
1

MDE4DRE: Model Driven Engineering forMDE4DRE: Model Driven Engineering for

Distributed RealDistributed Real--time & Embedded Systemstime & Embedded Systems
Dr. Aniruddha S. Gokhale

a.gokhale@vanderbilt.edu
Assistant Professor, EECS

Vanderbilt University

(with Sumant Tambe, James Hill)

Vanderbilt University
Nashville, Tennessee

Institute for Software
Integrated Systems

Presented at IEEE/ACM MoDELS 2007
Nashville, TN

Oct 1, 2007

www.dre.vanderbilt.edu

Sponsors: DARPA PCES, DARPA ARMS, NSF CSR-SMA, Raytheon, LMCO, Siemens, BBN, Telcordia

2

Tutorial Outline

1. Introduction
2. The Basics
3. Case Studies
4. Assembly & Packaging
5. QoS Modeling and Analysis
6. Deployment Planning
7. Middleware Configuration
8. Continuous QoS Validation
9. Middleware Customization
10.Future directions/Work-in-progress
11.Concluding Remarks

Images in several figures in this tutorial were downloaded from the web

2

3

Distributed Real-time & Embedded (DRE) Systems

• Network-centric and large-scale “systems of systems”
• e.g., industrial automation, emergency response

• Different communication semantics
• e.g., pub-sub

• Satisfying tradeoffs between multiple (often conflicting)
QoS demands
• e.g., secure, real-time, reliable, etc.

• Regulating & adapting to (dis)continuous changes in
runtime environments
• e.g., online prognostics, dependable upgrades,

keep mission critical tasks operational, dynamic
resource mgmt

DRE systems increasingly adopting
service oriented architectures

4

Variability in the solution space
(systems integrator role)

•Diversity in platforms,
languages, protocols & tool
environments

•Enormous accidental &
inherent complexities

•Continuous evolution & change

Challenges in Realizing DRE Systems
Variability in the problem space
(domain expert role)

•Functional diversity
•Composition, deployment and
configuration diversity

•QoS requirements diversity

Mapping problem artifacts
to solution artifacts is hard

3

5

•Components encapsulate application
“business” logic

•Components interact via ports
•Provided interfaces, e.g., facets
•Required connection points, e.g.,
receptacles

•Event sinks & sources
•Attributes

•Containers provide execution
environment for components with
common operating requirements

•Components/containers can also
•Communicate via a middleware
bus and

•Reuse common middleware
services

SecurityReplication NotificationPersistence

SchedulingA/V Streaming Load Balancing

…

Container

… …

Middleware Bus

Container

…

Technology Enablers for DRE systems:
Component Middleware
“Write Code That Reuses Code”

6

Challenges in Component-based DRE Systems

…

specification

… …

composition & packaging

analysis, validation & verification, testing
configuration &

optimization

deployment planning &
QoS provisioning

4

7

Solution Approach: Model Driven Engineering (MDE)

• Develop, validate, &
standardize generative
software technologies that:
1. Model
2. Analyze
3. Synthesize &
4. Provision

multiple layers of middleware
& application components
that require simultaneous
control of multiple quality of
service properties end-to-end

• Specialization is essential for
inter-/intra-layer optimization &
advanced product-line
architectures

Middleware

Middleware
Services

DRE Applications

Operating Sys
& Protocols

Hardware &
Networks

<CONFIGURATION_PASS>
<HOME> <…>

<COMPONENT>
<ID> <…></ID>
<EVENT_SUPPLIER>
<…events this

component supplies…>
</EVENT_SUPPLIER>
</COMPONENT>
</HOME>

</CONFIGURATION_PASS>

<CONFIGURATION_PASS>
<HOME> <…>

<COMPONENT>
<ID> <…></ID>
<EVENT_SUPPLIER>
<…events this

component supplies…>
</EVENT_SUPPLIER>
</COMPONENT>
</HOME>

</CONFIGURATION_PASS>

Goal is not to replace programmers per se – it is to provide higher-level
domain-specific languages for middleware/application developers & users

8

Specification & Implementation
• Defining, partitioning, & implementing appln functionality as
standalone components

Assembly & Packaging
• Bundling a suite of software binary modules & metadata
representing app components

Installation
• Populating a repository with packages required by app

Configuration
• Configuring packages with appropriate parameters to satisfy
functional & systemic requirements of an application without
constraining to physical resources

Planning
• Making deployment decisions to identify nodes in target
environment where packages will be deployed

Preparation
• Moving binaries to identified entities of target environment

Launching
• Triggering installed binaries & bringing appln to ready state

QoS Assurance & Adaptation
• QoS validation, runtime (re)configuration & resource
management to maintain end-to-end QoS

OMG Deployment &
Configuration (D&C)

specification (ptc/05-01-07)

Leveraging Standards: OMG D&C Specification

5

9

Our MDE Solution: CoSMIC Tool chain

Component

Resource
Requirements

Imp
l

Imp
l

Imp
l

Properties

Component
 Assembler

Component
Assembly

Component Component

Component Component

Component Package

Component
Assembly

Component Component

Component Component

Component
Assembly

Component Component

Component Component

(2) assembles
(6) deployment

Assembly

Deployment
Application

Assembly

Assembly

CoSMIC

Analysis & Benchmarking

packaging

specification

configuration

feedback

(7) analysis &
benchmarking

(PICML)

(Cadena & BGML)

DAnCE
Framework

(5)
planning

Component
 Developer

RACE Framework

),...,(21 nxxxfy

Deployment
Planner

Component
 Packager

Component
 Configurator

System
analyzer

Component
Deployer

• CoSMIC tools e.g., PICML used to model application components, CQML for QoS
• Captures the data model of the OMG D&C specification
• Synthesis of static deployment plans for DRE applications
• Capabilities being added for QoS provisioning (real-time, fault tolerance, security)

CoSMIC can be downloaded at www.dre.vanderbilt.edu/cosmic

Part 1
The Basics

Underlying Tools & Technologies

6

11

MDE Tool
Developer
(Metamodeler)

Application
Developers
(Modelers)

Technology Enabler: Generic Modeling
Environment (GME)

www.isis.vanderbilt.edu/Projects/gme/default.htm

“Write Code That Writes Code That Writes Code!”

