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Objectives for this Tutorial

• To showcase research ideas from academia

• To demonstrate how these ideas can be realized using OMG 
standardized technologies

• To illustrate how the resulting artifacts can be integrated within 
existing industry development processes for large, service-
oriented architectures

• To facilitate discussion on additional real-world use cases and 
further need for research on unresolved issues
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Presentation Road Map

• Technology Context: DRE Systems
• DRE System Lifecycle & FT-RT Challenges
• Design-time Solutions
• Deployment & Configuration-time Solutions
• Runtime Solutions
• Ongoing Work
• Concluding Remarks
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Context: Distributed Real-time Embedded (DRE) Systems

(Images courtesy Google)

Heterogeneous soft real-time applications
Stringent simultaneous QoS demands
 High availability, Predictability (CPU & network) 

etc
 Efficient resource utilization

Operation in dynamic & resource-constrained 
environments
 Process/processor failures
 Changing system loads

Examples
 Total shipboard computing environment
 NASA’s Magnetospheric Multi-scale mission
Warehouse Inventory Tracking Systems

Component-based application model used 
due to benefits stemming from:
 Separation of concerns
 Composability
 Reuse of commodity-off-the-shelf (COTS) 

components

http://www.globalsecurity.org/military/systems/ship/dd-x-design.htm�
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Motivating Case Study
• Mission Control System of the 

European Space Agency (ESA)
• Short connection windows
• No physical access to the 

satellites
• Software must not crash
• Very heterogeneous 

infrastructure
• Must ensure correctness         

of data
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Case Study: ESA Mission Control System
• Mission Control Systems are the central 

means for control & observations of space 
missions

• Simultaneous operations of multiple real-
time applications

• Stringent simultaneous QoS requirements
• e.g., high availability & satisfactory 

average response times



7

Case Study: ESA Mission Control System

A Network Interface 
System is the WAN 

gateway to the Ground 
Station Network

• Mission Control Systems are the central 
means for control & observations of space 
missions

• Simultaneous operations of multiple real-
time applications

• Stringent simultaneous QoS requirements
• e.g., high availability & satisfactory 

average response times
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Case Study: ESA Mission Control System

Telemetry Server 
processes telemetry data 

from mission satellites

• Mission Control Systems are the central 
means for control & observations of space 
missions

• Simultaneous operations of multiple real-
time applications

• Stringent simultaneous QoS requirements
• e.g., high availability & satisfactory 

average response times
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Case Study: ESA Mission Control System

Data stored 
permanently in 

an Archive

• Mission Control Systems are the central 
means for control & observations of space 
missions

• Simultaneous operations of multiple real-
time applications

• Stringent simultaneous QoS requirements
• e.g., high availability & satisfactory 

average response times
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Case Study: ESA Mission Control System

Telecommand Server sends 
new operational commands 

to mission satellites

• Mission Control Systems are the central 
means for control & observations of space 
missions

• Simultaneous operations of multiple real-
time applications

• Stringent simultaneous QoS requirements
• e.g., high availability & satisfactory 

average response times
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Case Study: ESA Mission Control System

Mission Planning System 
configures & observes the 

other system entities 
based on the specific 

mission characteristics

• Mission Control Systems are the central 
means for control & observations of space 
missions

• Simultaneous operations of multiple real-
time applications

• Stringent simultaneous QoS requirements
• e.g., high availability & satisfactory 

average response times
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Case Study: ESA Mission Control System

Client access, such as 
an operator GUI, 

needs to interact with 
several components

• Mission Control Systems are the central 
means for control & observations of space 
missions

• Simultaneous operations of multiple real-
time applications

• Stringent simultaneous QoS requirements
• e.g., high availability & satisfactory 

average response times
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Presentation Road Map

• Technology Context: DRE Systems
• DRE System Lifecycle & FT-RT Challenges
• Design-time Solutions
• Deployment & Configuration-time Solutions
• Runtime Solutions
• Ongoing Work
• Concluding Remarks



Component-based Design of DRE Systems
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• Operational String model of component-based DRE systems
• A multi-tier processing model focused on the end-to-end QoS requirements
• Functionality is a chain of tasks scheduled on a pool of computing nodes
• Resources, QoS, & deployment are managed end-to-end

• End-to-end QoS requirements
• Critical Path: The chain of tasks that is time-critical from source to destination
• Need predictable scheduling of computing resources across components
• Need network bandwidth reservations to ensure timely packet delivery
• Failures may compromise end-to-end QoS

Detector1

Detector2

Planner3 Planner1

Error 
Recovery

Effector1

Effector2

Config

LEGEND

Receptacle

Event Sink

Event Source

Facet

Must support highly available operational strings!
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A Perspective of Component-based DRE System Lifecycle

Run-time

Specification

Composition

Configuration

Deployment

Development 
Lifecycle

• Gathering and specifying functional and non 
functional requirements of the system

• Defining the operational strings through 
component composition

• Deploying components onto computing nodes
• Configuring the hosting infrastructure to support 

desired QoS properties

• Mechanisms to provide real-time fault recovery
• Mechanisms to deal with the side effects of 

replication & non-determinism at run-time

QoS (e.g. FT) provisioning should 
be integrated within this lifecycle



Specification: Fault Tolerance Criteria (1/4)
The fault-model consists of fail-stop failures

• Cause delays & requires software/hardware redundancy
• Recovery must be quick to meet the deadline (soft real-time)

What are reliability alternatives?
 Roll-back recovery 
 Transactional

 Roll-forward recovery: replication schemes
 Active replication (multiple concurrent executions)
 Passive replication (primary-backup approach)

16

Roll-back recovery Active Replication Passive Replication

Needs transaction support 
(heavy-weight)

Resource hungry
(compute & network)

Less resource consuming 
than active (only network)

Must compensate
non-determinism

Must enforce 
determinism

Handles non-determinism 
better

Roll-back & re-execution 
(slowest recovery)

Fastest recovery Re-execution 
(slower recovery)

Resources

Non-
determinism

Recovery 
time
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Specification: Fault Tolerance Criteria (2/4)

N N

NN
N

N N

NN
N

Pool 1

Pool 2

What is failover granularity for passive replication?
 Single component failover only? or
 Larger than a single component?

