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Distributed Real-time & Embedded (DRE) Systems

• Network-centric and large-scale “systems of systems”
• e.g., industrial automation, emergency response

• Different communication semantics
• e.g., pub-sub

• Satisfying tradeoffs between multiple (often conflicting) 
QoS demands
• e.g., secure, real-time, reliable, etc.

• Regulating & adapting to (dis)continuous changes in 
runtime environments
• e.g., online prognostics, dependable upgrades, 

keep mission critical tasks operational, dynamic 
resource mgmt

DRE systems increasingly adopting 
service oriented architectures
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Variability in the solution space 
(systems integrator role)

•Diversity in platforms, 
languages, protocols & tool 
environments

•Enormous accidental & 
inherent complexities

•Continuous evolution & change

Challenges in Realizing DRE Systems
Variability in the problem space 
(domain expert role)

•Functional diversity
•Composition, deployment and 
configuration diversity

•QoS requirements diversity

Mapping problem artifacts 
to solution artifacts is hard
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•Components encapsulate application 
“business” logic

•Components interact via ports
•Provided interfaces, e.g., facets
•Required connection points, e.g., 
receptacles

•Event sinks & sources
•Attributes

•Containers provide execution 
environment for components with 
common operating requirements

•Components/containers can also
•Communicate via a middleware 
bus and 

•Reuse common middleware 
services

SecurityReplication NotificationPersistence

SchedulingA/V Streaming Load Balancing

…

Container

… …

Middleware Bus

Container

…

Technology Enablers for DRE systems: 
Component Middleware
“Write Code That Reuses Code”
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Challenges in Component-based DRE Systems

…

specification

… …

composition & packaging

analysis, validation & verification, testing
configuration & 

optimization

deployment planning & 
QoS provisioning
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Solution Approach: Model Driven Engineering (MDE)

• Develop, validate, & 
standardize generative 
software technologies that:
1. Model
2. Analyze
3. Synthesize &
4. Provision

multiple layers of middleware
& application components
that require simultaneous 
control of multiple quality of 
service properties end-to-end

• Specialization is essential for 
inter-/intra-layer optimization & 
advanced product-line 
architectures

Middleware

Middleware
Services

DRE Applications

Operating Sys
& Protocols

Hardware & 
Networks

<CONFIGURATION_PASS>
<HOME> <…> 

<COMPONENT>
<ID> <…></ID>
<EVENT_SUPPLIER>
<…events this

component supplies…>
</EVENT_SUPPLIER>
</COMPONENT>
</HOME>

</CONFIGURATION_PASS>

<CONFIGURATION_PASS>
<HOME> <…> 

<COMPONENT>
<ID> <…></ID>
<EVENT_SUPPLIER>
<…events this

component supplies…>
</EVENT_SUPPLIER>
</COMPONENT>
</HOME>

</CONFIGURATION_PASS>

Goal is not to replace programmers per se – it is to provide higher-level 
domain-specific languages for middleware/application developers & users
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Specification & Implementation
• Defining, partitioning, & implementing appln functionality as 
standalone components

Assembly & Packaging
• Bundling a suite of software binary modules & metadata 
representing app components

Installation
• Populating a repository with packages required by app

Configuration
• Configuring packages with appropriate parameters to satisfy 
functional & systemic requirements of an application without 
constraining to physical resources 

Planning
• Making deployment decisions to identify nodes in target 
environment where packages will be deployed

Preparation
• Moving binaries to identified entities of target environment

Launching
• Triggering installed binaries & bringing appln to ready state

QoS Assurance & Adaptation
• QoS validation, runtime (re)configuration & resource 
management to maintain end-to-end QoS

OMG Deployment & 
Configuration (D&C) 

specification (ptc/05-01-07)

Leveraging Standards: OMG D&C Specification
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Our MDE Solution: CoSMIC Tool chain

Component

Resource
Requirements

Imp
l

Imp
l

Imp
l

Properties

Component
 Assembler

Component 
Assembly

Component Component

Component Component

Component Package

Component 
Assembly

Component Component

Component Component

Component 
Assembly

Component Component

Component Component

(2) assembles
(6) deployment

Assembly

Deployment
Application

Assembly

Assembly

CoSMIC

Analysis & Benchmarking

packaging

specification

configuration

feedback

(7) analysis & 
benchmarking

(PICML)

(Cadena & BGML)

DAnCE 
Framework

(5) 
planning

Component
 Developer

RACE Framework

),...,( 21 nxxxfy

Deployment 
Planner

Component
 Packager

Component
 Configurator

System
analyzer

Component
Deployer

• CoSMIC tools e.g., PICML used to model application components, CQML for QoS
• Captures the data model of the OMG D&C specification
• Synthesis of static deployment plans for DRE applications
• Capabilities being added for QoS provisioning (real-time, fault tolerance, security)

CoSMIC can be downloaded at www.dre.vanderbilt.edu/cosmic

Part 1
The Basics

Underlying Tools & Technologies
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MDE Tool 
Developer 
(Metamodeler)

Application 
Developers 
(Modelers)

Technology Enabler: Generic Modeling 
Environment (GME)

www.isis.vanderbilt.edu/Projects/gme/default.htm

“Write Code That Writes Code That Writes Code!”

Decorator Decorator

GModel GMeta

CORE

MetamodelXML

Paradigm Definition

Storage Options… DB #nDB #1 XML …

UML / OCL

COM

COMCOM

XML

XML

ODBC

Constraint
ManagerBrowser

Translator(s)Add-On(s)

GME Editor

GME Architecture

Goal: Correct-by-construction DRE systems
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•Tool developers use 
MetaGME to develop a 
domain-specific 
graphical modeling 
environment

•Define syntax & 
visualization of the 
environment via 
metamodeling 

MDE Tool Development in GME



7

13

•Tool developers use 
MetaGME to develop a 
domain-specific 
graphical modeling 
environment

•Define syntax & 
visualization of the 
environment via 
metamodeling 

•Define static 
semantics via Object 
Constraint Language 
(OCL)

MDE Tool Development in GME
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•Tool developers use 
MetaGME to develop a 
domain-specific 
graphical modeling 
environment

•Define syntax & 
visualization of the 
environment via 
metamodeling 

•Define static 
semantics via Object 
Constraint Language 
(OCL)

•Dynamic semantics 
implemented via 
model interpreters

MDE Tool Development in GME
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•Tool developers use 
MetaGME to develop a 
domain-specific 
graphical modeling 
environment

•Define syntax & 
visualization of the 
environment via 
metamodeling 

•Define static 
semantics via Object 
Constraint Language 
(OCL)

•Dynamic semantics 
implemented via 
model interpreters

MDE Tool Development in GME
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•Application 
developers use 
modeling environments 
created w/MetaGME to 
build applications
•Capture elements & 
dependencies 
visually 