Decorator Decorator

GModel GMeta

CORE

MetamodelXML

Paradigm Definition

Storage Options… DB #nDB #1 XML …

UML / OCL

COM

COMCOM

XML

XML

ODBC

Constraint
ManagerBrowser

Translator(s)Add-On(s)

GME Editor

GME Architecture

Goal: Correct-by-construction DRE systems

12

•Tool developers use
MetaGME to develop a
domain-specific
graphical modeling
environment

•Define syntax &
visualization of the
environment via
metamodeling

MDE Tool Development in GME

7

13

•Tool developers use
MetaGME to develop a
domain-specific
graphical modeling
environment

•Define syntax &
visualization of the
environment via
metamodeling

•Define static
semantics via Object
Constraint Language
(OCL)

MDE Tool Development in GME

14

•Tool developers use
MetaGME to develop a
domain-specific
graphical modeling
environment

•Define syntax &
visualization of the
environment via
metamodeling

•Define static
semantics via Object
Constraint Language
(OCL)

•Dynamic semantics
implemented via
model interpreters

MDE Tool Development in GME

8

15

•Tool developers use
MetaGME to develop a
domain-specific
graphical modeling
environment

•Define syntax &
visualization of the
environment via
metamodeling

•Define static
semantics via Object
Constraint Language
(OCL)

•Dynamic semantics
implemented via
model interpreters

MDE Tool Development in GME

16

•Application
developers use
modeling environments
created w/MetaGME to
build applications
•Capture elements &
dependencies
visually

MDE Application Development with GME

9

17

•Application
developers use
modeling environments
created w/MetaGME to
build applications
•Capture elements &
dependencies
visually

MDE Application Development with GME

18

•Application
developers use
modeling environments
created w/MetaGME to
build applications
•Capture elements &
dependencies
visually

•Model interpreter
produces something
useful from the
models
•e.g., code,
simulations,
deployment
descriptions &
configurations

<connection>
 <name>compressionQosPredictor_qosLevels</name>
 <internalEndpoint>
 <portName>qosLevels</portName>
 <instance xmi:idref="CompressionQosPredictor_F3C2CBE0-B2CE-46CC-B446-
F64D91B44E56"/>
 </internalEndpoint>
 <internalEndpoint>
 <portName>compressionQosPredictor</portName>
 <instance xmi:idref="LocalResourceManagerComponent_7EF8B77A-F5EA-
4D1A-942E-13AE7CFED30A"/>
 </internalEndpoint>
 </connection>
 <connection>
 <name>scalingQosPredictor_qosLevels</name>
 <internalEndpoint>
 <portName>qosLevels</portName>
 <instance xmi:idref="ScaleQosPredictor_F3024A4F-F6E8-4B9A-BD56-
A2E802C33E32"/>
 </internalEndpoint>
 <internalEndpoint>
 <portName>scalingQosPredictor</portName>
 <instance xmi:idref="LocalResourceManagerComponent_7EF8B77A-F5EA-
4D1A-942E-13AE7CFED30A"/>
 </internalEndpoint>
 </connection>

ima
inc
cur

out

CropQosket
[CropQosket]

qos

CroppingQosPredictor
[CroppingQosPredictor]

pol
res
inc
com
sca
cro

ima
out
cro
sca
com

dif
cpu

LocalResourceManagerComponent
[LocalResourceManagerComponent]

ima
inc
cur

out

CompressQosket
[CompressQosket]

ima
sen out

Sender
[Sender]

qos

CompressionQosPredictor
[CompressionQosPredictor]

qos

ScaleQosPredictor
[ScaleQosPredictor]

ima
inc
cur

out

ScaleQosket
[ScaleQosket]

cpu

CPUBrokerComponent
[CPUBrokerComponent]

inc out

LocalReceiver
[LocalReceiver]

PolicyChangeEvt

ResourceAllocationEvt

ImageGenerationEvt

ima
inc
cur

out

DiffServQosket
[Dif fServQosket]

delegatesTo

delegatesTo

emit

invoke

invoke

invoke
invoke

invoke

emit emit emit
invoke

invoke
invoke

emit

delegatesTo

MDE Application Development with GME

10

Part 2
Case Studies

Bold Stroke
Robot Assembly

NASA Space Mission
Shipboard Computing

Modern Office
Stock Application

20

Nav Sensors

Expendable
Management

Data LinksMission
Computer

Vehicle
Mgmt

Expendables

• Avionics mission computing product-line
architecture for Boeing aircraft, e.g., F-18 E/F,
15E, Harrier, UCAV

• DRE system with 100+ developers, 3,000+
software components, 3-5 million lines of C++
code

• Based on COTS hardware, networks,
operating systems, & middleware

• Used as Open Experimentation
Platform (OEP) for DARPA IXO PCES,
MoBIES, SEC, MICA programs

Bold
Stroke
Architecture

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Radar

DRE System Example 1: Boeing Bold Stroke

11

21

Nav Sensors

Expendable
Management

Data LinksMission
Computer

Vehicle
Mgmt

Expendables

Bold
Stroke
Architecture

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Radar

DRE System Example 1: Boeing Bold Stroke

22

DRE System Example 2: Robot Assembly

Radio

Conveyor
Power Switching

Unit

Control Station

Switches

Clock
Handler

Human
Machine

Interface*

Management
Work

Instructions

Disk Storage

Storage
Device

Controller

Watch
Setting

Manager*

Robot
Manager*

Pallet
Conveyor
Manager

Conveyor
Drive System

Pallet
Present

Pallet
Release
Switch

Off Enable

Fast

Off Enable

Discretes

Assembly
Area

Intrusion

Intrusion Alarm

Robot in
Work
Area

12

23

DRE System Example 3: NASA MMS Mission
• NASA’s Magnetospheric MultiScale

(MMS) space mission consists of
four identically instrumented
spacecraft & a ground control
system
• Collect mission data
• Send it to ground control at

appropriate time instances

Spacecraft 1

Sensor
Suite
(Linux
node)

Bus
Processor
(VxWorks

Node)

Ethernet (802.3)Ethernet (802.3)

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Payload Processor
(Linux Node)

Gizmo
AgentGizmo
AgentGizmo
AgentGizmo
Agent

Algorithm

Algorithm

Exec
Agent

Comm
Agent

Science
Agent

Exec
Agent

Comm
Agent

GNC
Agent

• MMS application
components are bundled
together into hierarchical
assemblies

• Assembly package
metadata conveys
component interconnections
& implementation
alternatives

24

DRE System Example 4: Shipboard Computing

• SLICE scenario
depicts an application
workflow

• Use case drawn from DARPA
ARMS program

• Dynamic resource management
for mission critical applications

• Multiple application workflows
replicated in multiple data
centers

13

25

DRE System Example 5: Modern Office
• Office traffic operates over IP

networks & Fast Ethernets
• Multiple application flows:

• Email
• Videoconferencing
• Sensory (e.g., fire alarms)

• Differing network QoS
requirements
• Fire alarm – highest priority
• Surveillance – multimedia
• Temperature sensing – best

effort
• QoS provisioned using DiffServ

Network QoS Provisioning Steps
1. Specify network QoS requirements for each application flow
2. Allocate network-level resources and DiffServ Code Points (DSCP) for

every application flow joining two end points
3. Mark outgoing packet with the right DSCP values

26

DRE System Example 6: Distributed Stock Application

Usage Patterns by User Type
Response Time (msec)PercentageType

15035%Gold (Client B)
30065%Basic (Client A)

Design & Implementation
• Functionality developed as components
• Target architectures include multiple different nodes.
• Each component in the DSA is scheduled to complete its development at

different times in development lifecycle

14

Part 3
Modeling DRE Application Workflows

Assembly & Packaging

28

Assembly & Packaging Problem

•Application components are bundled
together into assemblies

•Several different assemblies tailored
towards delivering different end-to-
end QoS and/or using different
algorithms can be part of the package
•e.g., large-scale DRE systems
require 100s-1,000s of components