Scenario 1: Must tolerate catastrophic faults
• e.g.,  data center failure, network failure

N N

NN
N

Clients

Replica

Whole 
operational 
string must 

failover

C
A

A’
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Specification: Fault Tolerance Criteria (3/4)
Scenario 2: Must tolerate Bohrbugs
 A Bohrbug repeats itself predictably when the same state reoccurs

Preventing Bohrbugs by “reliability through diversity”
 Diversity via non-isomorphic replication

Non-isomorphic
work-flow

and 
implementation

of Replica

Different 
End-to-end 

QoS
(thread pools, deadlines, priorities)

Whole operational string must failover
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Need a methodology to capture these requirements 
and provision them for DRE systems

Specification: Fault Tolerance Criteria (4/4)

Scenario 3: Must tolerate non-determinism 
 Sources of non-determinism in DRE systems
 Local information (sensors, clocks), thread-scheduling, timers, timeouts, & more

 Enforcing determinism is not always possible
Must tolerate side-effects of replication + non-determinism
 Problem: Orphan request & orphan state 
 Solution based on single component failover require costly roll-backs

Fault-tolerance provisioning should be transparent
 Separation of availability concerns from the business logic
 Improves reusability, productivity, & perceived availability of the system

ReplicationNon-determinism Potential orphan 
state 
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Deployment: Criteria for Fault-tolerance
• Deployment of applications & replicas
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Deployment: Criteria for Fault-tolerance
• Deployment of applications & replicas

• Identify different hosts for deploying applications & each of their 
replicas

• no two replicas of the same application are hosted in the same 
processor

• allocate resources for applications & replicas
• deploy applications & replicas in the chosen hosts
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Challenges in Deployment of Fault-tolerant DRE Systems
• Ad-hoc allocation of applications & replicas could provide FT

• could lead to resource minimization, however,
• system might not be schedulable

Schedulability depends on 
the tasks collocated in the 

same processor
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Challenges in Deployment of Fault-tolerant DRE Systems
• Ad-hoc allocation of applications & replicas could provide FT

• could lead to resource minimization, however,
• system might not be schedulable

• could lead to system schedulability & high availability, however,
• could miss collocation opportunities => performance suffers
• could cause inefficient resource utilization

A good FT solution –
but not a resource 

efficient RT solution
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Challenges in Deployment of Fault-tolerant DRE Systems
• Ad-hoc allocation of applications & replicas could provide FT

• could lead to resource minimization, however,
• system might not be schedulable

• could lead to system schedulability & high availability, however,
• could miss collocation opportunities => performance suffers
• could cause inefficient resource utilization

• inefficient allocations – for both applications & replicas – could lead to 
resource imbalance & affect soft real-time performance

• applications & their replicas must be                                                        
deployed in their appropriate
physical hosts

• need for resource-aware                                                         
deployment techniques

Need for Real-time, 
Fault-aware and 
Resource-aware 

Allocation Algorithms
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Configuration: Criteria for Fault-tolerance
• Configuration of RT-FT Middleware

• Install & configure fault detectors that periodically monitor liveness on 
each processor
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Configuration: Criteria for Fault-tolerance
• Configuration of RT-FT Middleware

• Install & configure fault detectors that periodically monitor liveness on 
each processor

• register all the applications, their replicas, & fault detectors  with a 
replication manager to provide group membership management
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Configuration: Criteria for Fault-tolerance
• Configuration of RT-FT Middleware

• Install & configure fault detectors that periodically monitor liveness on 
each processor

• register all the applications, their replicas, & fault detectors  with a 
replication manager to provide group membership management

• configure client-side middleware to catch failure exceptions & with 
failure recovery actions
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Configuration: Criteria for Fault-tolerance
• Configuration of RT-FT Middleware

• Install & configure fault detectors that periodically monitor liveness on 
each processor

• register all the applications, their replicas, & fault detectors  with a 
replication manager to provide group membership management

• configure client-side middleware to catch failure exceptions & with 
failure recovery actions

• bootstrap applications
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Challenges in Configuring Fault-tolerant DRE Systems
• Configuring RT-FT middleware is hard

• developers often need to make tedious & error-prone invasive source 
code changes to manually configure middleware

Code for interacting with 
middleware-based fault 
detectors coupled with 

business logic

Code for interacting 
with middleware-

based group 
management 
mechanismsCode for interacting with 

middleware-based client-
side failure detector & 
recovery mechanisms
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• Configuring RT-FT middleware is hard
• developers often need to make tedious & error-prone invasive source 

code changes to manually configure middleware
• manual source code modifications require knowledge of underlying 

middleware – which is hard

Code for interacting with 
middleware-based client-

side failure detector & 
recovery mechanisms

Challenges in Configuring Fault-tolerant DRE Systems
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• Configuring RT-FT middleware is hard
• developers often need to make tedious & error-prone invasive source 

code changes to manually configure middleware
• manual source code modifications require knowledge of underlying 

middleware – which is hard
• need to repeat configuration actions as underlying middleware 

changes

Code for interacting with 
middleware-based client-

side failure detector & 
recovery mechanisms

Challenges in Configuring Fault-tolerant DRE Systems
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• Configuring RT-FT middleware is hard
• developers often need to make tedious & error-prone invasive source 

code changes to manually configure middleware
• manual source code modifications require knowledge of underlying 

middleware – which is hard
• need to repeat configuration actions as underlying middleware 

changes
Scale & complexity of DRE systems make 
it infeasible to adopt manual techniques Code for interacting with 

middleware-based client-
side failure detector & 
recovery mechanisms

Challenges in Configuring Fault-tolerant DRE Systems
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Need for Scalable 
Deployment & 
Configuration 

