistency in
the performance of request demultiplexing and dispatching; Chapter 7 describes the design
and implementation of our CORBA IDL compiler that generates efficient stubs and skele-
tons; Chapter 8 describes related work; and Chapter 9 presents concluding remarks and
future work.
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Chapter 2

Throughput Performance of

CORBA’s Static Invocation

Interface

2.1 Introduction

Applications using CORBA’s Static Invocation Interface (SII) invoke operations on objects
passing it parameters. These parameters are then marshaled and bundled into the outgoing
bytestream by the stubs generated by the IDL compiler. Similarly, on the receiving end, the
IDL compiler-generated skeletons unmarshal the parameters before making the upcall. Just
like a Remote Procedure Call (RPC), applications are unaware of the stubs and skeletons.

This chapter quantifies the performance of two widely used existing CORBA imple-
mentations (Orbix 2.0 and VisiBroker 2.0) in terms of their support for the static invocation
interface (SII). We measure the end to end throughput observed by bandwidth-intensive
CORBA applications that transfer typed as well as untyped data. 1 Our aim in performing
these experiments is to identify key sources of overheads in the IDL compiler-generated
stubs and skeletons that marshal and unmarshal parameters.

The chapter is organized as follows: Section 2.2 describes our experimental testbed
environment; Section 2.3 demonstrates the key sources of overhead in conventional CORBA
implementations over ATM; and Section 2.4 presents a summary and research contributions.

1These results have appeared in the ACM SIGCOMM 96 conference proceedings.
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2.2 Additional Features of the CORBA/ATM Testbed Envi-

ronment

This section describes features of our testbed environment that are specific for the ex-
periments described in this chapter. Features common to all the tests are described in
Section 1.5.

2.2.1 Hardware and Software Platforms

To approximate the performance of communication middleware for channel speeds greater
than our available ATM network, we also duplicated our experiments in a loopback mode
using the I/O backplane of a dual-CPU SPARCstation 20s as a high-speed “network.” The
user-level memory-to-memory bandwidth of our SPARCstation 20 model 712s was measured
at 1.4 Gbps, which is roughly comparable to an OC-24 gigabit ATM network [55].

2.2.2 Traffic Generators

Earlier studies [68, 57] tested the performance of “flooding models” that transferred untyped
bytestream data between hosts using several implementations of CORBA and other lower-
level mechanisms like sockets. Untyped bytestream traffic is representative of applications
like bulk file transfer and videoconferencing. Note, however, that bytestream traffic does
not adequately test the overhead of presentation layer conversions since untyped data need
not be marshalled or demarshalled. Ironically, the implementations of CORBA used in
our tests perform marshaling and demarshaling even for untyped octet data [68], which
is further evidence that CORBA implementations have not been optimized for high-speed
networks.

The experiments described in this chapter extend our earlier studies [68] by measur-
ing the performance of sockets, ACE C++ wrappers for sockets [64], standard- and hand-
optimized version of Sun’s Transport Independent RPC (TI-RPC) [72], and two widely used
implementations of CORBA (Orbix 2.0 and VisiBroker 2.0) to transfer both bytestream and
typed data between remote hosts over a high-speed ATM network. The use of typed data
is representative of applications like electronic medical imaging [11, 3] and high-speed dis-
tributed databases (such as global change repositories [56]). In addition, measuring typed
data transfer reveals the overhead of presentation layer conversions and data copying for
the various communication middleware mechanisms we measured.

Traffic for the experiments was generated and consumed by an extended version of
the widely available TTCP [74] protocol benchmarking tool. We extended TTCP for use
with C sockets, C++ socket wrappers, TI-RPC, Orbix, and VisiBroker. Our TTCP tool
measures end-to-end data transfer throughput in Mbps from a transmitter process to a
remote receiver process across an ATM network or host loopback. The flow of user data
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for each version of TTCP is uni-directional, with the transmitter flooding the receiver with
a user-specified number of data buffers. Various sender and receiver parameters may be
selected at run-time. These parameters include the size of the socket transmit and receive
queues, the number of data buffers transmitted, the size of data buffers, and the type of
data in the buffers.

The following data types were used for all the tests: scalars (short, char, long,
octet, double) and a C++ struct, called BinStruct, composed of all the scalars. The
CORBA implementation transferred the data types using IDL sequences, which are dy-
namically sized arrays. To compare CORBA with C and C++, we defined structs in the
same manner that the CORBA IDL compiler generated sequences. Likewise, to compare
CORBA with TI-RPC, we generated structs using unbounded arrays defined in the RPC
language (RPCL). These definitions are shown in Appendix A.

The C and C++ versions of TTCP were written using the standard Internet family
of macros that convert values between host and network byte order. These macros are
implemented as “no-ops” because the sender and receiver processes both ran on SPARCs,
which use big-endian network byte order. Therefore, the C/C++ versions do not actually
perform any presentation layer conversions on the data. The CORBA and the RPC versions
of TTCP also omit these conversions since they use the byte order macros, as well. However,
the CORBA and RPC implementations do not omit the overhead of the no-op function calls,
which has a non-trivial overhead (shown in Section 2.3.3).

2.2.3 TTCP Parameter Settings

Existing studies [11, 45, 9, 68, 57] of transport protocol performance over ATM demon-
strate the impact of parameters such as socket queue sizes and data buffer on performance.
Therefore, our TTCP benchmarks varied these two parameters for each type of data as
follows:

• Socket queue size: The sender and receiver socket queue sizes used were 8 K and 64 K
bytes (on SunOS 5.4 these are the default and maximum, respectively). These parameters
influence the size of the TCP segment window, which has been shown to significantly im-
pact CORBA-level and TCP-level performance on high-speed networks [45, 68]. Since the
performance of the 8 K socket queues was consistently one-half to two-thirds slower than
using the 64 K queues, we omitted the 8 K results from the figures below.

• Data buffer size: Sender buffers were incremented by powers of two, ranging from
1 Kbytes to 128 Kbytes. The experiment was carried out ten times for each buffer size to
account for variations in ATM network traffic (which was insignificant since the network
was otherwise unused). The average of the throughput results is reported in the figures
below.
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Figure 2.1: Performance of the C Version of TTCP

In the tests involving 64 K receiver socket queue, the sender socket queue was also
set to 64 K and the TCP NODELAY flag was set. The TCP NODELAY flag was used to send
small packets (resulting due to fragmentation) as soon as possible. The receiver in the C
and C++ versions set a user-level read buffer of size 64 K to read incoming data.

2.3 Throughput Results

The user-level, end-to-end throughput measurements for each of the six versions of TTCP
are presented first. Detailed profiling measurements of presentation layer, data copying,
and memory management overhead are presented in Section 2.3.3. The profile data was ob-
tained using the Quantify performance measurement tool. Quantify analyzes performance
bottlenecks and identifies sections of code that dominate execution time. An important fea-
ture of Quantify is its ability to report results without including its own overhead, unlike
traditional sampling-based profilers like the UNIX gprof tool.

2.3.1 Remote Transfer Results:

Figures 2.1, 2.2, 2.5, 2.6, 2.7 and 2.8 depict the throughput obtained for sending 64 MB
data of various data types for each TTCP implementation over ATM. These figures present
the observed user-level throughput at the sender for buffer sizes of 1 K, 2 K, 4 K, 8 K, 16 K,
32 K, 64 K and 128 K bytes using 64 KB sender and receiver socket queues (the maximum
possible on SunOS 5.4).2 This section analyzes the overall trends of the throughput for each
communication middleware mechanism. Section 2.3.3 uses profiling output from Quantify

to explain why performance differences occur.
2Our tests revealed that the receiver-side throughput was approximately the same as the sender-side.

Therefore, we only show sender-side throughput results.
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Figure 2.2: Performance of the C++ Wrappers Version of TTCP
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Figure 2.3: Performance of the Modified C Version of TTCP
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Figure 2.4: Performance of the Modified C++ Version of TTCP
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• C and C++ versions of TTCP: Figures 2.1 and 2.2 indicate that the C and C++
versions both achieved a maximum of 80 Mbps throughput for sender buffer sizes of 8 K
and 16 K bytes. The similarity between these indicates that the performance penalty for
using the higher-level C++ wrappers is insignificant, compared with using C socket library
function calls directly.

As shown in the figures, the throughput increases steadily from 1 K to 8 K buffer
sizes. The reason for this is that as the sender buffer size increases, the sender requires
fewer writes to transmit 64 MB of data. The throughput peaks between the 8 K and 16
K buffer sizes and then gradually decreases – leveling off at around 60 Mbps. This drop
off between 8 K and 16 K arises from the 9,180 MTU of the ATM network. When sender
buffer sizes exceed this amount, fragmentation at the IP and ATM driver layers degrades
performance. As sender buffer sizes increase, fragmentation becomes a dominant factor,
yielding the performance curves shown in Figures 2.1 and 2.2.

Close scrutiny of Figures 2.1 and 2.2 illustrate unusual behavior for BinStructs when
the sender buffers are 16 K and 64 K. In these cases throughput drops sharply. Analysis of
Quantify’s profile information for 64 K sender buffers revealed that the writev system call
is called 1,025 times, accounting for 28,031 msec of the total execution time. In contrast,
in the best case (sending longs) the 1,025 calls to writev accounted for only 9,087 msec of
the total execution time.

This aberrant behavior occurs since 64 K is not an integral multiple of the size of
the C and C++ BinStruct data type (which is 24 bytes). Therefore, the sender buffers
were slightly less than 64 K when written with the writev function. This minor difference
apparently triggered interactions between the SunOS 5.4 internal STREAMS buffering
strategy and the TCP sliding window protocol, which yielded extremely low throughput.
To work around this problem, we defined a C/C++ union that ensures the size of the
transmitted data is rounded up to the next power of 2 (in this case 32 bytes). This enabled
TTCP to send 64 K bytes in a single writev call and obtain throughput comparable to the
other data types. These new results are shown in Figures 2.3 and 2.4.

• RPC version of TTCP: Figures 2.5 and 2.6 show the performance of the original
and hand-optimized RPC versions of TTCP. The original stubs generated automatically
by RPCGEN attained extremely low throughout (peaking at 29 Mbps for doubles, which
is only 35% of the throughput attained by the C and C++ versions). Quantify analysis
reveals that this poor performance was due to excessive data copying and presentation layer
conversions performed by XDR (explained in Section 2.3.3).

To make the implementation comparable to the C/C++ TTCP implementations, we
hand-optimized the RPC generated code for TTCP. For all the data types, the xdr bytes

function generated by RPCGEN was used to send/receive data. This avoided the overhead
of converting between the native and XDR formats. This optimization was valid because
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Figure 2.5: Performance of the Standard RPC Version of TTCP
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Figure 2.6: Performance of the Optimized RPC Version of TTCP
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Figure 2.7: Performance of the Orbix Version of TTCP
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Figure 2.8: Performance of the VisiBroker Version of TTCP

the data was transferred between big-endian SPARCstations with the same alignment and
word length.

The hand-optimized code improved the performance significantly. Figure 2.6 illus-
trates the results are 79% of the C and C++ performance. These results indicate that for
sender buffer sizes from 8 K to 128 K, the measured throughput was roughly 59-63 Mbps.
The throughput steadily increases until the sender buffer size reaches 8 K. Beyond this
point there was only a marginal improvement in the throughput.

The shape of the optimized RPC performance curves result from the 9,000 bytes data
buffer sizes sent by the generated RPC stubs. Analysis from Quantify and the SunOS5.4
system-call tracing command (truss) reveals that the RPC sender-side stubs use 9,000 byte
internal buffers to make the writes. As a result, the performance attained for sender buffer
sizes from 8 K to 128 K show only a marginal improvement, which is attributed to the use
of 64 K socket queue sizes at the sender and receiver.
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• CORBA versions of TTCP: Figures 2.7 and 2.8 illustrate the throughput obtained
for both CORBA implementations. These figures indicate that the throughput steadily
increases until the sender buffers reach 32 K, at which point it peaks at 65 Mbps for Orbix
and 60 Mbps for VisiBroker for sending scalars. Beyond this point, performance gradually
decreases. This behavior differs from the C and C++ versions, which peak at 8 K and 16
K. VisiBroker performance falls off much more quickly than Orbix performance. This effect
is noticeable for sender buffer size of 128 K in Figure 2.8.

Analysis using truss for 128 K sender buffer size revealed that both the Orbix and
the VisiBroker versions try to write the entire 128 K bytes plus some control information
(56 bytes for Orbix and 64 bytes for VisiBroker). The Orbix version uses the write system
call, whereas the VisiBroker version uses the writev system call.

Analysis using Quantify indicated that to send 64 MB user data using 128 K user
buffer size, the Orbix version attempted a total of 538 writes, which required 9,638 msec.
In contrast, the VisiBroker version made a total of 512 writevs, which required 20,319
msec to complete. This explains the lower throughput for the VisiBroker client. The
receiver performance in both cases is comparable. The truss output for the Orbix and the
VisiBroker receiver shows that the time spent by VisiBroker in reads is marginally smaller
than that of the Orbix version, but this is offset by the 4,252 poll system calls made by
VisiBroker compared to only 539 made by the Orbix receiver. For the 32 K data buffers,
the performance of Orbix and VisiBroker is comparable with the 65-70 Mbps attained by
the C/C++ versions. Likewise, the optimized RPC version achieved roughly the same
throughput as the CORBA implementations. However, both CORBA implementations
achieved approximately half the throughput for structs. As shown in Section 2.3.3, this
performance reduction occurs from the high amount of presentation layer conversions and
data copying in Orbix and VisiBroker. In addition, truss revealed that both the CORBA
implementations write buffers containing only 8 K when sending structs. In contrast,
for 32 K data buffers, they sent scalars in buffers containing all 32 K data plus additional
control information, as described above. This behavior adds to the overhead imposed by
data copying and presentation layer conversions and greatly reduces throughput.

2.3.2 Loopback Results:

Figures 2.9, 2.10, 2.11, 2.12, 2.13 and 2.14 depict the throughput obtained by replicating
the TTCP tests described above through the SPARCstation loopback device. Measuring
loopback behavior approximates the performance of communication middleware for channel
speeds greater than our 155 Mbps ATM network.
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Figure 2.9: Performance of the C Loopback Version of TTCP
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Figure 2.10: Performance of the C++ Wrappers Loopback Version of TTCP
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Figure 2.11: Performance of the Standard RPC Loopback Version of TTCP
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Figure 2.12: Performance of the Optimized RPC Loopback Version of TTCP
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Figure 2.13: Performance of the Orbix Loopback Version of TTCP

• C/C++ Results: The results indicate that for C/C++ versions of TTCP, the through-
put starts leveling off around 8 K sender buffer size at roughly 190 Mbps. Due to the imple-
mentation of the loopback device in SunOS 5.4, throughput was not affected as significantly
by fragmentation overhead compared with the ATM results shown in Figures 2.1 and 2.2.

• RPC Results: The original RPC version did not show any significant change over the
remote transfer results. The optimized RPC version of TTCP exhibited behavior similar
to C/C++ over the loopback, leveling off at around 110 Mbps. This behavior is attributed
to the smaller internal buffer size 3 RPC uses to write data on the sender-side and read

on the receiver-side. This smaller size increases the number of times these functions are
invoked.

3As explained earlier, the RPC version used an internal buffer of roughly 9,000 bytes for writing and
reading. In contrast, the C/C++ versions used a 64 KB read buffer and sends are done according to the
size of buffers passed by the client.
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Figure 2.14: Performance of the VisiBroker Loopback Version of TTCP

• CORBA Results: The Orbix version of TTCP behaves like the optimized RPC for all
scalar data types. The VisiBroker version shows a gradual increase in throughput, which
peaks at around 197 Mbps for a sender buffer size of 128 K which is close to the C/C++
version performance for the loopback case. Analysis using Quantify for 128 K sender buffers
reveals that both Orbix and VisiBroker senders and receivers spend approximately equal
amount of time in writes and reads. However, the Orbix version spends around 896 msec
in memcpy on both the sender and receiver side compared to only 1.51 msec for VisiBroker
sender and 15.51 msec for VisiBroker receiver.

This explains why the VisiBroker throughput for loopback is higher than the Or-
bix throughput with increasing buffer size. However, both the Orbix and VisiBroker still
perform poorly for structs because they spend a significant amount of time performing
presentation layer conversions and data copying. Although VisiBroker provides an option of
using shared memory, we did not use this option since our goal was to measure throughput
over the “network” and not the memory speed.

In general, the highest throughput for Orbix is approximately 75-80% that of the
C/C++ versions for remote transfers and around 68% for the loopback test. The difference
in the throughputs is most apparent for structs. In this case, the throughput for both the
Orbix and VisiBroker versions is roughly 33% of the C/C++ version for remote transfers
and 16% for the loopback tests.

These findings illustrate that as channel speeds increase, the performance of the
CORBA implementations become worse relative to that achieved by low-level communi-
cation middleware since the overhead of presentation layer conversions and data copying
become increasingly dominant. Thus, it is imperative to eliminate this overhead so that
CORBA can be used effectively to build flexible and reliable middleware capable of deliv-
ering very high data rates to applications.



27

Table 2.1: Summary of Observed Throughput for Remote and Loopback Tests in Mbps

TTCP Remote Transfer Loopback
version Scalars Struct Scalars Struct

Hi Lo Hi Lo Hi Lo Hi Lo

C/C++ 80 25 80 25 197 47 190 47

Orbix 65 15 27 11 123 14 32 10

VisiBroker 61 12 23 9 197 11 27 7

RPC 30 4 25 14 33 5 27 18

optRPC 63 20 63 20 121 38 116 38

The results for the remote and loopback tests for all versions of TTCP are summa-
rized in Table 2.1. This table depicts the highest and the lowest throughput attained by
each version of TTCP for all the scalars and structs. In addition, we combine results for
the C and C++ versions of TTCP since their performance is similar. All entries are in
Mbps rounded up to the nearest integer.

2.3.3 Presentation Layer and Data Copying Overhead

Section 2.3 presented the “blackbox” performance results. This section presents the “white-
box” performance results. Tables 2.2 and 2.3 depict the time spent by the senders and
receivers of various versions of TTCP when transferring 64 Mbytes of sequences using 128
K sender and receiver buffers and 64 K socket queues. For each version, an analysis for a
specific data type is presented if it resulted in throughput that differs from that of the rest
of the data types. Otherwise, an analysis for a representative data type is presented (e.g.,
BinStruct).

For Orbix and VisiBroker, structs resulted in throughput that differed significantly
from the throughput for the rest of the data types. Therefore, we present analysis for
struct and char, which are representative data types. In the tables, the % column shows
the percentage of the total execution time attributed to the corresponding function under
the Method Name column. The time spent in milliseconds by this method is indicated in
the msec column. This fine-grained profiling information reveals precisely why the C and
C++ implementations outperform the RPC and CORBA implementations.

Sender-side Overhead:

The overhead for the sender-side presentation layer and data copying is presented below for
each version of the TTCP benchmarks.

• C/C++ Overhead: The C and C++ versions of TTCP spent over 98% of their run-
time making writev system calls. In this case, there is no presentation layer conversion
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Table 2.2: Sender-side Overhead

TTCP Data Analysis
Version Type Method Name msec %
C/C++ struct writev 9,415 98
RPC char write 283,350 89

xdr char 17,000 5
short write 134,855 90
long write 71,600 92
double write 37,877 87

xdr double 2,348 5
struct write 80,517 92

optRPC struct write 4,262 80
memcpy 896 17

Orbix char write 9,638 89
memcpy 895 8

struct write 26,366 68
NullCoder::codeLongArray 1,162 3
BinStruct::encodeOp 952 2
CHECK 932 2
Request::encodeLongArray 812 2
Request::insertOctet 782 2
Request::op<<(double&) 838 2
Request::op<<(short&) 782 2
Request::op<<(long&) 782 2
Request::op<<(char&) 782 2

VisiBroker char writev 20,319 99
struct writev 82,794 84

op<<(NCostream&,BinStruct&) 3,831 4
memcpy 3,594 4
PMCIIOPStream::put 951 1
PMCIIOPStream::op<<(double) 978 1
PMCIIOPStream::op<<(long) 950 1

overhead. As explained earlier, the standard Internet family of macros that convert values
between host and network byte order are implemented as “no-ops.”

• RPC Overhead: The RPC version of TTCP spends different amounts of time writing
various data types. For instance, to write chars, the RPC version takes 283,330 msec
compared to 71,600 msec for writing longs. The reason for this behavior is due to the
RPC XDR mapping, which converts a single byte char into a four byte data representation
before it is sent over the network. The hand-optimized version of RPC considers all data
types as opaque, which avoids the XDR mapping for each data type. The hand-optimized
RPC version of TTCP is also largely write bound, though it spends about 17% of its time
performing data copies with memcpy. The significant amount of memcpys is due to the XDR
routine xdrrec putbytes being called many times on the sender-side. The user buffer is
copied into an internal buffer, which is then sent over the network.

• CORBA Overhead: The sender-side of the Orbix version of TTCP that transmitted
BinStructs spent a significant amount of time marshalling the BinStruct fields. For 64
MB of data and a sender buffer of 128 KB, the client invokes the sendBinStruct method
512 times. This method invokes the IDL compiler generated IDL SEQUENCE BinStruct
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::encodeOp method. Since a BinStruct is 32 bytes, each sender buffer of size 128 KB
can accommodate 4,096 structs. For each struct, the Orbix version marshalled each
field using CORBA::Request methods like ::encodeLongArray and ::operator<< (const

long&). Each of these marshalling routines was invoked for the 4,096 structs in a single
buffer for 512 iterations, yielding a total of 2,097,152 invocations! Moreover, each of these
calls are C++ virtual function, which incur still more levels of indirection.

Analysis using Quantify revealed that for BinStructs, the Orbix sender spent
around 68% of its time (26,366 msec) in writes, 1.71% (671 msec) doing memcpys and
over 18% time marshalling the structure. Likewise, the VisiBroker sender spent around
84% of the time (82,724 msec) in writevs, with approximately 4% in memcpy and 10%
marshalling the structure.

Receiver-side Overhead:

Our benchmarks found the receiver-side tests performed similar to the sender-side tests.

• C/C++ Overhead: The C and C++ versions spent the bulk of their time in read and
readv. The C and C++ versions on the receiver side used readv to read the length, type
and buffer fields of the structures, thereby avoiding an intermediate copy. If the buffer is
not completely received by readv, subsequent reads fill in the rest of the buffer.

• RPC Overhead: The receiver side analysis for the RPC version of TTCP shows that
the RPC code spent a significant amount of time demarshalling various data types from
the XDR network representation to the native host format. For instance, to demarshal the
chars using xdr char takes 30,422 msec. In contrast, to demarshall longs takes only 4,697
msec. As explained earlier, the hand-optimized RPC version eliminates this marshalling
overhead by treating the data types as opaque.

The hand-optimized RPC version spent a significant amount of time doing getmsg,
which stems from the use of the System V STREAMS in Sun’s TI-RPC. Similar to the sender-
side results in Table 2.2, the receiver-side RPC implementation spends about one-third
of its time performing data copying. The time spent in memcpy is due to a large num-
ber of calls to an internal function called get input bytes, which in turn is invoked by
xdrrec getbytes. The buffer received through calls to t rcv is copied into another buffer,
which is subsequently passed to the user application. The contribution of these functions
to the total execution time is insignificant, so their results are omitted from the table.

• CORBA Overhead: The results for Orbix indicate that a considerable amount of
time was spent demarshaling each field of the structs that were received. This task was per-
formed by a number of overloaded operator>> methods of the CORBA::Request class e.g.,
CORBA::Request::operator>>(double &) to demarshall double types. The Quantify

analysis of VisiBroker’s server-side to receive structs reveals that around 19% of the time
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Table 2.3: Receiver-side Overhead

TTCP Data Analysis
Version Type Method Name msec %
C/C++ struct read 7,199 75

readv 2,374 24
RPC char xdr char 30,422 44

xdrrec getlong 16,998 24
xdr array 14,317 20
getmsg 5,977 8

short xdr short 11,184 36
xdrrec getlong 8,499 27
xdr array 7,158 23
getmsg 2,969 9

long xdr long 4,697 31
xdrrec getlong 4,250 28
xdr array 3,579 23
getmsg 1,639 10

double xdr double 3,467 29
xdrrec getlong 4,250 35
xdr array 1,790 15
getmsg 1,562 13

struct xdrrec getlong 4,250 26
xdr BinStruct 2,684 16
getmsg 1,518 9
xdr char 1,267 7
xdr uchar 1,267 7
xdr double 1,155 7

optRPC struct getmsg 2,229 67
memcpy 897 27

Orbix char read 7,915 85
memcpy 896 9

struct read 4,280 26
NullCoder::codeLongArray 1,314 8
CHECK 923 5
BinStruct::decodeOp 923 5
Request::extractOctet 699 4
Request::op>>(double&) 699 4
Request::op>>(short&) 699 4
Request::op>>(long&) 699 4
Request::op>>(char&) 699 4
memcpy 672 4

VisiBroker char read 3,041 85
struct memcpy 3,581 19

read 3,533 18
op>>(NCistream&,BinStruct&) 3,495 18
PMCIIOPStream::get 1,121 5
PMCIIOPStream::op>>(double) 1,118 5
PMCIIOPStream::op>>(long) 1,118 5
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was spent in memcpy, 18% in reads, and a large percent of its time in demarshalling the
BinStructs.

The analysis of the performance of the CORBA versions suggests that presentation
layer conversions and data copying are the primary areas that must be optimized to achieve
higher throughputs.

2.4 Summary

In general, the CORBA implementations measured in this chapter attain lower throughput
than the C, C++ wrapper, and hand-optimized RPC versions of TTCP over ATM. On
average, the CORBA performance averaged 75% the level of the C/C++ versions for remote
transfers of scalars and averaged 33% for structs containing binary data. For the loopback
tests, the VisiBroker version performed as well as the C/C++ versions for scalar data types
at higher sender buffer sizes (e.g., for 128 K sender buffer, the VisiBroker throughput for
sending doubles was around 196 Mbps which is comparable to the throughput obtained
for the C/C++ versions). The Orbix version did not perform as well as the VisiBroker
version for transferring scalars (e.g., the Orbix version performed roughly 65-68% as well as
the C/C++ versions). Both CORBA implementations performed poorly compared to the
C/C++ versions when transferring structs containing binary fields. For this type of data
Orbix and VisiBroker performed roughly 16% as well as the C/C++ versions.

The CORBA implementations performed worst when sending complex typed data
(structs) because of excessive copying and marshalling/demarshalling overhead and ex-
cessive writes resulting from small size write-buffers. The loopback tests provide a means
for testing the performance of CORBA and low-level implementations at higher network
speeds. From the loopback results, we conclude that with increasing network speeds, the
performance of the CORBA implementations actually becomes worse compared with low-
level communication middleware like sockets when marshalling of data is involved. The
results in this paper indicate that efficient optimizations need to be applied to the CORBA
client-side stubs and server-side skeletons to reduce the marshalling, data copying and re-
quest demultiplexing overhead.