MDE Application Development with GME
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•Application 
developers use 
modeling environments 
created w/MetaGME to 
build applications
•Capture elements & 
dependencies 
visually 

MDE Application Development with GME
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•Application 
developers use 
modeling environments 
created w/MetaGME to 
build applications
•Capture elements & 
dependencies 
visually 

•Model interpreter 
produces something 
useful from the 
models
•e.g., code, 
simulations, 
deployment 
descriptions & 
configurations

<connection>
      <name>compressionQosPredictor_qosLevels</name>
      <internalEndpoint>
        <portName>qosLevels</portName>
        <instance xmi:idref="CompressionQosPredictor_F3C2CBE0-B2CE-46CC-B446-
F64D91B44E56"/>
      </internalEndpoint>
      <internalEndpoint>
        <portName>compressionQosPredictor</portName>
        <instance xmi:idref="LocalResourceManagerComponent_7EF8B77A-F5EA-
4D1A-942E-13AE7CFED30A"/>
      </internalEndpoint>
    </connection>
    <connection>
      <name>scalingQosPredictor_qosLevels</name>
      <internalEndpoint>
        <portName>qosLevels</portName>
        <instance xmi:idref="ScaleQosPredictor_F3024A4F-F6E8-4B9A-BD56-
A2E802C33E32"/>
      </internalEndpoint>
      <internalEndpoint>
        <portName>scalingQosPredictor</portName>
        <instance xmi:idref="LocalResourceManagerComponent_7EF8B77A-F5EA-
4D1A-942E-13AE7CFED30A"/>
      </internalEndpoint>
    </connection>

ima
inc
cur

out

CropQosket
[ CropQosket ]

qos

CroppingQosPredictor
[ CroppingQosPredictor ]

pol
res
inc
com
sca
cro

ima
out
cro
sca
com

dif
cpu

LocalResourceManagerComponent
[ LocalResourceManagerComponent ]

ima
inc
cur

out

CompressQosket
[ CompressQosket ]

ima
sen out

Sender
[ Sender ]

qos

CompressionQosPredictor
[ CompressionQosPredictor ]

qos

ScaleQosPredictor
[ ScaleQosPredictor ]

ima
inc
cur

out

ScaleQosket
[ ScaleQosket ]

cpu

CPUBrokerComponent
[ CPUBrokerComponent ]

inc out

LocalReceiver
[ LocalReceiver ]

PolicyChangeEvt

ResourceAllocationEvt

ImageGenerationEvt

ima
inc
cur

out

DiffServQosket
[ Dif fServQosket ]

delegatesTo

delegatesTo

emit

invoke

invoke

invoke
invoke

invoke

emit emit emit
invoke

invoke
invoke

emit

delegatesTo

MDE Application Development with GME
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Part 2
Case Studies

Bold Stroke
Robot Assembly

NASA Space Mission
Shipboard Computing

Modern Office
Stock Application

20

Nav Sensors

Expendable
Management

Data LinksMission
Computer

Vehicle
Mgmt

Expendables

• Avionics mission computing product-line 
architecture for Boeing aircraft, e.g., F-18 E/F, 
15E, Harrier, UCAV

• DRE system with 100+ developers, 3,000+ 
software components, 3-5 million lines of C++ 
code

• Based on COTS hardware, networks, 
operating systems, & middleware

• Used as Open Experimentation 
Platform (OEP) for DARPA IXO PCES, 
MoBIES, SEC, MICA programs

Bold 
Stroke 
Architecture 

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Radar

DRE System Example 1: Boeing Bold Stroke
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Nav Sensors

Expendable
Management

Data LinksMission
Computer

Vehicle
Mgmt

Expendables

Bold 
Stroke 
Architecture 

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Radar

DRE System Example 1: Boeing Bold Stroke
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DRE System Example 2: Robot Assembly

Radio

Conveyor
Power Switching

Unit 

Control Station

Switches

Clock
Handler

Human
Machine

Interface*

Management
Work

Instructions

Disk  Storage

Storage
Device 

Controller

Watch
Setting

Manager*

Robot
Manager*

Pallet
Conveyor
Manager

Conveyor
Drive System

Pallet
Present

Pallet 
Release
Switch

Off Enable

Fast

Off Enable

Discretes

Assembly
Area 

Intrusion

Intrusion Alarm

Robot in
Work
Area 
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DRE System Example 3: NASA MMS Mission
• NASA’s Magnetospheric MultiScale 

(MMS) space mission consists of 
four identically instrumented 
spacecraft & a ground control 
system
• Collect mission data
• Send it to ground control at 

appropriate time instances 

Spacecraft 1

Sensor 
Suite 
(Linux 
node)

Bus 
Processor
(VxWorks 

Node)

Ethernet (802.3)Ethernet (802.3)

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Payload Processor
(Linux Node)

Gizmo
AgentGizmo
AgentGizmo
AgentGizmo
Agent

Algorithm

Algorithm

Exec
Agent

Comm
Agent

Science
Agent

Exec
Agent

Comm
Agent

GNC
Agent

• MMS application 
components are bundled 
together into hierarchical
assemblies

• Assembly package 
metadata conveys 
component interconnections 
& implementation 
alternatives
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DRE System Example 4: Shipboard Computing

• SLICE scenario 
depicts an application 
workflow

• Use case drawn from DARPA 
ARMS program

• Dynamic resource management 
for mission critical applications

• Multiple application workflows 
replicated in multiple data 
centers
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DRE System Example 5: Modern Office
• Office traffic operates over IP 

networks & Fast Ethernets
• Multiple application flows:

• Email
• Videoconferencing
• Sensory (e.g., fire alarms)

• Differing network QoS 
requirements
• Fire alarm – highest priority
• Surveillance – multimedia
• Temperature sensing – best 

effort
• QoS provisioned using DiffServ

Network QoS Provisioning Steps
1. Specify network QoS requirements for each application flow
2. Allocate network-level resources and DiffServ Code Points (DSCP) for 

every application flow joining two end points
3. Mark outgoing packet with the right DSCP values

26

DRE System Example 6: Distributed Stock Application

Usage Patterns by User Type
Response Time (msec)PercentageType

15035%Gold (Client B)
30065%Basic (Client A)

Design & Implementation
• Functionality developed as components
• Target architectures include multiple different nodes.
• Each component in the DSA is scheduled to complete its development at 

different times in development lifecycle
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Part 3
Modeling DRE Application Workflows

Assembly & Packaging

28

Assembly & Packaging Problem 

•Application components are bundled 
together into assemblies

•Several different assemblies tailored 
towards delivering different end-to-
end QoS and/or using different 
algorithms can be part of the package 
•e.g., large-scale DRE systems 
require 100s-1,000s of components 

•Packages describing the components 
& assemblies can be scripted via 
XML descriptors
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Assembly & Packaging Challenges (1/2)

RT Event
Channel

Ad hoc techniques for ensuring component 
syntactic & semantic compatibility

Distribution & 
deployment done in 
ad hoc manner

Ad hoc means to 
determine event 
notification support

30

Assembly & Packaging Challenges (2/2)