Middleware

• Configuring RT-FT middleware is hard
• developers often need to make tedious & error-prone invasive source 

code changes to manually configure middleware
• manual source code modifications require knowledge of underlying 

middleware – which is hard
• need to repeat configuration actions as underlying middleware 

changes
• Applications must seamlessly leverage advances in middleware mechanisms

• QoS goals change, but business logic does not
• need for scalable deployment                                                                                       

& configuration techniques

Challenges in Configuring Fault-tolerant DRE Systems
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Runtime: Criteria for Fault-tolerant DRE Systems
• Runtime management 

• detect failures
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Runtime: Criteria for Fault-tolerant DRE Systems
• Runtime management

• detect failures
• transparently failover to alternate replicas & provide high 

availability to clients
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Challenges in Runtime Management of Fault-tolerant DRE Systems
• Providing high availability & soft real-time performance at runtime is hard

• failures need to be detected quickly so that failure recovery actions can 
proceed

Client-side middleware should 
catch failure exception
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• Providing high availability & soft real-time performance at runtime is hard
• failures need to be detected quickly so that failure recovery actions can 

proceed
• failure recovery should be fast

Client-side middleware 
should have sufficient 

information about replicas 
to provide fast failover

Challenges in Runtime Management of Fault-tolerant DRE Systems



38

• Providing high availability & soft real-time performance at runtime is hard
• failures need to be detected quickly so that failure recovery actions can 

proceed
• failure recovery should be fast

Client-side middleware 
should have sufficient 

information about replicas 
to provide fast failover

Challenges in Runtime Management of Fault-tolerant DRE Systems

But why failover to 
Telemetry Server A’’?
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• Providing high availability & soft real-time performance at runtime is hard
• failures need to be detected quickly so that failure recovery actions can 

proceed
• failure recovery should be fast

Client-side middleware 
should have sufficient 

information about replicas 
to provide fast failover

But why failover to 
Telemetry Server A’’? why not failover to 

Telemetry Server A’?

Challenges in Runtime Management of Fault-tolerant DRE Systems
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• Providing high availability & soft real-time performance at runtime is hard
• failures need to be detected quickly so that failure recovery actions can 

proceed
• failure recovery should be fast

Decision on where to failover 
should be taken in a resource-
aware manner based on the 

loads on the replica processors

Challenges in Runtime Management of Fault-tolerant DRE Systems

But why failover to 
Telemetry Server A’’? why not failover to 

Telemetry Server A’?
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• Providing high availability & soft real-time performance at runtime is hard
• failures need to be detected quickly so that failure recovery actions can 

proceed
• failure recovery should be fast

• Ad-hoc mechanisms to recover from failures & overloads could affect soft real-time 
performance of clients

• need for adaptive fault-tolerance techniques

Need for Adaptive Fault-tolerant Middleware

React to dynamic 
system load changes & 

adapt system FT-RT 
configurations

Challenges in Runtime Management of Fault-tolerant DRE Systems
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Summary of FT QoS Provisioning Challenges Across DRE Lifecycle

Run-time

Specification

Composition

Configuration

Deployment

Development 
Lifecycle

• How to specify FT & other end-to-end QoS 
requirements?

• How to compose & deploy application 
components & their replicas with concern for 
minimizing resources used yet satisfying FT-RT 
requirements?

• How to configure the underlying middleware to 
provision QoS?

• How to provide real-time fault recovery?
• How to deal with the side effects of replication & 

non-determinism at run-time?

Our solutions integrate within the 
traditional DRE system lifecycle
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Presentation Road Map

• Technology Context: DRE Systems
• DRE System Lifecycle & FT-RT Challenges
• Design-time Solutions
• Deployment & Configuration-time Solutions
• Runtime Solutions
• Ongoing Work
• Concluding Remarks
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Specifying FT & Other QoS Properties

Run-time

Composition

Configuration

Deployment

Specification

Resolves 
challenges in • Component QoS Modeling Language (CQML)

• Aspect-oriented Modeling for Modularizing QoS
Concerns

Focus on Model-driven 
Engineering and generative 
techniques to specify and 
provision QoS properties 
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Related Research: QoS Modeling 
Category Related Research (QoS & FT Modeling)

Using UML 1. UML Profile for Schedulability, Performance, & Time (SPT)
2. UML Profile for Modeling Quality of Service & Fault Tolerance 

Characteristics & Mechanisms (QoS&FT)
3. UML Profile for Modeling & Analysis of Real-Time &  Embedded 

Systems (MARTE)
4. Component Quality Modeling Language by J. ÃŸyvind Aagedal
5. Modeling & Integrating Aspects into Component Architectures  by 

L. Michotte, R. France, & F. Fleurey
6. A Model-Driven Development Framework for Non-Functional 

Aspects in Service Oriented Architecture by H. Wada, J. Suzuki, & 
K. Oba

Using 
domain-
specific 
languages 
(DSL)

1. Model-based Development of Embedded Systems: The 
SysWeaver Approach by D. de Niz, G. Bhatia, & R. Rajkumar

2. A Modeling Language & Its Supporting Tools for Avionics Systems 
by G. Karsai, S. Neema, B. Abbott, & D. Sharp

3. High Service Availability in MaTRICS for the OCS by M. Bajohr & 
T. Margaria

4. Modeling of Reliable Messaging in Service Oriented Architectures 
by L. Gönczy & D. Varró

5. Fault tolerance AOP approach by J. Herrero, F. Sanchez, & M. 
Toro
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Related Research: QoS Modeling 
Category Related Research (QoS & FT Modeling)

Using UML 1. UML Profile for Schedulability, Performance, & Time (SPT)
2. UML Profile for Modeling Quality of Service & Fault Tolerance 