We contend that advances in communication middleware like CORBA can be achieved
only by simultaneously integrating techniques and tools that simplify application develop-
ment, optimize application performance, and systematically measure application behavior
in order to pinpoint and alleviate performance bottlenecks. Our work is motivated by
an increasing demand for efficient and flexible communication software to support next-
generation multimedia applications and to leverage emerging high-speed networking tech-
nology.
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Chapter 3

Throughput Performance of

CORBA’s Dynamic Invocation and

Dynamic Skeleton Interface

3.1 Introduction

This chapter quantifies the performance of two widely used existing CORBA implementa-
tions (Orbix 2.0 and VisiBroker 2.0) in terms of their support for the dynamic invocation
interface (DII) and the dynamic skeleton interface (DSI), which are described below.1

• The Dynamic Invocation Interface: CORBA provides two different interfaces for
clients to communicate with servers:

• Static Invocation Interface (SII) – is provided by static stubs generated by a CORBA
IDL compiler and is useful when client applications know the interface offered by the
server at compile-time. The performance evaluation of SII is reported in Chapter 2.

• Dynamic Invocation Interface (DII) – is provided by an ORB’s dynamic messaging
mechanism and is useful when client applications do not have compile-time knowledge
of the interfaces offered by servers.

Many distributed applications can be written using CORBA’s SII. However, there is
an important class of applications (such as network management MIB browsers, configura-
tion management tools and distributed visualization tools and debuggers) that are easier to
develop using CORBA’s DII. The DII enables applications to construct and invoke CORBA
requests at run-time by querying the Interface Repository of a server.

1The results described in this chapter have appeared in the IEEE Globecom 96 Conference Proceedings.
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In addition, the DII is required for applications that use CORBA’s deferred syn-
chronous model of operation invocation. Although all operation invocations in CORBA are
synchronous, there are three models of invocation:

• Twoway synchronous – which is the typical request/response model associated with
RPC toolkits, where the client blocks after sending the request until the response
arrives from the server;

• Oneway synchronous – which is a “request-only” messaging model where the client
does not receive a response;

• Deferred synchronous – this model of two-way call decouples the request from the
response so that other client processing can occur until the server sends the response.

The DII supports all three forms of invocation semantics, whereas the SII stubs only support
two-way and oneway synchronous calls. Note that neither oneway nor deferred synchronous
CORBA calls are asynchronous since the CORBA specification permits the ORB to block
while sending a oneway call (e.g., if the underlying transport layer connection is flow con-
trolled).

The first set of experiments in this chapter pinpoint precisely where the key sources
of overhead exist in CORBA using the DII. These experiments reveal that the CORBA
implementations spent considerable amounts of time in presentation layer conversions for
various data types. The experimental results indicate that throughput for different data
types is significantly different. This is due to the differences in the amount of overhead in
presentation conversion for different data types.

3.2 Additional Features of the CORBA/ATM Testbed

3.2.1 Traffic Generators

Earlier studies [68, 58] tested the performance of transferring untyped bytestream data
between hosts using several implementations of CORBA and other lower-level mechanisms
like sockets. However, there were several limitations with these experiments:

• Lack of presentation layer measurements – typed data reveals the overhead imposed
by the presentation layer conversions since it must be marshalled and demarshalled.
However, earlier studies only examined untyped data.

• Lack of DII measurements – Earlier studies used the CORBA IDL compiler generated
SII stubs that are unable to test important CORBA DII based applications such as
network management and distributed visualization/debugging tools.
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• Lack of DSI measurements – Earlier studies used the CORBA IDL compiler gener-
ated skeletons for the server side. No measurements were performed to evaluate the
performance of the DSI.

In contrast, the experiments described below used richly typed data to identify over-
heads imposed by the DII and DSI. The experiments conducted for this chapter extend
earlier studies by measuring the performance of the Orbix 2.0 and VisiBroker 2.0 imple-
mentations of CORBA for two features of CORBA:

• The Dynamic Invocation Interface: Both CORBA implementations of the CORBA-
TTCP [58] client send 64 MB of richly-typed and untyped data as a sequence data type
using the DII. The client tests the invoke (two-way communication) and send oneway

(oneway communication) methods supported by the CORBA Request interface. The server
uses the skeletons generated by the IDL compiler. To use the DII, a client must first create
a request using the CORBA create request method. This request is then populated by
the appropriate method name and its parameters in the correct order. In our experiment,
we create a request and populate it with the method name and a data buffer of the desired
size. We sent the same request repeatedly, only varying the data buffer, until 64 MB of
data is sent to the server.

Since the request object (i.e., the operation name and associated internal state)
does not change in our tests, it is desirable to reuse the request object on every invocation
to amortize the cost of creating the object. However, the CORBA specification [51] does
not specify whether a request created using the create request method can be reused or
whether it must be created new and populated by the parameters, and released after every
invocation.

Orbix 2.0 did not allow reuse of the request. Therefore, we had to create a new
request and populate it repeatedly. This had an adverse effect on the performance since the
client spends a significant amount of time in the request creation, population, and release.
Conversely, VisiBroker 2.0 did allow reuse of the request object, so we could just replace the
data buffer. We performed two sets of experiments using the VisiBroker CORBA-TTCP
client - both with and without request reuse. As described in Section 3.3, VisiBroker with
request reuse twice as well compared with the versions not reusing requests.

• The Dynamic Skeleton Interface: The same VisiBroker2 client in the DII experiment
was used to send requests to the VisiBroker CORBA-TTCP server, which uses DSI.

The DII client tests the invoke (two-way communication) method3 supported by
the CORBA Request interface. We reused the requests in these tests, as described above.

2Orbix 2.0 does not yet support DSI, so we could not perform the DSI tests for Orbix.
3We observed many requests were not reaching the VisiBroker DSI server since the requests were oneway.

Hence we did not report results for this tests.
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Traffic charactersitics and parameter settings for the experiments were similar to
those described in Section 2.2.

3.3 Performance Results

The throughput measurements for the DII and DSI features of CORBA using remote trans-
fers are presented in this section. Detailed profiling measurements of presentation layer,
data copying, and memory management overhead are also presented. The profile informa-
tion was obtained using the Quantify performance measurement tool [35].

3.3.1 Dynamic Invocation Interface Measurements

The figures presented in this section depict the observed user-level throughput at the sender
for buffer sizes of 1 K, 2 K, 4 K, 8 K, 16 K, 32 K, 64 K, and 128 K bytes using 64 KB
sender and receiver socket queues (the maximum possible on SunOS 5.5).

Remote Results:

Figures 3.1 and 3.2 depict the throughput obtained for sending 64 MB of data of different
data types for the Orbix and VisiBroker implementations of CORBA-TTCP over ATM
using oneway4 communication without request reuse, respectively. Figure 3.3 depicts the
throughput for the VisiBroker CORBA-TTCP implementation that reuses the request.

The shape of the CORBA DII performance curves indicate that the observed through-
puts differ significantly for different types of data. The observed throughput for a given data
type depends on how the CORBA implementation performs presentation layer conversions,
data copying and memory management. The throughputs initially increase as the sender
buffer size increases due to a decrease in the number of writes. However, this throughput
increase begins to level off once network-layer fragmentation occurs. For the ATM network
we used, the maximum transfer unit (MTU) was 9,180 bytes. Thus, fragmentation starts
once the write buffers become greater than the MTU size. Although the MTU is 9,180
bytes, we do not observe the highest throughput for sender buffer sizes of 8 K, since for
these buffer sizes, the number of writes is large and the presentation layer overhead plays
a major role in decreasing the throughput.

The throughput for the oneway transfer case was consistently higher than that of
the two-way case. In the oneway transfer, the client does not block for a response from the
server after it has sent a request. This allows the client to send the next request immediately.
This behavior differs from our CORBA two-way communication tests, where the clients are
blocked until they receive an acknowledgement from the server (although no return values

4The two-way results are consistently lower than the oneway results since the client in the two-way case
blocks for an acknowledgement. Therefore, we omitted the results.
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Figure 3.1: Orbix: Client-side Throughput for Oneway Communication using DII without
Request Reuse.
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Figure 3.2: VisiBroker: Client-side Throughput for Oneway Communication using DII
without Request Reuse.

are sent back). The additional latency associated with this blocking reduced the throughput
by roughly 20% for the two-way case. This latency may be hard to avoid, however, if the
client requires confirmation that the server has completed the request.

A detailed analysis of the overhead incurred on the client and the server side in
sending the octet and struct (BinStruct) data types for the oneway case with 128 K
sender buffer sizes is presented in Tables 3.1 and 3.2, respectively. 5 In Tables 3.1 and
3.2, the Time in msec column indicates the total time spent by the corresponding opera-
tion indicated under the category column. The Percent execution column indicates the
percentage of the total execution time taken up by the method. Table 3.1 reveals that for

5The analysis for the two-way case was similar to the oneway case.
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Figure 3.3: VisiBroker: Client-side Throughput for Oneway Communication using DII with
Request Reuse.

sending octet/char, the Orbix and both versions of VisiBroker spent most of their time in
write and populating the request.

In contrast, for each of the other data types (only structs are shown in the table),
the implementations spent a significant amount of time creating a request, populating it
with parameters and marshalling the data. For example, to send 64 MB of structs, the
Orbix version spent 96% of its time in marshalling its parameter and packetizing the data.
The throughput for the VisiBroker version without request reuse is comparable to that of
Orbix. The VisiBroker version with request reuse performs much better than the VisiBroker
version without request reuse and the Orbix version. This is due to the less amount of time
spent in marshalling (14,168 msec) and memcpy (896 msec) as opposed to the time taken
by the VisiBroker version that does not reuse requests (22,215 msec for marshalling and
13,428 msec for memcpy).

In addition, the tables reveal that the throughput for shorts is lower than that
for longs because the CORBA DII implementation spent a larger amount of time doing
marshalling and data copying for shorts than for longs. The lowest throughputs were
observed for sending structs. The analysis of overheads for the server-side is similar to
that of the client-side. The receiver side for data types other than char/octet spends a
significant amount of time performing reads and demarshalling the data.

Loopback Results:

Figures 3.4 and 3.5 depict the throughput obtained for sending 64MB data of various
data types for the VisiBroker implementation6 of CORBA-TTCP over ATM. The loopback
results provide an insight into the performance that can be expected of the CORBA DII

6Orbix DII did not operate correctly.
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Table 3.1: Analysis of Client-side Overheads for CORBA DII

Version Data Analysis

Type Category Time Percent
(msec) Execution

Orbix octet write 26,728 73.52
Populating 7,160 19.70
and
marshalling
Allocate 1,164 3.15
memory
memcpy 895 2.46

struct Marshalling 397,724 96.6
and
packetizing
write 5,016 1.23

VisiBroker octet writev 4,623 61.14
(without memcpy 1,791 23.69
request Allocate 940 12.43
reuse) memory

struct writev 77,605 55.72
Populating 22,215 15.95
and
marshalling
memcpy 13,428 9.64

VisiBroker octet writev 5,794 85.83
(with memcpy 898 13.31

request struct writev 76,575 64.89
reuse) Populating 14,168 12.01

and
marshalling
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Table 3.2: Analysis of Server-side Overheads for CORBA DII

Version Data Analysis

Type Category Time Percent
(msec) Execution

Orbix octet typecode 3,361 50.00
assertion
read 2,140 32.00
memcpy 896 13.39

struct demarshalling 11,849 49.00
typecode 6,665 27.57
assertion
read 4,985 20.62

VisiBroker octet read 3,177 90.48
(without struct demarshalling 10,552 58.52
request memcpy 3,878 21.5
reuse) read 3,318 18.4

VisiBroker octet read 3,238 90.60
(with struct demarshalling 10,552 58.52

request memcpy 3,878 21.41
reuse) read 3,395 18.74

implementations for network channel speeds greater than the 155 Mbps ATM network
available for our research.

The figures indicate that for sending octet/chars, the observed throughput in-
creases as the sender buffer sizes increase. This is due to the lesser number of writes needed
as sender buffer size increases. Also, due to the loopback mode, the maximum transfer unit
(MTU) of the ATM network (9,180 bytes) does not cause any fragmentation and hence the
throughput improves with increasing buffer sizes. The figures also indicate that for the rest
of the data types, the presentation layer conversions and data copying operations severely
restrict the throughput. A comparison between the Quantify analysis for sending char

and double for 64 K sender buffer size reveals that chars spend 1,207 msec in memcpy as
opposed to 7,208 msec taken up by doubles. In addition, the marshalling of chars take
up 0.54 msec as opposed to 4,434 msec for doubles. This explains why the throughput for
sending char/octet is much higher than that for the rest of the data types.

3.3.2 Dynamic Skeleton Interface Measurements

Figure 3.6 depicts the client-side throughput for an VisiBroker client using DII and an Vis-
iBroker server using DSI for two-way transfer.7. We did not conduct the experiment for

7Oneway transfer results have not been presented since the VisiBroker 2.0 frequently drops oneway op-
erations at the server. Although this behavior is allowed by the “best effort” semantics of CORBA oneway

operations, it appears to be a bug in the VisiBroker implementation.
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Figure 3.4: Client-side Throughput for Oneway Communication using DII in Loopback
Mode.
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Figure 3.5: Client-side Throughput for Twoway Communication using DII in Loopback
Mode.

Orbix since the version we tested did not support DSI. The shape of the CORBA DSI perfor-
mance curves indicate that the observed throughputs differ significantly for different types
of data. The throughput for a given data type depends on how the CORBA implementation
performs presentation layer conversions, data copying and memory management.

Of all the CORBA data types we tested, the chars and octets performed the best.
This is not surprising, and results from the fact that presentation layer conversions and
data copying can be minimized for this “untyped” data (though both ORBs do perform
multiple data copies for chars and octets). Throughput initially increases as the sender
buffer size increases due to a decrease in the number of writes and reads. However, the
increased throughput begins to level off once network-layer fragmentation occurs. For our
ATM network, the maximum transfer unit (MTU) was 9,180 bytes. Thus, fragmentation
occurs once the write buffers become greater than the MTU size. Although the MTU is
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Figure 3.6: Observed Client Throughput using VisiBroker DSI

9,180 bytes, we do not observe the highest throughput for sender buffer sizes of 8K. For
these buffer sizes, the number of writes is large and the presentation layer overhead plays
a major role in decreasing the throughput.

Table 3.3 depicts the time spent by the sender and receiver of the VisiBroker version
of CORBA-TTCP using DSI when transferring 64 Mbytes of sequences using 128 K sender
and receiver buffers and 64 K socket queues. An analysis for octets (best throughput) and
structs (worst throughput) is presented. These figures precisely pinpoint the time spent
in marshalling, data copying, and reading and writing of buffers. The excessive amount
of time taken for writes suggests that the ORBs use non-optimal buffer management and
flow control methods.

The analysis of the performance of the CORBA implementations suggests that op-
timized read/writes, presentation layer conversions and data copying are the primary areas
that must be optimized to achieve higher throughputs.

3.4 Summary

This chapter illustrates how existing CORBA implementations incur considerable overhead
when application use the dynamic invocation interface (DII) and the dynamic skeleton
interface (DSI) over high-speed ATM networks. Our DII and DSI results indicate that both
Orbix 2.0 and VisiBroker 2.0 incur different levels of presentation conversion overhead for
different CORBA data types. Moreover, non-optimal internal buffer management strategies
lead to large amounts of time spent in network writes and reads.

Finally, the experiments indicate that for DII, it is desirable to permit reuse of re-
quests if the operations are oneway and the parameter values do not change. The current



42

Table 3.3: Analysis of Overhead using Twoway Client-side DII and Server-Side DSI

Agent Data Analysis

Type Category Time Percent
(msec) Execution

Client octet read 3,911 47.95
writev 2,923 35.84
memcpy 912 11.19

struct writev 505,914 91.34
marshalling 13,341 2.41
and
populating
memcpy 7,198 1.30
read 5,062 0.91

Server octet writev 23,572 82.00
memcpy 2,701 9.40
read 1,806 6.29

struct writev 1,250,130 92.41
demarshalling 39,373 2.89
memcpy 19,693 1.46

CORBA 2.0 specification does not define whether this is legal or not, so different imple-
mentations interpret the specification differently. Not only does this impede portability
across ORB implementations, but it also permits non-optimal performance if requests are
not reused.
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Chapter 4

CORBA Latency and Scalability

Over High-speed Networks

4.1 Introduction

The success of CORBA in mission-critical distributed computing environments depends
heavily on the ability of Object Request Brokers (ORBs) to provide the necessary quality
of service (QoS) to applications.

Our earlier work [20, 21, 58, 25] has focused on measuring and optimizing the through-
put of CORBA ORBs. This chapter extends our prior work by measuring the latency and
scalability of two widely used CORBA ORBs, Orbix 2.1 and VisiBroker 2.0, precisely pin-
pointing their key sources of overhead, and describing how to systematically remove these
sources of overhead by applying optimization principles.1

The contributions of this chapter include the following:

• CORBA Latency Section 4.3 measures the oneway and two-way latency of Orbix
and VisiBroker. Our findings indicate that the latency overhead in these ORBs stem from
(1) long chains of intra-ORB function calls, (2) excessive presentation layer conversions and
data copying, and (3) non-optimized buffering algorithms used for network reads and writes.
Chapter 5 describes optimizations we have developed to reduce these common sources of
ORB latency.

• CORBA Scalability Section 4.3 also measures the scalability of Orbix and VisiBroker
to determine how the number of objects supported by a server affects an ORB’s ability
to process client requests efficiently and predictably. Our findings indicate that scalability
impediments are due largely to (1) inefficient server demultiplexing techniques and (2)

1The results described in this chapter have appeared in the IEEE ICDCS 97 Conference Proceedings and
the IEEE Computer Society’s Transactions on Computers, April 98.



44

lack of integration with OS and network features. Chapter 6 describes demultiplexing
optimizations we have developed to increase ORB scalability.

4.2 Experimental Setup and Testbed Environment

4.2.1 Traffic Generators

Our earlier studies [20, 21, 58] tested bulk data performance using “flooding models” that
transferred untyped bytestream data, as well as richly typed data between hosts using
several CORBA ORBs and lower-level mechanisms like sockets. On the client-side, these
experiments measured the static invocation interface (SII) and the dynamic invocation
interface (DII) provided by the CORBA ORBs.

The SII allows a client to invoke a remote operation via static stubs generated by a
OMG IDL compiler. The SII is useful when client applications know the interface offered
by the server at compile-time. In contrast, the DII allows a client to access the underlying
request mechanisms provided by an ORB directly. The DII is useful when the applications
do not know the interface offered by the server until run-time.

The experiments conducted for this chapter extend our earlier throughput studies
by measuring end-to-end latency incurred when invoking operations with a range of data
types and sizes on remote servant(s). In addition, we measure CORBA scalability by
determining the demultiplexing overhead incurred when increasing the number of servants
in an endsystem server process.

Traffic for the latency experiment was generated and consumed by an enhanced
version of TTCP [74]. We measured round-trip latency using the two-way CORBA opera-
tions. We first measured operations that did not use any parameters to determine the “best
case” operation latency. In addition, we measured operation transfers using following data
types: primitive types (short, char, long, octet, double) and a C++ struct composed
of all the primitives (BinStruct). The CORBA ORBs transferred the data types using
IDL sequences, which are dynamically-sized arrays. The following OMG IDL interface
was used by the CORBA ORBs for the latency tests reported in this chapter:

struct BinStruct{ short s; char c; long l;
octet o; double d; };

interface ttcp_sequence
{

typedef sequence<BinStruct> StructSeq;
typedef sequence<octet> OctetSeq;

// Routines to send sequences of various data types
void sendStructSeq_2way (in StructSeq ttcp_seq);
void sendOctetSeq_2way (in OctetSeq ttcp_seq);
void sendNoParams_2way();
void sendNoParams_1way();

};
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Figure 4.1: CORBA Operation Invocation Strategies

4.2.2 Additional TTCP Parameter Settings
• Data buffer size For the latency measurements, the sender transmits parameter units
of a specific data type incremented in powers of two, ranging from 1 to 1,024. Thus, for
shorts (which are two bytes on SPARCs), the sender buffers ranged from 2 bytes to 2,048
bytes. In addition, we measured the latency of remote operation invocations that had no
parameters.

• Number of servants Increasing the number of servants on the server increases the
demultiplexing effort required to dispatch the incoming request to the appropriate servant.
To pinpoint the latency overhead in this demultiplexing process, and to evaluate the scal-
ability of CORBA implementations, our experiments used a range of servants (1, 100, 200,
300, 400, and 500) on the server.

4.2.3 Operation Invocation Strategies

One source of latency incurred by CORBA ORBs in high-speed networks involves the
operation invocation strategy. This strategy determines whether the requests are invoked via
the static or dynamic interfaces and whether the client expects a response from the server.
In our experiments, we measured the following operation invocation strategies defined by
the CORBA specification, which are shown in Figure 4.1.

• Oneway static invocation The client uses the SII stubs generated by the OMG IDL
compiler for the oneway operations defined in the IDL interface, as shown in Figure 4.1 (A).



46

• Oneway dynamic invocation The client uses the DII to build a request at run-time
and uses the CORBA Request class to make the requests, as shown in Figure 4.1 (B).

• Twoway static invocation The client uses the static invocation interface (SII) stubs
for two-way operations defined in IDL interfaces, as shown in Figure 4.1 (C).

• Twoway dynamic invocation The client uses the dynamic invocation interface (DII)
to make the requests, but blocks until the call returns from the server, as shown in Fig-
ure 4.1 (D).

We measured the average latency for 100 client requests for groups of 1, 100, 200,
300, 400, and 500 servants on the server. In every request, we invoked the same operation.
We restricted the number of requests per servant to 100 since neither Orbix nor VisiBroker
could handle a larger numbers of requests without crashing, as described in Section 4.3.4.

4.2.4 Servant Demultiplexing Strategies

Another source of overhead incurred by CORBA ORBs involves the time the Object Adapter
spends demultiplexing requests to servants. The type of demultiplexing strategy used by
an ORB significantly affects its scalability. Scalability is important for applications ranging
from enterprise-wide network management systems, with agents containing a potentially
large number of servants on each ORB endsystem, to real-time avionics mission computers,
which must support real-time scheduling and dispatching of periodic processing operations.

A standard GIOP-compliant client request contains the identity of its remote object
and remote operation. A remote object is represented by an Object Key octet sequence

and a remote operation is represented as a string. Conventional ORBs demultiplex client
requests to the appropriate operation of the servant implementation using layered demulti-
plexing explained in Section 6.1.

However, layered demultiplexing is generally inappropriate for high-performance and
real-time applications for the following reasons [73]:

Decreased efficiency: Layered demultiplexing reduces performance by increasing the
number of internal tables that must be searched as incoming client requests ascend through
the processing layers in an ORB endsystem. Demultiplexing client requests through all
these layers is expensive, particularly when a large number of operations appear in an IDL
interface and/or a large number of servants are managed by an Object Adapter.

Increased priority inversion and non-determinism: Layered demultiplexing can
cause priority inversions because servant-level QoS information is inaccessible to the lowest-
level device drivers and protocol stacks in the I/O subsystem of an ORB endsystem. There-
fore, an Object Adapter may demultiplex packets according to their FIFO order of arrival.
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FIFO demultiplexing can cause higher priority packets to wait for an indeterminate period
of time while lower priority packets are demultiplexed and dispatched.

Conventional implementations of CORBA incur significant demultiplexing overhead.
For instance, [20, 23] show that conventional ORBs spend ∼17% of the total server time
processing demultiplexing requests. Unless this overhead is reduced and demultiplexing is
performed predictably, ORBs cannot provide uniform, scalable QoS guarantees to real-time
applications.

Prior work [24] analyzed the impact of various IDL skeleton demultiplexing tech-
niques such as linear search and direct demultiplexing. However, in many applications the
number of operations defined per-IDL interface is relatively small and static, compared to
the number of potential servants, which can be quite large and dynamic.

To evaluate the scalability of the CORBA ORBs in this chapter, we varied the
number of servants residing in the server process from 1 to 500, by increments of 100. The
server used the shared activation mode, where all servants on the server are managed by
the same process.

4.2.5 Request Invocation Algorithms

The experiments conducted for this chapter use four different request invocation algorithms
on the client-side. Each invocation algorithm evaluates the merits of the server-side Object
Adapter’s strategy for demultiplexing incoming client requests. The experiments conducted
for the Orbix 2.1 and VisiBroker 2.0 ORBs use the request train and round robin invocation
algorithms described below.

Chapter 6 describes how we applied active demultiplexing and perfect hashing to
optimized demultiplexing in our high-performance, real-time ORB called TAO [69, 24].
To test these strategies, we developed two additional request invocation algorithms called
random invocation and worst-case invocation, respectively. These algorithms are used to
evaluate the predictability, consistency, and scalability properties of TAO’s demultiplexing
strategies, and to compare their performance with the worst-case performance of linear-
search demultiplexing. All the four invocation algorithms are described below.

The Request Train Invocation Algorithm

One way to optimize demultiplexing overhead is to have the Object Adapter cache recently
accessed servants. Caching is particularly useful if client operations arrive in “request
trains,” where a server receives a series of requests for the same servant. By caching infor-
mation about a servant, the server can reduce the overhead of locating the servant for every
incoming request.
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To determine if caching was used, and to measure its effectiveness, we devised the
following request invocation algorithm:

const int MAXITER = 100;

long sum = 0;
Profile_Timer timer; // Begin timing.

for (int j = 0; j < num_servants; j++){
for (int i = 0; i < MAXITER; i++) {

// Use one of the 2 invocation strategies
// to call the send() operation on servant_#j
// at the server...
sum += timer.current_time ();

}
}
avg_latency = sum / (MAXITER * num_servants);

This algorithm does not change the destination servant until MAXITER requests are per-
formed. If a server is caching information about recently accessed servants, the request
train algorithm should elicit different performance characteristics than the round robin
algorithm described next.