•Packages describing the components
& assemblies can be scripted via
XML descriptors

15

29

Assembly & Packaging Challenges (1/2)

RT Event
Channel

Ad hoc techniques for ensuring component
syntactic & semantic compatibility

Distribution &
deployment done in
ad hoc manner

Ad hoc means to
determine event
notification support

30

Assembly & Packaging Challenges (2/2)

<!– Associate components with impls -->
<componentfiles>

<componentfile id=“RateGenerator">
<fileinarchive name=“HouseRateGen.csd"/>

</componentfile>

<componentfile id=“HiResGPS">
<fileinarchive name=“aGPS.csd"/>

</componentfile>

<componentfile id=“cockpitDisplay">
<fileinarchive name=“navDisplay-if.csd"/>

</componentfile>

</componentfiles>

XML file in
excess of 3,000
lines, even for
medium sized
scenarios

Existing practices
involve handcrafting
XML descriptors

Modifications to the
assemblies requires
modifying XML file

16

31

• Platform-Independent Component
Modeling Language (PICML)

• Developed in Generic Modeling
Environment (GME)

• Core of Component Synthesis using
Model-Integrated Computing (CoSMIC)
tool chain

• Capture elements & dependencies
visually

• Define “static semantics” using Object
Constraint Language (OCL)

• Define “dynamic semantics” via model
interpreters
• Also used for generating domain

specific meta-data
• “Correct-by-construction”

CoSMIC MDE Solution for Assembly & Packaging

32

Example Metadata Generated by PICML
• Component Interface Descriptor (.ccd)

• Describes the interface, ports, properties of a single
component

• Implementation Artifact Descriptor (.iad)
• Describes the implementation artifacts (e.g., DLLs, OS, etc.)

of one component
• Component Package Descriptor (.cpd)

• Describes multiple alternative implementations of a single
component

• Package Configuration Descriptor (.pcd)
• Describes a configuration of a component package

• Top-level Package Descriptor (package.tpd)
• Describes the top-level component package in a package

(.cpk)
• Component Implementation Descriptor (.cid)

• Describes a specific implementation of a component
interface

• Implementation can be either monolithic- or assembly-based
• Contains sub-component instantiations in case of assembly

based implementations
• Contains inter-connection information between components

• Component Packages (.cpk)
• A component package can contain a single component
• A component package can also contain an assembly

Based on OMG (D&C)
specification (ptc/03-06-03)

17

33

Example Output from PICML

<!–-Component Implementation Descriptor(.cid) associates components
with impl. artifacts-->
<Deployment:ComponentImplementationDescription>

<label>GPS Implementation</label>

<UUID>154cf3cd-1770-4e92-b19b-8c2c921fea38</UUID>

<implements href="GPS.ccd"/>

<monolithicImpl>

<primaryArtifact>

<name>GPS Implementation artifacts</name>

<referencedArtifact href="GPS.iad"/>

</primaryArtifact>

</monolithicImpl>

</Deployment:ComponentImplementationDescription>

<ComponentAssemblyDescription id="a_HUDDisplay">
...
<connection>
<name>GPS-RateGen</name>
<internalEndPoint>

<portName>Refresh</portName>
<instance>a_GPS</instance>

</internalEndPoint>
<internalEndPoint>

<portName>Pulse</portName>
<instance>a_RateGen</instance>

</internalEndPoint>
</connection>
<connection>
<name>NavDisplay-GPS</name>
<internalEndPoint>

<portName>Refresh</portName>
<instance>a_NavDisplay</instance>

</internalEndPoint>
<internalEndPoint>

<portName>Ready</portName>
<instance>a_GPS</instance>

</internalEndPoint>
</connection>

...
</ComponentAssemblyDescription>

• Describes a specific implementation of a component
interface

• Contains inter-connection information between
components

A Component Implementation Descriptor (*.cid) file

Part 4
DRE System QoS Management

QoS Modeling

18

35

Sources of Variability Impacting QoS (1/3)

• Per-component concerns
• Problem space: Functionality often supplied as third party COTS
• Solution space: Implementations for different platforms and languages
• P->S mapping challenges:

• Implementations must match platform and language choice
• Choice of implementation impacts end-to-end QoS

• Communication concerns
• Problem space: Choice of communication paradigms (pub-sub, RPC, MOM)

and requirements on QoS
• Solution space: Diversity in communication mechanisms e.g., CORBA IIOP,

Java RMI, DDS, Event channels, and QoS mechanisms e.g., DiffServ,
IntServ, MPLS

• P->S mapping challenges:
• Decoupling application logic from provisioning communication QoS
• Right optimizations in communication paths needed to enhance QoS
• Redundancy and mixed mode communications needed to support QoS

• Understand the sources of variability in the
problem/solution space that impacts QoS

• Find solutions to automate the mapping of
the problem space to solution space

36

Sources of Variability Impacting QoS (2/3)

• Assembly concerns
• Problem space: Discovering services and composing them together
• Solution space: Interfaces and their semantics must match
• P->S mapping challenges:

• Must ensure functional and systemic compatibility in composition
• Heterogeneity in platforms and languages in composition impacts QoS

• Deployment concerns
• Problem space: Need resources e.g., CPU, memory, bandwidth, storage
• Solution space: Diversity in resource types and their configurations
• P->S mapping challenges:

• How to select and provision resources such that end-to-end QoS is realized?
• How to (re)allocate resources to maintain end-to-end QoS?
• How to place components so that near optimal QoS tradeoffs are made?
• How to allow sharing of components or assemblies?

19

37

Sources of Variability Impacting QoS (3/3)

• Configuration concerns
• Problem space: Multiple QoS requires right set of configurations

• What is the unit of failover? What is the replication degree? Are entire assemblies
replicated?

• How to define access control rights?
• Determining system task partitioning, schedulability
• Defining network resource needs

• Solution space: Platforms provide high degree of configuration flexibility
• P->S mapping challenges:

• What configuration options control a specific dimension of QoS?
• How do different configuration options interact with each other?
• How to configure heterogeneous platforms?
• What impact deployment decisions have on configurations?