Characteristics & Mechanisms (QoS&FT)
3. UML Profile for Modeling & Analysis of Real-Time &  Embedded 

Systems (MARTE)
4. Component Quality Modeling Language by J. ÃŸyvind Aagedal
5. Modeling & Integrating Aspects into Component Architectures  by 

L. Michotte, R. France, & F. Fleurey
6. A Model-Driven Development Framework for Non-Functional 

Aspects in Service Oriented Architecture by H. Wada, J. Suzuki, & 
K. Oba

Using 
domain-
specific 
languages 
(DSL)

1. Model-based Development of Embedded Systems: The 
SysWeaver Approach by D. de Niz, G. Bhatia, & R. Rajkumar

2. A Modeling Language & Its Supporting Tools for Avionics Systems 
by G. Karsai, S. Neema, B. Abbott, & D. Sharp

3. High Service Availability in MaTRICS for the OCS by M. Bajohr & 
T. Margaria

4. Modeling of Reliable Messaging in Service Oriented Architectures 
by L. Gönczy & D. Varró

5. Fault tolerance AOP approach by J. Herrero, F. Sanchez, & M. 
Toro

Lightweight &
Heavyweight

UML 
extensions

Recovery block 
modeling 

and 
QoS for SOA

MoC = service 
logic graphs, 

state machine,
Java extension
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Deployment

Configuration

Run-time

Composition

Specification

Development 
Lifecycle

QoS Specification: What is Missing for DRE Systems?
• Crosscutting availability requirements 

• Tangled with primary structural dimension 
• Tangled with secondary dimensions (deployment, QoS)
• Composing replicated & non-replicated functionality
• Example: Replicas must be modeled, composed, & deployed 

• Imposes modeling overhead
• Supporting non-isomorphic replication

• Reliability through diversity (structural & QoS)
• Supporting graceful degradation through diversity

Composing 
connections

A

Client

B C

A’ B’ C’

A’’ B’’ C’’

Composing
replicas

Imposes modeling overhead
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QoS Specification: What is Missing for DRE Systems?
• Variable granularity of failover

• Whole operational string, sub-string, or a component group
• Variable QoS association granularity

• Network-level QoS specification (connection level)
• Differentiated service based on traffic class & flow

• Example: High priority, high reliability, low latency
• Bidirectional bandwidth requirements

A

Client

B CDeployment

Configuration

Run-time

Composition

Specification

Development 
Lifecycle

Component-level

Port-level Connection-level



Our Solution: Domain Specific Modeling
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• Component QoS Modeling Language 
(CQML)
• A modeling framework for declarative QoS

specification
• Reusable for multiple composition 

modeling languages
• Failover unit for Fault-tolerance

• Capture the granularity of failover
• Specify # of replicas

• Network-level QoS
• Annotate component connections
• Specify priority of communication                    

traffic
• Bidirectional bandwidth requirements

• Security QoS
• Real-time CORBA configuration
• Event channel configuration



Separation of Concerns in CQML
• Resolving tangling of functional composition & QoS concerns
• Separate Structural view from the QoS view
• GRAFT transformations use aspect-oriented model weaving to coalesce 

both the views of the model
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Granularity of QoS Associations in CQML
• Commonality/Variability analysis of composition modeling languages

• e.g., PICML for CCM, J2EEML for J2EE, ESML for Boeing Bold-Stroke

• Feature model of composition modeling languages

51

Dictates 
QoS

association 
granularity

• Enhance composition 
language to model QoS

• GME meta-model 
composition

Composition Modeling 
Language



Composing CQML (1/3)
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CQML

Goal: Create reusable & loosely coupled 
associations

Composition 
Modeling 
Language

Concrete
QoS

Elements

PICML 
or 

J2EEML 
or 

ESML
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CQML

Composition 
Modeling 
Language

CQML  
Join-point 

Model

Concrete
QoS

Elements

PICML 
or 

J2EEML 
or 

ESML
Dependency 

Inversion 
Principle

Composing CQML (2/3)
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CQML

Composition 
Modeling 
Language

CQML  
Join-point 

Model

Abstract 
QoS

Elements

Concrete
QoS

Elements

PICML 
or 

J2EEML 
or 

ESML

Grouping of QoS elements using is-a
relationship

Composing CQML (3/3)
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CQML

Composition 
Modeling 
Language

CQML  
Join-point 

Model

Abstract 
QoS

Elements

Concrete
QoS

Elements

PICML 
or 

J2EEML 
or 

ESML

Composing CQML (3/3)



Evaluating Composability of CQML
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 Three composition modeling 
languages
 PICML
 J2EEML
 ESML

 Available feature-set 
determines the extent of 
applicability of the join-point 
model
 Three composite languages 

with varying QoS modeling 
capabilities
 PICML’
 J2EEML’
 ESML’
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Presentation Road Map

• Technology Context: DRE Systems
• DRE System Lifecycle & FT-RT Challenges
• Design-time Solutions
• Deployment & Configuration-time Solutions
• Runtime Solutions
• Ongoing Work
• Concluding Remarks
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Post-Specification Phase: Resource Allocation, 
Deployment and Configuration

Run-time

Specification

Composition

Configuration

Deployment

Resolves 
challenges in

• Deployment & Configuration Reasoning & 
Analysis via Modeling (DeCoRAM)

• Provides a specific deployment algorithm
• Algorithm-agnostic deployment engine
• Middleware-agnostic configuration engine

Focus on Resource Allocation 
Algorithms and Frameworks 

used in Deployment and 
Configuration Phases 
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Related Research
Category Related Research