The Round Robin Invocation Algorithm

In this scheme, the client invokes the send operation MAXITER times on a different object
reference. This algorithm is used to evaluate how predictable, consistent, and scalable is
the demultiplexing technique used by the Object Adapter. The round robin algorithm is
defined as follows:

const int MAXITER = 100;

long sum = 0;
Profile_Timer timer; // Begin timing.

for (int i = 0; i < MAXITER; i++){
for (int j = 0; j < num_servants; j++) {

// Use one of the 2 invocation strategies
// to call the send() operation on servant_#j
// at the server...
sum += timer.current_time ();

}
}
avg_latency = sum / (MAXITER * num_servants);

Random Invocation Algorithm

The random invocation algorithm is different than the round robin algorithm since requests
are made on a randomly chosen object reference for a randomly chosen operation as shown
below:

const int MAXITER = 100;
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long sum = 0;
Profile_Timer timer; // Begin timing.

for (int i = 0; i < num_servants; i++) {
for (int j = 0; j < NUM_OPERATIONS; j++) {

// choose a servant at random from
// the set [0, NUM_SERVANTS - 1];
// choose an operation at random from
// the set [0, NUM_OPERATIONS - 1];
// invoke the operation on that servant;

}
}
avg_latency = sum / (MAXITER * num_servants);

The pattern of requests generated by this scheme is different from the well-defined
pattern of requests made by the round robin algorithm. The random invocation algorithm
is thus better suited to test the predictability, scalability, and consistency properties of the
demultiplexing techniques used than the round robin Invocation algorithm.

Worst-case Invocation Algorithm

In this scheme, we choose the last operation of the last servant. The algorithm for sending
the worse-case client requests is shown below:

const int MAXITER = 100;

long sum = 0;
Profile_Timer timer; // Begin timing.

for (int i = 0; i < num_servant; i++) {
for (int j = 0; j < NUM_OPERATIONS; j++) {

// invoke the last operation on the
// last servant

}
}
avg_latency = sum / (MAXITER * num_servants);

The purpose of this scheme is to compare the performance of different demultiplexing
schemes with that of the worst-case behavior depicted by a linear-search based scheme.

4.3 Performance Results for CORBA Latency and Scalabil-

ity over ATM

This section presents the performance results from our latency and scalability experiments.
Sections 4.3.1 and 4.3.2 describe the blackbox experiments that measure end-to-end commu-
nication delay from client requester to a range of servants using a variety of types and sizes
of data. Section 4.3.3 describes a whitebox empirical analysis using Quantify to precisely
pinpoint the overheads that yield these results. Our measurements include the overhead
imposed by all the layers shown in Figure 4.2.
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Figure 4.2: General Path of CORBA Requests

4.3.1 Blackbox Results for Parameterless Operations

In this section, we describe the results for invoking parameterless operations using the round
robin and request train invocation strategies.

Latency and Scalability of Parameterless Operations

Figures 4.3 and 4.4 depict the average latency for the parameterless operations using the
request train variation of our request invocation algorithm. Likewise, Figures 4.5 and 4.6
depict the average latency for invoking parameterless operations using the round robin
algorithm.

These figures reveal that the results for the request train experiment and the round
robin experiment are essentially identical. Thus, it appears that neither ORB supports
caching of servants. As a result, the remainder of our tests just use the round robin algo-
rithm.

Twoway latency The figures illustrate that the performance of VisiBroker was relatively
constant for two-way latency. In contrast, Orbix’s latency grew as the number of servants
increased. The rate of increase was approximately 1.12 times for every 100 additional
servants on the server.
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Figure 4.3: Orbix: Latency for Sending Parameterless Operation using request train Re-
quests
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Figure 4.4: VisiBroker: Latency for Sending Parameterless Operation using request train
Requests
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Figure 4.5: Orbix: Latency for Sending Parameterless Operation using Round Robin Re-
quests
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We identified the problem with Orbix by using truss, which is a Solaris tool for
tracing the system calls at run-time. When Orbix 2.1 is run over ATM networks, it opens
a new TCP connection (and thus a new socket descriptor) for every object reference.2 This
behavior has the following consequences:

• Increased demultiplexing overhead – Opening a new socket connection for each object
reference degrades latency significantly since the OS kernel must search the socket
endpoint table to determine which descriptor should receive the data.

• Limited scalability – As the number of servants grew, all the available descriptors on
the client and server were exhausted. We used the UNIX ulimit command to increase
the number of descriptors to 1,024, which is the maximum supported per-process on
SunOS 5.5 without reconfiguring the kernel. Thus, we were limited to approximately
1,000 object references per-server process on Orbix over ATM.

In contrast, VisiBroker did not create socket descriptors for every object reference.
Instead, a single connection and socket descriptor were shared by all object references in the
client. Likewise, a single connection and socket descriptor were shared by all servant imple-
mentations in the server. This, combined with its hashing-based demultiplexing scheme for
locating servants and operations, significantly reduces latency. In addition, we were able to
obtain object references for more than 1,000 servants.

Oneway latency The figures illustrate that for VisiBroker, the oneway latency remains
nearly constant as the number of servants on the server increase. In contrast, Orbix’s
latency grows as the number of servants increase.

Figures 4.3 and 4.5 reveal an interesting case with Orbix’s oneway latency. The
oneway SII and DII latencies remain slightly less than their corresponding two-way la-
tencies until 200 servants on the server. Beyond this, the oneway latencies exceed their
corresponding two-way latencies.

The reason for Orbix’s behavior is that it opens a new TCP connection (and allocate
a new socket descriptor) for every object reference. Since the oneway calls do not involve
any server response to the client, the client can send requests without blocking. As ex-
plained in Section 4.3.3, the receiver is unable to keep pace with the sender due to the large
number of open TCP connections and inefficient demultiplexing strategies. Consequently,
the underlying transport protocol, TCP in this case, must invoke flow control techniques
to slow down the sender. As the number of servants increase, this flow control overhead
becomes dominant, which increases oneway latency.

In contrast, the two-way latency does not incur this flow control overhead since the
sender blocks for a response after every request.

2Interestingly, when the Orbix client is run over Ethernet it only uses a single socket on the client,
regardless of the number of servants in the server process.
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Figure 4.7 compares the two-way latencies obtained for sending parameterless op-
erations for Orbix and VisiBroker with that of a low-level C++ implementation that uses
sockets directly. The two-way latency comparison reveals that the VisiBroker and Orbix
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Figure 4.7: Comparison of Twoway Latencies

versions perform only 50% and 46% as well as the C++ version, respectively.

Summary of Results for Parameterless Operations

• Neither Orbix nor VisiBroker caches recently accessed object references in the Object
Adapter. As a result, the latency for the request train and round robin cases are
nearly equivalent.

• Oneway latencies for VisiBroker remained relatively constant as the number of ser-
vants increase on the server. However, the oneway latency for Orbix increases linearly
as the number of servants grow.

• Oneway latencies for Orbix exceed their corresponding two-way latencies beyond 200
servants on the server. This is due to the flow control mechanism used by the under-
lying TCP transport protocol to throttle the fast sender.

• Twoway latency for VisiBroker remains relatively constant as the number of servants
increases. This is due to the efficient demultiplexing based on hashing used by Visi-
Broker. Moreover, unlike Orbix, VisiBroker does not open a new connection for every
object reference.

• Twoway latency for Orbix increases linearly at a rate of ∼1.12 per 100 servant incre-
ment. As explained earlier, this stems from Orbix’s inefficient demultiplexing strategy
and the fact that it opens TCP connection per object reference.
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• Twoway DII latency in VisiBroker is comparable to its two-way SII latency. This is
due to its reuse of DII requests, thereby only creating the request once.

• Twoway DII latency in Orbix is ∼2.6 times that of its two-way SII latency. In Orbix
DII, a new request must be created per invocation.3

• Twoway DII latency for Orbix is always greater than its two-way SII latency, whereas
for VisiBroker they are comparable. The reasons is that Orbix creates a new request
for every DII invocation. In contrast, VisiBroker recycles the request.

4.3.2 Blackbox Results for Parameter Passing Operations

In this section, we describe the results for invoking parameter passing operations using the
round robin and request train invocation strategies.

Latency and Scalability of Parameter Passing Operations

Figures 4.8 through 4.15 depict the average latency for sending richly-typed struct data
and untyped octet data using (1) the oneway operation invocation strategies (described in
Section 4.2.3) and (2) varying the number of servants (described in Section 4.2.4). Simi-
larly, Figures 4.16 through 4.23 depict the average latency for sending richly-typed struct

data and untyped octet for two-way operations. These figures reveal that as the sender
buffer size increases, the marshaling and data copying overhead also grows [20, 21], thereby
increasing latency. These results demonstrate the benefit of using more efficient buffer man-
agement techniques and highly optimized stubs [13] to reduce the presentation conversion
and data copying overhead.

Oneway latency The oneway SII latencies for Orbix and VisiBroker for octets are
comparable. However, as depicted in Figures 4.9 through 4.13, due to inefficient inter-
nal buffering strategies, there is substantial variance in latency. This jitter is generally
unacceptable for real-time systems that require predictable behavior [31].

The Orbix DII latency for octets is nearly double the latency for VisiBroker. The
oneway SII latencies for Orbix and VisiBroker for BinStructs are comparable. However,
the oneway DII latency for Orbix increases rapidly compared to that of VisiBroker. For 500
servants, the Orbix oneway DII latency for BinStructs is ∼5.6 times that of VisiBroker.

Twoway latency Figures 4.16 through 4.23 reveal that the two-way latency for Orbix
increases as (1) the number of servants and (2) the sender buffer sizes increase. In contrast,
for VisiBroker the latency increases only with the size of sender buffers. Figures 4.20
through 4.23 also reveal that the latency for the Orbix two-way SII case at 1,024 data units
of BinStruct is almost 1.2 times that for VisiBroker.

3The CORBA 2.0 specification does not dictate whether a new DII request should be created for each
request, so an ORB may chose to use either approach.
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Figure 4.8: Orbix Latency for Sending Octets Using Oneway SII
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Figure 4.9: VisiBroker Latency for Sending Octets Using Oneway SII
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Figure 4.10: Orbix Latency for Sending Octets Using Oneway DII
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Figure 4.11: VisiBroker Latency for Sending Octets Using Oneway DII
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Figure 4.12: Orbix Latency for Sending Structs Using Oneway SII
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Figure 4.13: VisiBroker Latency for Sending Structs Using Oneway SII
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Figure 4.14: Orbix Latency for Sending Structs Using Oneway DII
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Figure 4.15: VisiBroker Latency for Sending Structs Using Oneway DII
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Figure 4.16: Orbix Latency for Sending Octets Using Twoway SII
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Figure 4.17: VisiBroker Latency for Sending Octets Using Twoway SII
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Figure 4.18: Orbix Latency for Sending Octets Using Twoway DII
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Figure 4.19: VisiBroker Latency for Sending Octets Using Twoway DII
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Figure 4.20: Orbix Latency for Sending Structs Using Twoway SII
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Figure 4.21: VisiBroker Latency for Sending Structs Using Twoway SII
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Figure 4.22: Orbix Latency for Sending Structs Using Twoway DII
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Figure 4.23: VisiBroker Latency for Sending Structs Using Twoway DII
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Similarly, the latency for the Orbix two-way DII case at 1,024 data units of BinStruct
is almost 4.5 times that for VisiBroker. In addition, the figures reveal that for Orbix, the
latency increases as the number of servants increase. As shown in 4.3.3, this is due to
the inefficient demultiplexing strategy used by Orbix. For VisiBroker, the latency remains
unaffected as the number of servants increases.

Orbix incurs higher latencies than VisiBroker due to (1) the additional overhead
stemming from the inability of Orbix DII to reuse requests and (2) the presentation layer
overhead of marshaling and demarshaling the BinStructs. These sources of overhead reduce
the receiver’s performance, thereby triggering the flow control mechanisms of the transport
protocol, which impede the sender’s progress.

[20, 21] precisely pinpoint the marshaling and data copying overheads when trans-
ferring richly-typed data using SII and DII. The latency for sending octets is much less
than that for BinStructs due to significantly lower overhead of presentation layer conver-
sions. Section 4.3.3 presents our analysis of the Quantify results for sources of overhead
that increase the latency of client request processing.

Summary of Latency and Scalability Results for CORBA Parameter Passing

Operations

The following summarizes the latency results for parameter passing operations described
above:

• Latency for Orbix and VisiBroker increases linearly with the size of the request. This
is due to the increased parameter marshaling overhead.

• VisiBroker exhibits relatively low, constant latency as the number of servants increase,
due to its use of hashing-based demultiplexing for servants and IDL skeletons at the
receiver. In contrast, Orbix exhibits linear increases in latency based on the number
of servants and the number of operations in an IDL interface. This behavior stems
from Orbix’s use of linear search at the TCP/socket layer since it opens a connection
per object reference. In addition, it also uses linear search to locate servant operations
in its IDL skeletons.

• The DII performs consistently worse than SII. For two-way Orbix operations the DII
performs 3 times worse for octets and 14 times worse for BinStructs. For VisiBroker
the DII performs comparable for octets and ∼4 times worse for BinStructs).

Since Orbix does not reuse the DII requests, the DII latency for Orbix incurs ad-
ditional overhead. However, both Orbix and VisiBroker must populate the request
with parameters. This involves marshaling and demarshaling the parameters. The
marshaling overhead for BinStructs is more significant than that for octets. As a
result, the DII latency for BinStructs is worse compared to that of octets.
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Figure 4.24: Request Path Through Orbix Sender and Receiver for SII

4.3.3 Whitebox Analysis of Latency and Scalability Overhead

Sections 4.3.1 and 4.3.2 presented the results of our blackbox performance experiments.
These results depict how the two ORBs perform. However, the blackbox tests do not
explain why there are differences in performance, i.e., they do not reveal the source of the
latency and scalability overheads.

This section presents the results of whitebox profiling that illustrate why the two
ORBs performed differently. We analyze the Quantify results on sources of latency and
scalability overhead in the two ORBs to help explain the variation reported in Section 4.3.
The performance results reported in this section motivated the latency and scalability op-
timizations applied to our TAO ORB in Chapter 6.

Figures 4.24 and 4.25 show how Orbix and VisiBroker implement the generic SII
request path shown in Figure 4.2. Percentages at the side of each figure indicate the con-
tribution to the total processing time for a call to the sendStructSeq method, which was
used to perform the operation for sending sequences of BinStructs.4 The DII request path
is similar to the SII path, except that clients create requests at run-time rather than using
the stubs generated by the IDL compiler.

4The percentages in the figures do not add up to 100 since the overhead of the OS and network devices
are omitted.
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Orbix SII Request Flow Overhead

In Figure 4.24, the Orbix sender invokes the stub for the ttcp sequence::sendStructSeq

method. The request traverses through the invoke and the send routines of the CORBA
Request class and ends up in the OrbixChannel class. At this point, it is handled by a
specialized class, OrbixTCPChannel, which uses the TCP/IP protocol for communication.

On the receiver, the request travels through a series of dispatcher classes that lo-
cate the intended servant implementation and its associated IDL skeleton. Finally, the
ttcp sequence dispatch class demultiplexes the incoming request to the appropriate ser-
vant and dispatches its sendStructSeq method with the demarshaled parameters.

On the sender, most of the overhead is attributed to the OS. The Orbix version
uses the write system call which accounts for 73% of the processing time, due primarily
to protocol processing in the SunOS 5.5 kernel. The remaining overhead can be attributed
to marshaling and data copying, which accounts for ∼25% of the processing time. On the
receiver, the demarshaling layer accounts for almost 72% of the overhead, due largely to the
presentation layer conversion overhead incurred while demarshaling incoming parameters.
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Figure 4.25: Request Path Through VisiBroker Sender and Receiver for SII

VisiBroker SII Request Flow Overhead

In Figure 4.25, the VisiBroker sender invokes the stub for the sendStructSeq method de-
fined by the ttcp sequence class. The request passes through the send methods of the
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CORBA::Object and the PMCStubInfo classes. Finally, the request passes through the meth-
ods of the PMCIIOPStream class. This class implements the Internet Inter-ORB Protocol
(IIOP), which specifies a standard communication protocol between servants on different
heterogeneous hosts. The IIOP implementation writes to the underlying socket descriptor.

On the receiver, the IIOP implementation reads the packet using methods of the
PMCIIOPStream class, which passes the request to the Object Adapter. The Object Adapter
demultiplexes the incoming request by identifying the skeleton ( sk ttcp seq ::skel). The
skeleton identifies the servant and makes an upcall to the sendStructSeq method of the
ttcp sequence i implementation class.

On the sender, 56% of the overhead is attributed to the OS and networking level.
The rest of the overhead stems from marshaling and data copying, which accounts for ∼42%
of the processing time. On the receiver, the demarshaling and demultiplexing layer accounts
for almost 72% of the processing time. VisiBroker spends most of its receiver processing
demarshaling the parameters. In addition, the incoming parameters must travel through
long chain of function calls (shown in Figure 4.25), which increases the overhead.

The request flow path traced by Orbix and VisiBroker is very similar. VisiBroker
uses the standard IIOP common data representation (CDR) encoding as its native protocol
for representing data types internally. In contrast Orbix uses a proprietary communication
protocol based on ONC’s XDR.

Servant Demultiplexing Overhead

To evaluate how the CORBA ORBs scale for endsystem servers, we instantiated 1, 100,
200, 300, 400, and 500 servants on the server. The following discussion analyzes the server-
side overhead for demultiplexing client requests to servants. We analyze the performance
of the sendNoParams 1way method for 500 servants on the server and 10 iterations. The
sendNoParams 1way method is chosen so that the demultiplexing overhead can be analyzed
without being affected by the demarshaling overhead involved with sending richly-typed
data as shown in Sections 4.3.3 and 4.3.3.

Sources of Orbix demultiplexing overhead Table 4.1 depicts the latency and scalabil-
ity impact of instantiating 500 servants and invoking 10 requests of the sendNoParams 1way

method per servant using Orbix. Quantify analysis reveals that the performance of both
the round robin and the request train case is similar. In both cases, the client spends most
of its time performing network writes.

The server spends ∼22% of its time doing strcmps used for linearly searching the
operation table to lookup the right operation, ∼16% of its time searching the hash table
to locate the right servant and its skeleton, ∼10% of its time in writes, and ∼7% of its
time in select. Orbix opens a new socket descriptor for every object reference obtained by
the client. Hence, to demultiplex incoming requests, Orbix must use select to determine
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Table 4.1: Analysis of Servant Demultiplexing Overhead for Orbix

Comm. Request Analysis
Entity Train Method Name msec %

Client No write 1,225 75.60
Yes write 1,229 73.88

Server No strcmp 3,010 21.97
hashTable:: 2,178 15.90
lookup

write 1,392 10.16
select 902 6.58
hashTable:: 704.52 5.14
hash

Selecthandler:: 476 3.45
processSockets

read 346 2.55
Yes strcmp 2,979 21.06

hashTable:: 2,178 15.40
lookup

write 1,504 10.63
select 902 6.38
hashTable:: 712 5.04
hash

Selecthandler:: 479 3.39
processSockets

read 372 2.63

which socket descriptor is ready for reading. The writes are used for flushing of buffers
invoked by the underlying flow-control mechanism of the transport protocol.

Sources of VisiBroker demultiplexing overhead Table 4.2 depicts the affect on
latency and scalability of instantiating 500 servants and invoking 10 iterations of the
sendNoParams 1way method per servant using VisiBroker. The table reveals no signifi-
cant difference between the round robin and request train case. The Quantify analysis for
the VisiBroker version reveals that the server spends ∼15-20% of its time in network writes,
∼5% in reads, and ∼22% time demultiplexing requests.

VisiBroker’s Object Adapter manages the internal tables ∼NCTrans and NCOutTbl.
These tables use a hash-based table lookup strategy to demultiplex and dispatch incoming
requests to their intended servants.

Comparison of Orbix and VisiBroker demultiplexing overhead

• VisiBroker opens one socket descriptor for all object references in the same server
process. In contrast, Orbix opens a new socket descriptor for every object reference
over networks (described in Section 4.3.1).

• VisiBroker uses a hashing-based scheme to demultiplex incoming requests to their
servant. In contrast, although Orbix also uses hashing to identify the servant, a
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Table 4.2: Analysis of Servant Demultiplexing Overhead for VisiBroker

Comm. Request Analysis
Entity Train Method Name msec %

Client No write 10,895 99.00
Yes write 10,992 99.00

Server No write 393 20.84
∼NCTransDict 138 7.31
∼NCClassInfoDict 138 7.31
read 83 4.40
NCOutTbl 73 3.84
NCClassInfoDict 71 3.75

Yes write 275 15.32
∼NCTransDict 138 7.67
∼NCClassInfoDict 138 7.67
read 83 4.61
NCOutTbl 73 4.03
NCClassInfoDict 71 3.93

different socket is used for each servant. Therefore, the OS kernel must search the list
of open socket descriptors to identify which one is enabled for reading.

4.3.4 Additional Impediments to CORBA Scalability

In addition to servant demultiplexing overhead, both versions of CORBA used in our exper-
iments possessed other impediments to scalability. In particular, neither worked correctly
when clients invoked a large number of operations on a large number of servants accessed
via object references.

We were not able to measure latency for more than ∼1,000 servants since both ORBs
crashed when we performed a large number of requests on ∼1,000 servants. As discussed
in Section 4.3.1, Orbix was unable to support more than ∼1,000 servants since it opened a
separate TCP connection and allocated a new socket for each servant in the server process.
Moreover, even though VisiBroker supported ∼1,000 servants, it could not support more
than 80 requests per servant without crashing when the server had 1,000 servants i.e., no
more than a total of 80,000 requests could be handled by VisiBroker (this appears to be
caused by a memory leak). Clearly, these limitations are not acceptable for mission-critical
ORBS.

4.3.5 Summary of Performance Experiments

The following summarizes the results of our findings of conventional ORB latency and
scalability over high-speed networks:
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• Sender-side overhead Much of the sender-side overhead resides in OS calls that send
requests. Removing this overhead requires the use of optimal buffer manager and tun-
ing different parameters (such as socket queue lengths and flow control strategies) of the
underlying transport protocol.

• Receiver-side overhead Much of the receiver-side overhead occurs from inefficient
demultiplexing and presentation layer conversions (particularly for passing richly-typed data
like structs). Eliminating the demultiplexing overhead requires de-layered strategies and
fast, flexible message demultiplexing [14, 24]. Eliminating the presentation layer overhead
requires optimized stub generators [52, 13] for richly-typed data.

• Demultiplexing overhead The Orbix demultiplexing performs worse than VisiBroker
demultiplexing since Orbix uses a linear search strategy based on string comparisons for
operation demultiplexing. In addition, due to an open TCP connection for every object
reference, Orbix must use the UNIX event demultiplexing call select to determine which
socket descriptors are ready for reading.

• Intra-ORB function calls Conventional ORBs suffer from excessive intra-ORB func-
tion calls, as shown in Section 4.3.3. Minimizing intra-ORB function calls requires sophis-
ticated compiler optimizations such as integrated layer processing [7].

• Dynamic invocation overhead DII performance drops as the size of requests in-
creases. To minimize the dynamic invocation overhead, ORBs should reuse DII requests
and minimize the marshaling and data copying required to populate the requests with their
parameters.
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Chapter 5

Optimizing the Performance of the

IIOP CDR Marshaling Engine

5.1 Introduction

References [20, 21, 23] show that the performance of conventional CORBA middleware
implementations is relatively poor compared to lower-level implementations using sockets
and C/C++ since the ORBs incur a significant amount of data copying, marshaling, de-
marshaling, and demultiplexing overhead. These results, however, focused entirely on the
communication performance between homogeneous ORBs. They do not measure the run-
time costs of interoperability between heterogeneous ORBs. In addition, earlier work on
measuring CORBA performance did not present the results of optimizations to reduce key
sources of ORB overhead.

In this chapter, we measure the performance of SunSoft IIOP using a CORBA/ATM
testbed environment similar to [20, 21, 23]. SunSoft IIOP is a freely available implemen-
tation of the IIOP protocol. We measure the performance of SunSoft IIOP and precisely
pinpoint its performance overheads. In addition, we describe the results of systematically
applying seven principle-driven optimizations [75] that substantially improve the per-
formance of SunSoft IIOP. These optimizations include: optimizing for the common case;
eliminating gratuitous waste; replacing general purpose methods with specialized, efficient
ones; precomputing values, if possible; storing redundant state to speed up expensive opera-
tions; passing information between layers; and optimizing for the processor cache.1

The results of applying these optimization principles to SunSoft IIOP improved its
performance 1.9 times for doubles, 3.3 times for longs, 4 times for shorts, 5 times for
chars/octets, and 6.7 times for richly-typed structs over ATM networks. Our optimized

1The optimizations and results described in this chapter have appeared in the IEEE Hawaii International
Conference on System Sciences, 97.
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version of SunSoft IIOP is now comparable to existing commercial ORBs [20, 21, 23] using
the static invocation interface (SII) and around 2 to 4.5 times (depending on the data type)
faster than commercial ORBs using the dynamic skeleton interface (DSI).

The optimizations and the resulting speedups reported in this chapter are essential
for CORBA to be adopted as the standard for implementing high-bandwidth, low-latency
distributed applications. The protocol optimizations described in this chapter are based on a
set of principles that have been used to improve the performance of communication protocols
described in Chapter 8. These principles can be applied to improve the performance of other
ORB implementations and distributed object computing middleware.

Improving IIOP performance is not our only requirement, however, since optimiza-
tions must not come at the expense of interoperability. Therefore, we illustrate that our
optimized implementation of SunSoft IIOP interoperates seamlessly with Visigenic’s Visi-
Broker for C++ ORB.

5.2 Overview of GIOP and SunSoft’s IIOP Architecture

5.2.1 Overview of CORBA GIOP and IIOP

The CORBA General Inter-ORB Protocol (GIOP) defines an interoperability protocol be-
tween potentially heterogeneous ORBs. The GIOP protocol provides an abstract protocol
specification that can be mapped onto conventional connection-oriented transport protocols.
An ORB is GIOP-compatible if it can send and receive all valid GIOP messages.

The GIOP specification consists of the following elements:

A Common Data Representation (CDR) definition: The GIOP specification defines
the CDR transfer syntax. CDR maps OMG IDL types from the native host format into
a low-level bi-canonical representation, which supports both little-endian and big-endian
formats. CDR encoded messages are used to transmit CORBA requests and server responses
across a network. All OMG IDL data types are marshaled using the CDR syntax into an
encapsulation, which is an octet stream that holds marshaled data.

GIOP message formats: The GIOP specification defines seven types of messages that
send requests, receive replies, locate objects, and manage communication channels.

GIOP transport assumptions: The GIOP specification describes the type of transport
protocols that can carry GIOP messages. In addition, the GIOP specification defines a
connection management protocol and a set of constraints for message ordering.

The most common concrete mapping of GIOP onto the TCP/IP transport protocol
is known as the Internet Inter-ORB Protocol (IIOP). The GIOP and IIOP specifications
are described further in [51] and Appendix B.1.
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5.2.2 Overview of the SunSoft IIOP Protocol Engine

SunSoft IIOP is a protocol engine that implements IIOP version 1.0. The key features and
architecture of SunSoft IIOP are outlined below.

CORBA Features Supported by SunSoft IIOP

The SunSoft IIOP protocol engine is written in C++ and provides the features of a CORBA
ORB Core. It handles connection management, socket endpoint demultiplexing, concur-
rency control, and the IIOP protocol. It is not a complete ORB, however, since it lacks an
IDL compiler, an interface repository, and a Portable Object Adapter (POA).