38

A Single Perspective: Tangling of QoS Issues

Lifecycle-wide separation of
concerns (SoC) & variability

management is the key

• Demonstrates numerous
tangled para-functional
concerns

• Significant sources of
variability that affect end-
to-end QoS

• QoS concerns tangled
across system lifecycle

Design-time Deployment-time Run-time

20

39

Requirements of a Solution Approach
• Need expressive power to define QoS

intent in the problem space, and
perform design-time analysis
• e.g., network QoS needs of

application flows or end-to-end
latencies

• Need to decouple DRE system
functionality from systemic capabilities
in the solution space
• e.g., decouple robot manager logic

from fault tolerance configurations
• Need to automate the mapping from

problem to solution space
• e.g., automate the (re)deployment

and (re)configuration of system
functionality to maintain QoS

• Need to provide a hosting platform with
dynamic adaptation capabilities
• e.g., survivability management of

robot manager

40

Component QoS Modeling Language (CQML)

• 4 types of QoS modeling
capabilities
• Real-time
• Fault tolerance
• Security
• Network QoS

• Developed as overlay on a
composition modeling
language

• Facility to integrate behavioral
modeling

• Unified internal mechanism for
QoS integration

• Pluggable back end analysis
tools for QoS tradeoff analysis
• e.g., Times tool

Objectives:
• Express QoS design intent
• Model crosscutting QoS concerns
• Perform design-time QoS tradeoff

analysis

Capabilities:
• Intuitive QoS abstractions
• Separation as well as unification

of QoS concerns

21

41

container/component servercontainer/component server“Client” primary IOR

Primary FOUPrimary FOU

A B C

Example of Failover Unit Intent

container/component servercontainer/component server container/component servercontainer/component server

Replica FOUReplica FOU

A’ B’ C’

secondary IOR

container/component servercontainer/component server container/component servercontainer/component server container/component servercontainer/component server

Primary
Component

Replica
Component

42

CQML FT Modeling Abstractions

• Fail-over Unit (FOU): Abstracts away
details of granularity of protection (e.g.
Component, Assembly, App-string)

• Replica Group (RPG): Abstracts away
fault-tolerance policy details (e.g.
Active/passive replication, state-
synchronization, topology of replica)

• Shared Risk Group (SRG): Captures
associations related to risk. (e.g. shared
power supply among processors, shared
LAN)

Protection granularity
concerns

State-synchronization
concerns

Component Placement
constraints

Replica Distance
Metric

Model Interpreter (component placement
constraint solver): Encapsulates an algorithm for
component-node assignment based on replica
distance metric

QoS Enhancements to PICML (Platform
Independent Component Modeling Language)
Metamodel

22

43

CQML RT & NetQoS Modeling Abstractions
• Real-time modeling provided by the RT-Model

element
• Leverages known patterns of real-time

programming usage:
• e.g., real-time CORBA

• Enables modeling of:
• Priority models
• Banded connections
• Thread pools
• Thread pools with Lanes
• Resources e.g., CPU, memory

• Network QoS modeling allows modeling QoS per
application flow
• Classification into high priority, high

reliability, multimedia and best effort classes
• Enables bandwidth reservation in both

directions
• Client propagated or server declared models

44

CQML Security Modeling Abstractions
• Focus on role based access

control
• Fine-grained:

• Interface Operation
• Assembly Property
• Component Attribute

• Coarse-grained:
• Interface
• Set of Operations
• Class of Operations (based

on Required Rights -
corba:gsum)

• Inter-Component Execution
Flow (Path in an Assembly)

23

45

5. Distance-based constraint algorithm determines replica placement in
deployment descriptors.

GME/PICMLGME/PICML

1. Model components and application strings in PICML
2. e.g., Model Fail Over Units (FOUs) and Shared Risk Groups

(SRGs) using CQML
3. Generate deployment plan

4. Interpreter automatically injects
replicas and associated CCM
IOGRs

Modeling & Generative Steps in CQML

Model Model
InformationInformation

Domain,
Deployment,

SRG, and FOU injection

Replica Placement
Algorithm

model
FT InterpreterFT Interpreter

Augmented Augmented
Deployment Deployment

PlanPlan

46

Example: FT Requirements Modeling in CQML
Component FOU

Replication Style = Active

Replica = 3
Min Distance = 4

Deployment
plan to be

augmented

Shared Risk
Group (SRG)

hierarchy

LEGEND

FOU: Fail Over
Unit

SRG: Shared Risk
Group

24

47

Automated Sample FT QoS Provisioning
• Automatic Injection of replicas

• Augmentation of
deployment plan based
on number of replicas

• Automatic Injection of FT
infrastructure components
• E.g. Collocated

“heartbeat” (HB)
component with every
protected component.

• Automatic Injection of
connection meta-data
• Specialized connection

setup for protected
components (e.g.
Interoperable Group
References IOGR)

HB

Container

48

container/component servercontainer/component server

FPCFPC

“client”

periodic FPC heartbeat

primary IOR

Primary FOUPrimary FOU

A

HB

container/component servercontainer/component server

B
container/component servercontainer/component server

C

container/component servercontainer/component server

Replica FOUReplica FOU

A’
container/component servercontainer/component server

B’
container/component servercontainer/component server

C’

secondary IOR

IO
G

R

FPCFPC

HB HB

intra-FOU
heartbeat

HB
HB HB

Automated Heartbeat Component Injection

Primary
Component

Replica
Component

Collocated
heartbeat

component

Connection
Injection

25

49

Example: NetQoS Modeling in CQML

• Expressing QoS intent for application flows
• Multiple connections sharing QoS can use same

element

50

QoS Analysis Challenges

How do you
determine
current resource
allocations?

How do you ensure that
the selected targets will
deliver required QoS

How do you correlate QoS
requirements of packages
to resource needs

How to analyze and tradeoff the modeled QoS requirements?

26

51

CQML QoS Unification & Tradeoff Analysis

• Leverages QoS and behavioral models
• Model interpretation using an EventBus framework
• Each QoS dimension publishes its modeled QoS requirements
• A particular QoS dimension is chosen as the driver e.g., real-time

• Acts as subscriber of events generated by other dimensions
• Driver interpreter integrates other QoS dimensions making tradeoffs

on the way
• Pluggable back end analysis and generative tools

52

Example: QoS Tradeoff Analysis using TIMES tool

• CQML EventBus architecture weaves in FT and Security concerns
into RT concerns

• Feeds to backend schedulability analysis tools e.g., Times

27

Part 5
DRE System Deployment Planning

Placement Algorithms

54

Deployment Planning Problem

Determine current
resource allocations
on target platforms

Select the
appropriate
package to
deploy on
selected target

Select appropriate target
platform to deploy
packages

Component integrators must make appropriate deployment
decisions, including identifying the entities (e.g., CPUs) of
the target environment where the packages will be deployed

28

55

DataCenter1_SRGDataCenter1_SRG DataCenter2_SRGDataCenter2_SRG

Rack1_SRGRack1_SRG Rack2_SRGRack2_SRG Node1Node1
(blade31)(blade31)

Node2Node2
(blade32)(blade32)

Shelf1_SRGShelf1_SRG Shelf2_SRGShelf2_SRG

Blade30Blade30

Ship_SRGShip_SRG

Blade34Blade34 Blade29Blade29

Shelf1_SRGShelf1_SRG

Blade36Blade36Blade33Blade33

Example of Shared Risk Group Intent

56

R1

P

R2

R3

Define N orthogonal vectors, one for each of the distance values
computed for the N components (with respect to a primary) and vector-
sum these to obtain a resultant. Compute the magnitude of the resultant
as a representation of the composite distance captured by the placement
.