<!– Associate components with impls -->
<componentfiles>

<componentfile id=“RateGenerator">
<fileinarchive name=“HouseRateGen.csd"/>

</componentfile>

<componentfile id=“HiResGPS">
<fileinarchive name=“aGPS.csd"/>

</componentfile>

<componentfile id=“cockpitDisplay">
<fileinarchive name=“navDisplay-if.csd"/>

</componentfile>

</componentfiles>

XML file in 
excess of 3,000 
lines, even for 
medium sized 
scenarios

Existing practices 
involve handcrafting 
XML descriptors

Modifications to the 
assemblies requires 
modifying XML file
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• Platform-Independent Component 
Modeling Language (PICML)

• Developed in Generic Modeling 
Environment (GME)

• Core of Component Synthesis using 
Model-Integrated Computing (CoSMIC) 
tool chain

• Capture elements & dependencies 
visually

• Define “static semantics” using Object 
Constraint Language (OCL)

• Define “dynamic semantics” via model 
interpreters 
• Also used for generating domain 

specific meta-data 
• “Correct-by-construction”

CoSMIC MDE Solution for Assembly & Packaging

32

Example Metadata Generated by PICML
• Component Interface Descriptor (.ccd) 

• Describes the interface, ports, properties of a single 
component

• Implementation Artifact Descriptor (.iad)
• Describes the implementation artifacts (e.g., DLLs, OS, etc.) 

of one component
• Component Package Descriptor (.cpd)

• Describes multiple alternative implementations of a single 
component

• Package Configuration Descriptor (.pcd)
• Describes a configuration of a component package

• Top-level Package Descriptor (package.tpd)
• Describes the top-level component package in a package 

(.cpk)
• Component Implementation Descriptor (.cid)

• Describes a specific implementation of a component 
interface

• Implementation can be either monolithic- or assembly-based
• Contains sub-component instantiations in case of assembly 

based implementations
• Contains inter-connection information between components

• Component Packages (.cpk)
• A component package can contain a single component
• A component package can also contain an assembly

Based on OMG (D&C) 
specification (ptc/03-06-03)
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Example Output from PICML

<!–-Component Implementation Descriptor(.cid) associates components 
with impl. artifacts--> 
<Deployment:ComponentImplementationDescription>

<label>GPS Implementation</label>

<UUID>154cf3cd-1770-4e92-b19b-8c2c921fea38</UUID>

<implements href="GPS.ccd"/>

<monolithicImpl>

<primaryArtifact>

<name>GPS Implementation artifacts</name>

<referencedArtifact href="GPS.iad"/>

</primaryArtifact>

</monolithicImpl>

</Deployment:ComponentImplementationDescription>

<ComponentAssemblyDescription id="a_HUDDisplay">
...
<connection>
<name>GPS-RateGen</name> 
<internalEndPoint>

<portName>Refresh</portName> 
<instance>a_GPS</instance>

</internalEndPoint>
<internalEndPoint>

<portName>Pulse</portName>
<instance>a_RateGen</instance>

</internalEndPoint>
</connection>
<connection>
<name>NavDisplay-GPS</name>
<internalEndPoint>

<portName>Refresh</portName>
<instance>a_NavDisplay</instance>

</internalEndPoint>
<internalEndPoint>

<portName>Ready</portName>
<instance>a_GPS</instance>

</internalEndPoint>
</connection>

...
</ComponentAssemblyDescription>

• Describes a specific implementation of a component 
interface

• Contains inter-connection information between 
components

A Component Implementation Descriptor (*.cid) file

Part 4
DRE System QoS Management

QoS Modeling
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Sources of Variability Impacting QoS (1/3)

• Per-component concerns
• Problem space: Functionality often supplied as third party COTS 
• Solution space: Implementations for different platforms and languages
• P->S mapping challenges: 

• Implementations must match platform and language choice
• Choice of implementation impacts end-to-end QoS

• Communication concerns
• Problem space: Choice of communication paradigms (pub-sub, RPC, MOM) 

and requirements on QoS
• Solution space: Diversity in communication mechanisms e.g., CORBA IIOP, 

Java RMI, DDS, Event channels, and QoS mechanisms e.g., DiffServ, 
IntServ, MPLS

• P->S mapping challenges:
• Decoupling application logic from provisioning communication QoS
• Right optimizations in communication paths needed to enhance QoS
• Redundancy and mixed mode communications needed to support QoS 

• Understand the sources of variability in the 
problem/solution space that impacts QoS

• Find solutions to automate the mapping of 
the problem space to solution space

36

Sources of Variability Impacting QoS (2/3)

• Assembly concerns
• Problem space: Discovering services and composing them together
• Solution space: Interfaces and their semantics must match
• P->S mapping challenges: 

• Must ensure functional and systemic compatibility in composition
• Heterogeneity in platforms and languages in composition impacts QoS

• Deployment concerns
• Problem space: Need resources e.g., CPU, memory, bandwidth, storage
• Solution space: Diversity in resource types and their configurations
• P->S mapping challenges:

• How to select and provision resources such that end-to-end QoS is realized?
• How to (re)allocate resources to maintain end-to-end QoS?
• How to place components so that near optimal QoS tradeoffs are made?
• How to allow sharing of components or assemblies?
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Sources of Variability Impacting QoS (3/3)

• Configuration concerns
• Problem space: Multiple QoS requires right set of configurations

• What is the unit of failover? What is the replication degree? Are entire assemblies 
replicated?

• How to define access control rights?
• Determining system task partitioning, schedulability
• Defining network resource needs 

• Solution space: Platforms provide high degree of configuration flexibility
• P->S mapping challenges:

• What configuration options control a specific dimension of QoS?
• How do different configuration options interact with each other?
• How to configure heterogeneous platforms?
• What impact deployment decisions have on configurations?