On the client-side, SunSoft IIOP provides a static invocation interface (SII) and a
dynamic invocation interface (DII). The SII is used by the client-side stubs. The DII is used
by clients that have no compile-time knowledge of the interface they are calling. Thus, the
DII allows clients to create CORBA requests at run-time.

In SunSoft IIOP, requests are created and parameters marshaled using the Request,
NVList, NamedValue, and TypeCode pseudo-object interfaces defined by CORBA. Pseudo-
objects are entities that are neither CORBA primitive types nor constructed types. Op-
erations on pseudo-object references cannot be invoked using the DII mechanism since the
interface repository does not keep any information about them. In addition, pseudo-objects
are typically locality constrained, i.e., they cannot be transferred as parameters to methods
of an IDL interface.

SunSoft IIOP supports dynamic skeletons via the dynamic skeleton interface (DSI).
The DSI is used by applications and ORB bridges [51] that have no compile-time knowledge
of the interfaces they implement. Thus, the DSI parses incoming requests, unmarshals their
parameters, and demultiplexes requests to the appropriate servants.

Servers that use the SunSoft DSI mechanism must provide TypeCode information
used to interpret incoming requests and demarshal the parameters. TypeCodes are CORBA
pseudo-objects that describe the format and layout of primitive and constructed IDL data
types in the incoming request stream. This information is used by SunSoft IIOP’s inter-
pretive marshaling engine for each data type as it is marshaled and transmitted over a
network.

The Sunsoft IIOP Software Architecture

The components in SunSoft IIOP are shown in Figure 5.1. The TypeCode marshaling and
demarshaling protocol engine is the primary component of SunSoft IIOP. SunSoft IIOP’s
protocol engine is an interpreter that encodes or decodes parameter data by identifying
their TypeCodes at run-time using the kind field of each TypeCode object.
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Figure 5.1: Components in the SunSoft IIOP Implementation

SunSoft IIOP uses an interpreter to reduce the space utilization of its protocol engine.
Minimizing the memory footprint of a protocol engine is important for hand-held devices,
such as PDAs. SunSoft IIOP’s code size is less than 100 Kbytes on a real-time operating
system like VxWorks. ORBs with small memory footprints are also useful for general-
purpose operating systems since the protocol interpreter can be small enough to fit entirely
within a processor cache.

Each component of the SunSoft IIOP software architecture is outlined below:

The TypeCode::traverse method: The SunSoft IIOP interpreter is implemented within
the traverse method of the TypeCode class. All parameter marshaling and demarshaling
is performed interpretively by traversing the data structure according to the layout of the
TypeCode/Request tuple passed to traverse. This method is passed a pointer to a visit

method (described below), which interprets CORBA requests based on their TypeCode lay-
out. The request part of the tuple contains the data that was passed by an application on
the client-side or received from the OS protocol stack on the server-side.

The visit method: The TypeCode interpreter invokes the visit method to marshal or
demarshal the data associated with the TypeCode it is currently interpreting. The visit

method is a pointer that contains the address of one of the four methods described below:
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• The CDR::encoder method – The encoder method of the CDR class converts appli-
cation data types from their native host representation into the CDR representation
used to transmit CORBA requests over a network.

• The CDR::decoder method – The decoder method of the CDR class is the inverse of
the encoder method. It converts request values from the incoming CDR stream into
the native host representation.

• The deep copy method – The deep copy method is used by the SunSoft DII mech-
anism to allocate storage and marshal parameters into the CDR stream using the
TypeCode interpreter.

• The deep free method – The deep free method is used by the SunSoft DSI server
to free dynamically allocated memory after incoming data has been demarshaled and
passed to a server application.

The utility methods: The following SunSoft IIOP methods perform various utility tasks:

• The calc nested size and alignment method – This method calculates the size and
alignment of composite IDL data types like structs or unions.

• The struct traverse method – The TypeCode interpreter uses this method to tra-
verse the fields in an IDL struct recursively.

Appendix B.3 examines the run-time behavior of SunSoft IIOP by tracing the path taken by
requests used to transmit the sequence of BinStructs. The IDL definition for BinStructs
is shown in Appendix A.
The performance of SunSoft IIOP for these data types is examined in Section 5.3.1.

5.2.3 Overview of TAO

To avoid unnecessarily re-inventing existing ORB components, TAO is based on SunSoft
IIOP’s protocol engine. However, SunSoft IIOP has the following limitations:

Lack of complete ORB features: Although SunSoft IIOP provides an ORB Core,
an IIOP protocol engine, and a DII and DSI implementation, it lacks an IDL compiler,
an interface repository, and a Portable Object Adapter (POA). TAO implements many of
these missing features and provides several new features such as real-time scheduling and
dispatching mechanisms [69].

Lack of real-time features: SunSoft IIOP provides no support for real-time features.
For instance, it uses a FIFO strategy for scheduling and dispatching client IIOP requests.
FIFO strategies can yield unbounded priority inversions when lower priority requests block
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the execution of higher priority requests [70]. TAO is designed carefully to prevent un-
bounded priority inversions. For instance, it provides a flexible scheduling service [69] that
utilizes QoS information associated with the I/O subsystem [41] to schedule and dispatch
requests according to their end-to-end priorities. To enable this, TAO extends SunSoft IIOP
to support QoS parameters, as well as to allow separate IIOP connections to run within
real-time threads with suitable priorities.

Lack of IIOP optimizations: As described in Section 5.3.1, SunSoft IIOP yielded rela-
tively poor performance due to excessive marshaling/demarshaling overhead, data copying,
and high-levels of function call overhead. Therefore, we applied principle-based optimiza-
tions [75] that improved its performance considerably [25].

The principles that directed our optimizations of SunSoft IIOP include: (1) opti-
mizing for the common case, (2) eliminating gratuitous waste, (3) replacing general-purpose
methods with efficient special-purpose ones, (4) precomputing values, if possible, (5) storing
redundant state to speed up expensive operations, (6) passing information between layers,
and (7) optimizing for processor cache affinity. As shown in Section 5.3.1, our optimizations
yielded speedups of 2 to 6.7 for various types of OMG IDL data.

TAO alleviates the limitations with SunSoft IIOP described above to create a com-
plete real-time ORB endsystem. An overview of TAO is provided in Section 1.4.

5.3 Performance Results and Benefits of Optimization Prin-

ciples

5.3.1 Methodology

CORBA implementations like SunSoft IIOP are representative of complex communication
software. Optimizing such software is hard, particularly since seemingly minor “mistakes,”
such as excessive data copying, dynamic allocation, or locking, can reduce performance sig-
nificantly [20, 70]. Therefore, developing high-performance, predictable, and space-efficient
ORBs requires an iterative, multi-step process. The first step involves measuring the per-
formance of the system and pinpointing the sources of overhead. The second step involves
a careful analysis of these sources of overhead and application of optimizations to remove
them.

This section describes the optimizations we applied to SunSoft IIOP to improve its
throughput performance. First, we show the performance of the original SunSoft IIOP for
the IDL data types defined in Appendix B.2. Next, we use Quantify to illustrate the key
sources of overhead in SunSoft IIOP. Finally, we describe the benefits applying optimization
principles to improve the performance of SunSoft IIOP.
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The optimizations described in this section are based on the core principles shown
in Table 5.1 for implementing protocols efficiently.

Table 5.1: Summary of Principles for Efficient Protocol Implementations

Number Principle
1 Optimizing for the common case
2 Eliminating gratuitous waste
3 Replacing inefficient general-purpose

methods with efficient special-purpose ones
4 Precomputing values, if possible
5 Storing redundant state to speed

up expensive operations
6 Passing information between layers
7 Optimizing for the processor cache

[75] describes a collection of optimization principles in detail and illustrates how
they have been applied in existing protocol implementations, such as TCP/IP. This section
focuses on the principles that we applied to systematically improve the performance of Sun-
Soft IIOP. We focused on these principles since our experiments revealed they were the most
strategic to improving SunSoft IIOP’s performance. When describing our optimizations,
we refer to these principles and explain how their use is justified.

The SunSoft IIOP optimizations were performed in the following three steps, corre-
sponding to the principles from Table 5.1:

1. Aggressive inlining to optimize for the common case – which is discussed in Sec-
tion 5.3.3;

2. Precomputing, adding redundant state, passing information through layers, eliminating
gratuitous waste, and specializing generic methods – which is discussed in Section 5.3.4;

3. Optimizing for the processor cache – which is discussed in Section 5.3.5.

The order we applied the principles was based on the most significant sources of
overhead identified empirically at each step and the principle(s) that most effectively reduced
the overhead. For each step, we describe the principles and specific optimization techniques
that were applied to reduce the overhead remaining from previous steps. After each step,
we show the improved throughput measurements for selected data types. In addition, we
compare the throughput obtained in the previous steps with that obtained in the current
step.

The comparisons focus on data types that exhibited the widest range of performance,
i.e., double and BinStruct. As shown below, the first optimization step did not improve
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Figure 5.2: Throughput for the Original SunSoft IIOP Implementation
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performance significantly. However, this step was necessary since it revealed the actual
sources of overhead, which were then alleviated by the optimizations in subsequent steps.

5.3.2 Performance of the Original SunSoft IIOP Implementation

Sender-side performance:

Figure 5.2 illustrates the sender-side throughput obtained by sending 64 Mbytes of various
data types for buffer sizes ranging from 1 Kbytes to 128 Kbytes (incremented by powers of
two). The figure compares SunSoft IIOP with a hand-optimized baseline implementation
that uses TCP/IP and sockets. These results indicate that different data types achieved
substantially different levels of throughput.

The highest ORB throughput results from sending doubles, whereas BinStructs

displayed the worst behavior. This variation in behavior stems from the marshaling and
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demarshaling overhead for different data types. In addition, the original implementation of
the interpretive marshaling/demarshaling engine in SunSoft IIOP incurred a large number
of recursive method calls.

Figure 5.3 presents the results of using Quantify to send 64 Mbytes of doubles and
BinStructs using a 128 Kbyte sender buffer. The results reveal that the sender spends
∼90% of its run-time performing write system calls to the network. This overhead stems
from the transport protocol flow control enforced by the receiving side, which cannot keep
pace with the sender due to excessive presentation layer overhead. Table 5.2 provides
detailed Quantify measurements indicating the time taken by dominant operations and
the number of times they were invoked.

Receiver-side performance:

The Quantify analysis for the receiver-side is shown in Figure 5.4 and Table 5.3. The
receiver-side results2 for sending primitive data types indicate that most of the run-time
costs are incurred by the following methods:

1. The TypeCode interpreter – i.e., the traverse method in class TypeCode.

2. The CDR methods that retrieve the value from the incoming data – e.g., get long and
get short.

3. The deep free method – which deallocates memory.

4. The CDR::decoder method – The receiver spends a significant amount of time travers-
ing the BinStruct TypeCode (struct traverse) and calculating the size and align-
ment of each member in the struct.

2Throughput measurements from the receiver-side were nearly identical to the sender measurements and
are not presented here.
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Table 5.2: Sender-side Overhead in the Original IIOP Implementation

Data Type Analysis
Method Name msec Called %

double write 78,051 512 93.33
put longlong 2,250 8,388,608 2.69
CDR::encoder 1,605 8,393,216 1.92
TypeCode::traverse 1,300 1,024 1.55

long write 134,141 512 92.92
put long 3,799 16,780,288 2.63
CDR::encoder 3,303 16,781,824 2.29
TypeCode::traverse 2,598 1,024 1.80

short write 265,392 512 93.02
put short 7,593 33,554,432 2.66
CDR::encoder 6,598 33,559,040 2.31
TypeCode::traverse 5,195 1,024 1.82

octet write 530,134 512 93.43
CDR::encoder 15,986 67,113,472 2.82
put byte 10,391 67,118,080 1.83
TypeCode::traverse 10,388 1,024 1.83

BinStruct write 588,039 512 88.65
get long 19,846 44,053,504 2.99
calc nested size... 11,499 14,683,648 1.73
CDR::encoder 10,394 31,461,888 1.57
TypeCode::traverse 8,803 4,195,328 1.33

As noted above, the receiver’s run-time costs adversely affect the sender by increasing the
time required to perform write system calls to the network due to flow control.

The remainder of this section describes the various optimization principles we applied
to SunSoft IIOP, as well as the motivations and consequences of applying these optimiza-
tions. After applying the optimizations, we examine the new throughput measurements
for sending different data types. In addition, we show how our optimizations affect the
performance of the best case (doubles) and the worst case (BinStruct). Likewise, detailed
profiling results from Quantify are provided only for the best and the worst cases.

Figures 5.3 and 5.4 illustrate the receiver is the principal performance bottleneck.
Therefore, our initial set of optimizations are designed to improve receiver performance.
Likewise, since the receiver is the bottleneck, we show only its Quantify profile measure-
ments.

5.3.3 Optimization Step 1: Inlining to Optimize for the Common Case

Problem: high invocation overhead for small, frequently called methods:

This section describes an optimization to improve the performance of IIOP receivers. We
applied Principle 1 from Table 5.1, which optimizes for the common case. Figure 5.4 illus-
trates that the appropriate get method of the CDR class must be invoked to retrieve the
data from the incoming stream into a local copy. For instance, depending on the data type,
methods like CDR::get long or CDR::get longlong are called between 10-80 million times
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Table 5.3: Receiver-side Overhead in the Original IIOP Implementation

Data Type Analysis
Method Name msec Called %

double TypeCode::traverse 2,598 1,539 23.81
CDR::get longlong 2,596 8,388,608 23.80
deep free 1,648 8,389,633 15.10
CDR::decoder 1,551 8,395,797 14.22
read 1,146 1,866 10.51
TypeCode::kind 799 8,389,120 7.32

long TypeCode::traverse 5,194 1,539 25.31
CDR::get long 4,596 16,783,379 22.40
deep free 3,296 16,778,241 16.06
CDR::decoder 3,099 16,784,405 15.10
read 1,682 2,574 8.20
TypeCode::kind 1,598 16,777,728 7.79

short TypeCode::traverse 10,387 1,539 27.22
CDR::get short 9,188 33,554,432 24.07
deep free 6,591 33,554,457 17.27
CDR::decoder 6,195 33,561,621 16.23
TypeCode::kind 3,196 33,554,944 8.37

octet TypeCode::traverse 20,773 1,539 29.30
CDR::decoder 13,984 67,116,053 19.73
deep free 13,182 67,109,889 18.59
CDR::get byte 10,787 67,118,113 15.22
TypeCode::kind 6,391 67,109,376 9.02

BinStruct CDR::get long 35,091 83,921,427 27.65
calc nested size... 23,001 29,370,880 18.31
struct traverse 15,154 4,194,304 11.94
CDR::decoder 10,436 33,561,621 8.22
TypeCode::traverse 10,401 6,292,995 8.20
deep free 6,492 14,681,089 5.12
CDR::skip string 6,394 33,566,720 5.04
CDR::get byte 3,399 21,153,313 2.68

to decode the 64 Mbytes of data, as indicated in Table 5.3. Since these get methods are
invoked quite frequently they are prime targets for our first optimization step.

Solution: inline method calls:

Our solution to reduce invocation overhead for small, frequently called methods was to
inline these methods. Initially, we used the C++ inline language feature.

Problem: lack of C++ compiler support for aggressive inlining:

Our intermediate Quantify results after inlining, shown in Figure 5.5, reveal that supplying
the inline keyword to the compiler does not always work since the compiler occasionally
ignores this “hint.” Likewise, inlining some methods may cause others to become “non-
inlined.” This occurs since the originally inlined operations (e.g., ptr align binary)
now invoke newly inlined operations thereby increasing their size. The C++ compiler then
chooses to not inline the originally inlined operations.
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Solution: replace inline methods with preprocessor macros:

To ensure inlining for all small, frequently called methods, we employ a more aggressive
inlining strategy. This strategy forcibly inlined methods like ptr align binary (which
aligns a pointer at the specified byte alignment) using preprocessor macros instead of as
C++ inline methods.

In addition, the Sun C++ compiler did not inline certain methods, such as skip

string and get longlong, due to their length. For instance, the code in method get

longlong swaps 16 bytes in a manually un-rolled loop if the arriving data was in a different
byte order. This increases the size of the code, which caused the C++ compiler to ignore
the inline keyword.

To workaround the compiler design, we defined a helper method that performs the
byte swapping. This helper method is invoked only if byte swapping is necessary. This
decreases the size of the code so that the compiler selected the method for inlining. For
our experiments, this optimization was valid since we were transferring data between Ul-
traSPARC machines with the same byte order.

Optimization results:

The throughput measurements after aggressive inlining are shown in Figure 5.6. Fig-
ures 5.7 and 5.8 illustrate the effect of aggressive inlining on the throughput of doubles
and BinStructs. Figures 5.7 and 5.8 also compare the new results with the original results.
After aggressive inlining, the new throughput results indicate only a marginal (i.e., 4%)
increase in performance. Figures 5.9 and 5.10, and Tables 5.4 and 5.5 show profiling mea-
surements for the sender and receiver, respectively. As before, the analysis of overhead for
the sender-side reveals that most run-time overhead stems from write calls to the network.
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Table 5.4: Sender-side Overhead After Applying the First Optimization (inlining)

Data Type Analysis
Method Name msec Called %

double write 59,260 512 92.40
CDR::encoder 3,154 8,393,216 4.92
TypeCode::traverse 1,300 1,024 2.03

BinStruct write 436,694 512 85.29
calc nested size... 14871 14,683,648 3.59
CDR::encoder 14,101 31,461,888 3.40
struct traverse 12,425 2,097,152 3.00

The receiver-side Quantify profile output reveals that aggressive inlining does force
operations to be inlined. However, this inlining increases the code size for other meth-
ods such as struct traverse, CDR::decoder, and calc nested size and alignment,
thereby increasing their run-time costs. As shown in Figures B.6 and B.7, these methods
are called a large number of times (indicated in Figure 5.10 and Table 5.5).

Certain SunSoft IIOP methods such as CDR::decoder and TypeCode::traverse

are large and general-purpose. Inlining the small methods described above causes further
“code bloat” for these methods. Thus, when they call each other recursively a large number
of times, very high method call overhead results. In addition, due to their large size, it is
unlikely that code for both these methods can be resident in the processor cache at the same
time, which explains why inlining does not result in significant performance improvement.

In summary, although our first optimization step did not improve performance dra-
matically, it helped to reveal the actual sources of overhead in the code, as explained in
Section 5.3.4.
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Table 5.5: Receiver-side Overhead After Applying the First Optimization (aggressive inlin-
ing)

Data Type Analysis
Method Name msec Called %

double CDR::decoder 3,402 8,393,237 35.11
TypeCode::traverse 2,598 1,539 26.82
deep free 1,648 8,389,633 17.01
TypeCode::kind 799 8,389,120 8.25

BinStruct calc nested size... 29,741 29,367,801 29.69
struct traverse 24,840 4,194,303 24.80
CDR::decoder 14,641 33,554,437 14.62
TypeCode::traverse 7,032 6,292,481 7.02
TypeCode::param count 4,020 4,195,846 4.01
deep free 6,492 14,681,089 4.97

5.3.4 Optimization Step 2: Precomputing, Adding Redundant State,

Passing Information Through Layers, Eliminating Gratuitous Waste,

and Specializing Generic Methods

Problem: too many method calls:

The aggressive inlining optimization in Section 5.3.3 did not cause substantial improvement
in performance due to processor cache effects as shown in this section and Section 5.3.5.

Table 5.5 reveals that for sending structs, the high cost methods are calc nested

size and alignment, CDR::decoder, and struct traverse. These methods are in-
voked a substantial number of times (29,367,801, 33,554,437, and 4,194,303 times, respec-
tively) to process incoming requests.

To see why these methods were invoked so frequently, we analyzed the calls to
struct traverse. The TypeCode interpreter invoked struct traverse 2,097,152 times
for data transmissions of 64 Mbytes in sequences of 32-byte Binstructs. In addition,
the TypeCode interpreter calculated the size of BinStruct (using the calc nested size
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and alignment function), which called struct traverse internally for every BinStruct.
This accounted for an additional 2,097,152 calls.

Although inlining did not improve performance substantially, it helped to answer
a key performance question: why were these high cost methods invoked so frequently?
Based on our detailed analysis of the SunSoft IIOP implementation (shown in Figure B.7
and in the explanation in Section 5.2.2), we recognized that to demarshal an incoming
sequence of BinStructs, the receiver’s TypeCode interpreter method TypeCode::traverse

must traverse each of its members using the method struct traverse. As each member
is traversed, the calc nested size and alignment method determines the member’s
size and alignment requirements. Each call to the calc nested size and alignment

method can invoke the CDR::decoder method, which may invoke the traverse method.
Close scrutiny of the CORBA request datapath shown in Figure B.7 reveals that

the struct traverse method calculates the size and alignment requirements every time
it is invoked. As shown above, this yields a substantial number of method calls for large
amounts of data.

Several solutions to remedy this problem are outlined below:

Solution 1: reduce gratuitous waste by precomputing values and storing addi-

tional state:

The first solution is based on the following two observations. First, for incoming sequences,
the TypeCode of each element is constant. Second, each BinStruct in the IDL sequence

has the same fixed size. These observations enabled us to pinpoint a key source of gratuitous
waste (Principle 2 from Table 5.1). In this case, the gratuitous waste involves recalculating
the size and alignment requirements of each element of the sequence. In our experiments,
the methods calc nested size and alignment and struct traverse are expensive.
Therefore, it is crucial to optimize them.
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To eliminate this gratuitous waste, we can precompute (Principle 4) the size and
alignment requirements of each member and store them using additional state (Principle 5)
to speed up expensive operations. We store this additional state as private data members
of the SunSift’s TypeCode class. Thus, the TypeCode for BinStruct will calculate the
size and alignment once and store these in the private data members. Every time the
interpreter wants to traverse BinStruct, it uses the TypeCode for BinStruct that has
already precomputed its size and alignment. Note that our additional state does not affect
the IIOP protocol since this state is stored locally in the TypeCode interpreter and is not
passed across the network.

In general, all struct elements in a sequence may not have the same size. For
instance, a sequence of Anys or structs with string fields may have elements with variable
sizes. In such cases, this optimization will not apply. For the BinStruct case described in
this paper, however, a highly optimizing IDL compiler, such as Flick [13] could determine
that all sequence elements have identical sizes. It could then generate stub and skeleton
code that can eliminate gratuitous waste.

Solution 2: convert generic methods into special-purpose, efficient ones:

To further reduce method call overhead, and to decrease the potential for processor cache
misses, we moved the struct traverse logic for handling structs into the traverse

method. In addition, we introduced the encoder, decoder, deep copy, and deep free

logic into the traverse method. This optimization illustrates an application of Principle 3
(Convert generic methods into special-purpose, efficient ones).

We chose to keep the traverse method generic, yet make it efficient since we want
our demarshaling engine to remain in the cache. However, this scheme may not result
in the best cache hit performance for machine architectures with small caches since the
traverse method is excessively large. Section 5.3.5 describes optimizations we used to
improve processor cache performance.

Problem: expensive no-ops for memory deallocation:

Figure 5.10 reveals that the overhead of the deep free method remains significant for prim-
itive data types. This method is similar to the decoder method that traverses the TypeCode
and deallocates dynamic memory. For instance, the deep free method has the same type
signature as the decoder method. Therefore, it can use the recursive traverse method to
navigate the data structure corresponding to the parameter and deallocate memory.

Careful analysis of the deep free method indicates that memory must be freed
for constructed data structures (such as IDL sequences and structs). In contrast, for
sequences of primitive types, the deep free method simply deallocates the buffer contain-
ing the sequence.
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Figure 5.11: Throughput After Applying the Second Optimization (precomputation and
eliminating waste)

Instead of limiting itself to this simple logic, however, the deep free method uses
traverse to find the element type that comprises the IDL sequence. Then, for the entire
length of the sequence, it invokes the deep free method with the element’s TypeCode.
The deep free method immediately determines that this is a primitive type and returns.
However, this traversal process is wasteful since it creates a large number of “no-op” method
calls.

Solution: eliminate gratuitous waste:

To optimize the no-op memory deallocations, we changed the deletion strategy for sequences
so that the element’s TypeCode is checked first. If it is a primitive type, such as double,
the traversal is not done and memory is deallocated directly.

Optimization results:

The throughput measurements recorded after incorporating these optimizations are shown
in Figure 5.11. Figures 5.12 and 5.13 illustrate the benefits of the optimizations from step
2 by comparing the throughput obtained for doubles and BinStructs, respectively, with
results from previous optimization steps.

Tables 5.6 and 5.7, and Figures 5.14 and 5.15 depict the profiling measurements
for the sender and receiver, respectively. The receiver methods accounting for the most
execution time for doubles include traverse, decoder, and deep free. For BinStructs,
the run-time costs of the traverse method in the receiver increases significantly com-
pared to the previous optimization steps. This is due primarily to the inclusion of the
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Figure 5.12: Throughput Comparison for Doubles After Applying the Second Optimization
(precomputation and eliminating waste)
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Figure 5.13: Throughput Comparison for Structs After Applying the Second Optimization
(precomputation and eliminating waste)
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Table 5.6: Sender-side Overhead After Applying the Second Optimization (getting rid of
waste and precomputation)

Data Type Analysis
Method Name msec Called %

double write 4,966 512 62.66
TypeCode::traverse 2,449 1,024 30.90

BinStruct write 61,641 512 76.83
TypeCode::traverse 17,505 2,098,176 21.82

62.66

30.90

write

Typecode::traverse

76.83

21.82

write

Typecode::traverse

Analysis for doubles Analysis for BinStructs
Figure 5.14: Sender-side Overhead After Applying the Second Optimization (getting rid of
waste and precomputation)

struct traverse, encoder, and decoder logic. Although the run-time costs of the inter-
preter increased, the overall performance improved since the number of calls to functions
other than itself decreased. As a result, this design improved processor cache affinity, which
yielded better performance. In addition, due to precomputation, calc nested size and

alignment method need not be called repeatedly.
This result represents a substantial improvement and illustrates that the marshaling

overhead of IIOP need not be a limiting factor in ORB performance.

Table 5.7: Receiver-side Overhead After Applying the Second Optimization (getting rid of
waste and precomputation)

Data Type Analysis
Method Name msec Called %

double read 3,413 4,665 54.93
TypeCode::traverse 2,747 1,539 44.21

BinStruct TypeCode::traverse 27,976 4,195,331 91.94
TypeCode:: 1,151 4,201,475 3.78
typecode param
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Figure 5.15: Receiver-side Overhead After Applying the Second Optimization (getting rid
of waste and precomputation)

5.3.5 Optimization Steps 3 and 4: Optimizing for Processor Caches

Processor caches are small, very fast memory used to significantly speed up operations [32].
To leverage off the advantages offered by the processor cache it is imperative that the
footprint of the operations be small.