Example Replica Placement Algorithm

1. Compute the distance from each of the replicas to the
primary for a placement.

2. Record each distance as a vector, where all vectors are
orthogonal.

3. Add the vectors to obtain a resultant.
4. Compute the magnitude of the resultant.
5. Use the resultant in all comparisons (either among

placements or against a threshold)
6. Apply a penalty function to the composite distance (e.g. pair

wise replica distance or uniformity)

29

57

Node2Node2
(blade32)(blade32)

Shelf1_SRGShelf1_SRG

Ship_SRGShip_SRG

Blade34Blade34 Blade36Blade36
Replica

1

Primary

Replica
2

Replica
3

Composite Composite
DistanceDistance

Blade30Blade30

Node1Node1
(blade31)(blade31)

DataCenter2_SRGDataCenter2_SRGDataCenter1_SRGDataCenter1_SRG

Rack1_SRGRack1_SRG Rack2_SRGRack2_SRG

Shelf1_SRGShelf1_SRGShelf2_SRGShelf2_SRG

Blade29Blade29 Blade33Blade33

Example: Automated Component Placement

Part 6
Configuring Middleware for DRE Systems

Middleware Configuration Options

30

59

Translating QoS Policies to QoS Options

59

Prioritized service invocations
(QoS Policy) must be mapped
to Real-time CORBA Banded
Connection (QoS configuration)

• Large gap between application QoS policies & middleware QoS
configuration options
• Bridging this gap is necessary to realize the desired QoS policies

• The mapping between application-specific QoS policies & middleware-
specific QoS configuration options is non-trivial, particular for large systems

60

Challenge 1: Mapping QoS Policies to QoS Options

60

• Conventional
mapping approach
requires deep
understanding of the
middleware
configuration space
• e.g., multiple

types/levels of QoS
policies require
configuring
appropriate number
of thread pools,
threadpool lanes
(server) & banded
connections (client)

Protocol
Properties

Explicit Binding

Client Propagation & Server Declared Priority Models

Portable Priorities

Thread Pools

Static Scheduling
Service

Standard
Synchonizers

Request
Buffering

31

61

The Multilayer Configuration Problem
Configuration
of components
& assemblies

Configuration of
component
containers

Configuration of
the middleware bus

Configuration of
component server

Configuration of
event notifiers

•Component-based
software must be
configurable at many
levels
•e.g., application
components &
containers, component
servers, & middleware
services &
infrastructure

62

Example: The M/W Bus Configuration
Component middleware is characterized by a large configuration
space that maps known variations in the application requirements

space to known variations in the middleware solution space

Hook for the
concurrency
strategy

Hook for
the request
demuxing
strategy

Hook for
marshaling
strategy

Hook for the
connection
management
strategy

Hook for the
underlying
transport
strategy

Hook for the event
demuxing strategy

32

63

Challenge 2: Choosing QoS Option Values

63

• Individually configuring component QoS options is tedious & error-prone
• e.g., ~10 distinct QoS options per component & ~140 total QoS

options for entire NASA MMS mission prototype
• Manually choosing valid values for QoS options does not scale as size &

complexity of applications increase

64

server object
management
middleware

Example: Configuring Container Policies

•Existing techniques for
metadata configurations
rely on ad hoc manual
configurations e.g.,
CORBA server-side
programming

Determine the server object
management policies

Determine right buffer sizes

Determine thread pool
sizes; how are they
shared; number of lanes
and their priorities; if
borrowing is enabled

Determine various
middleware policies
for server objects e.g.,
security, lifetime,
replication

•This “glue code” is
traditionally handcrafted

Ensure semantic
compatibility among
chosen configurations

Determine end-to-end
priority propagation
model to use

33

65

Challenge 3: Validating QoS Options

65

• Each QoS option value chosen should be validated
• e.g., Filter priority model is CLIENT_PROPAGATED, whereas Comm

priority model is SERVER_DECLARED
• Each system reconfiguration (at design time) should be validated

• e.g., reconfiguration of bands of Analysis should be validated such that
the modified value corresponds to (some) lane priority of the Comm

66

Challenge 4: Resolving QoS Option Dependencies

• “QoS option dependency” is defined as:
• Dependency between QoS options of different components

• Manually tracking dependencies is hard – or in some cases infeasible
• Dependent components may belong to more than one assembly
• Dependency may span beyond immediate neighbors
– e.g., dependency between Gizmo & Comm components

• Empirically validating configuration changes by hand is tedious, error-
prone, & slows down development & QA process considerably

• Several iterations before desired QoS is achieved (if at all)

66

ThreadPool priorities of
Comm should match
priority bands defined
at Gizmo

34

67 67

Solution Approach: Model-Driven QoS Mapping
• QUality of service

pICKER (QUICKER)
• Model-driven

engineering
(MDE) tools model
application QoS
policies

• Provides
automatic
mapping of QoS
policies to QoS
configuration
options

• Validates the
generated QoS
options

• Automated QoS mapping & validation tools can be used iteratively
throughout the development process

68

• Enhanced Platform
Independent Component
Modeling Language
(PICML), a DSML for
modeling component-
based applications

• QoS mapping uses
Graph Rewriting &
Transformation (GReAT)
model transformation
tool

• Customized Bogor
model-checker used to
define new types &
primitives to validate
QoS options

68

QUICKER Enabling MDE Technologies

35

69

• Enhanced Platform
Independent Component
Modeling Language
(PICML), a DSML for
modeling component-
based applications

• QoS mapping uses
Graph Rewriting &
Transformation (GReAT)
model transformation
tool

• Customized Bogor
model-checker used to
define new types &
primitives to validate
QoS options

69

QUICKER Enabling MDE Technologies

• CQML Model interpreter generates Bogor Input Representation (BIR) of DRE
system from its CQML model

CQML Model
Interpreter

Bogor Input
Representation

70 70

QUICKER: Transformation of QoS policies(1/2)

RequirementProxy
can be per
component or
assembly instance

1. Platform-Independent
Modeling Language
(PICML) represents
application QoS policies
• PICML captures policies

in a platform-
independent manner

• Representation at
multiple levels
• e.g., component- or

assembly-level

36

71 71

QUICKER: Transformation of QoS policies(1/2)
1. Platform-Independent

Modeling Language
(PICML) represents
application QoS policies
• PICML captures policies

in a platform-
independent manner

• Representation at
multiple levels
• e.g., component- or

assembly-level

2. Component QoS Modeling
Language (CQML)
represents QoS options
• CQML captures QoS

configuration options in a
platform-specific manner

72 72

3. Translation of application
QoS policies into middleware
QoS options
• Semantic translation rules

specified in terms of input
(PICML) & output (CQML)
type graph
• e.g., rules that translate

multiple application
service requests & service
level policies to
corresponding middle-
ware QoS options

• QUICKER transformation
engine maps QoS policies
(in PICML) to QoS
configuration options (in
CQML)

QUICKER: Transformations of QoS policies(2/2)

Pr
ov

id
er

Se
rv

ic
e

R
eq

ue
st

Provider Service Levels

Level 1
Level 2
Level 3

Multiple Service Requests Service Levels

Priority Model Policy
Thread Pool Lanes

37

73 73

QUICKER: Validation of QoS Options (1/2)
1. Representation of middleware QoS

options in Bogor model-checker
• BIR extensions allow representing

domain-level concepts in a system
model

• QUICKER defines new BIR
extensions for QoS options
• Allows representing QoS options &

domain entities directly in a Bogor
input model
– e.g., CCM components, Real-

time CORBA lanes/bands are
first-class Bogor data types

• Reduces size of system model by
avoiding multiple low-level
variables to represent domain
concepts & QoS options