38

A Single Perspective: Tangling of QoS Issues

Lifecycle-wide separation of 
concerns (SoC) & variability 

management is the key

• Demonstrates numerous 
tangled para-functional 
concerns

• Significant sources of 
variability that affect end-
to-end QoS

• QoS concerns tangled 
across system lifecycle

Design-time Deployment-time Run-time
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Requirements of a Solution Approach
• Need expressive power to define QoS 

intent in the problem space, and 
perform design-time analysis
• e.g., network QoS needs of 

application flows or end-to-end 
latencies

• Need to decouple DRE system 
functionality from systemic capabilities 
in the solution space
• e.g., decouple robot manager logic 

from fault tolerance configurations
• Need to automate the mapping from 

problem to solution space
• e.g., automate the (re)deployment 

and (re)configuration of system 
functionality to maintain QoS

• Need to provide a hosting platform with 
dynamic adaptation capabilities
• e.g., survivability management of 

robot manager   

40

Component QoS Modeling Language (CQML)

• 4 types of QoS modeling 
capabilities
• Real-time 
• Fault tolerance
• Security
• Network QoS

• Developed as overlay on a 
composition modeling 
language

• Facility to integrate behavioral 
modeling

• Unified internal mechanism for 
QoS integration

• Pluggable back end analysis 
tools for QoS tradeoff analysis
• e.g., Times tool

Objectives:
• Express QoS design intent
• Model crosscutting QoS concerns
• Perform design-time QoS tradeoff 

analysis

Capabilities:
• Intuitive QoS abstractions
• Separation as well as unification 

of QoS concerns
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container/component servercontainer/component server“Client” primary IOR

Primary FOUPrimary FOU

A B C

Example of Failover Unit Intent

container/component servercontainer/component server container/component servercontainer/component server

Replica FOUReplica FOU

A’ B’ C’

secondary IOR

container/component servercontainer/component server container/component servercontainer/component server container/component servercontainer/component server

Primary 
Component

Replica 
Component

42

CQML FT Modeling Abstractions

• Fail-over Unit (FOU): Abstracts away 
details of granularity of protection (e.g. 
Component, Assembly, App-string)

• Replica Group (RPG): Abstracts away 
fault-tolerance policy details (e.g. 
Active/passive replication, state-
synchronization, topology of replica)

• Shared Risk Group (SRG): Captures 
associations related to risk. (e.g. shared 
power supply among processors, shared 
LAN)

Protection granularity 
concerns

State-synchronization 
concerns

Component Placement 
constraints

Replica Distance 
Metric

Model Interpreter (component placement 
constraint solver): Encapsulates an algorithm for 
component-node assignment based on replica 
distance metric

QoS Enhancements to PICML (Platform 
Independent Component Modeling Language) 
Metamodel
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CQML RT & NetQoS Modeling Abstractions
• Real-time modeling provided by the RT-Model 

element
• Leverages known patterns of real-time 

programming usage:
• e.g., real-time CORBA

• Enables modeling of:
• Priority models
• Banded connections 
• Thread pools
• Thread pools with Lanes
• Resources e.g., CPU, memory

• Network QoS modeling allows modeling QoS per 
application flow
• Classification into high priority, high 

reliability, multimedia and best effort classes
• Enables bandwidth reservation in both 

directions
• Client propagated or server declared models

44

CQML Security Modeling Abstractions
• Focus on role based access 

control
• Fine-grained:

• Interface Operation
• Assembly Property
• Component Attribute

• Coarse-grained:
• Interface
• Set of Operations
• Class of Operations (based 

on Required Rights -
corba:gsum)

• Inter-Component Execution 
Flow (Path in an Assembly)
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5.  Distance-based constraint algorithm determines replica placement in 
deployment descriptors.

GME/PICMLGME/PICML

1. Model components and application strings in PICML
2. e.g., Model Fail Over Units (FOUs) and Shared Risk Groups 

(SRGs) using CQML
3. Generate deployment plan

4. Interpreter automatically injects
replicas and associated CCM 
IOGRs

Modeling & Generative Steps in CQML

Model Model 
InformationInformation

Domain, 
Deployment, 

SRG, and FOU injection

Replica Placement 
Algorithm

model
FT InterpreterFT Interpreter

Augmented Augmented 
Deployment Deployment 

PlanPlan

46

Example: FT Requirements Modeling in CQML
Component FOU

Replication Style = Active

Replica = 3
Min Distance = 4

Deployment 
plan to be 

augmented

Shared Risk 
Group (SRG) 

hierarchy

LEGEND

FOU: Fail Over 
Unit

SRG: Shared Risk 
Group
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Automated Sample FT QoS Provisioning
• Automatic Injection of replicas

• Augmentation of 
deployment plan based 
on number of replicas

• Automatic Injection of FT 
infrastructure components
• E.g. Collocated 

“heartbeat” (HB) 
component with every 
protected component.

• Automatic Injection of 
connection meta-data
• Specialized connection 

setup for protected 
components (e.g. 
Interoperable Group 
References IOGR) 

HB

Container

48

container/component servercontainer/component server

FPCFPC

“client”

periodic FPC heartbeat

primary IOR

Primary FOUPrimary FOU

A

HB

container/component servercontainer/component server

B
container/component servercontainer/component server

C

container/component servercontainer/component server

Replica FOUReplica FOU

A’
container/component servercontainer/component server

B’
container/component servercontainer/component server

C’

secondary IOR

IO
G

R

FPCFPC

HB HB

intra-FOU 
heartbeat

HB
HB HB

Automated Heartbeat Component Injection

Primary 
Component

Replica 
Component

Collocated 
heartbeat 

component

Connection
Injection
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Example: NetQoS Modeling in CQML

• Expressing QoS intent for application flows
• Multiple connections sharing QoS can use same 

element

50

QoS Analysis Challenges

How do you 
determine 
current resource 
allocations?

How do you ensure that 
the selected targets will 
deliver required QoS

How do you correlate QoS 
requirements of packages 
to resource needs

How to analyze and tradeoff the modeled QoS requirements?
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CQML QoS Unification & Tradeoff Analysis

• Leverages QoS and behavioral models
• Model interpretation using an EventBus framework
• Each QoS dimension publishes its modeled QoS requirements
• A particular QoS dimension is chosen as the driver e.g., real-time

• Acts as subscriber of events generated by other dimensions
• Driver interpreter integrates other QoS dimensions making tradeoffs 

on the way 
• Pluggable back end analysis and generative tools

52

Example: QoS Tradeoff Analysis using TIMES tool

• CQML EventBus architecture weaves in FT and Security concerns 
into RT concerns

• Feeds to backend schedulability analysis tools e.g., Times
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Part 5
DRE System Deployment Planning

Placement Algorithms

54

Deployment Planning Problem

Determine current 
resource allocations 
on target platforms

Select the 
appropriate 
package to 
deploy on 
selected target

Select appropriate target 
platform to deploy 
packages

Component integrators must make appropriate deployment 
decisions, including identifying the entities (e.g., CPUs) of 
the target environment where the packages will be deployed
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Example of Shared Risk Group Intent
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R1

P

R2

R3

Define N orthogonal vectors, one for each of the distance values
computed for the N components (with respect to a primary) and vector-
sum these to obtain a resultant. Compute the magnitude of the resultant 
as a representation of the composite distance captured by the placement 
.