CORBA-based 
Fault-tolerant 
Middleware 
Systems

P. Felber et. al., Experiences, Approaches, & Challenges in Building Fault-
tolerant CORBA Systems, in IEEE Transactions on Computers, May 2004
T. Bennani et. al., Implementing Simple Replication Protocols Using CORBA 
Portable Interceptors & Java Serialization, in Proceedings of the IEEE 
International Conference on Dependable Systems & Networks (DSN 2004), 
Italy, 2004
P. Narasimhan et. al., MEAD: Support for Real-time Fault-tolerant CORBA, in 
Concurrency & Computation: Practice & Experience, 2005

Adaptive 
Passive 
Replication 
Systems

S. Pertet et. al., Proactive Recovery in Distributed CORBA Applications, in 
Proceedings of the IEEE International Conference on Dependable Systems & 
Networks (DSN 2004), Italy, 2004
P. Katsaros et. al., Optimal Object State Transfer – Recovery Policies for Fault-
tolerant Distributed Systems, in Proceedings of the IEEE International 
Conference on Dependable Systems & Networks (DSN 2004), Italy, 2004
Z. Cai et. al., Utility-driven Proactive Management of Availability in Enterprise-
scale Information Flows, In Proceedings of the ACM/IFIP/USENIX Middleware 
Conference (Middleware 2006), Melbourne, Australia, November 2006
L. Froihofer et. al., Middleware Support for Adaptive Dependability, In 
Proceedings of the ACM/IFIP/USENIX Middleware Conference (Middleware 
2007), Newport Beach, CA, November 2007
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Related Research
Category Related Research

CORBA-based 
Fault-tolerant 
Middleware 
Systems

P. Felber et. al., Experiences, Approaches, & Challenges in Building Fault-
tolerant CORBA Systems, in IEEE Transactions on Computers, May 2004
T. Bennani et. al., Implementing Simple Replication Protocols Using CORBA 
Portable Interceptors & Java Serialization, in Proceedings of the IEEE 
International Conference on Dependable Systems & Networks (DSN 2004), 
Italy, 2004
P. Narasimhan et. al., MEAD: Support for Real-time Fault-tolerant CORBA, in 
Concurrency & Computation: Practice & Experience, 2005

Adaptive 
Passive 
Replication 
Systems

S. Pertet et. al., Proactive Recovery in Distributed CORBA Applications, in 
Proceedings of the IEEE International Conference on Dependable Systems & 
Networks (DSN 2004), Italy, 2004
P. Katsaros et. al., Optimal Object State Transfer – Recovery Policies for Fault-
tolerant Distributed Systems, in Proceedings of the IEEE International 
Conference on Dependable Systems & Networks (DSN 2004), Italy, 2004
Z. Cai et. al., Utility-driven Proactive Management of Availability in Enterprise-
scale Information Flows, In Proceedings of the ACM/IFIP/USENIX Middleware 
Conference (Middleware 2006), Melbourne, Australia, November 2006
L. Froihofer et. al., Middleware Support for Adaptive Dependability, In 
Proceedings of the ACM/IFIP/USENIX Middleware Conference (Middleware 
2007), Newport Beach, CA, November 2007

Middleware building blocks for 
fault-tolerant systems

Runtime adaptations to reduce 
failure recovery times
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Related Research
Category Related Research

Real-time 
Fault-tolerance 
for Transient 
Failures

H. Aydin, Exact Fault-Sensitive Feasibility Analysis of Real-time Tasks, In IEEE 
Transactions of Computers, 2007
G. Lima et. al., An Optimal Fixed-Priority Assignment Algorithm For Supporting 
Fault-Tolerant Hard Real-Time Systems, In IEEE Transactions on Computers, 
2003
Y. Zhang et. al., A Unified Approach For Fault Tolerance & Dynamic Power 
Management in Fixed-Priority Real-Time Systems, in IEEE Transactions on 
Computer-Aided Design of Integrated Circuits & Systems, 2006

Real-time 
Fault 
Tolerance for 
Permanent 
Failures

J. Chen et. al., Real-Time Task Replication For Fault-Tolerance in Identical 
Multiprocessor Systems, In Proceedings of the IEEE Real-Time & Embedded 
Technology & Applications Symposium (IEEE RTAS), 2007
P. Emberson et. al., Extending a Task Allocation Algorithm for Graceful 
Degradation of Real-time Distributed Embedded Systems, In Proceedings of 
the IEEE Real-time Systems Symposium (IEEE RTSS), 2008
A. Girault et. al., An Algorithm for Automatically Obtaining Distributed & Fault-
Tolerant Static Schedules, in Proceedings of the IEEE International Conference 
on Dependable Systems & Networks (IEEE DSN ), 2003
S. Gopalakrishnan et. al., Task Partitioning with Replication Upon 
Heterogeneous Multiprocessor Systems, in Proceedings of the IEEE Real-Time 
& Embedded Technology & Applications Symposium (IEEE RTAS), 2006
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Related Research
Category Related Research

Real-time 
Fault-tolerance 
for Transient 
Failures

H. Aydin, Exact Fault-Sensitive Feasibility Analysis of Real-time Tasks, In IEEE 
Transactions of Computers, 2007
G. Lima et. al., An Optimal Fixed-Priority Assignment Algorithm For Supporting 
Fault-Tolerant Hard Real-Time Systems, In IEEE Transactions on Computers, 
2003
Y. Zhang et. al., A Unified Approach For Fault Tolerance & Dynamic Power 
Management in Fixed-Priority Real-Time Systems, in IEEE Transactions on 
Computer-Aided Design of Integrated Circuits & Systems, 2006