74 74

2. Representation of properties (that
a system should satisfy) in Bogor
• BIR primitives define language

constructs to access &
manipulate domain-level data
types, e.g.:
• Used to define rules that validate

QoS options & check if property
is satisfied

3. Automatic generation of BIR of
DRE system from CQML models

QUICKER: Validation of QoS Options (2/2)

Rule determines if ThreadPool priorities
at Comm match priority bands at Analysis

Model interpreters auto-generate
Bogor Input Representation of a
system from its CQML model

38

75

Soln: Translating Policies to Options (1/2)

75

• Expressing QoS policies
• PICML modes application-level QoS policies at high-level of abstraction

• e.g., multiple service levels support for Comm component, service
execution at varying priority for Analysis component

• Reduces modeling effort
• e.g., ~25 QoS policy elements for MMS mission vs. ~140 QoS options

76

Soln: Translating Policies to Options (2/2)
• Mapping QoS policies to

QoS options
• GReAT model

transformations automate
the tedious & error-prone
translation process

• Transformations generate
QoS configuration options
as CQML models
• Allow further

transformation by other
tools
• e.g., code optimizers &

generators

• Simplifies application
development & enhances
traceability

76

39

77

Soln: Ensuring QoS Option Validity
• CQML model

interpreter
generates BIR
specification from
CQML models

• BIR primitives
used to check
whether a given
set of QoS options
satisfies a system
property
• e.g., fixed

priority service
execution, a property of Comm
component

• Supports iterative validation of
QoS options during QoS
configuration process

77

QUICKER

78

Soln: Resolving QoS Option Dependencies

• Change(s) in QoS options of dependent component(s) triggers detection of
potential mismatches
• e.g., dependency between Gizmo invocation priority & Comm lane priority

78

• Dependency
structure
maintained in
Bogor used to
track
dependencies
between QoS
options of
components, e.g.:
• Analysis &

Comm are
connected

• Gizmo &
Comm are
dependent

Detect mismatch if
either values change

Dependency Structure of MMS Mission Components

40

Part 7
Continuous System QoS Validation using

“What If” Analysis

MDE for Analysis and Emulation Techniques

80

Application components
developed after

infrastructure is mature

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n

System
infrastructure
components

developed first

Serialized Phasing in DRE Systems (1/2)

41

81

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n

Integration
Surprises!!!

System integration
& testing

Finished development

Serialized Phasing in DRE Systems (2/2)

82

Complexities of Serialized Phasing

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n

Still in development

Ready for testing
Complexities
• System infrastructure cannot be

tested adequately until applications
are done

42

83

Complexities of Serialized Phasing

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n
Overall performance?

Complexities
• System infrastructure cannot be

tested adequately until applications
are done

• Entire system must be deployed &
configured properly to meet QoS
requirements

• Existing evaluation tools do not
support “what if” evaluation

It is hard to address these concerns in processes that use serialized phasing

84

QoS Concerns with Serialized Phasing
Meet QoS

requirements?

Key QoS concerns
• Which D&C’s meet the QoS

requirements?

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n

43

85

QoS Concerns with Serialized Phasing
Performance

metrics?

Key QoS concerns
• Which D&C’s meet the QoS

requirements?
• What is the worse/average/best

time for various workloads?

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n

86

QoS Concerns with Serialized Phasing

It is hard to address these concerns in processes that use serialized phasing

Key QoS concerns
• Which D&C’s meet the QoS

requirements?
• What is the worse/average/best

time for various workloads?
• How much workload can the system

handle until its QoS requirements
are compromised?

System
overload?

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n

44

87

Approach: Emulate Behavior using Next Generation
System Execution Modeling Tools

While target system under development:
1. Use a domain-specific modeling

language (DSML) to define & validate
infrastructure specifications &
requirements

2. Use DSML to define & validate
application specifications &
requirements

3. Use middleware & MDE tools to
generate D&C metadata so system
conforms to its specifications &
requirements

4. Use analysis tools to evaluate &
verify QoS performance

5. Redefine system D&C & repeat

Enables testing on target infrastructure throughout the development lifecycle
http://www.dre.vanderbilt.edu/~hillj/docs/publications/CUTS-RTCSA06.pdf

Component Workload Emulator (CoWorkEr)
Utilization Test Suite (CUTS) Workflow

88

Distributed Stock Application Challenges

Challenges of Continuous QoS Validation
1. Emulating Business Logic: Emulated components must resemble their

counterparts in both supported interfaces & behavior
2. Realistic Mapping of Emulated Behavior: Behavior specification should

operate at a high-level of abstraction & map to realistic operations
3. Technology Independence: Behavior specification should not be tightly

coupled to a programming language, middleware platform, hardware
technology, or MDE tool

CCMMicrosoft .NET

Replaceable with
“real” component

Realistic behavior
& workload

Realistic user behavior

45

89

DSMLs for Continuous QoS Validation

Component Behavior Modeling Language (CBML)
• a high-level domain-specific modeling language for

capturing the behavior of components
• e.g., its actions & states

Workload Modeling Language (WML)

• a domain-specific modeling language
for capturing workload, & used to
parameterize the actions on CBML

CBML & WML were both developed using GME
(http://www.isis.vanderbilt.edu/projects/GME)

90

The Component Behavior Modeling Language
Context
• Component’s behavior can be

classified as: communication & internal
actions

• Need to define these actions as close
as possible to their real counterpart
(i.e., Challenge 1)

Research Contributions of CBML
• Based on the semantics of

Input/Output (I/O) Automata
• i.e., contains representative

elements
• Behavior is specified using a series of

action to state transitions
• Transitions have preconditions that

represent guards & effects have
postconditions that determine the new
state after an action occurs

• Variables are used to store state & can
be used within pre & postconditions

46

91

Domain-Specific Extensions to CBML
Context
• Some aspects of component-

based systems are not first-class
entities in I/O automata
• e.g., lifecycle events &

monitoring notification events
• Extended CBML (without affecting

formal semantics) to support
domain-specific extensions

Domain-Specific Extensions
• Environment events – input

actions to a component that are
triggered by the hosting system
rather than another component

• Periodic events - input actions
from the hosting environment that
occur periodically

environment

periodic

92

Ensuring Scalability of CBML
Context
• One of the main goals of higher-

level of abstraction is simplicity &
ease of use

• It is known that one of the main
drawbacks of automata languages
is scalability

Usability Extensions
• Composite Action – contains other

actions & helps reduce model
clutter

• Repetitions - determines how
many times to repeat an action to
prevent duplicate sequential
actions

• Log Action - an attribute of an
Action element that determines if
the action should be logged

Tool Specific – GME add-on that
auto-generates required elements
(e.g., states)

47

93

The Workload Modeling Language
Context
• CBML as a standalone language is

sufficient enough to capture
behavior of a component

• For emulation purposes, it does
not capture the reusable objects of
a component & its workload (i.e.,
Challenge 2)

Research Contributions of WML
• Middleware, hardware, platform, &

programming language
independent DSML

• Used to define workload
generators (workers) that contains
actions to represent realistic
operations