[47] describes several techniques to improve protocol latency. One of the primary
areas to be considered for improving protocol performance is to improve the processor cache
effectiveness. Hence, the optimizations described in this section are aimed at improving
processor cache affinity, thereby improving performance.

Problem: very large, monolithic interpreter:

Section 5.3.4 describes optimizations based on precomputation, eliminating waste, and spe-
cializing generic methods. These optimizations yield an efficient, albeit excessively large,
TypeCode interpreter. The efficiency stems from the fact that the monolithic structure re-
sults in low function call overhead. Recursive function calls are affordable since the processor
cache is already loaded with the instructions for the same function. However, for machine
architectures with smaller cache sizes, it may be desirable to have smaller functions.

Solution: split large functions into smaller ones and outlining:

This section describes optimizations we used to improve processor cache affinity for SunSoft
IIOP. Our optimizations are based on two principles described below:

1. Splitting large, monolithic functions into small, modular functions: In
our case, the TypeCode interpreter traverse method is the prime target for this optimiza-
tion. As described earlier in Section 5.3.4, the logic for encoder, decoder, struct traverse,
deep free, and deep copy is merged into the interpreter, which increases its code size. The
primary purpose of merging these methods is to reduce excessive function call overhead.
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To improve processor cache affinity, however, it is desirable to have both smaller
functions and minimal function call overhead. We accomplish this by splitting the inter-
preter into smaller functions that are targeted for specific tasks. These include functions
that can encode or decode individual data types. This is in contrast to a generic encoder
or decoder that can marshal any OMG IDL data type. Thus, to decode a sequence, the
receiver uses the decode sequence method of the CDR class and to decode a struct, it uses
the decode struct method.

It is possible to split the decode sequence method further to support highly spe-
cialized methods (e.g., decode sequence long to decode a sequence of longs). We are
currently working on providing optimizations at this level of granularity. A smaller piece
of code that demonstrates high locality of reference is ideally suited to take the benefits of
processor caches.

This optimization principle is similar to Principle 3 from Table 5.1, which replaces
general-purpose methods with efficient special-purpose ones. In the present case, however,
the large, monolithic interpreter is replaced by special-purpose methods for encoding and
decoding.

2. Using “outlining” to optimize for the frequently executed case: Out-
lining [47] is used to remove gaps that are introduced in the processor cache as a result
of branch instructions arising from error handling code. Processor cache gaps are undesir-
able because they waste memory bandwidth and introduce useless no-op instructions in the
cache.

The purpose of outlining is to move error handling code, which is rarely executed,
to the end of the function. This enables frequently executed code to remain in contiguous
memory locations, thereby preventing unnecessary jumps and hence increasing cache affinity
by virtue of spatial locality.

Spatial locality is a property whereby data closely associated with currently refer-
enced data are likely to be referenced soon. According to the 90-10 locality principle [32],
a program executes 90% of its instructions in 10% of its code. If that 10% of the code
demonstrates spatial locality, we can derive substantial cache affinity, which improves per-
formance. Increased spatial locality can be achieved by using outlining, which reduces the
number of gaps in the processor cache.

Outlining is a technique based on Principles 1 and 7 from Table 5.1, which optimize
for the expected case and optimize for the processor cache, respectively.

The optimizations described in this section were applied in two steps. Since the
Quantify analysis in the previous steps revealed the receiver as the source of overhead,
we optimized the receiver side to gain greater processor cache effectiveness. However, the
resulting Quantify analysis for BinStructs revealed that the sender-side which was write
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Figure 5.16: Throughput After Applying the Third Optimization (receiver-side processor
cache optimization)

Table 5.8: Sender-side Overhead After Applying the Third Optimization (receiver-side pro-
cessor cache optimization)

Data Type Analysis
Method Name msec Called %

double write 3,385 512 53.21
TypeCode::traverse 2,449 1,024 38.68

BinStruct TypeCode::traverse 17,557 2,098,176 88.16
write 1,270 512 6.37

bound after the optimizations in step 2, spends a substantial amount of time (88%) in the
interpreter. Hence we applied the similar optimizations for the cache for the sender side.
Specifically, the sender-side processor cache optimizations involve splitting the interpreter
into smaller, specialized functions that can encode different OMG IDL data types.

Optimization Step 3: Receiver-side optimizations:

Figures 5.14 and 5.15 reveal that the sender is largely write bound. In contrast, the
receiver spends most of its time in the interpreter. Therefore, it is appropriate to optimize
the receiver-side code first to improve processor cache performance.

The throughput measurements recorded after incorporating these optimizations are
shown in Figure 5.16. Figures 5.17 and 5.18 illustrate the benefits of the optimizations from
step 3 by comparing the throughput obtained for doubles and BinStructs, respectively,
with those from the previous optimization steps.
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Figure 5.17: Throughput Comparison for Doubles After Applying the Third Optimization
(receiver-side processor cache optimization)
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Figure 5.18: Throughput Comparison for Structs After Applying the Third Optimization
(receiver-side processor cache optimization)
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Table 5.9: Receiver-side Overhead After Applying the Third Optimization (receiver-side
processor cache optimizations)

Data Type Analysis
Method Name msec Called %

double read 3,392 5,688 53.21
TypeCode::decode seq 2,897 512 45.43

BinStruct CDR::decode seq 6,666 512 29.61
CDR::decode array 5,839 2,096,128 25.94
deep free seq 4,359 512 19.36
read 3,712 6,379 16.49
typecode param 1,150 4,200,963 5.11
deep free array 712 2,097,152 3.16

53.21

38.68 write

TypeCode::traverse

88.16

6.37

TypeCode::traverse

write

Analysis for doubles Analysis for BinStructs
Figure 5.19: Sender-side Overhead After Applying the Third Optimization (receiver-side
processor cache optimization)

Figures 5.19 and 5.20, and Tables 5.8 and 5.9 illustrate the remaining high cost
sender-side and receiver-side methods, respectively. These indicate that for primitive types,
the cost of writing to the network and reading from the network becomes the primary
contributor to the run-time costs. These results represent a substantial improvement over
the original results presented in Section 5.3.2 and illustrate that IIOP’s marshalling overhead
need not unduly limit ORB performance. For BinStructs, however, the sender-side (which
was write bound after the optimizations in step 2) spends a substantial amount of time
(88%) in the interpreter. The receiver spends most of its time in the specialized functions
such as decode sequence (30%), and decode array (26%). The receiver-side analysis also
reveals that the function call overhead has decreased significantly compared to step 2.

Optimization Step 4: Sender-side optimizations:

The sender-side processor cache optimizations involve splitting the interpreter into smaller,
specialized functions that can encode different OMG IDL data types.

The throughput measurements recorded after incorporating these optimizations are
shown in Figure 5.21. Figures 5.22 and 5.23 illustrate the benefits of the optimizations from
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Figure 5.20: Receiver-side Overhead After Applying the Third Optimization (receiver-side
processor cache optimizations)
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Figure 5.21: Throughput After Applying the Fourth Optimization (sender-side processor
cache optimization)

step 4 by comparing the throughput obtained for doubles and BinStructs, respectively,
with those from the previous optimization steps.

Figures 5.24 and 5.25, and Tables 5.10 and 5.11 illustrate the remaining high cost
sender-side and receiver-side methods, respectively.

5.4 Maintaining CORBA Compliance and Interoperability

The optimizations presented in the previous sections are useful only to the extent that we
maintain CORBA compliance and can interoperate with IIOP-based ORBs.

This subsection presents the throughput results obtained for running the same exper-
iment with Visigenic’s VisiBroker for C++ client and the SunSoft IIOP server. Figures 5.26
and 5.27 illustrate the throughput measurements for the original SunSoft IIOP server and
our highly optimized implementation, respectively.
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Figure 5.22: Throughput Comparison for Doubles After Applying the Fourth Optimization
(sender-side processor cache optimization)
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Figure 5.23: Throughput Comparison for Structs After Applying the Fourth Optimization
(sender-side processor cache optimization)

Table 5.10: Sender-side Overhead After Applying the Fourth Optimization (sender-side
processor cache optimization)

Data Type Analysis
Method Name msec Called %

double write 3,522 512 54.30
CDR::encode seq 2,448 512 37.75

BinStruct write 24,430 512 64.93
CDR::encode seq 6,357 512 16.90
CDR::encode arr 5,744 2,097,152 15.27
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Figure 5.24: Sender-side Overhead After Applying the Fourth Optimization (sender-side
processor cache optimization)

Table 5.11: Receiver-side Overhead After Applying the Fourth Optimization (sender-side
processor cache optimizations)

Data Type Analysis
Method Name msec Called %

double read 3,376 5,470 53.31
TypeCode::decode seq 2,897 512 45.74

BinStruct CDR::decode seq 6,666 512 33.50
CDR::decode array 5,839 2,096,128 29.34
deep free seq 4,359 512 21.90
typecode param 1,150 4,200,963 5.78
read 1,093 1,985 5.49
deep free array 712 2,097,152 3.58¡

5.5 Summary and Research Contributions

This chapter illustrates the benefits of applying measurement-driven, principle-based op-
timizations that substantially improve the performance of CORBA Inter-ORB Protocol
(IIOP) middleware. The seven principles that directed our optimizations include: (1) opti-
mizing for the common case, (2) eliminating gratuitous waste, (3) replacing general-purpose
methods with efficient special-purpose ones, (4) precomputing values, if possible, (5) storing
redundant state to speed up expensive operations, (6) passing information between layers,
and (7) optimizing for processor cache affinity.

Table 5.12 summarizes the problems encountered, the solutions proposed, and the
optimization principle used to derive the solutions. The results of applying these optimiza-
tion principles to SunSoft IIOP improved its performance 1.9 times for doubles, 3.3 times
for longs, 4 times for shorts, 5 times for chars/octets, and 6.7 times for richly-typed
structs over ATM networks. Our optimized implementation is now competitive with exist-
ing commercial ORBs [20, 23] using the static invocation interface (SII) and 2 to 4.5 times
(depending on the data type) faster than commercial ORBs using the dynamic skeleton
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Figure 5.25: Receiver-side Overhead After Applying the Fourth Optimization (sender-side
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Figure 5.26: Throughput for VisiBroker Client and Original SunSoft IIOP server

interface (DSI) [21]. The results of our optimizations provide sufficient proof that perfor-
mance of complex distributed systems software can be improved by a systematic application
of principle-driven optimizations.

Moreover, we show that our optimized implementation of IIOP interoperates seam-
lessly with Visigenic’s VisiBroker for C++ ORB which is a commercially available ORB.

We have integrated the optimized SunSoft IIOP implementation with our real-time
ORB called TAO [67].3

3The TAO ORB is freely available at URL www.cs.wustl.edu/∼schmidt/TAO.html.
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Figure 5.27: Throughput for VisiBroker Client and TAO’s Optimized SunSoft IIOP Server

Table 5.12: Optimization Principles Applied in TAO

Problem Solution Principle

High overhead of C++ inline Optimize for
small, frequently hints common case
called methods

Lack of support for C preprocessor Optimize for
aggressive inlining macros common case

Too many method Specialize TypeCode Generic to
calls interpreter specialized

Expensive no-ops for Insert a check and Eliminate
deep free of scalar delete at top level waste
types

Repetitive size and Precompute size and Precompute
alignment calculation alignment info in extra and maintain
of sequence elements state in TypeCode extra state

Duplication of tasks Use default parameters Pass info.
between function solution and pass info. across layers
calls when appropriate

Cache miss penalty Split large interpreter Optimize
into specialized for cache
methods and outline
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Chapter 6

Optimized Demultiplexing

Strategies for Real-time CORBA

6.1 Overview of CORBA Demultiplexing

6.1.1 Conventional CORBA Demultiplexing Architectures

A corba request header contains the identity of its remote object implementation (which
is called a servant by the corba specification [51]) and its intended remote operation. A
servant is uniquely identified by an object key and an operation name. An object key is
represented as an idl sequence, which is a single dimensional dynamic array of bytes; an
operation name is represented as a string.

The Object Adapter is the component in the corba architecture that associates
a servant with the orb, demultiplexes incoming requests to the servant, and dispatches
the appropriate operation of that servant. While current corba implementations typically
provide a single Object Adapter per orb, recent orbos portability enhancements [51] define
the Portable Object Adapter (poa) to support multiple Object Adapters per orb.

The demultiplexing strategy used by an orb can impact performance significantly.
Conventional orbs demultiplex client requests to the appropriate operation of the servant
using the following steps shown in Figure 6.1.

• Steps 1 and 2: The os protocol stack demultiplexes the incoming client request multiple
times, e.g., through the data link, network, and transport layers up to the user/kernel
boundary and the orb core;

• Steps 3, 4, and 5: The orb core uses the addressing information in the client’s object
key to locate the appropriate Object Adapter, servant, and the skeleton of the target idl

operation;
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Figure 6.1: Layered CORBA Request Demultiplexing

• Step 6: The idl skeleton locates the appropriate operation, demarshals the request
buffer into operation parameters, and performs the operation upcall.

Demultiplexing client requests through all these layers is expensive, particularly
when a large number of operations appear in an idl interface and/or a large number of
servants are managed by an orb. Layered demultiplexing is particularly inappropriate for
real-time applications [73] because it increases latency by increasing the number of times
that internal tables must be searched while incoming client requests traverse various protocol
processing layers. In addition, layered demultiplexing can cause priority inversions because
servant-level QoS information is inaccessible to the lowest level device drivers and protocol
stacks in the i/o subsystem of an orb endsystem.

Conventional implementations of corba incur significant demultiplexing overhead.
In particular, [20, 23] show that ∼17% of the total server processing time is spent de-
multiplexing requests. Unless this overhead is reduced and demultiplexing is performed
predictably, orbs cannot provide real-time quality of service guarantees to applications.

6.1.2 Design of a Real-time Object Adapter for TAO

TAO is a high performance, real-time orb developed at Washington University [69] in which
the optimizations developed for this dissertation are incorporated. It runs on a range of
os platforms that support real-time features including VxWorks, Solaris 2.x, and Windows
nt. tao provides a highly optimized version of SunSoft’s implementation of the corba

Internet Inter-orb Protocol (iiop)[25].
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Figure 6.2: De-layered CORBA Request Demultiplexing

tao’s Object Adapter is designed to minimize overhead via de-layered demultiplexing
[73] shown in Figure 6.2. This approach maps client requests directly to servant/operation
tuples that perform application-level upcalls. The result is O(1) performance for the
average- and worst-cases.

Figure 6.3 illustrates the components in the corba architecture and the various
demultiplexing strategies supported by tao. tao’s flexible design allows different demul-
tiplexing strategies [66] to be plugged into its Object Adapter. Section 6.3 presents the
results of experiments using the following four demultiplexing strategies: (A) linear search,
(B) perfect hashing, (C) dynamic hashing, and (D) de-layered active demultiplexing shown
in Figure 6.3:

Linear search: The linear search demultiplexing strategy is a two-step layered demulti-
plexing strategy (shown in Figure 6.3(A)). In the first step, the Object Adapter uses the
object key to linearly search through the active object map1 to locate the right object and
its skeleton (each entry in an active object map maintains a pointer to its associated skele-
ton). The skeleton maintains a table of operations defined by the idl interface. In the
second step, the Object Adapter uses the operation name to linearly search the operation
table of the associated skeleton to locate the appropriate operation and invoke an upcall on
it.

Linear search is known to be expensive and non-scalable. We include it in our
experiments for two reasons: (1) to provide an upper bound on the worst-case performance,

1The active object map [51] associates object keys to servants maintained by an Object Adapter.
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Figure 6.3: Alternative Demultiplexing Strategies in tao

and (2) to contrast our optimizing demultiplexing strategies with strategies used in existing
orbs (such as Orbix) that use linear search for their operation demultiplexing.

Perfect hashing: The perfect hashing strategy is also a two-step layered demultiplexing
strategy (shown in Figure 6.3(B)). In contrast to linear search, the perfect hashing strategy
uses an automatically-generated perfect hashing function to locate the servant. A second
perfect hashing function is then used to locate the operation. Both servant and operation
lookup take constant time.

Perfect hashing is applicable when the keys to be hashed are known a priori. In many
hard real-time systems (such as avionic control systems [31]), the objects and operations
can be configured statically. In this scenario, it is possible to use perfect hashing to hash
the object and operations. For our experiment, we used the gnu gperf [63] tool to generate
perfect hash functions for object keys and operation names.

The following is a code fragment from the gnu gperf generated hash function for
500 object keys used in our experiments:

class Object_Hash
{

// ...
static u_int hash (const char *str, int len);

};

u_int
Object_Hash::hash (register const char *str,
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register int len)
{

static const u_short asso_values[] =
{
// all values not shown here
1032, 1032, 1032, 1032, 1032, 1032, 1032,
100, 105, 130, 20, 100, 395, 435,
505, 330, 475, 45, 365, 180, 390,
440, 160, 125, 1032, 1032, 1032, 1032,

};
return len + asso_values[str[len - 1]]

+ asso_values[str[0]];
}

The code above works as follows: upon receiving a client request, the Object Adapter
retrieves the object key. It uses the object key to obtain a handle to the active object map
by using the perfect hash function shown above. The hash function uses an automatically
generated active object map (asso values) to return a unique hash value for each object
key.

Dynamic hashing: The dynamic hashing strategy is also a two-step layered demulti-
plexing strategy (shown in Figure 6.3(C)). In contrast to perfect hashing, which has O(1)
worst-case behavior and low constant overhead, dynamic hashing has higher overhead and
O(n2) worse-case behavior. In particular, two or more keys may dynamically hash to the
same bucket. These collisions are resolved using linear search, which can yield poor worse-
case performance. The primary benefit of dynamic hashing is that it can be used when
the object keys are not known a priori. In order to minimize collisions, the object and the
operation hash tables contained twice as many array elements as the number of servants
and operations, respectively.

De-layered active demultiplexing: The fourth demultiplexing strategy is called de-
layered active demultiplexing (shown in Figure 6.3(D)). In this strategy, the client includes
a handle to the object in the active object map and the operation table in the corba

request header. This handle is configured into the client when the target object reference
is registered with a Naming service or Trading service. On the receiving side, the Object
Adapter uses the handle supplied in the corba request header to locate the object and its
associated operation in a single step.2

2Detailed description on the four demultiplexing strategies is available at url
http://www.cs.wustl.edu/∼schmidt/GLOBECOM-97.ps.gz
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6.2 Additional features of the CORBA/ATM Testbed and

Experimental Methods

6.2.1 Parameter Settings

Our earlier studies [20, 23] of corba performance over atm demonstrate the performance
impact of parameters such as the number of servants on an endsystem (e.g., a server), and
interfaces with large number of methods. Therefore, our benchmarks systematically varied
these parameters for each experiment as follows:

• Number of servants: Increasing the number of objects on the server increases the
demultiplexing effort required to dispatch the incoming request to the appropriate object.
To pinpoint this demultiplexing overhead and to evaluate the efficiency of different demul-
tiplexing strategies, we benchmarked a range of objects (1, 100, 200, 300, 400, and 500) on
the server.

• Number of operations defined by the interface: In addition to the number of
objects, demutiplexing overhead increases with the number of operations defined in an
interface. To measure this demultiplexing overhead, our experiments defined a range of
operations (1, 10, and 100) in the idl interface. Since our experiments measured the
overhead of demultiplexing, these operations defined no parameters, thereby eliminating
the overhead of presentation layer conversions.

6.2.2 Request Invocation Strategies

Our experiments used two different invocation strategies for invoking different operations
on the server objects. The two invocation strategies are:

• Random request invocation strategy: In this case, the client makes a request on a
randomly chosen object reference for a randomly chosen operation. This strategy is useful
to test the efficiency of the hashing-based strategy. In addition, it measures the average
performance of the linear search based strategy. The algorithm for randomly sending client
requests is shown below.

for (int i = 0; i < NUM_OBJECTS; i++) {
for (int j = 0; j < NUM_OPERATIONS; j++) {

choose an object at random from
the set [0, NUM_OBJECTS - 1];

choose an operation at random from
the set [0, NUM_OPERATIONS - 1];

invoke the operation on that object;
}

}
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• Worst-case request invocation: In this case, we choose the last operation of the last
object. This strategy elicits the worst-case performance of the linear search strategy. The
algorithm for sending the worse-case client requests is shown below:

for (int i = 0; i < NUM_OBJECTS; i++) {
for (int j = 0; j < NUM_OPERATIONS; j++) {

invoke the last operation on the
last object

}
}

6.3 Demultiplexing Performance Results

This section presents our experimental results that measure the overhead of the four demul-
tiplexing strategies described in Section 6.1.2. Section 6.3.1 presents the blackbox results of
our experiments. Section 6.3.2 provides detailed whitebox analysis of the blackbox results.
Section 6.3.3 evaluates the pros and cons of each demultiplexing strategy.

6.3.1 Performance Results for Demultiplexing Strategies
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Figure 6.4: Demultiplexing Overhead for the Random Invocation Strategy

Figures 6.4 and 6.5 illustrate the performance of the four demultiplexing strategies
for the random and worst-case invocation strategies, respectively. These figures reveal that
in both cases, the de-layered active demultiplexing and perfect hash-based demultiplex-
ing strategies substantially outperform the linear-search strategy and the dynamic hashing
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strategy. Moreover, the worst-case performance overhead of the linear-search strategy for
500 objects and 100 operations is ∼1.87 times greater than random invocation, which illus-
trates the non-scalability of linear search as a demultiplexing strategy.

In addition, the figures reveal that both the active demultiplexing and perfect hash-
based demultiplexing perform quite efficiently and predictably regardless of the invocation
strategies. The de-layered active demultiplexing strategy performs slightly better than the
perfect hash-based strategy for both invocation strategies. Section 6.3.2 explains the reasons
for these results.

6.3.2 Detailed Analysis of Demultiplexing Overhead
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Figure 6.5: Demultiplexing Overhead for the Worst-case Invocation Strategy

This section presents the results of our whitebox profiling to illustrate the overhead
of each demultiplexing strategy shown in Section 6.3.1. We explain the Quantify results
from invoking 100 operations on 500 objects using the worst-case invocation strategy in
Table 6.1.

The dispatch method used for our experiments is shown below:

int
CORBA_BOA::dispatch (CORBA_OctetSequence key,

CORBA_ServerRequest& req,
CORBA_Object_ptr obj)

{
skeleton *skel;
CORBA_Object_ptr obj;
CORBA_String opname;

// Find the object ptr corresponding
// to the key in the object table.
// Use one of the 4 demux strategies
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Table 6.1: Analysis of Demultiplexing Overhead

Strategy Analysis
Name Time in msec Called %

Active OA::find 280.45 50,000 9.14
demux skeleton 249.94 50,000 8.14

Object::find 36.71 50,000 1.20

Perfect OA::find 346.42 50,000 23.73
hash skeleton 253.62 50,000 17.37

Object::find 78.67 50,000 5.39

Dynamic OA::find 670.56 50,000 34.13
hash Object::find 265.39 50,000 13.51

skeleton 253.62 50,000 12.91

Linear OA::find 12,122.73 50,000 72.46
search Object::find 3,617.48 50,000 21.62

skeleton 249.65 50,000 1.49

if (this->find (key, obj) {
opname = req.opname ();
// Now find the skeleton corresponding
// to the operation name.
if (obj->find (opname, skel)) {

// invoke the skeleton
}

}
}

Only the overhead incurred by the CORBA::OA::dispatch method and its descen-
dants are shown in Table 6.1. The primary descendants of the dispatch method include
the following:

• OA::find – which locates a servant corresponding to an object key in the object table
maintained by the OA;

• Object::find – which locates a skeleton corresponding to the operation name in the
operation table in the servant;

• The skeleton – which parses any arguments and makes the final upcall on the target
servant.

Column Name identifies the name of the high cost descendants. The execution time
is shown under column Time in msec. The Called column indicates the number of times
the method was invoked and % indicates the percentage of the total execution time incurred
by this method and its descendants.

Table 6.1 reveals that the linear-search based strategy spends a substantial portion
of its time in the OA::find and Object::find. In turn, they perform string comparisons
on the object keys and operation names, respectively. In contrast, both the hashing-based
and active demultiplexing strategies incur no measurable overhead to locate the object and
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the associated operation. The dynamic hashing scheme involves fewer string comparisons
compared to the linear search strategy and hence it performs better.

The OA::dispatch method and its descendants account for ∼20% of the total exe-
cution time for the De-layered Active Demultiplexing strategy, ∼50% for the Perfect hash
strategy, ∼63% for the Dynamic hash strategy, and ∼95% for the Linear search strategy.
This explains why the de-layered active demultiplexing strategy outperforms the rest of the
strategies.

6.3.3 Analysis of the Demultiplexing Strategies

The performance results and analysis presented in Sections 6.3.1 and 6.3.2 reveal that to
provide low-latency and predictable real-time support, a corba Object Adapter must use
demultiplexing strategies based on active demultiplexing or perfect hashing rather than
strategies such as linear-search (which does not scale) and dynamic hashing (which has
high overhead).

The perfect hashing strategy is primarily applicable when the object keys are known
a priori. The number of operations are always known a priori since they are defined in
an idl interface. Thus, an idl compiler can generate stubs and skeletons that use perfect
hashing for operation lookup. However, objects implementing an interface can be created
dynamically. In this case, the perfect hashing strategy cannot generally be used for object
lookup.3 In this situation, more dynamic forms of hashing can be used as long as they
provide predictable collision resolution strategies. In many hard real-time environments it
is possible to configure the system a priori. In this situation, however, perfect hashing-based
demultiplexing can be used.

Our results show that de-layered active demultiplexing outperforms the other demul-
tiplexing strategies. However, it requires the client to possess a handle for each object and
its associated operations in the active object map and operation tables, respectively. There-
fore, active demultiplexing requires either (1) preconfiguring the client with this knowledge
or (2) defining a protocol for dynamically managing handles to add and remove objects
correctly and securely.4

For hard real-time systems, this preconfiguration is typically feasible and beneficial.
For this reason, we are using the perfect hashing demultiplexing strategy in the tao orb

we are building for real-time avionics applications [69, 31].

3It is possible to add new objects at run-time using dynamic linking, though this is generally disparaged
in hard real-time environments.

4We assume that the security implications of using active demultiplexing are addressed via the corba
security service.
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Chapter 7

Generating Efficient and Small

Footprint Stubs and Skeletons

7.1 Introduction

Existing markets for hand-held devices, such as Personal Digital Assistants (PDAs), are
being revolutionized by the advent of newer operating systems for hand-held devices such
as Inferno, Windows CE 2.0, and Palm OS. Analysts estimate in excess of five million
units of PDAs being sold by 1999. However, responses to recent surveys by users of PDAs
indicate a dearth of software and applications. Many users require PDAs to possess high-
speed, built-in data/cellular/fax modems that enable the PDA to be used as a cellular
phone, a fax machine, and for sending and receiving emails, and browsing the internet.