Real-time 
Fault 
Tolerance for 
Permanent 
Failures

J. Chen et. al., Real-Time Task Replication For Fault-Tolerance in Identical 
Multiprocessor Systems, In Proceedings of the IEEE Real-Time & Embedded 
Technology & Applications Symposium (IEEE RTAS), 2007
P. Emberson et. al., Extending a Task Allocation Algorithm for Graceful 
Degradation of Real-time Distributed Embedded Systems, In Proceedings of 
the IEEE Real-time Systems Symposium (IEEE RTSS), 2008
A. Girault et. al., An Algorithm for Automatically Obtaining Distributed & Fault-
Tolerant Static Schedules, in Proceedings of the IEEE International Conference 
on Dependable Systems & Networks (IEEE DSN ), 2003
S. Gopalakrishnan et. al., Task Partitioning with Replication Upon 
Heterogeneous Multiprocessor Systems, in Proceedings of the IEEE Real-Time 
& Embedded Technology & Applications Symposium (IEEE RTAS), 2006

Static allocation algorithms that 
deal with transient failures

Used active replication schemes
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Related Research
Category Related Research

Passive 
Replication 
Based Real-
time Fault-
Tolerant Task 
Allocation 
Algorithms

R. Al-Omari et. al., An Adaptive Scheme for Fault-Tolerant Scheduling of Soft 
Real-time Tasks in Multiprocessor Systems , In Journal of Parallel & Distributed 
Computing, 2005
W. Sun et. al., Hybrid Overloading & Stochastic Analysis for Redundant Real-
time Multiprocessor Systems, In Proceedings of the IEEE Symposium on 
Reliable Distributed Systems (IEEE SRDS), 2007
Q. Zheng et. al., On the Design of Fault-Tolerant Scheduling Strategies Using 
Primary-Backup Approach for Computational Grids with Low Replication Costs, 
in IEEE Transactions on Computers, 2009
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Related Research
Category Related Research

Passive 
Replication 
Based Real-
time Fault-
Tolerant Task 
Allocation 
Algorithms

R. Al-Omari et. al., An Adaptive Scheme for Fault-Tolerant Scheduling of Soft 
Real-time Tasks in Multiprocessor Systems , In Journal of Parallel & Distributed 
Computing, 2005
W. Sun et. al., Hybrid Overloading & Stochastic Analysis for Redundant Real-
time Multiprocessor Systems, In Proceedings of the IEEE Symposium on 
Reliable Distributed Systems (IEEE SRDS), 2007
Q. Zheng et. al., On the Design of Fault-Tolerant Scheduling Strategies Using 
Primary-Backup Approach for Computational Grids with Low Replication Costs, 
in IEEE Transactions on Computers, 2009

All these algorithms deal with 
dynamic scheduling 
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• Existing passive replication 
middleware solutions are not 
resource-aware
• provide mechanisms – but no 

intuition on how to use them to 
obtain the required solution

• timeliness assurances might get 
affected as failures occur

D&C: What is Missing for DRE Systems?

• Existing real-time fault-tolerant task                                                                        
allocation algorithms are not appropriate for closed DRE systems
• they deal with active replication which is not ideal for resource-constrained 

systems
• those that deal with passive replication

• support only one processor failure
• require dynamic scheduling – which adds extra unnecessary overhead
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Our Solution: The DeCoRAM D&C Middleware

• DeCoRAM = “Deployment & 
Configuration Reasoning via 
Analysis & Modeling”

• DeCoRAM consists of
• Pluggable Allocation Engine 
that determines appropriate node 
mappings for all applications & 
replicas using installed algorithm

• Deployment & Configuration 
Engine that deploys & 
configures (D&C) applications 
and replicas on top of 
middleware in appropriate hosts

• A specific allocation algorithm 
that is real time-, fault- and 
resource-aware

No coupling with 
allocation algorithm

Middleware-agnostic 
D&C Engine
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Overview of DeCoRAM Contributions

1. Provides a replica allocation 
algorithm that is
• Real time-aware
• Fault-aware
• Resource-aware

2. Supports a large class of 
DRE systems => No tight 
coupling to any single 
allocation algorithm

3. Supports multiple middleware 
technologies => Automated 
middleware configuration that 
is not coupled to any 
middleware
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DeCoRAM Allocation Algorithm
• System model

• N periodic DRE 
system tasks

• RT requirements –
periodic tasks, worst-
case execution time 
(WCET), worst-case 
state synchronization 
time (WCSST)

• FT requirements – K
number of processor 
failures to tolerate 
(number of replicas)

• Fail-stop processors

How many processors shall we 
need for a primary-backup 
scheme? – A basic intuition
Num proc in No-fault case <= 
Num proc for passive replication <= 
Num proc for active replication 
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DeCoRAM Allocation Algorithm (1/2)

• System model
• N periodic DRE 
system tasks

• RT requirements –
periodic tasks, worst-
case execution time 
(WCET), worst-case 
state synchronization 
time (WCSST)

• FT requirements – K
number of processor 
failures to tolerate 
(number of replicas)

• Fail-stop processors

How many processors shall we 
need for a primary-backup 
scheme? – A basic intuition
Num proc in No-fault case <= 
Num proc for passive replication <= 
Num proc for active replication 
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DeCoRAM Allocation Algorithm (2/2)

• System objective
• Find a mapping of N 
periodic DRE tasks & 
their K replicas so as 
to minimize the total 
number of 
processors utilized
• no two replicas are 
in the same 
processor

• All tasks are 
schedulable both in 
faulty as well as 
non-faulty 
scenarios

DeCoRAM Allocation Engine

Similar to bin-packing, but harder due to 
combined FT & RT constraints



Designing the DeCoRAM Allocation Algorithm (1/5)
Task WCET WCSST Period Util

A 20 0.2 50 40 
B 40 0.4 100 40 
C 50 0.5 200 25
D 200 2 500 40
E 250 2.5 1,000 25

71

Basic Step 1: No fault tolerance
• Only primaries exist consuming 

WCET each
• Apply first-fit optimal bin-packing 

using the [Dhall:78]* algorithm
• Consider sample task set shown
• Tasks arranged according to rate 

monotonic priorities

*[Dhall:78] S. K. Dhall & C. Liu, “On a Real-time 
Scheduling Problem”, Operations Research, 1978
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Basic Step 1: No fault tolerance
• Only primaries exist consuming 