Example Replica Placement Algorithm

1. Compute the distance from each of the replicas to the 
primary for a placement.

2. Record each distance as a vector, where all vectors are 
orthogonal.

3. Add the vectors to obtain a resultant.
4. Compute the magnitude of the resultant.
5. Use the resultant in all comparisons (either among 

placements or against a threshold)
6. Apply a penalty function to the composite distance (e.g. pair 

wise replica distance or uniformity)
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Example: Automated Component Placement

Part 6
Configuring Middleware for DRE Systems

Middleware Configuration Options
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Translating QoS Policies to QoS Options

59

Prioritized service invocations 
(QoS Policy) must be mapped 
to Real-time CORBA Banded 
Connection (QoS configuration)

• Large gap between application QoS policies & middleware QoS 
configuration options
• Bridging this gap is necessary to realize the desired QoS policies

• The mapping between application-specific QoS policies & middleware-
specific QoS configuration options is non-trivial, particular for large systems

60

Challenge 1: Mapping QoS Policies to QoS Options

60

• Conventional 
mapping approach 
requires deep 
understanding of the 
middleware 
configuration space
• e.g., multiple 

types/levels of QoS 
policies require 
configuring 
appropriate number 
of thread pools, 
threadpool lanes 
(server) & banded 
connections (client)

Protocol
Properties

Explicit Binding

Client Propagation & Server Declared Priority Models

Portable Priorities

Thread Pools

Static Scheduling 
Service

Standard
Synchonizers

Request 
Buffering
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The Multilayer Configuration Problem
Configuration 
of components 
& assemblies

Configuration of 
component 
containers

Configuration of 
the middleware bus 

Configuration of 
component server

Configuration of 
event notifiers

•Component-based 
software must be 
configurable at many 
levels
•e.g., application 
components & 
containers, component 
servers, & middleware 
services & 
infrastructure

62

Example: The M/W Bus Configuration
Component middleware is characterized by a large configuration 
space that maps known variations in the application requirements 

space to known variations in the middleware solution space

Hook for the 
concurrency 
strategy

Hook for 
the request 
demuxing 
strategy

Hook for 
marshaling 
strategy

Hook for the 
connection 
management 
strategy

Hook for the 
underlying 
transport 
strategy

Hook for the event 
demuxing strategy
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Challenge 2: Choosing QoS Option Values

63

• Individually configuring component QoS options is tedious & error-prone
• e.g., ~10 distinct QoS options per component & ~140 total QoS 

options for entire NASA MMS mission prototype
• Manually choosing valid values for QoS options does not scale as size & 

complexity of applications increase

64

server object 
management 
middleware

Example: Configuring Container Policies

•Existing techniques for 
metadata configurations 
rely on ad hoc manual 
configurations e.g., 
CORBA server-side 
programming

Determine the server object 
management policies

Determine right buffer sizes

Determine thread pool 
sizes; how are they 
shared; number of lanes 
and their priorities; if 
borrowing is enabled

Determine various 
middleware policies 
for server objects e.g., 
security, lifetime, 
replication

•This “glue code” is 
traditionally handcrafted

Ensure semantic 
compatibility among 
chosen configurations

Determine end-to-end 
priority propagation 
model to use
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Challenge 3: Validating QoS Options

65

• Each QoS option value chosen should be validated
• e.g., Filter priority model is CLIENT_PROPAGATED, whereas Comm 

priority model is SERVER_DECLARED
• Each system reconfiguration (at design time) should be validated

• e.g., reconfiguration of bands of Analysis should be validated such that 
the modified value corresponds to (some) lane priority of the Comm

66

Challenge 4: Resolving QoS Option Dependencies

• “QoS option dependency” is defined as:
• Dependency between QoS options of different components

• Manually tracking dependencies is hard – or in some cases infeasible
• Dependent components may belong to more than one assembly 
• Dependency may span beyond immediate neighbors
– e.g., dependency between Gizmo & Comm components

• Empirically validating configuration changes by hand is tedious, error-
prone, & slows down development & QA process considerably

• Several iterations before desired QoS is achieved (if at all)

66

ThreadPool priorities of 
Comm should match 
priority bands defined 
at Gizmo
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Solution Approach: Model-Driven QoS Mapping
• QUality of service 

pICKER (QUICKER)
• Model-driven 

engineering 
(MDE) tools model 
application QoS 
policies

• Provides 
automatic 
mapping of QoS 
policies to QoS 
configuration 
options

• Validates the 
generated QoS 
options

• Automated QoS mapping & validation tools can be used iteratively
throughout the development process

68

• Enhanced Platform 
Independent Component 
Modeling Language 
(PICML), a DSML for 
modeling component-
based applications

• QoS mapping uses 
Graph Rewriting & 
Transformation (GReAT) 
model transformation 
tool

• Customized Bogor 
model-checker used to 
define new types & 
primitives to validate 
QoS options

68

QUICKER Enabling MDE Technologies
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• Enhanced Platform 
Independent Component 
Modeling Language 
(PICML), a DSML for 
modeling component-
based applications

• QoS mapping uses 
Graph Rewriting & 
Transformation (GReAT) 
model transformation 
tool

• Customized Bogor 
model-checker used to 
define new types & 
primitives to validate 
QoS options

69

QUICKER Enabling MDE Technologies

• CQML Model interpreter generates Bogor Input Representation (BIR) of DRE 
system from its CQML model

CQML Model 
Interpreter

Bogor Input 
Representation

70 70

QUICKER: Transformation of QoS policies(1/2)

RequirementProxy 
can be per 
component or 
assembly instance

1. Platform-Independent 
Modeling Language 
(PICML) represents 
application QoS policies
• PICML captures policies 

in a platform-
independent manner

• Representation at 
multiple levels
• e.g., component- or 

assembly-level 
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QUICKER: Transformation of QoS policies(1/2)
1. Platform-Independent 

Modeling Language 
(PICML) represents 
application QoS policies
• PICML captures policies 

in a platform-
independent manner

• Representation at 
multiple levels
• e.g., component- or 

assembly-level 

2. Component QoS Modeling 
Language (CQML) 
represents QoS options
• CQML captures QoS 

configuration options in a 
platform-specific manner

72 72

3. Translation of application 
QoS policies into middleware 
QoS options
• Semantic translation rules 

specified in terms of input 
(PICML) & output (CQML) 
type graph 
• e.g., rules that translate 

multiple application 
service requests & service 
level policies to 
corresponding middle-
ware QoS options

• QUICKER transformation 
engine maps QoS policies 
(in PICML) to QoS 
configuration options (in 
CQML)

QUICKER: Transformations of QoS policies(2/2)

Pr
ov

id
er

Se
rv

ic
e 

R
eq

ue
st

Provider Service Levels

Level 1
Level 2
Level 3

Multiple Service Requests Service Levels

Priority Model Policy
Thread Pool Lanes
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QUICKER: Validation of QoS Options (1/2)
1. Representation of middleware QoS 

options in Bogor model-checker
• BIR extensions allow representing 

domain-level concepts in a system 
model

• QUICKER defines new BIR 
extensions for QoS options
• Allows representing QoS options & 

domain entities directly in a Bogor 
input model
– e.g., CCM components, Real-

time CORBA lanes/bands are 
first-class Bogor data types

• Reduces size of system model by 
avoiding multiple low-level 
variables to represent domain 
concepts & QoS options