• Defined using a hierarchical
structure that resembles common
object-oriented programming
packaging techniques that are
consistent with conventional
component technologies

workload generator

executable actions

generic action

no payload

94

Integrating WML Models with CBML Models
Integration Enablers
• WML worker elements have

same model semantics as
variables

• WML actions have same
modeling semantics as CBML
actions

• Allows WML elements to be
used in CBML models

Context
• CBML & WML are standalone

DSMLs with a distinct purpose
– i.e., model behavior & workload,

respectively
• WML is designed to complement

CBML by providing CBML with
reusable operations that can map to
realistic operations

WML

CBML

WML action

48

95

Integrating Behavioral and Structural DSMLs
Context
• Structural DSML (e.g., the

Platform Independent Component
Modeling Language (PICML))
capture the makeup of
component-based systems

• There is no correlation between a
component’s ports & its behavior

Integration Enablers
• Defined a set of connector

elements that allow structural
DSMLs to integrate with (or
contain) CBML models

• Input ports directly connect to
Input Action elements

• Output actions have the same
name as their output port to
reduce model clutter
• i.e., prevent many to one

connections

input connections

output name

96

Code Generation for Emulation
Context
• The generation technique should

not be dependent on the underlying
technology

• Although we are targeting CUTS,
would should be able to generate
emulation code for any
benchmarking framework

Generation Enablers
• Emulation layer – represents the

application layer’s “business logic”
where elements in WML used to
parameterize CBML behavior are
mapped to this layer

• Template layer – acts as a bridge
between the upper emulation layer
& lower benchmarking layer to
allows each to evolve independently
of each other

• Benchmark layer – the actual
benchmarking framework (e.g.,
CUTS)

component method

emulationtemplate /
benchmarking

49

Part 8
Usecase-driven Middleware Optimizations

Feature Oriented CUStomizer (FOCUS)
&

Pattern Oriented Software Architecture
Modeling Language (POSAML)

98

F-15
product
variant

A/V 8-B
product
variant

F/A 18
product
variant UCAV

product
variant

Product-line
architecture

Optimizations for Product-line Architectures

•PLAs define a framework of components that adhere to a common
architectural style with a clean separation of commonalities and
appropriate provisions for incorporating variations

•Middleware factors out many reusable general-purpose & domain-specific
services from traditional DRE application responsibility

Air
Frame

AP
Nav

HUD GPS

IFF

FLIR

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)
OS & Network ProtocolsOS & Network Protocols

Host Infrastructure MiddlewareHost Infrastructure Middleware
Distribution MiddlewareDistribution Middleware

Common Middleware ServicesCommon Middleware Services
Domain-specific ServicesDomain-specific Services

Standards middleware is a key technology candidate for
supporting and sustaining vision of software product-lines

50

99

Middleware Structure & Functionality

• Standards-based COTS middleware
helps:
• Control end-to-end resources & QoS
• Leverage hardware & software
technology advances

• Evolve to new environments &
requirements

• Provide a wide array of reusable, off-
the-shelf developer-oriented services

• Problem
• Manually provisioning

middleware is tedious, error-
prone, & costly over system
lifecycles

• There are layers of middleware,
just like there are layers of
networking protocols

Need an intuitive, visual and declarative
mechanism for middleware provisioning.

100

Technology Gaps in Middleware for PLAs
• PLAs have very “focused but

crosscutting” requirements of underlying
middleware infrastructure
• Optimized for the platform
• Lean footprint
• Efficient configuration & deployment
• Support run-time adaptations &

reconfigurations

51

101

Technology Gaps in Middleware for PLAs
• PLAs have very “focused but

crosscutting” requirements of underlying
middleware infrastructure
• Optimized for the platform
• Lean footprint
• Efficient configuration & deployment
• Support run-time adaptations &

reconfigurations
• Standards middleware development &

optimizations philosophy catered to
maintaining “generality, wide
applicability, portability & reusability”
• OS, compiler and hardware

independent
• e.g., CORBA, J2EE. .NET

• These technology gaps are hindering PLA
progress => adverse economic and societal
consequences
• e.g. shortcomings of pre-postulated

middleware [Jacobsen 04]
Need to tailor and optimize standards middleware for PLAs while
continuing to provide standards compliance, portability and flexibility

102

Middleware Specialization Catalog

•Domain-specific language (DSL) tools &
process for automating the specializations

Specification-imposed
specializations
• Layer-folding
• Constant propagation
• Memoization

Framework specializations
• Aspect Weaving

techniques
• Bridge Reactor
• Template method

Protocol
• Strategy Messaging,

Wait, Demultiplexing

Deployment platform
specializations
• Unroll copy loops
• Use emulated exceptions
• Leverage zero-copy

data transfer buffers

•Development of reusable specialization
patterns

•Identifying specialization points in
middleware where patterns are applicable

52

103

Feature Oriented CUStomizer (FOCUS)

Middleware Instrumentation Phase

Middleware Specialization Phase

FOCUS addresses specialization challenges by building specialization language,
tool, & process to capture & automate middleware specializations

OS & Network ProtocolsOS & Network ProtocolsOS & Network ProtocolsOS & Network Protocols

Customized MiddlewareCustomized MiddlewareCustomized MiddlewareCustomized Middleware

AP
Nav

HUD GPS

IFF

FLIR

• ~1,000 Perl SLOC Parser +
weaver

• ~2,500 XML SLOC
specialization files

• ~50 (files) annotations

• Capture specialization transformations via
FOCUS specialization language

• Annotate middleware source code with
specialization directives

• Create a domain-specific language (DSL)
to capture middleware variability

• Analyzes & determines the type of
specializations applicable

• FOCUS transformation engine selects the
appropriate transformations & uses the
annotations to automate specializations

104

FOCUS Specialization Language (FSL)
FOCUS uses an XML DTD to create a DSL for capturing

specializations

FSL

Capability to perform code
substitutions
• Devirtualize interfaces
• Replace base classes with derived

class
FSL Approach
• <substitute>: Capability to do

<search> … <replace> on code

<substitute>
<search>ACE_Reactor_Impl</search>
<replace>ACE_Select_Reactor_Impl</replace>

</substitute>

<copy-from-source>
<source>Select_Reactor.h</source>
<copy-hook-start>HOOK-START </copy-hook-start>
<copy-hook-end>HOOK-END </copy-hook-end>
<dest-hook>HOOK-COPY</dest-hook>

</copy-from-source>

Capability to weave code at
specified points
• The layer folding specializations

require code to be woven in along
the request processing path

FSL Approach
• <add>: <hook> that specifies the

annotated point; <data> where
data is specified

Capability to specialize base implementations
• Framework specialization requires code

to be copied from derived to base classes
FSL Approach
<copy-from-source>: Copy code from a specific
point to a specific point between different files
<start-hook> start copying
<end-hook> hook to stop copying
<dest-hook> destination

<add>
<hook>FORWARD_DECL</hook>
<data>#include

“Select_Reactor.h”</data>
<add>

53

105

Cumulative Specialization Results

Worst-case
measures

improved by
~45%

• End-to-end client side throughput improved by ~65%.
• Results exceeded the hypothesis & evaluation criteria