Adding efficient and predictable communication capability to hand-held devices
yields many research challenges related to mobile computing [17]. These challenges include
dealing with low bandwidth, heterogeneity in the network connections, frequent changes
and disruptions in the established connections due to migrating targets, maintaining con-
sistency of data, and dealing with heterogeneous architectures to which these devices can be
docked. In addition to the mobility issues, the restrictions on the physical size and power
consumptions of these devices constrains the amount of storage capabilities possessed by
these devices.

The challenge is to maintain a small footprint i.e., smaller code size, for the ORB
core, and the IDL compiler-generated stubs. Additionally, the performance of the generated
stubs should not be compromised due to constraints on the footprint.The OMG has recently
issued a Request for Proposals (RFPs) for a minimal-CORBA implementation geared to-
wards embedded systems and other special systems that have constraints on the available
resources such as memory.
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This chapter compares compiled and interpretive marshaling used by CORBA IDL
stubs and skeletons in terms of their performance and footprint. For this chapter, the stubs
and skeletons using interpretive marshaling are generated by the TAO [69] IDL compiler.
TAO’s IDL compiler-generated stubs use a highly optimized interpretive scheme described
in Chapter 5 to marshal and demarshal data types. The stubs and skeletons using compiled
marshaling are hand-crafted. Our goal is to extend TAO IDL compiler’s functionality to
generate compiled marshaling stubs and skeletons.

Typically the code size for stubs and skeletons that use interpretive schemes is smaller
in size compared to the compiled form. In addition, interpreted stubs/skeletons are slower
than their counterparts. However, since TAO’s interpretive marshaling engine is highly
optimized, the performance of the stubs/skeletons is almost comparable to that of the
compiled stubs. At the same time, the footprint of TAO IDL compiler (tao idl) generated
stubs/skeletons is significantly smaller than the compiled version. This quality makes it
applicable to be used in PDAs and other embedded systems that have stringent restrictions
on memory.

7.2 Optimizing TAO’s IDL Compiler

Figure 7.1 illustrates the design of the TAO IDL Compiler. The TAO IDL compiler is
based on the freely available SunSoft IDL compiler front-end.1 The front-end of the com-
piler parses OMG IDL input and generates an in-memory abstract syntax tree (AST).
We customized the back-end to process the AST and generate C++ source code that is
optimized for the interpretive IIOP protocol engine described in Section 5.3.1.

7.2.1 The Design of TAO’s IDL Compiler Front-end

TAO’s IDL compiler front-end contains the following components adapted from the original
SunSoft IDL compiler:

OMG IDL Parser: The parser comprises a yacc specification of the OMG IDL grammar.
The action for each grammar rule invokes methods of the AST node classes to build the
AST.

Abstract Syntax Tree Generator: Different nodes of the AST correspond to the dif-
ferent constructs of CORBA IDL. The front-end defines a base class called AST Decl that
maintains information common to all AST node types. Specialized AST node classes (such
as AST Interface) inherit from this base class.

In addition, the TAO IDL compiler defines a class called UTL Scope, which maintains
scoping information such as the nesting level and each component of the fully scoped name.

1The original SunSoft IDL compiler implementation is available at
ftp://ftp.omg.org/pub/OMG IDL CFE 1.3.
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Figure 7.1: The TAO IDL Compiler

All AST nodes representing CORBA IDL constructs that can define scopes (such as structs
and interfaces) also inherit from the UTL Scope class.

Driver program: The driver program directs the parsing and AST generation process.
It reads an input OMG IDL file and invokes the parser and the AST generator.

7.2.2 The Design of TAO’s Back-end Code Generator

The original SunSoft IDL compiler front-end parses OMG IDL and generates the abstract
syntax tree (AST). To create a complete CORBA IDL compiler for TAO, we developed a
back-end for the OMG IDL to C++ mapping. TAO’s IDL compiler back-end uses several
design patterns [18] such as Abstract Factory, Strategy, and Visitor. As a consequence,
TAO’s back-end can be reconfigured to produce stubs/skeletons that use either compiled
or interpretive marshaling.

The back-end of TAO’s IDL compiler produces stubs and skeletons that integrate
with TAO’s highly optimized IIOP interpretive protocol engine described in Section 5.3.1.
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We are currently developing a back-end to produce compiled stubs, though the compiled
stubs/skeletons for this paper were hand-crafted.

The interpreted stubs and skeletons generated by TAO’s IDL compiler are explained
below. We use the test short method from the Param Test interface shown in Appendix C
to explain the behavior of the stubs and skeletons.

Interpreted stubs

The stubs produced by TAO’s IDL compiler use a table-driven technique to pass parameters
to the underlying interpretive marshaling engine. The basic structure of a stub is outlined
below:

1. Initialize table entries describing each parameter’s type via its TypeCode, and its
parameter passing mode.

2. Initialize a table describing the operation including its name, whether it is oneway or
two-way, the number of parameters it takes, and a pointer to the table described in
Step 1.

3. A variable for the return value, if any, is allocated.

4. A stub object is retrieved from the object reference on which this operation is invoked.

5. The do call method is invoked on this stub object passing it the operation description
table and the parameter values in the same order in which they were defined in the
IDL definition.

The do call method described above is the interface to TAO’s interpretive protocol
engine. It takes a variable number of parameters starting with the operation description
table followed by the parameters of the operation. The stub for the test short operation
is shown in Appendix D.1.

The table-driven technique and the do call interface were available in the original
SunSoft IIOP implementation. However, since the SunSoft IIOP implementation did not
have an IDL compiler each stub was hand-crafted. In contrast, the TAO IDL compiler
automatically generates stubs that use this scheme.

Interpreted skeletons

The skeletons use a Dynamic Skeleton Interface (DSI) approach for marshaling parameters.
The basic algorithm for a skeleton is described below and in Figure 7.2.

1. Create an NVList, which is a container class, to hold the parameters.
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Figure 7.2: Unoptimized skeletons

2. Heap allocate all the return, inout, and out parameters since they qhave to be
marshaled back into the outgoing stream. The in parameters can be allocated on the
skeleton call stack.

3. Add each parameter value to the NVList using the operations provided by the DSI
mechanism.

4. Use the DSI operation arguments to unmarshal incoming parameters.

5. Make an upcall on the target object passing it all the unmarshaled parameters.

6. Create a CORBA::Any to hold the return value, if any.

7. Return from the skeleton and let the ORB internally handle the task of marshaling
the return, inout, and out parameters.

The skeleton for test short skel operation is shown in Appendix D.2.
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Memory is allocated from the heap for inout, out, and return values. This heap
allocation is essential because these parameters are marshaled into the outgoing IIOP Reply
message after the call to the the skeleton has returned. As a result, it is not possible
to allocate the parameters on the call stack of the skeleton. These heap allocated data
structures are owned by the ORB and are freed using an interpretive scheme in the same
way as they are marshaled interpretively.

As mentioned before, SunSoft IIOP does not provide an IDL compiler and these
skeletons must be hand-crafted. TAO’s IDL compiler produces these skeletons automati-
cally.

Compiled stubs and skeletons

For this paper, the compiled stubs and skeletons are hand-crafted.2 The basic structure of
a compiled stub is shown below. The skeleton’s algorithm is very similar to the stub:

1. Retrieve the stub object from the object reference.

2. Setup a CDR stream object into which the parameters will be marshaled.

3. The CDR stream object is initialized with the details of the receiving endpoint.

4. Insert each parameter into the stream in the same order in ehich they are defined in
the IDL description.

5. Send the parameters and wait for return values.

6. Unmarshal all the return, inout, and out parameters and return.

The hand-crafted compiled stub and skeleton for test short are shown in Ap-
pendix D.3.

The compiled stubs and skeletons use overloaded operator<< and operator>> to
marshal data types to/from the underlying CDR (Common Data Representation) stream.
TAO’s ORB Core provides these operators for primitive types. However, for user-defined
types, these must be provided by the IDL compiler. In this paper, we hand-crafted these
overloaded operators for the different user-defined types we tested.

A significant difference between the compiled skeleton and the interpreted skeleton
is that no unnecessary heap allocation is required in the compiled skeleton. This is due to
the fact that a compiled skeleton has static knowledge of the types it is marshaling and
unmarshaling. At the same time, all the unmarshaling and marshaling of the parameters
occur in the scope of the skeleton. In contrast, in the interpretive skeletons using the DSI
scheme, the marshaing of return, inout, and out parameters occur inside the ORB after
the activation record of the skeleton has been destroyed.

2We are currently implementing a back-end for TAO IDL compiler that contains strategies for producing
stubs and skeletons using compiled marshaling.
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7.2.3 Techniques for Reducing Stub/Skeleton Code Size

As described in Section 7.2.2 and shown in Appendix D, the size of the interpreted stubs
and skeletons is large. However, due to stringent constraints on the available memory in
hand-held devices, it is imperative to maintain a small footprint of the stubs and skeletons
as well as the ORB core.

Therefore, we devised a technique to reduce the code size. Our code-size reduction
techniques for interpreted stubs/skeletons are guided by the following three optimization
principles:

1. Factor out all common features;

2. Avoid unnecessary heap allocation;

3. Leverage compile time knowledge of data types.

Implementing these optimizations required us to add several features to TAO’s ORB
core. These included providing a pair of methods that can marshal and unmarshal param-
eters while the activation record of the stub and skeleton is active. This also means that
parameters can now be allocated on the stack instead of from the heap.

Interpretive stub size reduction

As mentioned before, the interpreted stubs need the underlying stub object on which the
do call method is invoked. For this each stub is required to call QueryInterface on the
object reference. QueryInterface is an internal operation in SunSoft IIOP that retrieves
the underlying stub object that maintains information necessary to identify the object. This
information contains the object key and the TCP/IP endpoint. Therefore, we factored out
common code and added an operation on the CORBA::Object class to return the underlying
stub object. The modified code fragment is shown in Appendix D.4.

Interpretive skeleton size reduction

As shown in Figure 7.2, each interpretive skeleton is required to create an NVList and
populate it with parameters. In addition, memory is allocated from the heap rather than on
the call stack for the inout, out, and return types. This is necessary since the marshaling
of these parameters in the outgoing stream takes place after the call to the skeleton has
returned. Applications using DSI must comply with this style. However, the ORB Core
can be modified to provide the necessary operations that is used on by the IDL generated
code. Applications cannot directly access these operations since they are protected.

Close scrutiny of the skeleton code reveals that each skeleton must create an NVList

and populate it with parameters. Similarly, any return value must be stored in a CORBA::Any
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data structure. These are common features that can be factored out into a method provided
by the ORB Core. Based on this observation, we implemented a table-driven technique
similar to the one used in the stubs. We defined two new interfaces to the marshaling
engine that are similar to the do call method. We could not reuse the do call method
since these two interfaces were required on the server-side “request” object. The space-
efficient skeleton is shown in Figure 7.3. The corresponding code using this approach is
shown Appendix D.5.

BUILD REPLY MSG

MARSHAL PARAMS POPULATE NVLIST

CREATE NVLIST

UNMARSHAL PARAMS

RECEIVE REQUEST

FIND TARGET OBJECT

FIND SKELETON

INVOKE SKELETON

SEND REPLY MSG

OBJECT REQUEST BROKER

STACK ALLOCATE

PARAMETERS

 UNMARSHAL

PARAMETERS

   MARSHAL

PARAMETERS

MAKE UPCALL

TAO SKELETON

   DEALLOC

PARAMETERS

1.

5.

4.

3.

2.

Figure 7.3: Optimized skeletons

The main benefit of this scheme is that marshaling of outgoing parameters can occur while
the activation record on the call stack frame of the skeleton is still valid. As a result there
is no need to allocate the inout, out, and return parameters from the heap. They can be
allocated on the call stack in the same way that the compiled skeletons do. In addition,
if any of the outgoing types is a pointer type, we can directly invoke the C++ delete

operator rather than interpretively deallocating it.
The rest of the chapter describes the results of our experiments comparing the per-

formance of the optimized interpretive stubs and skeletons with that of the hand-crafted
compiled stubs and skeletons. In addition, we also report the individual sizes of the stubs
and skeletons for both the approaches.
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7.3 Experimental Setup

7.3.1 Hardware and Software Platforms

The experiments reported in this section were conducted on three different combinations of
hardware and software, including:

• An UltraSPARC-II with two 300 MHz CPUs, a 512 Mbyte RAM, running SunOS
5.5.1, and C++ Workshop Compilers version 4.2;

• A Pentium Pro 200 with 128 Mbyte RAM running Windows NT 4.0 and the Microsoft
Visual C++ 5.0 compiler;

• A Pentium Pro 180 with 128Mb RAM running Redhat Linux 4.2 kernel recompiled
for SMP support and LinuxThreads 0.5. The GNU g++ 2.7.2.1 C++ compiler was
used.

7.3.2 Profiling Tools

The code size information for various methods reported in Section 7.4 is obtained using
the GNU objdump binary utility on SunOS 5.5.1 and Linux. On Window NT, we used
the dumpbin binary utility. In both cases, we used the disasm and linenumbers options to
disassemble the object code and insert line numbers in the assembly listing, respectively.
Code size for individual stubs/skeletons is reported by counting the total number of bytes
of assembly level instructions produced. In addition, we used the UNIX strip utility to
measure the total size of the object code after removing the symbols and other debug
information.

The profile information for the empirical analysis was obtained using the Quantify [35]
performance measurement tool.

7.3.3 Parameter Types for Stubs/Skeletons

Appendix C provides the Param Test IDL interface and its operations. All the operations
test the four parameter passing modes (1) in, (2) inout, (3) out, and (4) return for a
wide range of data types. The data types we tested include primitives such as shorts,
and complex data types such as unbounded strings, fixed size structures, variable sized
structures, nested structures, sequence of strings, and sequence of structures. All operations
are two-way. Sequences are limited to a length of 9 elements and strings are 128 chars long.

7.3.4 Methodology

Each operation of the Param Test interface is invoked 2,000 times. We measure the average
latency for making the two-way call for the 2,000 iterations. Since we are interested in
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measuring the performance of the stubs and skeletons, all tests were run in the loopback
mode. This way we avoided any network transfer overhead. However, OS effects such as
paging, context switching, and interrupts are measured. In addition, delays incurred due
to the run-time costs of the implementation of the operation by the servant object are also
measured. The servant object implements each operation by copying its in parameter into
the inout, out, and return parameters. For complex data types such as struct sequence,
this overhead becomes significant compared to the others.

One approach to eliminating OS effects in the measurements is to use collocated
objects. However, even though TAO supports co-located objects, we cannot use them in
our measurements. This is due to the fact that operations on collocated objects result in a
direct C++ method call on the target object. Collocated objects i.e., objects residing in the
same address space, entirely bypass the stubs/skeleton that perform the marshaling of data
types. However, we are interested in measuring the overhead of marshaling. Forcing the
collocated objects to use the stubs/skeletons required significant reengineering of the TAO
ORB Core and the IDL Compiler. Therefore, we decided to approximate this behavior by
running the tests in loopback mode. We configured our profiling tool Quantify (explained
in Section 7.3.2) to measure only the overhead of the stubs and skeletons.

The code size of individual stubs and skeletons is measured using the GNU binary
utility objdump and Windows NT’s dumpbin as explained in Section 7.3.2.

7.4 Comparing Interpreted versus Compiled Marshaling

This section describes the results comparing the performance and code size of stubs and
skeletons using interpretive and compiled form of marshaling. As explained in Section 7.3.4,
each operation of the Param Test interface is invoked 2,000 times. The tests are performed
in a loopback mode to avoid unnecessary network delays. The two-way average latency of
invoking the operations is reported. First, we report the performance results followed by
comparison of the code sizes.

7.4.1 Comparing Twoway Average Latencies

Tables 7.1, 7.2, and 7.3 depict the two-way average latency for invoking different methods of
the Param Test for 2,000 iterations for the UltraSPARC, a PC running NT, and PC running
Linux, respectively. Figure 7.4 illustrates this information graphically for UltraSPARC.

These tables indicate that the two-way latency of the interpreted stubs and skeletons
is within 75 to 95 % of the compiled stubs for primitive types such as shorts, and complex
types such as unbounded strings and fixed size structs. However, for other complex types
such as sequence of strings, sequence of structs, variable-sized structs, and nested
structs, the two-way latency for interpreted stubs/skeletons exceeds that of the compiled
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Table 7.1: Twoway Latency of Stubs/Skeletons on UltraSPARC Running SunOS5.5.1

Data Type Compiled Interpreted
Avg time Calls/sec Avg time Calls/sec

in msec in msec
short 0.802 1,247 0.938 1,066
ubstring 0.907 1,102 1.065 938
fixed struct 0.182 1,202 1.11 901
strseq 1.852 540 1.74 576
var struct 2.014 497 2.020 493
nested struct 2.011 497 2.102 476
struct seq 10.99 91 10.25 98
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Figure 7.4: SPARC Performance

Table 7.2: Twoway Latency of Stubs/Skeletons on Pentium Pro 200 Running Windows NT
4.0

Data Type Compiled Interpreted
Avg time Calls/sec Avg time Calls/sec

in msec in msec
short 1.234 810 1.312 762
ubstring 1.453 688 1.491 670
fixed struct 1.275 785 1.414 707
strseq 2.84 352 2.819 355
var struct 3.29 325 2.97 336
nested struct 3.489 325 3.02 331
struct seq 22.93 44 17.247 58



122

Table 7.3: Twoway Latency of Stubs/Skeletons on Pentium Pro 180 Running Linux

Data Type Compiled Interpreted
Avg time Calls/sec Avg time Calls/sec

in msec in msec
short 0.745 1,342 0.8277 1,226
ubstring 0.114 1,094 0.982 1,017
fixed struct 0.7735 1,293 0.898 1,112
strseq 2.21 452 1.814 551
var struct 2.47 406 2.05 487
nested struct 2.48 405 2.098 477
struct seq 22.0 44 13.22 76

Table 7.4: Whitebox Analysis of Performance of Stubs/Skeletons on UltraSPARC

Data Type Role Type Interpreted Compiled
msec called msec called

fixed struct server marshal 84.21 6,000 13.76 6,000
demarshal 57.29 4,000 9.93 4,000

client marshal 56.17 4,000 9.17 4,000
demarshal 85.89 6,000 14.90 6,000

strseq server marshal 335.46 6,000 279.00 6,000
demarshal 98.52 4,000 219.00 4,000

client marshal 95.43 4,000 68.76 4,000
demarshal 256.24 6,000 665.71 6,000

stubs. The superior performance of the interpreted stubs/skeletons was more prominent to
that of the compiled stubs/skeletons on the Pentium Pro 180 running Linux.

As mentioned in Section 7.3.4, these measurements do not exclude the effects of the
OS, as well as the runtime costs of the implementation of the operations. The runtime costs
of the implementation of the operations is more significant for the test struct seq case.
Each sequence of structs has 9 variable sized structs. Each variable-sized struct element
in turn has two string members, each of length 128, and a sequence of string member.
This member in turn has 9 string elements, each of length 128. The costs of copying the in
parameter into the inout, out, and return is significant. However, irrespective of the type of
marshaling used by the stubs and skeletons, the implementation of the operations is same
in both cases. Hence, our comparisons of two-way latency are valid.

The blackbox results presented in Tables 7.1, 7.2, and 7.3 do not convey the effects
of the OS, as well as runtime costs of the implementation of the operations. To pinpoint
precisely the runtime costs of the stubs and skeletons in marshaling and demarshaling, we
configured our profiling tool Quantify to measure only these costs. Table 7.4 illustrates
the Quantify analysis for the test fixed struct and the test strseq tests on the Ultra-
SPARC platform.3

3We did not have Quantify for Linux and Windows NT.
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Table 7.5: Sizes of Overloaded Operators for Compiled Stubs/Skeletons on UltraSPARC

Operator Size
operator<< (char *) 192
operator>> (char *) 240
operator<< (fixed struct) 280
operator>> (fixed struct) 256
operator<< (strseq) 312
operator>> (strseq) 264
operator<< (var struct) 176
operator>> (var struct) 192
operator<< (nested struct) 88
operator>> (nested struct) 88
operator<< (struct seq) 208
operator>> (struct seq) 208

Table 7.4 indicates that for fixed struct, the compiled stubs and skeletons ac-
counted for 47.76 msec compared to 283.56 msec required for the interpretive stubs and
skeletons. This explains why the compiled marshaling is significantly better than the inter-
pretive marshaling for fixed size structs. On the other hand, for sequences of strings, the
compiled stubs and skeletons required 1,232.47 msec compared to only 785.65 msec by the
interpretive stubs and skeletons. This explains why the interpretive stubs perform better
than the compiled stubs for all the data types that are sequences or have sequences as
their members.

TAO’s interpretive marshaling engine has a highly optimized component for mar-
shaling sequences. It defines a generic base sequence class with virtual methods. For every
user-defined sequence, the TAO IDL compiler generates a C++ class that inherits from
this base sequence class. The C++ class generated for the sequences (in accordance with
the IDL to C++ mapping) overrides all the methods of the base class. The derived class
does not define any data members since these are already defined in the base class. The
interpreter marshals and demarshals sequences by invoking methods on the base class. At
runtime, due to polymorphism and dynamic binding, these calls are made on the derived
class. This speeds up the marshaling and demarshaling of sequences significantly.

7.4.2 Comparing Code Size for Stubs and Skeletons

This section describes the measurements of code size we did for the stubs and skeletons.
As mentioned in Section 7.3.2, we used the GNU binary utility called objdump and NT’s
dumpbin to measure the individual code sizes.

Table 7.5 depicts the code sizes for the overloaded operators used for marshaling and
demarshaling user-defined IDL data types. The code size of the nested struct is only 88
bytes since internally it calls the overloaded operator for var struct.
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Table 7.6: Stub Sizes on UltraSPARC

Stub name Interpreted size Compiled size
stub table total stub helper total

test short 320 88 408 1,112 1,112
test ubstring 352 88 440 1,000 432 1,432
test fixed struct 344 88 432 1,112 536 1,648
test strseq 496 88 584 1,120 576 1,696
test var struct 496 88 584 1,120 368 1,488
test nested struct 496 88 584 1,120 176 1,296
test struct seq 496 88 584 1,120 416 1,536
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Figure 7.5: SPARC Stub Sizes

Tables 7.6 and 7.7 illustrate the code sizes for the stubs and skeletons, respectively.
We account for the size of the tables in the size of the stubs and skeletons using interpreted
marshaling. Hence the total size of the stub/skeleton is the size of the stub/skeleton and the
size of the statically allocated tables. Similarly, for the compiled marshaling, we account
for the size of helper overloaded operator methods used to marshal/demarshal user-defined
data types. Since these helper methods are not inlined by the compiler, we account for them
only once. Thus, although the nested struct’s helper calls the helper for var struct, we
do not add the latter’s size to the size computation of the stub/skeleton of nested struct.
Figures 7.5 and 7.6 illustrate this information graphically for the UltraSPARC platform.

Tables 7.6 and 7.7 indicate that the stubs for interpretive marshaling are much
smaller than the ones for compiled marshaling. As shown in Section 7.4.3, the interpretive
stub sizes are roughly 26-45% of the size of the compiled stubs. As shown in Section 7.2,
in addition to explicitly marshaling and demarshaling parameters, the compiled stub must
initialize a GIOP/IIOP request message and invoke it. On the contrary, for the interpre-
tive stubs the do call method provided by the ORB Core handles all this. The size of
skeletons for compiled marshaling is relatively smaller since the ServerRequest object is
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Table 7.7: Skeleton Sizes on UltraSPARC

Stub name Interpreted size Compiled size
skel table total skel helper total

test short skel 440 88 528 544 544
test ubstring skel 552 88 640 688 432 1,120
test fixed struct skel 480 88 568 584 536 1,120
test strseq skel 848 88 936 952 576 1,528
test var struct skel 680 88 768 784 368 1,152
test nested struct skel 680 88 768 784 176 960
test struct seq skel 848 88 936 952 416 1,368
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Table 7.8: Comparison of Interpretive with Compiled Code on UltraSPARC in Percentages

operation Performance Stub size Skeleton size
test short 85.48 36.69 97.06
test ubstring 85.12 30.73 57.14
test fixed struct 74.96 26.21 50.17
test strseq 106.66 34.43 61.26
test var struct 99.20 39.25 66.66
test nested struct 95.77 45.06 80.00
test struct seq 107.69 38.02 68.42

already available. The skeleton code size for primitives such as shorts are comparable
for interpretive and compiled marshaling since the overloaded operators for primitives are
provided by the ORB Core. As a result, there is no extra code generated. However, for
the rest of the data types, the skeleton code size for the interpreted marshaling is between
50-80% of the compiled form.

The results of code size measurements for NT and Linux are shown in Appendix E.
Although the code sizes are smaller for both types of marshaling compared to the code
size on UltraSPARC, the relative measurements are comparable. There is one exception,
however, where the code for the skeleton for shorts using compiled marshaling is slightly
smaller compared to the interpretive one. This is due primarily to the extra overhead of
the two statically allocated tables.

7.4.3 Summary of Comparisons

This section summarizes the results of Sections 7.4.1 and 7.4.2. Table 7.8 illustrates how
interpreted stubs and skeletons compared with the compiled versions for the UltraSPARC
platform. Similar results are observed for the other two platforms. Appendix E provides
the detailed measurements. All values are in percentages.

Our results comparing the performance of the compiled and interpretive stubs indi-
cate that on an average, the interpretive stubs perform 86% for primitive types, 75% for
fixed size structures, and over 100% for data types with sequences as well as the com-
piled stubs. At the same time, the code size for user-defined types for interpreted stubs
was 26-45% and for interpreted skeletons was 50-80% of the size of the compiled stubs and
skeletons, respectively. For primitive types, the skeleton sizes were comparable. However,
the interpreted stubs were ∼40% the size of the compiled stubs.
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7.5 Benefits of TAO’s Interpretive Stubs and Skeletons

This section illustrates how the efficiency and small footprint of TAO’s interpretive stubs
and skeletons can be useful in implementing a number of important CORBA services on
memory-constrained systems.

Table 7.9 depicts a number of important CORBA higher-level services. We provide
details on the number of user-defined structures, sequences, and total number of operations
and/or attributes defined by their IDL definitions. We have not reported other data types
such as unions, enums, and exceptions defined by these IDLs.

As shown in Sections 7.2 and 7.4, the total size of all the stubs and skeletons using
compiled form of marshaling will exceed that of interpretive marshaling as the number of
operations and user-defined types increase.