74 74

2. Representation of properties (that 
a system should satisfy) in Bogor
• BIR primitives define language 

constructs to access & 
manipulate domain-level data 
types, e.g.:
• Used to define rules that validate 

QoS options & check if property 
is satisfied

3. Automatic generation of BIR of 
DRE system from CQML models

QUICKER: Validation of QoS Options (2/2)

Rule determines if ThreadPool priorities 
at Comm match priority bands at Analysis

Model interpreters auto-generate 
Bogor Input Representation of a 
system from its CQML model
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Soln: Translating Policies to Options (1/2)

75

• Expressing QoS policies
• PICML modes application-level QoS policies at high-level of abstraction

• e.g., multiple service levels support for Comm component, service 
execution at varying priority for Analysis component

• Reduces modeling effort 
• e.g., ~25 QoS policy elements for MMS mission vs. ~140 QoS options

76

Soln: Translating Policies to Options (2/2)
• Mapping QoS policies to 

QoS options
• GReAT model 

transformations automate 
the tedious & error-prone 
translation process

• Transformations generate 
QoS configuration options 
as CQML models
• Allow further 

transformation by other 
tools
• e.g., code optimizers & 

generators

• Simplifies application 
development & enhances 
traceability

76



39

77

Soln: Ensuring QoS Option Validity
• CQML model                   

interpreter                               
generates BIR                    
specification from                        
CQML models

• BIR primitives                              
used to check                           
whether a given                                      
set of QoS options                   
satisfies a system                  
property
• e.g., fixed                                 

priority service                           
execution, a property of Comm 
component

• Supports iterative validation of 
QoS options during QoS 
configuration process

77

QUICKER

78

Soln: Resolving QoS Option Dependencies

• Change(s) in QoS options of dependent component(s) triggers detection of 
potential mismatches
• e.g., dependency between Gizmo invocation priority & Comm lane priority

78

• Dependency 
structure 
maintained in 
Bogor used to 
track 
dependencies 
between QoS 
options of 
components, e.g.:
• Analysis & 

Comm are 
connected

• Gizmo & 
Comm are 
dependent

Detect mismatch if 
either values change

Dependency Structure of MMS Mission Components
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Part 7
Continuous System QoS Validation using 

“What If” Analysis

MDE for Analysis and Emulation Techniques

80

Application components 
developed after 

infrastructure is mature

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n

System 
infrastructure 
components 

developed first

Serialized Phasing in DRE Systems (1/2)
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Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n

Integration 
Surprises!!!

System integration 
& testing

Finished development

Serialized Phasing in DRE Systems (2/2)

82

Complexities of Serialized Phasing

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n

Still in development

Ready for testing
Complexities
• System infrastructure cannot be 

tested adequately until applications 
are done



42

83

Complexities of Serialized Phasing

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n
Overall performance?

Complexities
• System infrastructure cannot be 

tested adequately until applications 
are done

• Entire system must be deployed & 
configured properly to meet QoS 
requirements 

• Existing evaluation tools do not 
support “what if” evaluation

It is hard to address these concerns in processes that use serialized phasing

84

QoS Concerns with Serialized Phasing
Meet QoS 

requirements?

Key QoS concerns
• Which D&C’s meet the QoS 

requirements? 

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n
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QoS Concerns with Serialized Phasing
Performance 

metrics?

Key QoS concerns
• Which D&C’s meet the QoS 

requirements? 
• What is the worse/average/best 

time for various workloads?

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n
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QoS Concerns with Serialized Phasing

It is hard to address these concerns in processes that use serialized phasing

Key QoS concerns
• Which D&C’s meet the QoS 

requirements? 
• What is the worse/average/best 

time for various workloads?
• How much workload can the system 

handle until its QoS requirements 
are compromised?

System 
overload?

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n
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Approach: Emulate Behavior using Next Generation
System Execution Modeling Tools

While target system under development:
1. Use a domain-specific modeling 

language (DSML) to define & validate 
infrastructure specifications & 
requirements

2. Use DSML to define & validate 
application specifications & 
requirements

3. Use middleware & MDE tools to 
generate D&C metadata so system 
conforms to its specifications & 
requirements

4. Use analysis tools to evaluate & 
verify QoS performance

5. Redefine system D&C & repeat

Enables testing on target infrastructure throughout the development lifecycle
http://www.dre.vanderbilt.edu/~hillj/docs/publications/CUTS-RTCSA06.pdf

Component Workload Emulator (CoWorkEr) 
Utilization Test Suite (CUTS) Workflow

88

Distributed Stock Application Challenges

Challenges of Continuous QoS Validation
1. Emulating Business Logic: Emulated components must resemble their 

counterparts in both supported interfaces & behavior
2. Realistic Mapping of Emulated Behavior: Behavior specification should 

operate at a high-level of abstraction & map to realistic operations
3. Technology Independence: Behavior specification should not be tightly 

coupled to a programming language, middleware platform, hardware
technology, or MDE tool

CCMMicrosoft .NET

Replaceable with 
“real” component

Realistic behavior 
& workload

Realistic user behavior
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DSMLs for Continuous QoS Validation

Component Behavior Modeling Language (CBML)
• a high-level domain-specific modeling language for 

capturing the behavior of components 
• e.g., its actions & states

Workload Modeling Language (WML)

• a domain-specific modeling language 
for capturing workload, & used to 
parameterize the actions on CBML

CBML & WML were both developed using GME 
(http://www.isis.vanderbilt.edu/projects/GME)

90

The Component Behavior Modeling Language
Context
• Component’s  behavior can be 

classified as: communication & internal
actions

• Need to define these actions as close 
as possible to their real counterpart 
(i.e., Challenge 1)

Research Contributions of CBML
• Based on the semantics of 

Input/Output (I/O) Automata 
• i.e., contains representative 

elements
• Behavior is specified using a series of 

action to state transitions
• Transitions have preconditions that 

represent guards & effects have 
postconditions that determine the new 
state after an action occurs

• Variables are used to store state & can 
be used within pre & postconditions 
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Domain-Specific Extensions to CBML
Context
• Some aspects of component-

based systems are not first-class 
entities in I/O automata
• e.g., lifecycle events & 

monitoring notification events
• Extended CBML (without affecting 

formal semantics) to support 
domain-specific extensions

Domain-Specific Extensions
• Environment events – input 

actions to a component that are 
triggered by the hosting system 
rather than another component

• Periodic events - input actions 
from the hosting environment that 
occur periodically

environment

periodic

92

Ensuring Scalability of CBML
Context
• One of the main goals of higher-

level of abstraction is simplicity & 
ease of use

• It is known that one of the main 
drawbacks of automata languages 
is scalability

Usability Extensions
• Composite Action – contains other 

actions & helps reduce model 
clutter

• Repetitions - determines how 
many times to repeat an action to 
prevent duplicate sequential 
actions

• Log Action - an attribute of an 
Action element that determines if 
the action should be logged