• Applied to Bold Stroke
BasicSP

• Specification related
• Layer folding
• Memoization
• Constant propagation

(ignoring endianess)
• Framework

• Aspect weaving
(Reactor + protocol)

• Deployment
• Loop unrolling +

emulated exceptions

Average end-to-
end measures

improved by ~43%

Jitter results
twice as good as
general-purpose
optimized TAO

Layer folding,
deployment platform,

memoization,
constant propagation

106

Automation Tool Requirements (1/2)

• Must account for Per-Block
Configuration Variability

• Incurred due to variations in
implementations & configurations for a
patterns-based building block

• E.g., single threaded versus thread-pool
based reactor implementation dimension
that crosscuts the event demultiplexing
strategy (e.g., select, poll,
WaitForMultipleObjects

Criteria 1: Intuitive management of middleware
variabilities that impact performance in significant ways

• Tool must account for
Compositional Variability

• Incurred due to variations in the
compositions of mw building blocks

• Need to address compatibility in the
compositions and individual
configurations

• Dictated by needs of the domain
• E.g., Leader-Follower makes no sense

in a single threaded Reactor

54

107

Automation Tool Requirements (2/2)

• Separation of concerns
• Unified framework must separate the

provisioning and validating stages
• Different actors should be able to use

the visual aids in different stages of the
application lifecycle

Criteria 3: Unified framework for
middleware provisioning and QoS
validation

• Unified framework for provisioning and
validating

• Provisioning decisions should be coupled with
QoS validation

• Decisions at one stage drive decisions at the
next stage

Criteria 2: Visual separation
of concerns within the Unified
Framework

workload
0

50

100

150

200

system

108

POSAML: A Visual Provisioning Tool

• POSAML – GME-based modeling
language for middleware composition

• Provides a structural composition
model

• Captures variability in blocks
• Generative programming capabilities to

synthesize different artifacts e.g.,
benchmarking, configuration,
performance modeling.

Metamodel for the POSA pattern language

Feature modeling metamodel in POSAML

55

109

POSAML Unified Framework

• Unified visual view enables modeling the middleware composition as a
set of interacting patterns

• Individual patterns can be visually configured
• E.g., reactor and acceptor-connector patterns

• POSAML languages conforms to the POSA pattern language enabling
error-free composition of building blocks.

110

POSAML Separation of Concerns

• POSAML separates pattern
feature modeling from pattern
benchmarking

• Feature model allows selecting
features of each pattern
• E.g., reactor and acceptor-

connector shown with
concurrency models

• Benchmarking view separated
from feature view
• E.g., selecting parameters

for elements of the pattern
• Views are unified under the

hood

56

Part 9
Closing Remarks

112

Research Impact & Future Work
Current progress stems from
years of iteration, refinement,
& successful use

Year
1970 2010

Internet

RPC

Micro-kernels

CORBA & DCOM

Real-time (RT)
CORBA

Component
Models (EJB)

CORBA Component
Model (CCM)

RT/CCM

DCE

CoSMIC

Long-term Research Directions
•Heterogeneous component systems
•Automated QoS configurations
•Runtime model feedback
•Automated inference of bottlenecks
•Synthesis of QoS management
policies

•Synthesis of autonomic survivability

Long-term Research Directions
•Heterogeneous component systems
•Automated QoS configurations
•Runtime model feedback
•Automated inference of bottlenecks
•Synthesis of QoS management
policies

•Synthesis of autonomic survivability

Model driven
middleware Shape the standards e.g.,

OMG’s Model Driven
Architecture (MDA) for
DRE systems

Advanced MDE

ACE+TAO

2000 2005

57

113

Acknowledgments

• Current/Past DOC Students & Staff
• Krishnakumar Balasubramanian
• Arvind Krishna
• Jaiganesh Balasubramanian
• Emre Turkay
• Jeff Parsons
• Balachandran Natarajan
• Sumant Tambe
• James Hill
• Akshay Dabholkar
• Amogh Kavimandan
• Gan Deng
• Will Otte
• Joe Hoffert
• George Edwards
• Dimple Kaul
• Arundhati Kogekar
• Gabriele Trombetti

This research was possible due to our sponsors, efforts of students, and collaborations

• Collaborations
• Dr. Doug Schmidt
• Dr. Janos Sztipanovits
• Dr. Gabor Karsai
• Dr. Joe Loyall
• Dr. Rick Schantz
• Dr. Joe Cross
• Dr. Sylvester Fernandez
• Dr. Adam Porter
• Dr. Sherif Abdelwahed
• Dr. Jeff Gray
• Dr. Swapna Gokhale
• Dr. Cemal Yilmaz
• Thomas Damiano
• Christopher Andrews
• Theckla Louchios

• Sponsors: DARPA PCES, DARPA ARMS, NSF CSR-SMA,
Raytheon IRAD, LMCO, Siemens, BBN, Telcordia

114

DOC Group Research on DRE Systems

<CONFIGURATION_PASS>
<HOME> <…>

<COMPONENT>
<ID> <…></ID>
<EVENT_SUPPLIER>
<…events this component

supplies…>
</EVENT_SUPPLIER>
</COMPONENT>
</HOME>

</CONFIGURATION_PASS>

<CONFIGURATION_PASS>
<HOME> <…>

<COMPONENT>
<ID> <…></ID>
<EVENT_SUPPLIER>
<…events this component

supplies…>
</EVENT_SUPPLIER>
</COMPONENT>
</HOME>

</CONFIGURATION_PASS>

Benchmarking

Weaver

Synthesis

Functional
Model

Systemic
Model

Analysis

www.dre.vanderbilt.edu

• CoSMIC - Modeling Deployment &
Configuration (D&C) crosscutting
concerns

• CIAO – QoS-enabled component
middleware

• DAnCE – Deployment And
Configuration Engine

Plan
Analyzers

XML to
IDL

LISP to
IDL

2D Bin
packing

path

Priority
Sched .

path

Plan
Managers

2D Bin
packing

Priority
Sched .

Output
Adapters

To
DAnCE

To
OpenCCM

Applications that fetch
XML or LISP and call
appropriate plug -ins

R-F

F-R F-R

F-R

R-F

F-R. Line source is a Facet and Line
destination is a Receptacle

R-F. Line source is a Receptacle and
Line destination is a Facet

R-F

• RACE – Resource and Control
Engine

Multiple Levels of Abstraction

58

115

Concluding Remarks
•Model-Driven Engineering
(MDE) is an important
emerging generative
technology paradigm that
addresses key lifecycle
challenges of DRE
middleware & applications

•OMG PSIG on Model
Integrated Computing

•CoSMIC MDE tools are based on the Generic Modeling Environment (GME)
•CoSMIC is available from www.dre.vanderbilt.edu/cosmic
•GME is available from www.isis.vanderbilt.edu/Projects/gme/default.htm

www.omg.org/news/meetings/tc/
agendas/mic.htm

Many hard R&D problems with model-driven engineering remain unresolved!!