Table 7.9 shows examples of CORBA services such as the trading service, naming
service, and others. As shown in the table, the IDL definitions for these services define a

Table 7.9: Number of operations and user-defined types in well-known OMG services

Service structures sequences op/attributes
CosTrading 11 7 63
AVStreams 2 3 50
CosPropertyService 3 5 33
CosNaming 2 2 13

very large number of operations and/or attributes.4 The total size of stubs and skeletons
using compiled marshaling will far exceed that of interpretive marshaling.

In addition, for every user-defined type, the compiled form will produce overloaded
operators to marshal and demarshal these types. As shown in Section 7.4, the performance
of the interpreted stubs and skeletons is comparable or exceeds that of the compiled ones.
At the same time, their code size is much smaller than the compiled ones.

7.6 Summary and Research Contributions

This chapter compares the performance and code size of stubs and skeletons using interpre-
tive and compiled form of marshaling. The interpretive stubs and skeletons are generated
by the TAO IDL compiler. The compiled stubs and skeletons are hand-crafted.

Our results comparing the performance of the compiled and interpretive stubs in-
dicate that on an average, the interpretive stubs perform roughly 86% for primitive types,
75% for fixed size structures, and over 100% for data types with sequences as well as the

4Attributes are handled similar to operations. TAO’s IDL compiler generates two operations for each
read/write attribute.
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compiled stubs. At the same time, the code size for user-defined types for interpreted stubs
was roughly 26-45% and for interpreted skeletons was 50-80% of the size of the compiled
stubs and skeletons, respectively. For primitive types, the skeleton sizes were comparable.
However, the interpreted stubs were roughly 40% of the compiled stubs.

Our results are encouraging since the code size of the generated stubs and skeletons
are significantly smaller. At the same time, they do not compromise on performance.
Hence, these results indicate a positive step towards implementing efficient middleware for
hand-held devices and other memory-constrained embedded systems. We are currently
investigating techniques to implement the minimal ORB specification for which the OMG
has recently issued request for proposals (RFP).
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Chapter 8

Related Work

Our CORBA research focuses on optimizing communication middleware at multiple proto-
col layers and multiple levels of abstraction including the I/O subsystem, communication
protocols, and higher-level CORBA implementation itself.

8.1 Related Work on Optimization Principles:

This section describes results from existing work on protocol optimization based on one or
more of the principles in Table 5.1. We use these principles to optimize the performance
of the IIOP marshaling engine. None of the related work mentioned below has dealt with
optimizing middleware protocols.

8.1.1 Optimizing for the expected case

[6] describes a technique called header prediction that predicts the message header of in-
coming TCP packets. This technique is based on the observation that many members in
the header remain constant between consecutive packets. This observation led to the cre-
ation of a template for the expected packet header. The optimizations reported in [6] are
based on Principle 1, which optimizes for the common case and Principle 3, which is pre-
compute, if possible. We present the results of applying these principles to optimize IIOP
in Sections 5.3.3, 5.3.4, and 5.3.5.

8.1.2 Eliminating gratuitous waste

[7, 1, 4] describe the application of an optimization mechanism called Integrated Layer
Processing (ILP). ILP is based on the observation that data manipulation loops that operate
on the same protocol data are wasteful and expensive. The ILP mechanism integrates
these loops into a smaller number of loops that perform all the protocol processing. The
ILP optimization scheme is based on Principle 2, which gets rid of gratuitous waste. We
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demonstrate the application of this principle to IIOP in Section 5.3.4 where we eliminated
unnecessary calls to the deep free method, which frees primitive data types. [4] cautions
against improper use of ILP since this may increase processor cache misses.

8.1.3 Passing information between layers

Packet filters [44, 2, 14] are a classic example of Principle 6, which recommends passing
information between layers. A packet filter demultiplexes incoming packets to the appro-
priate target application(s). Rather than having demultiplexing occur at every layer, each
protocol layer passes certain information to the packet filter, which allows it to identify
which packets are destined for which protocol layer. We applied Principle 6 for IIOP in
Section 5.3.4 where we passed the TypeCode information and size of the element type of
a sequence to the TypeCode interpreter. Therefore, the interpreter need not calculate the
same quantities repeatedly.

8.1.4 Moving from generic to specialized functionality

[12] describes a facility called fast buffers (FBUFS). FBUFS combines virtual page remap-
ping with shared virtual memory to reduce unnecessary data copying and achieve high
throughput. This optimization is based on Principle 2, which focuses on eliminating gratu-
itous waste and Principle 3, which replaces generic schemes with efficient, special purpose
ones. We applied these principles for IIOP in Section 5.3.4 where we incorporated the
struct traverse logic and some of the decoder logic into the TypeCode interpreter.

8.1.5 Improving cache-affinity

[47] describes a scheme called “outlining” that when used improves processor cache effec-
tiveness, thereby improving performance. We describe optimizatons for processor cache in
Section 5.3.5.

8.1.6 Efficient Demultiplexing

Demultiplexing routes messages between different levels of functionality in layered commu-
nication protocol stacks. Most conventional communication models (such as the Internet
model or the ISO/OSI reference model) require some form of multiplexing to support inter-
operability with existing operating systems and protocol stacks. In addition, conventional
CORBA ORBs utilize several extra levels of demultiplexing at the application layer to
associate incoming client requests with the appropriate servant and operation (as shown
in Figure 6.1). Layered multiplexing and demultiplexing is generally disparaged for high-
performance communication systems [73] due to the additional overhead incurred at each
layer. [14] describes a fast and flexible message demultiplexing strategy based on dynamic
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code generation. [24] evaluates the performance of alternative demultiplexing strategies for
real-time CORBA.

Our results for latency measurements have shown that with increasing number of
servants, the latency increases. This is partly due to the additional overhead of demulti-
plexing the request to the appropriate operation of the appropriate servant. TAO uses a
de-layered demultiplexing architecture [24] that can select optimal demultiplexing strategies
based on compile-time and run-time analysis of CORBA IDL interfaces. Related work on
efficient demultiplexing is mostly restricted to efficiently demultiplexing packets through
the protocol layers inside the operating system.

8.2 Related Work on Presentation Layer Conversions

8.2.1 Interpretive versus Compiled forms of marshaling:

SunSoft IIOP uses an interpretive marshaling/demarshaling engine. An alternative ap-
proach is to use compiled marshaling/demarshaling. A compiled marshaling scheme is based
on a priori knowledge of the type of an object to be marshaled. Thus, in this scheme there
is no necessity to decipher the type of the data to be marshaled at run-time. Instead, the
type is known in advance, which can be used to marshal the data directly.

[33] describes the tradeoffs of using compiled and interpreted marshaling schemes.
Although compiled stubs are faster, they are also larger. In contrast, interpretive marshaling
is slower, but smaller in size. [33] describes a hybrid scheme that combines compiled and
interpretive marshaling to achieve better performance. This work was done in the context
of the ASN.1/BER encoding [36].

According to the SunSoft IIOP developers, interpretive marshaling is preferable since
it decreases code size and increases the likelihood of remaining in the processor cache.
As explained in Chapter 9, we are currently implementing a CORBA IDL compiler [26]
that can generate compiled stubs and skeletons. Our goal is to generate efficient stubs
and skeletons by extending optimizations provided in USC [52] and “Flick” [13], which is
a flexible, optimizing IDL compiler. Flick uses an innovative scheme where intermediate
representations guide the generation of optimized stubs. In addition, due to the intermediate
stages, it is possible for Flick to map different IDLs (e.g., CORBA IDL, ONC RPC IDL,
MIG IDL) to a variety of target languages such as C, C++. TAO’s IDL compiler implements
optimizations to improve the performance of its interpretive stubs. The stubs and skeletons
produced by USC and Flick are compiled in nature.
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8.2.2 Presentation Layer and Data Copying

The presentation layer is a major bottleneck in high-performance communication subsys-
tems [7]. This layer transforms typed data objects from higher-level representations to
lower-level representations (marshalling) and vice versa (demarshalling). In both RPC
toolkits and CORBA, this transformation process is performed by client-side stubs and
server-side skeletons that are generated by interface definition language (IDL) compilers.
IDL compilers translate interfaces written in an IDL (such as Sun RPC XDR [71], DCE
NDR, or CORBA CDR [51]) to other forms such as a network wire format. A significant
amount of research has been devoted to developing efficient stub generators. We cite a few
of these and classify them as below.

• Annotating high level programming languages:

The Universal Stub Compiler (USC) [52] annotates the C programming language with
layouts of various data types. The USC stub compiler supports the automatic generation
of device and protocol header marshalling code. The USC tool generates optimized C code
that automatically aligns data structures and performs network/host byte order conversions.
TAO and its IDL compiler does not use annotations.

• Generating code based on Control Flow Analysis of interface specification:

[33] describes a technique of exploiting application-specific knowledge contained in the type
specifications of an application to generate optimized marshalling code. This work tries
to achieve an optimal tradeoff between interpreted code (which is slow but compact in
size) and compiled code (which is fast but larger in size). A frequency-based ranking of
application data types is used to decide between interpreted and compiled code for each
data type. Our implementations of the stub compiler will be designed to adapt according
to the runtime access characteristics of various data types and methods. The runtime usage
of a given data type or method can be used to dynamically link in either the compiled
or the interpreted version. Dynamic linking has been shown to be useful for mid-stream
adaptation of protocol implementations [61].

Our goal is to extend TAO IDL compiler’s capabilites such that it can generate a mix
of interpreted as well as compiled stubs and skeletons as specified by the user for optimal
performance.

• Using high level programming languages for distributed applications:

[54] describes a stub compiler for the C++ language. This stub compiler does not need an
auxiliary interface definition language. Instead, it uses the operator overloading feature of
C++ to enable parameter marshalling. This approach enables distributed applications to
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be constructed in a straightforward manner. A drawback of using a programming language
like C++ is that it allows programmers to use constructs (such as references or pointers)
that do not have any meaning on the remote side. Instead, IDLs are more restrictive and
disallow such constructs. CORBA IDL has the added advantage that it resembles C++ in
many respects and a well-defined mapping from the IDL to C++ has been standardized.

Application Level Framing and Integrated Layer Processing on Communication

Subsystems

Conventional layered protocol stacks and distributed object middleware lack the flexibility
and efficiency required to meet the quality of service requirements of diverse applications
running over high-speed networks. One proposed remedy for this problem is to use Appli-
cation Level Framing (ALF) [7, 5, 19] and Integrated Layer Processing (ILP) [7, 1, 61].

ILP ensures that lower layer protocols deal with data in units specified by the appli-
cation. ILP provides the implementor with the option of performing all data manipulations
in one or two integrated processing loops, rather than manipulating the data sequentially.
[4] have shown that although ILP reduces the number of memory accesses, it does not reduce
the number of cache misses compared to a carefully designed non-ILP implementation.

A major limitation of ILP described in [4] is its applicability to only non-ordering
constrained protocol functions and its uses of macros that restrict the protocol implemen-
tation from being dynamically adapted to changing requirements.

As shown by our results, CORBA ORBs suffer from a number of overheads that
includes the many layers of software and large chain of function calls. We plan to use
integrated layer processing to minimize the overhead of the various software layers. We are
developing a factory of ILP based inline functions that are targeted to perform different
functions. This allows us to dynamically link required functionality as the requirements
change and yet have an ILP-based implementation.

8.3 Optimizations to the lower layers of the Protocol Stack

Existing research in gigabit networking has focused extensively on enhancements to TCP/IP.
None of the systems described below are explicitly targeted for the requirements and con-
straints of communication middleware like CORBA. In particular, less attention has been
paid to integrating the following topics related to communication middleware:

8.3.1 Transport Protocol Performance over ATM Networks

The underlying transport protocols used by the ORB must be flexible and possess the
necessary hooks to tune different parameters of the underlying transport protocol. [9, 11, 45]
present results on performance of TCP/IP (and UDP/IP [9]) on ATM networks by varying
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a number of parameters (such as TCP window size, socket queue size, and user data size).
This work indicates that in addition to the host architecture and host network interface,
parameters configurable in software (like TCP window size, socket queue size, and user
data size) significantly affect throughput. [9] shows that UDP performs better than TCP
over ATM networks, which is attributed to redundant TCP processing overhead on highly-
reliable ATM links. [9] also describes techniques to tune TCP to be a less bulky protocol
so that its performance can be comparable to UDP. They also show that the TCP delay
characteristics are predictable and that it varies with the throughput.

[39] present detailed measurements of various categories of processing overhead times
of TCP/IP and UDP/IP. The authors conclude that whenever a realistic distribution of
message sizes is considered, the aggregate costs of non-data touching overheads (such as
network buffer manipulation) consume a majority of the software processing time (84% for
TCP and 60% for UDP). The authors show that most messages sent are short (less than
200 bytes). They claim that these overheads are hard to eliminate and techniques such as
integrated layer processing can be used to reduce the overhead. [53] presents performance
results of the SunOS 4.x IPC and TCP/IP implementations. They show that increasing
the socket buffer sizes improves the IPC performance. They also show that the socket layer
overhead is more significant on the receiver side. [43] discusses the TCP NODELAY option,
which allows TCP to send small packets as soon as possible to reduce latency.

Earlier work [20, 21] using untyped data and typed data in a similar CORBA/ATM
testbed as the one in this dissertation reveal that the low-level C socket version and the
C++ socket wrapper versions of TTCP are nearly equivalent for a given socket queue size.
Likewise, the performance of Orbix for sequences of scalar data types is almost the same
as that reported for untyped data sequences. However, the performance of transferring
sequences of CORBA structs for 64 K and 8 K socket queue sizes was much worse than
those for the scalars. This overhead arises from the amount of time the CORBA ORBs
spend performing presentation layer conversions and data copying.

8.3.2 High-performance I/O subsystems

The FBUF system [12] is a data transport service used in the x-kernel [34]. The fbuf system
consists of a data transport service that uses page remapping. Other I/O subsystems [27, 29]
provide a broad range of services including real-time upcalls and clock-driven interrupts
for polling I/O devices and applications to support periodic data transfer and to reduce
asynchronous interrupts and system calls.

8.3.3 Demultiplexing

Demultiplexing is a task that routes messages between different levels of functionality in
layered communication protocol stacks. Most conventional communication models (such
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as the Internet model or the ISO/OSI reference model) require some form of multiplexing
to support interoperability with existing operating systems and protocol stacks. Conven-
tional CORBA implementations utilize several additional levels of demultiplexing at the
application layer to associate incoming CORBA requests with the appropriate object im-
plementation and method. Layered multiplexing and demultiplexing is generally disparaged
for high-performance communication systems [73] due to the additional overhead incurred
at each layer.

Related work on demultiplexing focuses largely on the lower layers of the protocol
stack (i.e., the transport layer and below) as opposed to the CORBA middleware. For
instance, [73, 16, 10] study demultiplexing issues in communication systems and show how
layered demultiplexing is not suitable for applications that require real-time quality of ser-
vice guarantees.

Packet filters are a mechanism for efficiently demultiplexing incoming packets to
application endpoints [46]. A number of schemes to implement fast and efficient packet
filters are available. These include the bsd Packet Filter (bpf) [44], the Mach Packet
Filter (mpf) [77], PathFinder [2], demultiplexing based on automatic parsing [37], and the
Dynamic Packet Filter (dpf) [14].

As mentioned before, most existing demultiplexing strategies are implemented within
the os kernel. However, to optimally reduce orb endsystem demultiplexing overhead re-
quires a vertically integrated architecture that extends from the os kernel to the application
servants. Since our orb is currently implemented in user-space, however, our work focuses
on minimizing the demultiplexing overhead in steps 3, 4, 5, and 6 (which are shaded in
Figure 6.1).

Our framework uses a delayered demultiplexing architecture to select optimal demul-
tiplexing strategies based on compile-time and run-time analysis of CORBA IDL interfaces.
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Chapter 9

Concluding Remarks and Future

Work

9.1 Conclusions

An important class of applications (such as avionics, distributed interactive simulation,
and telecommunication systems) require scalable, low-latency communication. However,
the results presented in Chapters 2, 3, and 4 indicate that conventional ORBs do not yet
support latency-sensitive applications and servers that support a large number of servants.
The chief sources of ORB latency and scalability overhead arise from (1) long chains of
intra-ORB function calls, (2) excessive presentation layer conversions and data copying, (3)
non-optimized buffering algorithms used for network reads and writes, (4) inefficient server
demultiplexing techniques, and (5) lack of integration with OS and network features.

Our goal in precisely pinpointing the sources of overhead for CORBA is to optimize
the performance of TAO [69]. TAO is a high-performance, real-time ORB endsystem de-
signed to meet the QoS requirements of bandwidth- and delay-sensitive applications. Our
development strategy for TAO is guided by applying principle-driven performance optimiza-
tions [25], such as optimizing for the common case; eliminating gratuitous waste; replacing
general purpose methods with specialized, efficient ones; precomputing values, if possible;
storing redundant state to speed up expensive operations; passing information between
layers; optimizing for the processor cache; and optimizing demultiplexing strategies.

Applying these optimizations to TAO reduced its latency by a factor of ∼1.5 to 2.0
times for primitive data types and around 4 times for richly-typed data such as BinStruct.
The performance of TAO is now equal to, or better than, commercial ORBs using static
invocation. Moreover, TAO’s dynamic invocation implementation is 2 to 4.5 times faster
than commercial ORBs, depending on the data types.
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The source code for the TAO ORB and the benchmarking tests reported in this
paper are available at www.cs.wustl.edu/∼schmidt/TAO.html.

9.2 Future Work

Existing markets for hand-held devices, such as Personal Digital Assistants (PDAs), are
being revolutionized by the advent of newer operating systems for hand-held devices such
as Inferno, Windows CE 2.0, and Palm OS. Analysts estimate in excess of five million
units of PDAs being sold by 1999. However, responses to recent surveys by users of PDAs
indicate a dearth of software and applications. Many users require PDAs to possess high-
speed, built-in data/cellular/fax modems that enable the PDA to be used as a cellular
phone, a fax machine, and for sending and receiving emails, and browsing the internet.

Adding efficient and predictable communication capability to hand-held devices
yields many research challenges related to mobile computing [17]. These challenges include
dealing with low bandwidth, heterogeneity in the network connections, frequent changes
and disruptions in the established connections due to migrating targets, maintaining con-
sistency of data, and dealing with heterogeneous architectures to which these devices can be
docked. In addition to the mobility issues, the restrictions on the physical size and power
consumptions of these devices constrains the amount of storage capabilities possessed by
these devices.

CORBA [51] is a distributed object computing middleware standard defined by
the Object Management Group (OMG). CORBA is designed to allow clients to invoke
operations on remote objects without concern for where the object resides or what language
the object is written in. In addition, CORBA shields applications from non-portable details
related to the OS/hardware platform they run on and the communication protocols and
networks used to interconnect distributed objects. These benefits of CORBA make it ideally
suited to provide core communication services for the hand-held devices.

The challenge is to maintain a small footprint for the ORB core, the OMG IDL
compiler, and the generated stubs. Additionally, the performance of the generated stubs
should not be compromised due to constraints on the footprint.The OMG has recently issued
a Request for Proposals (RFPs) for a minimal-CORBA implementation geared towards
embedded systems and other special systems that have constraints on the available resources
such as memory.

Chapter 7 compares the performance and code size of stubs and skeletons using
interpretive and compiled form of marshaling. The interpretive stubs and skeletons are
generated by the TAO IDL compiler. The compiled stubs and skeletons are hand-crafted.

Our results comparing the performance of the compiled and interpretive stubs in-
dicate that on an average, the interpretive stubs perform roughly 86% for primitive types,
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75% for fixed size structures, and over 100% for data types with sequences as well as the
compiled stubs. At the same time, the code size for user-defined types for interpreted stubs
was roughly 26-45% and for interpreted skeletons was 50-80% of the size of the compiled
stubs and skeletons, respectively. For primitive types, the skeleton sizes were comparable.
However, the interpreted stubs were roughly 40% of the compiled stubs.

Our results are encouraging since the code size of the generated stubs and skeletons
are significantly smaller. At the same time, they do not compromise on performance.
Hence, these results indicate a positive step towards implementing efficient middleware for
hand-held devices and other memory-constrained embedded systems. We are currently
investigating techniques to implement the minimal ORB specification for which the OMG
has recently issued request for proposals (RFP).
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Appendix A

IDL Definitions for Performance

Experiments

The following struct declarations are representative of those used for the C/C++ and
hand-optimized RPC implementations of TTCP:

C/C++ Struct Declarations RPCL Definition

struct BinStruct { struct BinStruct {
short s; short s;

char c; char c;

long l; long l;

octet o; octet o;

double d; double d;

}; };

typedef struct BinStruct BinStruct; typedef short ShortSeq<>;

typedef struct { typedef long LongSeq<>;

u long type; typedef char CharSeq<>;

u long len; typedef octet OctetSeq<>;

double *buffer; typedef double DoubleSeq<>;

}DoubleSeq; typedef BinStruct StructSeq<>;

typedef struct { program TTCP {
u long type; version TTCPVERS {
u long len; void SEND SHORT(ShortSeq) = 1;

BinStruct *buffer; void SEND LONG(LongSeq) = 2;

}StructSeq; void SEND CHAR(CharSeq) = 3;

void SEND OCTET(OctetSeq) = 4;

void SEND DOUBLE(DoubleSeq) = 5;

void SEND STRUCT(StructSeq) = 6;

} = 1;

} = 0x20000001;
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The following CORBA IDL interface was used for the Orbix and ORBeline CORBA
implementations:

// sizeof BinStruct == 24 bytes
// due to compiler alignment
struct BinStruct{ short s; char c; long l;

octet o; double d; };

// Richly typed data
interface ttcp_sequence {

typedef sequence<short> ShortSeq;
typedef sequence<long> LongSeq;
typedef sequence<double> DoubleSeq;
typedef sequence<char> CharSeq;
typedef sequence<octet> OctetSeq;
typedef sequence<BinStruct> StructSeq;

// Routines to send sequences of various data types
oneway void sendShortSeq (in ShortSeq ttcp_seq);
oneway void sendLongSeq (in LongSeq ttcp_seq);
oneway void sendDoubleSeq (in DoubleSeq ttcp_seq);
oneway void sendCharSeq (in CharSeq ttcp_seq);
oneway void sendOctetSeq (in OctetSeq ttcp_seq);
oneway void sendStructSeq (in StructSeq ttcp_seq);

// to measure time taken for receipt of data
oneway void start_timer ();
oneway void stop_timer ();

};
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Appendix B

The General Inter-ORB Protocol

and the Internet Inter-ORB

Protocol

B.1 Overview of the CORBA GIOP and IIOP Protocols

This section describes the components in the CORBA General Inter-ORB Protocol (GIOP)
and Internet Inter-ORB Protocol (IIOP) protocol in detail.

B.1.1 Common Data Representation (CDR)

The GIOP Common Data Representation (CDR) defines a transfer syntax for transmitting
OMG IDL data types across a network. The CDR definition maps the OMG IDL data
types from their native host format into a bi-canonical network-level representation, which
supports both little-endian and the big-endian formats. The salient features of CDR are:

Variable byte ordering: The sender encodes the data using its native byte-order. The
byte order used by the sender is indicated by a special flag in the encoded stream. Thus,
only receivers with byte ordering different from the sender must swap bytes to retrieve
correct binary values.

Aligned Types: Primitive OMG IDL data types are aligned on their “natural” bound-
aries within GIOP messages, as shown in Table B.1.

Constructed data types (such as IDL sequence and struct) have no additional
alignment restrictions beyond those of their primitive types. Thus, the size and alignment
of the constructed type will depend on the size and alignment of the primitives that make
up constructed type.
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Table B.1: Alignment of Primitive Types

Type Alignment

char 1

octet 1

short 2

unsigned short 2

long 4

unsigned long 4

float 4

double 8

boolean 1

enum 4

Complete OMG IDL mapping: CDR provides a mapping for all the OMG IDL data
types, including transferable pseudo-objects such as TypeCodes. CORBA pseudo-objects
are those entities that are neither CORBA primitive types nor constructed types. A client
acquiring a reference to a pseudo-object cannot use DII to make calls to the methods
described by the IDL interface of that pseudo-object. The DSI and DII interpreters use the
TypeCode information passed to them by users of DSI and DII, respectively.

CDR Encapsulations: A CDR encapsulation is a sequence of octets. Encapsulations
are typically used to marshal parameters of the following types:

• TypeCodes: OMG defined TypeCodes and their CDR encoding rules are shown
in Table B.2.

• IIOP protocol profiles inside interoperable object references (IORs): A
protocol profile provides information about the transport protocol that enables client ap-
plications to talk to the servers. In the IIOP profile (Figure B.1), this informations consists
of the host name and port number on which the server is listening, and the object key of
the target object implemented by that server.

An IOR (see Figure B.2) represents a complete information about an object. This
information includes the type it represents, the protocols it supports, whether it is null or
not, and any ORB related services that are available.

• Service-specific contexts: The CORBA Object Services (COS) specification
[48] defines a wide range of services, such as transactions, events, naming, concurrency,
and audio/video streaming. For interoperability, it may be required to pass service-specific
information via opaque parameters. This is achieved using the service-specific context.
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Table B.2: TypeCode Enum Values, Parameter List Types, and Parameters

TCKind Value Type Parameters
(integer)

tk null 0 empty none
tk void 1 empty none
tk short 2 empty none
tk long 3 empty none
tk ushort 4 empty none
tk ulong 5 empty none
tk float 6 empty none
tk double 7 empty none
tk boolean 8 empty none
tk char 9 empty none
tk octet 10 empty none
tk any 11 empty none
tk TypeCode 12 empty none
tk Principal 13 empty none
tk objref 14 complex string(repository ID), string (name),
tk struct 15 complex string(repository ID), string (name),

ulong(count), {string(member name),
TypeCode(member type)}

tk union 16 complex string(repository ID), string (name),
TypeCode (discriminant type),
long(default used), ulong(count)
{discriminant type(label val),
string(member name),
TypeCode (member type)}

tk enum 17 complex string(repository ID), string (name),
ulong(count), {string(member name)}

tk string 18 complex ulong(max length)
tk sequence 19 complex TypeCode (element type),

ulong (max length)
tk array 20 complex TypeCode (element type),

ulong (max length)
tk alias 21 complex string(repository ID), string (name),

TypeCode
tk except 22 complex string(repository ID), string (name),

ulong (count), {string (member name),
TypeCode (member type) }

none 0xffffffff simple string(repository ID), string (name)

The first byte of an encapsulation always denotes the byte-order used to create
the encapsulation. Encapsulations can be nested inside of other encapsulations. Each
encapsulation can use any byte-order, irrespective of its other encapsulations.