Tool Specific – GME add-on that 
auto-generates required elements 
(e.g., states)
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The Workload Modeling Language
Context
• CBML as a standalone language is 

sufficient enough to capture 
behavior of a component

• For emulation purposes, it does 
not capture the reusable objects of 
a component & its workload (i.e., 
Challenge 2)

Research Contributions of WML
• Middleware, hardware, platform, & 

programming language 
independent DSML 

• Used to define workload 
generators (workers) that contains 
actions to represent realistic 
operations

• Defined using a hierarchical 
structure that resembles common 
object-oriented programming 
packaging techniques that are 
consistent with conventional 
component technologies

workload generator

executable actions

generic action

no payload
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Integrating WML Models with CBML Models
Integration Enablers
• WML worker elements have 

same model semantics as 
variables

• WML actions have same 
modeling semantics as CBML 
actions

• Allows WML elements to be 
used in CBML models

Context
• CBML & WML are standalone 

DSMLs with a distinct purpose
– i.e., model behavior & workload, 

respectively
• WML is designed to complement 

CBML by providing CBML with 
reusable operations that can map to 
realistic operations

WML

CBML

WML action
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Integrating Behavioral and Structural DSMLs
Context
• Structural DSML (e.g., the 

Platform Independent Component 
Modeling Language (PICML)) 
capture the makeup of 
component-based systems

• There is no correlation between a 
component’s ports & its behavior

Integration Enablers
• Defined a set of connector 

elements that allow structural 
DSMLs to integrate with (or 
contain) CBML models

• Input ports directly connect to 
Input Action elements

• Output actions have the same 
name as their output port to 
reduce model clutter
• i.e., prevent many to one 

connections

input connections

output name
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Code Generation for Emulation
Context 
• The generation technique should 

not be dependent on the underlying 
technology

• Although we are targeting CUTS, 
would should be able to generate 
emulation code for any 
benchmarking framework

Generation Enablers
• Emulation layer – represents the 

application layer’s “business logic”
where elements in WML used to 
parameterize CBML behavior are 
mapped to this layer

• Template layer – acts as a bridge 
between the upper emulation layer 
& lower benchmarking layer to 
allows each to evolve independently 
of each other

• Benchmark layer – the actual 
benchmarking framework (e.g., 
CUTS)

component method

emulationtemplate / 
benchmarking
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Part 8
Usecase-driven Middleware Optimizations

Feature Oriented CUStomizer (FOCUS)
&

Pattern Oriented Software Architecture 
Modeling Language (POSAML)

98

F-15
product
variant

A/V 8-B
product
variant

F/A 18
product
variant UCAV

product
variant

Product-line 
architecture

Optimizations for Product-line Architectures

•PLAs define a framework of components that adhere to a common 
architectural style with a clean separation of commonalities and
appropriate provisions for incorporating variations

•Middleware factors out many reusable general-purpose & domain-specific 
services from traditional DRE application responsibility 

Air
Frame

AP
Nav

HUD GPS

IFF

FLIR

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)
OS & Network ProtocolsOS & Network Protocols

Host Infrastructure MiddlewareHost Infrastructure Middleware
Distribution MiddlewareDistribution Middleware

Common Middleware ServicesCommon Middleware Services
Domain-specific ServicesDomain-specific Services

Standards middleware is a key technology candidate for 
supporting and sustaining vision of software product-lines
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Middleware Structure & Functionality

• Standards-based COTS middleware 
helps:
• Control end-to-end resources & QoS
• Leverage hardware & software 
technology advances

• Evolve to new environments & 
requirements

• Provide a wide array of reusable, off-
the-shelf developer-oriented services

• Problem
• Manually provisioning 

middleware is tedious, error-
prone, & costly over system 
lifecycles

• There are layers of middleware, 
just like there are layers of 
networking protocols

Need an intuitive, visual and declarative 
mechanism for middleware provisioning.

100

Technology Gaps in Middleware for PLAs
• PLAs have very “focused but 

crosscutting” requirements of underlying 
middleware infrastructure
• Optimized for the platform
• Lean footprint
• Efficient configuration & deployment
• Support run-time adaptations & 

reconfigurations
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Technology Gaps in Middleware for PLAs
• PLAs have very “focused but 

crosscutting” requirements of underlying 
middleware infrastructure
• Optimized for the platform
• Lean footprint
• Efficient configuration & deployment
• Support run-time adaptations & 

reconfigurations
• Standards middleware development & 

optimizations philosophy catered to 
maintaining “generality, wide 
applicability, portability & reusability”
• OS, compiler and hardware 

independent
• e.g., CORBA, J2EE. .NET

• These technology gaps are hindering PLA 
progress => adverse economic and societal 
consequences
• e.g. shortcomings of pre-postulated 

middleware [Jacobsen 04]
Need to tailor and optimize standards middleware for PLAs while 
continuing to provide standards compliance, portability and flexibility 
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Middleware Specialization Catalog

•Domain-specific language (DSL) tools & 
process for automating the specializations

Specification-imposed 
specializations
• Layer-folding
• Constant propagation
• Memoization 

Framework specializations
• Aspect Weaving 

techniques
• Bridge Reactor
• Template method 

Protocol
• Strategy Messaging, 

Wait, Demultiplexing

Deployment platform 
specializations
• Unroll copy loops 
• Use emulated exceptions
• Leverage zero-copy 

data transfer buffers

•Development of reusable specialization 
patterns

•Identifying specialization points in 
middleware where patterns are applicable 
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Feature Oriented CUStomizer (FOCUS)

Middleware Instrumentation Phase

Middleware Specialization Phase

FOCUS addresses specialization challenges by building specialization language, 
tool, & process to capture & automate middleware specializations

OS & Network ProtocolsOS & Network ProtocolsOS & Network ProtocolsOS & Network Protocols

Customized MiddlewareCustomized MiddlewareCustomized MiddlewareCustomized Middleware

AP
Nav

HUD GPS

IFF

FLIR

• ~1,000 Perl SLOC Parser + 
weaver

• ~2,500 XML SLOC 
specialization files

• ~50 (files) annotations

• Capture specialization transformations via 
FOCUS specialization language

• Annotate middleware source code with 
specialization directives 

• Create a domain-specific language (DSL) 
to capture middleware variability

• Analyzes & determines the type of 
specializations applicable

• FOCUS transformation engine selects the 
appropriate transformations & uses the 
annotations to automate specializations

104

FOCUS Specialization Language (FSL)
FOCUS uses an XML DTD to create a DSL for capturing 

specializations

FSL

Capability to perform code 
substitutions
• Devirtualize interfaces
• Replace base classes with derived 

class
FSL Approach
• <substitute>: Capability to do 

<search> … <replace> on code

<substitute>
<search>ACE_Reactor_Impl</search>
<replace>ACE_Select_Reactor_Impl</replace>