WCET each
• Apply first-fit optimal bin-packing 

using the [Dhall:78] algorithm
• Consider sample task set shown
• Tasks arranged according to rate 

monotonic priorities

P1

A

B
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Basic Step 1: No fault tolerance
• Only primaries exist consuming 

WCET each
• Apply first-fit optimal bin-packing 

using the [Dhall:78] algorithm
• Consider sample task set shown
• Tasks arranged according to rate 

monotonic priorities

P1

A

B

C
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Basic Step 1: No fault tolerance
• Only primaries exist consuming 

WCET each
• Apply first-fit optimal bin-packing 

using the [Dhall:78] algorithm
• Consider sample task set shown
• Tasks arranged according to rate 

monotonic priorities

P1

A

B

P2

C
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Task WCET WCSST Period Util

A 20 0.2 50 40 
B 40 0.4 100 40 
C 50 0.5 200 25
D 200 2 500 40
E 250 2.5 1,000 25
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Basic Step 1: No fault tolerance
• Only primaries exist consuming 

WCET each
• Apply first-fit optimal bin-packing 

using the [Dhall:78] algorithm
• Consider sample task set shown
• Tasks arranged according to rate 

monotonic priorities

P1

A

B

P2

C

D

E
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Task WCET WCSST Period Util

A 20 0.2 50 40 
B 40 0.4 100 40 
C 50 0.5 200 25
D 200 2 500 40
E 250 2.5 1,000 25
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Basic Step 1: No fault tolerance
• Only primaries exist consuming 

WCET each
• Apply first-fit optimal bin-packing 

using the [Dhall:78] algorithm
• Consider sample task set shown
• Tasks arranged according to rate 

monotonic priorities

Outcome -> Lower bound 
established

• System is schedulable
• Uses minimum number of 

resources

RT & resource constraints satisfied; but no FT



Designing the DeCoRAM Allocation Algorithm (2/5)
Task WCET WCSST Period

A1,A2,A3 20 0.2 50
B1,B2,B3 40 0.4 100
C1,C2,C3 50 0.5 200
D1,D2,D3 200 2 500
E1,E2,E3 250 2.5 1,000

77

Refinement 1: Introduce replica 
tasks
• Do not differentiate between 

primary & replicas
• Assume tolerance to 2 failures => 

2 replicas each
• Apply the [Dhall:78] algorithm
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Refinement 1: Introduce replica 
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Refinement 1: Introduce replica 
tasks
• Do not differentiate between 

primary & replicas
• Assume tolerance to 2 failures => 

2 replicas each
• Apply the [Dhall:78] algorithm
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Refinement 1: Introduce replica 
tasks
• Do not differentiate between 

primary & replicas
• Assume tolerance to 2 failures => 

2 replicas each
• Apply the [Dhall:78] algorithm



Designing the DeCoRAM Allocation Algorithm (2/5)
Task WCET WCSST Period
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Refinement 1: Introduce replica 
tasks
• Do not differentiate between 

primary & replicas
• Assume tolerance to 2 failures => 

2 replicas each
• Apply the [Dhall:78] algorithm

Outcome -> Upper bound is established
• A RT-FT solution is created – but with Active replication
• System is schedulable
• Demonstrates upper bound on number of resources needed

Minimize resource using passive replication



Designing the DeCoRAM Allocation Algorithm (3/5)
Task WCET WCSST Period

A1,A2,A3 20 0.2 50
B1,B2,B3 40 0.4 100
C1,C2,C3 50 0.5 200
D1,D2,D3 200 2 500
E1,E2,E3 250 2.5 1,000
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Refinement 2: Passive replication
• Differentiate between primary & 

replicas
• Assume tolerance to 2 failures => 

2 additional backup replicas each
• Apply the [Dhall:78] algorithm
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Task WCET WCSST Period

A1,A2,A3 20 0.2 50
B1,B2,B3 40 0.4 100
C1,C2,C3 50 0.5 200
D1,D2,D3 200 2 500
E1,E2,E3 250 2.5 1,000
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Refinement 2: Passive replication
• Differentiate between primary & 

replicas
• Assume tolerance to 2 failures => 

2 additional backup replicas each
• Apply the [Dhall:78] algorithm

Primaries 
contribute WCET 

Backups only 
contribute WCSST 
in no failure case 
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Refinement 2: Passive replication
• Differentiate between primary & 

replicas
• Assume tolerance to 2 failures => 

2 additional backup replicas each
• Apply the [Dhall:78] algorithm

C1 Backups only 
contribute WCSST 
in no failure case 

Primaries 
contribute WCET 
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Refinement 2: Passive replication
• Differentiate between primary & 

replicas
• Assume tolerance to 2 failures => 

2 additional backup replicas each
• Apply the [Dhall:78] algorithm

Primaries 
contribute WCET 

C1 Backups only 
contribute WCSST 
in no failure case 
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Refinement 2: Passive replication
• Differentiate between primary & 

replicas
• Assume tolerance to 2 failures => 

2 additional backup replicas each
• Apply the [Dhall:78] algorithm

C1

Backups only 
contribute WCSST 
in no failure case 
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E1,E2,E3 250 2.5 1,000