B.1.2 GIOP Message Formats

The GIOP specification defines seven standard message types. Each message is assigned
a unique value. The originator of a giop message can be a client and/or a server. The
Table B.3 depicts the seven types of messages and the permissible originators of these
messages:
A GIOP message begins with a GIOP header (Figure B.3), followed by one of the message
types (Figure B.4), and finally the body of the message, if any.
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module IIOP {

struct Version {
char major;  // the number 1
char minor;  // the number 0

};

struct ProfileBody {
Version iiop_version; //protocol version
string host;         //host name
unsigned short port;         //port number
sequence<octet> object_key;   //opaque key

      //identifying the
      //object

};
};

Figure B.1: Definition of IIOP Profile

module IOP {
typedef unsigned long ProfileId;
const ProfileId TAG_INTERNET_IOP = 0;

struct TaggedProfile {
ProfileId tag; //any one of the previously

   //defined tag values
sequence<octet> profile_data;

        //protocol specific data
};

// Interoperable Object Reference
struct IOR {

string type_id; //assigned by the
     //interface repository

sequence<TaggedProfile>
profiles; //profile information

};
};

Figure B.2: Definition of an Interoperable Object Reference

module GIOP {
enum MsgType {

Request,
Reply,
CancelRequest,
LocateRequest,
LocateReply,
CloseConnection,
MessageError

};

struct Version {
char major;  // the number 1
char minor;  // the number 0

};

struct MessageHeader {
char     magic[4];
Version GIOP_version; //protocol version
boolean byte_order;   //0=>big endian
octet message_type; //one of 7 types
unsigned long message_size; //length of msg

};
};

Figure B.3: GIOP header
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Table B.3: GIOP Message Types

Message Type Originator Value

Request Client 0

Reply Server 1

CancelRequest Client 2

LocateRequest Client 3

LocateReply Server 4

CloseConnection Server 5

MessageError Both 6

B.1.3 GIOP Message Transport

The GIOP specification makes certain assumptions about the transport protocol that can
be used to transfer GIOP messages. These assumptions are listed below:

• The transport mechanism must be connection-oriented;

• The transport protocol must be reliable;

• The transport data is a byte stream without message delimitations;

• The transport provides notification of disorderly connection loss;

• The transport’s model of establishing a connection can be mapped onto a general
connection model (such as TCP/IP).

Examples of transport protocols that meet these requirements are TCP/IP and OSI
TP4.

B.1.4 Internet Inter-ORB Protocol (IIOP)

The IIOP is a specialized mapping of GIOP onto the TCP/IP protocols. ORBs that use
IIOP can communicate with other ORBs that publish their TCP/IP addresses as inter-
operable object references (IORs). IIOP IOR profiles are shown in Figure B.1. Figure
B.2 shows the format of an IOR. When IIOP is used, the profile data member of the
TaggedProfile structure holds the profile data of IIOP shown in Figure B.1.

B.2 TTCP IDL Description and TypeCode Layout

The following CORBA IDL interface was used in our experiments to measure the throughput
of SunSoft IIOP described in Section 5.3.1. An example of a TypeCode description for
BinStruct is presented in Section 5.2.2.
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// Richly typed data.
interface ttcp_throughput
{

typedef sequence<short> ShortSeq;
typedef sequence<long> LongSeq;
typedef sequence<double> DoubleSeq;
typedef sequence<char> CharSeq;
typedef sequence<octet> OctetSeq;
typedef sequence<PerfStruct> StructSeq;

// Methods to send various data type sequences.
oneway void sendShortSeq (in ShortSeq ts);
oneway void sendLongSeq (in LongSeq ts);
oneway void sendDoubleSeq (in DoubleSeq ts);
oneway void sendCharSeq (in CharSeq ts);
oneway void sendOctetSeq (in OctetSeq ts);
oneway void sendStructSeq (in StructSeq ts);

oneway void start_timer ();
oneway void stop_timer ();

};

Figure B.5 shows the representation of the TypeCode layout that defines the sequence
of BinStructs from Section 5.2.2. An IDL compiler is responsible for generating TypeCode

information for all the data types described in an IDL definition. The TypeCode information
generated by an IDL compiler is available at both the sender and the receiver end, which
obviates the need to transmit typecode information along with the data over the network.
Since SunSoft IIOP does not provide an IDL compiler the TypeCode information for all the
BinStruct types was hand-crafted.

The layout of the sequence of BinStructs and its parameters are shown in Table
B.2 and described below:

TypeCode value: A CORBA TypeCode data structure contains a kind field that indi-
cates the TCKind value, which is an enumerated type. For instance, the TCKind value is
tk sequence in the “sequence of BinStruct” example.

TypeCode length and byte order: The length field indicates the length of the buffer
that holds the CDR representation of the TypeCode’s parameters. In this example, the first
byte of the CDR buffer indicates the byte order. Here, the IIOP standard value 0 indicates
that big-endian byte-ordering is used.

Element type: For a sequence TypeCode, the next entry in the buffer is the TypeCode

kind entry for the element type that comprises the sequence. In our example, this value is
tk struct.

Encapsulation length and sequence bound: The next entry is a length field indicating
the length of the encapsulation that holds information about the struct’s members. The
length field is followed by the encapsulation, which is followed by a field that indicates the
bounds of the sequence. A value of 0 indicates an “unbounded” sequence (i.e., the size of
the sequence is determined at run-time, not at compile-time).
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Encapsulation content and field layouts: The encapsulation contains two string en-
tries, which follow the designation of the encapsulation’s byte-order. Each string entry has
a field specifying the length of the string followed by the string values. The first string
specifies the “type ID” assigned by the interface repository. The second string holds the
actual name of the data type as defined in the IDL definition. After this field is the number
of members in the BinStruct IDL struct. This is followed by TypeCode layouts for each
field (e.g. short, char, long, etc.) in the struct.

B.3 Tracing the Data Path of an IIOP Request

To illustrate the run-time behavior of SunSoft IIOP, we trace the path taken by requests that
transmit a sequence of BinStructs (shown in Appendix B.2). We show how the TypeCode
interpreter consults the TypeCode information as it marshals and unmarshals parameters.
We use the same BinStruct in this example and in our optimization experiments described
in Section 5.3.1.

Client-side Data Path: The client-side data path is shown in Figure B.6. This fig-
ure depicts the path traced by outgoing client requests through the TypeCode interpreter.
The CDR::encoder method marshals the parameters from native host format into a CDR
representation suitable for transmission on the network.

The client uses the do call method, which is the SII API provided by SunSoft IIOP
that uses the TypeCode interpreter to marshal the parameters and send the client requests.
The DII mechanism uses the do dynamic call method to send client requests.

Although the do call and do dynamic call methods play similar roles, their type
signatures are different. The do call is used by the IDL compiler generated stubs to
send client requests. The do dynamic call is used by the ORB’s API (e.g. send oneway

and invoke) for DII to send client requests. The do dynamic call is passed an NVList

representing all the parameters to the operation being invoked. In addition, it is passed
a flag indicating whether the operation is oneway or two-way, a string argument that
represents the operation name, and a NamedValue pseudo-object that holds the results.

The do call method creates a CDR stream into which operations for CORBA pa-
rameters are marshaled before they are sent over the network. To marshal the parameters,
do call uses the CDR::encoder visit method. For primitive types (such as octet, short,
long, and double), the CDR::encoder method marshals them into the CDR stream using
the lowest-level CDR::put methods. For constructed data types (such as IDL structs and
sequences), the encoder recursively invokes the TypeCode interpreter.

The traverse method of the TypeCode interpreter consults the TypeCode layout
passed to it by an application to determine the data types that comprise a constructed data
type. For each member of a constructed data type, the interpreter invokes the same visit
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method that invoked it. In our case, the encoder is the visit method that originally called
the interpreter. This process continues recursively until all parameters have been marshaled.
At this point the request is transmitted over the network via the invoke method of the
GIOP::Invocation class.

Server-side Data Path: The server-side data path is shown in Figure B.7. This figure
depicts the path traced by incoming client requests through the TypeCode interpreter. An
event handler (TCP OA) waits in the ORB Core for incoming data. After a CORBA request
is received, its GIOP type is decoded and the Object Adapter demultiplexes the request to
the appropriate method of the target object. The CDR::decoder method then unmarshals
the parameters from the CDR representation into the server’s native host format. Finally,
the server’s dispatching mechanism dispatches the request to the skeleton of the target
object via a user-supplied upcall method.

The SunSoft IIOP receiver supports the DSI mechanism. Therefore, an NVList

CORBA pseudo-object is created and populated with the TypeCode information for the
parameters retrieved from the incoming request. These parameters are retrieved by calling
the params method of the ServerRequest class. Similar to the client-side data path, the
server’s TypeCode interpreter uses the CDR::decoder visit method to unmarshal individual
data types into a parameter list. These parameters are subsequently passed to the server
application’s upcall method.
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module GIOP {
struct RequestHeader{

IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;
sequence<octet> object_key;
string operation;
Principal requesting_principal;

};

enum ReplyStatusType {
NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD

};

struct ReplyHeader {
IOP::ServiceContextList service_context;
unsigned long request_id;
ReplyStatusType reply_status;

};

struct CancelRequestHeader {
unsigned long request_id;
sequence<octet> object_key;

};

struct LocateRequestHeader {
unsigned long request_id;
sequence<octet> object_key;

};

enum LocateStatusType {
UNKNOWN_OBJECT,
OBJECT_HERE,
OBJECT_FORWARD

};

struct LocateReplyHeader {
unsigned long   request_id;
LocateStatusType  locate_status;

};
};

Figure B.4: GIOP Messages
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Figure B.5: TypeCode for Sequence of BinStruct

sendStructSequence(seq)

do_call()

TypeCode::traverse(value1,
          value2,visit,strm,env)

if (primitive typecode)
    return visit(this,val1,val2,

strm,env);
switch(_kind){
//complex typecodes
case tk_sequence:

OctetSeq *seq =
(OctetSeq *)val1;

bounds = seq->length;
value1 = seq->buffer;
goto shared_array_code;

case tk_array:
bounds=ulong_param(1, env);

shared_array_code:
TypeCode_ptr tc2 =

typecode_param(0, env);
size = tc2->size(env);
while(bounds--){

visit(tc2,val1,val2,strm,env);
value1=size + (char*)val1;
value2=size + (char *)val2;

}
case tk_struct:

create an encapsulation
CDR stream for our params
struct_traverse(&encap,val1,

val2,visit, strm,env);
}

struct_traverse(encap,val1,
      val2,visit,strm,env)

skip_string; // repository id;
skip_string; // struct name;
get number of members;
for each member {

skip_string; //member name
size =
calc_nested_size_
        and_align(&tc,align);
visit(tc,val1,val2,strm,env);
val1 = size + (char*)val1;
val2 = size + (char *)val2;

}

GIOP::Invocation::invoke()

NETWORK

write()

OS  KERNEL

Create a CDR stream to send
Fill GIOP Header
Create a GIOP:Request
message
For each parameter,
        call CDR::put_param

SENDER

CDR::encoder(param_tc,
     value,0,cdr_strm,env)

CDR::put_param()

switch(tc->kind(env) {
case tk_char:
case tk_octet:

strm->put_char
(*(char *)data);

break;
case tk_short:

strm->put_short
(*(short *)data);

break;
case tk_long:

strm->put_long
(*(long *)data);

break;
case tk_double:

strm->put_longlong
(*(longlong *)data);
break;

case tk_sequence:
OctetSequence* seq =

(OctetSeq *)data;
strm->put_long
(*(long *)seq->length);
//Fall thru these cases

case tk_struct:
case tk_array:

return tc->traverse
(data, 0, encoder,

strm, env);
}

CDR::encoder(tc, data,

                   0, strm, env)

Figure B.6: Sender-side Datapath for the Original SunSoft IIOP Implementation
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read_message()

RECEIVERECEIVE

MESSAGEMESSAGE

EVENT  HANDLINGEVENT  HANDLING

GIOP::

incoming_message()

TCP_OA::
handle_message()

TCP_OA::
get_request()

DEMULTIPLEXINGDEMULTIPLEXING//

DISPATCHINGDISPATCHING

    tcp_oa_dispatch()

(USER  SUPPLIED  METHOD)

 tcp_oa_dispatcher

(CREATE REQUESTHDR)

EXTRACT   GIOP HEADER

DECODE   MSG  TYPE

_ttcp_sequence_
sendStructSeq_skel()

CREATE   NVLIST  AND

POPULATE   IT  WITH

PARAMETER  TYPECODES

for each parameter
get the typecode, tc
CDR::decoder(tc,val,0,

strm,env)

ServerRequest::params()

PARSING   PARAMETERSPARSING   PARAMETERS TypeCode::traverse(value1,
          value2,visit,strm,env)

if (primitive typecode)
    return visit(this,val1,val2,

strm,env);
switch(_kind){
//complex typecodes
case tk_sequence:

OctetSeq *seq =
(OctetSeq *)val1;

bounds = seq->length;
value1 = seq->buffer;
goto shared_array_code;

case tk_array:
bounds=ulong_param(1, env);

shared_array_code:
TypeCode_ptr tc2 =

typecode_param(0, env);
size = tc2->size(env);
while(bounds--){

visit(tc2,val1,val2,strm,env);
value1=size + (char*)val1;
value2=size + (char *)val2;

}
case tk_struct:

create an encapsulation
CDR stream for our params
struct_traverse(&encap,val1,

val2,visit, strm,env);
}

struct_traverse(encap,val1,
      val2,visit,strm,env)

skip_string; // repository id;
skip_string; // struct name;
get number of members;
for each member {

skip_string; //member name
size =
calc_nested_size_
        and_align(&tc,align);
visit(tc,val1,val2,strm,env);
val1 = size + (char*)val1;
val2 = size + (char *)val2;

}

switch(tc->kind(env) {
case tk_char:
case tk_octet:

strm->get_char
(*(char *)data);

break;
case tk_short:

strm->get_short
(*(short *)data);

break;
case tk_long:

strm->get_long
(*(long *)data);

break;
case tk_double:

strm->get_longlong
(*(longlong *)data);
break;

case tk_sequence:
OctetSequence* seq =

(OctetSeq *)data;
strm->get_ulong
(seq->length);
seq->max=seq->length;
seq->buffer=0;
// get typecode of elem
tc2=typecode_param(0);
size = tc2->size(env);
//allocate buffer
seq->buffer=new uchar [
size*seq->max];
//Fall thru these cases

case tk_struct:
case tk_array:

return tc->traverse
(data, 0, decoder,

strm, env);
}

CDR::decoder(tc, data,

          parent, strm, env)

RECEIVER
NETWORKNETWORK

read()

OSOS    KERNELKERNEL

Figure B.7: Receiver-side Datapath for the Original SunSoft IIOP Implementation



152

Appendix C

IDL Definition for Param Test

Example

This section provides an OMG IDL description of an interface and its operations. In this
paper, we use these operations and its parameters to study the cost of marshaling and the
size of the generated stubs and skeletons.

interface Param_Test

{

// Primitive types.

short test_short

(in short s1,

inout short s2,

out short s3);

// Strings unbounded.

string test_unbounded_string

(in string s1,

inout string s2,

out string s3);

// Structures (fixed size).

struct Fixed_Struct

{

long l;

char c;

short s;

octet o;

float f;

boolean b;

double d;

};
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Fixed_Struct test_fixed_struct

(in Fixed_Struct s1,

inout Fixed_Struct s2,

out Fixed_Struct s3);

// Sequences and typedefs.

typedef sequence<string> StrSeq;

StrSeq test_strseq

(in StrSeq s1,

inout StrSeq s2,

out StrSeq s3);

typedef string DUMMY;

// variable structures

struct Var_Struct

{

DUMMY dummy1;

DUMMY dummy2;

StrSeq seq;

};

Var_Struct test_var_struct

(in Var_Struct s1,

inout Var_Struct s2,

out Var_Struct s3);

//

// Nested structs (We reuse the var_struct

// definition above to make a very

// complicated nested structure).

//

struct Nested_Struct

{

Var_Struct vs;

};

Nested_Struct test_nested_struct

(in Nested_Struct s1,

inout Nested_Struct s2,

out Nested_Struct s3);

//

// sequences of structs

//
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typedef sequence<Var_Struct> StructSeq;

StructSeq test_struct_sequence

(in StructSeq s1,

inout StructSeq s2,

out StructSeq s3);

};



155

Appendix D

Stubs and Skeletons

This section illustrates a stub and skeleton generated by TAO’s IDL compiler for the
test short operation described in Appendix C.1

D.1 Unoptimized interpreted stub

The do call method shown below is the interface to the interpretive marshaling engine.
do call takes a variable number of parameters. The number of parameters is determined
by the TAO Call Data argument. This supplies information such as the operation name
(“test short”), whether it is oneway or two-way, and a pointer to a table of parameters
(TAO Param Data). The TAO Param Data data structure provides the TypeCode and param-
eter type for each parameter of the operation. TypeCodes are CORBA pseudo-objects that
describe the format and layout of primitive and constructed IDL data types.

CORBA::Short Param_Test::test_short

(CORBA::Short s1,

CORBA::Short &s2,

CORBA::Short_out s3,

CORBA::Environment &env)

{

static const TAO_Param_Data

Param_Test_test_short_paramdata [] =

{

{CORBA::_tc_short, PARAM_RETURN, 0},

{CORBA::_tc_short, PARAM_IN, 0},

{CORBA::_tc_short, PARAM_INOUT, 0},

{CORBA::_tc_short, PARAM_OUT, 0}

};

static const TAO_Call_Data

1Some exception handling and error checking has been omitted to reduce space.
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Param_Test_test_short_calldata =

{"test_short", 1, 4,

Param_Test_test_short_paramdata,

0, 0};

CORBA::Short retval;

STUB_Object *istub;

this->QueryInterface (IID_STUB_Object,

(void **) &istub);

// QueryInterface incremented refcount.

this->Release ();

istub->do_call

(env,

&Param_Test_test_short_calldata,

&retval, &s1, &s2, &s3);

return retval;

}

This stub first obtains the underlying stub object and then invokes the do call

method on it. The do call internally creates the IIOP Request message and marshals
all the in and inout parameters. It then invokes the remote procedure call. It blocks for
the incoming reply if the IDL operation is two-way; otherwise it returns immediately. The
return value, inout, and out parameters are demarshaled from the incoming IIOP Reply

message.

D.2 Unoptimized skeleton

For the test short skel skeleton shown below, the skeleton first creates a NVList. An
NVList is a CORBA pseudo object that holds a list of parameters. The parameter types,
their TypeCodes, and memory to store their values are inserted into the NVList. The in and
inout parameters are demarshaled via a call to the params method on CORBA::ServerRequest.
The skeleton then makes the upcall on the target object passing the appropriate parameters
to it.

void POA_Param_Test::test_short_skel

(CORBA::ServerRequest &_tao_server_request,

void *_tao_object_reference,

void *context,

CORBA::Environment &_tao_environment)

{

CORBA::NVList_ptr nvlist;

POA_Param_Test_ptr impl =

(POA_Param_Test_ptr) _tao_object_reference;
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CORBA::Any *result;

CORBA::Short *retval = new CORBA::Short;

// Create an NV list and populate

// it with typecodes.

_tao_server_request.orb ()

->create_list (3, nvlist);

// Add each argument according to the in,

// out, inout semantics

CORBA::Short s1;

(void) nvlist->add_item

("s1", CORBA::ARG_IN,

_tao_environment)->value ()

->replace (CORBA::_tc_short, &s1,

0, _tao_environment);

CORBA::Short *s2 = new CORBA::Short;

(void) nvlist->add_item

("s2", CORBA::ARG_INOUT,

_tao_environment)->value ()

->replace (CORBA::_tc_short,

s2, 1, _tao_environment);

CORBA::Short *s3 =

new CORBA::Short;

(void) nvlist->add_item

("s3",

CORBA::ARG_OUT,

_tao_environment)->value ()

->replace (CORBA::_tc_short,

s3, 1, _tao_environment);

// Parse the arguments.

_tao_server_request.params

(nvlist, _tao_environment);

*retval = impl->test_short

(s1, *s2, *s3, _tao_environment);

// Store the result

result = new CORBA::Any

(CORBA::_tc_short, retval, 1);

// Save the Any into the server request.

_tao_server_request.result

(result, _tao_environment);

}
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D.3 Compiled stubs and skeletons

This section illustrates the hand-crafted compiled stub and skeleton for the test short

operation.

CORBA::Short Param_Test::test_short

(CORBA::Short s1,

CORBA::Short &s2,

CORBA::Short_out s3,

CORBA::Environment &env)

{

CORBA::Short retval = 0;

IIOP_Object *istub;

this->QueryInterface (IID_IIOP_Object,

(void **) &istub);

// QueryInterface incremented refcount.

this->Release ();

// Set up a GIOP/IIOP message.

TAO_GIOP_Invocation call

(istub, ACE_OS::strdup ("test_short"), 1);

env.clear ();

// Setup a IIOP Request message.

call.start (env);

// Get the marshal stream.

CDR &stream = call.stream ();

// Insert parameters.

stream << s1; stream << s2;

// Now invoke the request.

TAO_GIOP_ReplyStatusType status;

CORBA::ExceptionList exceptions;

exceptions.length = exceptions.maximum = 0;

exceptions.buffer = (CORBA::TypeCode_ptr *) 0;

// Send the request.

status = call.invoke (exceptions, env);

// Retrieve the parameter values.

if (status == TAO_GIOP_NO_EXCEPTION)

stream >> retval; stream >> s2; stream >> s3;

return retval;
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}

The skeleton is similar and is shown below.

void POA_Param_Test::test_short_skel

(CORBA::ServerRequest &_tao_server_request,

void *_tao_object_reference,

void * context,

CORBA::Environment &_tao_environment)

{

POA_Param_Test_ptr impl

= (POA_Param_Test_ptr) _tao_object_reference;

CORBA::Short retval, s1, s2, s3;

// Get the incoming CDR stream.

CDR &instream = _tao_server_request.incoming ();

// Retrieve parameters.

instream >> s1; instream >> s2;

// Make upcall.

retval = impl->test_short

(s1, s2, s3, _tao_environment);

// Get the outgoing CDR stream.

CDR &outstream = _tao_server_request.outgoing ();

// Create a IIOP Reply message.

_tao_server_request.init_reply (_tao_environment);

// Marshal outgoing parameters.

outstream << retval;

outstream << s2; outstream << s3;

}

D.4 Optimized stub

// Call_Data and Param_Data tables are the same.

CORBA::Short Param_Test::test_short

(CORBA::Short s1,

CORBA::Short &s2,

CORBA::Short_out s3,

CORBA::Environment &env)

{

STUB_Object *istub = this->stubobj (env);
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if (istub) {

CORBA::Short retval;

istub->do_call

(env,

&Param_Test_test_short_calldata,

&retval, &s1, &s2, &s3);

return retval;

}

return 0;

D.5 Optimized skeletons

This section illustrates the optimized skeletons that TAO’s IDL compiler generates. The
skeleton for test short skel is shown.

void POA_Param_Test::test_short_skel

(CORBA::ServerRequest &_tao_server_request,

void *_tao_object_reference,

void *context,

CORBA::Environment &_tao_environment)

{

static const TAO_Param_Data_Skel

Param_Test_test_short_paramdata [] =

{

{CORBA::_tc_short, 0, 0},

{CORBA::_tc_short, CORBA::ARG_IN, 0},

{CORBA::_tc_short, CORBA::ARG_INOUT, 0},

{CORBA::_tc_short, CORBA::ARG_OUT, 0}

};

static const TAO_Call_Data_Skel

Param_Test_test_short_calldata =

{"test_short",

1,

4,

Param_Test_test_short_paramdata};

POA_Param_Test_ptr impl

= (POA_Param_Test_ptr) _tao_object_reference;

CORBA::Short retval, s1, s2, s3;

// Demarshal parameters.

_tao_server_request.demarshal

(_tao_environment,

&Param_Test_test_short_calldata,

&retval, &s1, &s2, &s3);
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// Make upcall.

retval = impl->test_short

(s1, s2, s3, _tao_environment);

// Marshal outgoing parameters.

_tao_server_request.marshal

(_tao_environment,

&Param_Test_test_short_calldata,

&retval, &s1, &s2, &s3);

}
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Appendix E

Comparison of Performance and

Code Size for Windows NT and

Linux

This section provides the cost of marshaling and the size of the generated stubs and skeletons
for the Windows NT and Linux platforms.

Table E.1: Sizes of Overloaded Operators for Compiled Stubs/Skeletons on PC running
Windows NT

Operator Size
operator<< (char *) 111
operator>> (char *) 95
operator<< (fixed struct) 207
operator>> (fixed struct) 159
operator<< (strseq) 111
operator>> (strseq) 221
operator<< (var struct) 63
operator>> (var struct) 95
operator<< (nested struct) 31
operator>> (nested struct) 31
operator<< (struct seq) 239
operator>> (struct seq) 287
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Table E.2: Stub Sizes on PC running Windows NT

Stub name Interpreted size Compiled size
stub table total stub helper total

test short 205 88 293 570 0 570
test ubstring 205 88 293 586 206 792
test fixed struct 205 88 293 570 366 936
test strseq 269 88 357 664 332 996
test var struct 333 88 421 812 158 970
test nested struct 333 88 421 702 62 764
test struct seq 205 88 293 670 526 1,196

Table E.3: Skeleton sizes on PC running Windows NT

Stub name Interpreted size Compiled size
skel table total skel helper total

test short skel 253 88 341 143 0 143
test ubstring skel 333 88 421 239 206 445
test fixed struct skel 285 88 373 191 366 557
test strseq skel 468 88 556 358 332 690
test var struct skel 856 88 944 794 158 952
test nested struct skel 867 88 955 726 62 788
test struct seq skel 615 88 703 616 526 1,142

Table E.4: Sizes of Overloaded Operators for Compiled Stubs/Skeletons on PC running
Linux

Operator Size
operator<< (char *) 92
operator>> (char *) 92
operator<< (fixed struct) 200
operator>> (fixed struct) 140
operator<< (strseq) 284
operator>> (strseq) 344
operator<< (var struct) 192
operator>> (var struct) 216
operator<< (nested struct) 24
operator>> (nested struct) 24
operator<< (struct seq) 168
operator>> (struct seq) 244

Table E.5: Stub Sizes on PC running Linux

Stub name Interpreted size Compiled size
stub table total stub helper total

test short 104 88 192 452 0 452
test ubstring 116 88 204 492 184 676
test fixed struct 108 88 196 452 340 792
test strseq 212 88 300 576 628 1,204
test var struct 240 88 328 608 408 1,016
test nested struct 240 88 328 588 48 636
test struct seq 212 88 300 576 412 988
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Table E.6: Skeleton Sizes on PC running Linux

Stub name Interpreted size Compiled size
skel table total skel helper total

test short skel 136 88 224 180 0 180
test ubstring skel 228 88 316 276 184 460
test fixed struct skel 132 88 220 192 340 532
test strseq skel 308 88 396 368 628 996
test var struct skel 544 88 632 596 408 1,004
test nested struct skel 544 88 632 596 48 644
test struct seq skel 308 88 396 368 412 780
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