</substitute> 

<copy-from-source>
<source>Select_Reactor.h</source>
<copy-hook-start>HOOK-START </copy-hook-start>
<copy-hook-end>HOOK-END </copy-hook-end>
<dest-hook>HOOK-COPY</dest-hook>

</copy-from-source>

Capability to weave code at 
specified points
• The layer folding specializations 

require code to be woven in along 
the request processing path

FSL Approach
• <add>: <hook> that specifies the 

annotated point; <data> where 
data is specified 

Capability to specialize base implementations
• Framework specialization requires code 

to be copied from derived to base classes
FSL Approach
<copy-from-source>: Copy code from a specific 
point to a specific point between different files 
<start-hook> start copying 
<end-hook> hook to stop copying 
<dest-hook> destination

<add> 
<hook>FORWARD_DECL</hook>
<data>#include 

“Select_Reactor.h”</data>
<add> 
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Cumulative Specialization Results

Worst-case 
measures 

improved by 
~45% 

• End-to-end client side throughput improved by ~65%. 
• Results exceeded the hypothesis & evaluation criteria

• Applied to Bold Stroke 
BasicSP

• Specification related
• Layer folding
• Memoization
• Constant propagation 

(ignoring endianess)
• Framework

• Aspect weaving 
(Reactor + protocol)

• Deployment 
• Loop unrolling + 

emulated exceptions

Average end-to-
end measures 

improved by ~43%

Jitter results 
twice as good as 
general-purpose 
optimized TAO

Layer folding, 
deployment platform, 

memoization, 
constant propagation
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Automation Tool Requirements (1/2)

• Must account for Per-Block 
Configuration Variability

• Incurred due to variations in 
implementations & configurations for a 
patterns-based building block

• E.g., single threaded versus thread-pool 
based reactor implementation dimension 
that crosscuts the event demultiplexing 
strategy (e.g., select, poll, 
WaitForMultipleObjects

Criteria 1: Intuitive management of middleware 
variabilities that impact performance in significant ways

• Tool must account for 
Compositional Variability

• Incurred due to variations in the 
compositions of mw building blocks

• Need to address compatibility in the 
compositions and individual 
configurations

• Dictated by needs of the domain
• E.g., Leader-Follower makes no sense 

in a single threaded Reactor
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Automation Tool Requirements (2/2)

• Separation of concerns
• Unified framework must separate the 

provisioning and validating stages
• Different actors should be able to use 

the visual aids in different stages of the 
application lifecycle

Criteria 3: Unified framework for 
middleware provisioning and QoS 
validation

• Unified framework for provisioning and 
validating

• Provisioning decisions should be coupled with 
QoS validation

• Decisions at one stage drive decisions at the 
next stage 

Criteria 2: Visual separation 
of concerns within the Unified 
Framework

workload
0

50

100

150

200

system
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POSAML: A Visual Provisioning Tool

• POSAML – GME-based modeling 
language for middleware composition

• Provides a structural composition 
model

• Captures variability in blocks
• Generative programming capabilities to 

synthesize different artifacts e.g., 
benchmarking, configuration, 
performance modeling.

Metamodel for the POSA pattern language

Feature modeling metamodel in POSAML
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POSAML Unified Framework

• Unified visual view enables modeling the middleware composition as a 
set of interacting patterns

• Individual patterns can be visually configured
• E.g., reactor and acceptor-connector patterns

• POSAML languages conforms to the POSA pattern language enabling 
error-free composition of building blocks.
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POSAML Separation of Concerns

• POSAML separates pattern 
feature modeling from pattern 
benchmarking

• Feature model allows selecting 
features of each pattern
• E.g., reactor and acceptor-

connector shown with 
concurrency models

• Benchmarking view separated 
from feature view
• E.g., selecting parameters 

for elements of the pattern
• Views are unified under the 

hood
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Research Impact & Future Work
Current progress stems from 
years of iteration, refinement, 
& successful use

Year
1970 2010

Internet

RPC

Micro-kernels

CORBA & DCOM

Real-time (RT)
CORBA

Component
Models (EJB)        

CORBA Component
Model (CCM)

RT/CCM

DCE

CoSMIC

Long-term Research Directions
•Heterogeneous component systems
•Automated QoS configurations
•Runtime model feedback
•Automated inference of bottlenecks
•Synthesis of QoS management 
policies

•Synthesis of autonomic survivability

Long-term Research Directions
•Heterogeneous component systems
•Automated QoS configurations
•Runtime model feedback
•Automated inference of bottlenecks
•Synthesis of QoS management 
policies

•Synthesis of autonomic survivability

Model driven
middleware Shape the standards e.g., 

OMG’s Model Driven 
Architecture (MDA)  for 
DRE systems

Advanced MDE

ACE+TAO

2000 2005
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DOC Group Research on DRE Systems

<CONFIGURATION_PASS>
<HOME> <…> 

<COMPONENT>
<ID> <…></ID>
<EVENT_SUPPLIER>
<…events this component 

supplies…>
</EVENT_SUPPLIER>
</COMPONENT>
</HOME>

</CONFIGURATION_PASS>

<CONFIGURATION_PASS>
<HOME> <…> 

<COMPONENT>
<ID> <…></ID>
<EVENT_SUPPLIER>
<…events this component 

supplies…>
</EVENT_SUPPLIER>
</COMPONENT>
</HOME>

</CONFIGURATION_PASS>

Benchmarking

Weaver

Synthesis

Functional
Model

Systemic
Model

Analysis

www.dre.vanderbilt.edu

• CoSMIC - Modeling Deployment & 
Configuration (D&C) crosscutting 
concerns

• CIAO – QoS-enabled component 
middleware

• DAnCE – Deployment And 
Configuration Engine

Plan 
Analyzers

XML to 
IDL

LISP to 
IDL

2D Bin 
packing 

path

Priority 
Sched . 

path

Plan 
Managers

2D Bin 
packing

Priority 
Sched .

Output 
Adapters

To 
DAnCE

To 
OpenCCM

Applications that fetch 
XML or LISP and call 
appropriate plug -ins

R-F

F-R F-R

F-R

R-F

F-R. Line source is a Facet and Line 
destination is a Receptacle

R-F. Line source is a Receptacle and 
Line destination is a Facet

R-F

• RACE – Resource and Control 
Engine

Multiple Levels of Abstraction
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Concluding Remarks
•Model-Driven Engineering 
(MDE) is an important 
emerging generative 
technology paradigm that 
addresses key lifecycle 
challenges of DRE 
middleware & applications

•OMG PSIG on Model 
Integrated Computing

•CoSMIC MDE tools are based on the Generic Modeling Environment (GME)
•CoSMIC is available from www.dre.vanderbilt.edu/cosmic
•GME is available from www.isis.vanderbilt.edu/Projects/gme/default.htm

www.omg.org/news/meetings/tc/
agendas/mic.htm

Many hard R&D problems with model-driven engineering remain unresolved!!