87

Refinement 2: Passive replication
• Differentiate between primary & 

replicas
• Assume tolerance to 2 failures => 

2 additional backup replicas each
• Apply the [Dhall:78] algorithm

C1

Allocation is fine 
when A2/B2 are 

backups

Allocation is fine 
when A2/B2 are 

backups

Backups only 
contribute WCSST 
in no failure case 
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Task WCET WCSST Period
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Refinement 2: Passive replication
• Differentiate between primary & 

replicas
• Assume tolerance to 2 failures => 

2 additional backup replicas each
• Apply the [Dhall:78] algorithm

C1
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Refinement 2: Passive replication
• Differentiate between primary & 

replicas
• Assume tolerance to 2 failures => 

2 additional backup replicas each
• Apply the [Dhall:78] algorithm

Promoted backups now 
contribute WCET

C1

Failure triggers 
promotion of A2/B2 

to primaries
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Refinement 2: Passive replication
• Differentiate between primary & 

replicas
• Assume tolerance to 2 failures => 

2 additional backup replicas each
• Apply the [Dhall:78] algorithm

Backups only 
contribute WCSST 

C1

Allocation is fine 
when A2/B2 are 

backups

System unschedulable
when A2/B2 are 

promoted
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Refinement 2: Passive replication
• Differentiate between primary & 

replicas
• Assume tolerance to 2 failures => 

2 additional backup replicas each
• Apply the [Dhall:78] algorithm

Outcome
• Resource minimization & system schedulability feasible in non faulty 

scenarios only -- because backup contributes only WCSST
• Unrealistic not to expect failures
• Need a way to consider failures & find which backup will 

be promoted to primary (contributing  WCET)?

C1/D1/E1 cannot 
be placed here --
unschedulable

C1/D1/E1 may be 
placed on P2 or 
P3 as long as 
there are no 

failures



Designing the DeCoRAM Allocation Algorithm (4/5)
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Refinement 3: Enable the offline algorithm to consider failures
• “Look ahead” at failure scenarios of already allocated tasks & replicas 

determining worst case impact on a given processor
• Feasible to do this because system properties are invariant 
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Refinement 3: Enable the offline algorithm to consider failures
• “Look ahead” at failure scenarios of already allocated tasks & replicas 

determining worst case impact on a given processor
• Feasible to do this because system properties are invariant 

Looking ahead that any of 
A2/B2 or A3/B3 may be 
promoted, C1/D1/E1 must be 
placed on a different processor
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Refinement 3: Enable the offline algorithm to consider failures
• “Look ahead” at failure scenarios of already allocated tasks & replicas 

determining worst case impact on a given processor
• Feasible to do this because system properties are invariant 

Where should backups of 
C/D/E be placed? On P2 or 
P3 or a different processor? 

P1 is not a choice.
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Refinement 3: Enable the offline algorithm to consider failures
• “Look ahead” at failure scenarios of already allocated tasks & replicas 

determining worst case impact on a given processor
• Feasible to do this because system properties are invariant 

• Suppose the allocation of the backups 
of C/D/E are as shown

• We now look ahead for any 2 failure 
combinations
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Refinement 3: Enable the offline algorithm to consider failures
• “Look ahead” at failure scenarios of already allocated tasks & replicas 

determining worst case impact on a given processor
• Feasible to do this because system properties are invariant 

• Suppose P1 & P2 were to fail
• A3 & B3 will be promoted

Schedule is feasible 
=> original placement 
decision was OK
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Refinement 3: Enable the offline algorithm to consider failures
• “Look ahead” at failure scenarios of already allocated tasks & replicas 

determining worst case impact on a given processor
• Feasible to do this because system properties are invariant 

• Suppose P1 & P4 were to fail
• Suppose A2 & B2 on P2 were to be 

promoted, while C3, D3 & E3 on P3 
were to be promoted

Schedule is feasible 
=> original placement 
decision was OK
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Refinement 3: Enable the offline algorithm to consider failures
• “Look ahead” at failure scenarios of already allocated tasks & replicas 

determining worst case impact on a given processor
• Feasible to do this because system properties are invariant 

• Suppose P1 & P4 were to fail
• Suppose A2, B2, C2, D2 & E2 on P2 

were to be promoted

Schedule is not 
feasible => original 
placement decision 
was incorrect
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Refinement 3: Enable the offline algorithm to consider failures
• “Look ahead” at failure scenarios of already allocated tasks & replicas 

determining worst case impact on a given processor
• Feasible to do this because system properties are invariant 

Outcome
• Due to the potential for an 

infeasible schedule, more 
resources are suggested by 
the Lookahead algorithm

• Look-ahead strategy cannot determine impact 
of multiple uncorrelated failures that may make 
system unschedulable

Looking ahead that any of 
A2/B2 or A3/B3 may be 
promoted, C1/D1/E1 must be 
placed on a different processor

Placing backups of C/D/E here 
points at one potential combination 

that leads to infeasible schedule
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Refinement 4: Restrict the order in which failover targets are chosen
• Utilize a rank order of replicas to dictate how failover happens
• Enables the Lookahead algorithm to overbook resources due to 

guarantees that no two uncorrelated failures will make the system 
unschedulable 

• Suppose the replica allocation is as 
shown (slightly diff from before)

• Replica numbers indicate order in the 
failover process

Replica number 
denotes ordering in 
the failover process
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Refinement 4: Restrict the order in which failover targets are chosen
• Utilize a rank order of replicas to dictate how failover happens
• Enables the Lookahead algorithm to overbook resources due to 

guarantees that no two uncorrelated failures will make the system 
unschedulable 

• Suppose P1 & P4 were to fail (the 
interesting case)

• A2 & B2 on P2, & C2, D2, E2 on P3 
will be chosen as failover targets due 
to the restrictions imposed

• Never can C3, D3, E3 become 
primaries along with A2 & B2 unless 
more than two failures occur
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Refinement 4: Restrict the order in which failover targets are chosen
• Utilize a rank order of replicas to dictate how failover happens
• Enables the Lookahead algorithm to overbook resources due to 

guarantees that no two uncorrelated failures will make the system 
unschedulable 

Resources minimized from 6 to 4 while assuring both RT & FT

For a 2-fault tolerant system, replica 
numbered 3 is assured never to become 
a primary along with a replica numbered 

2. This allows us to overbook the 
processor thereby minimizing resources 
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DeCoRAM Evaluation Criteria
• Hypothesis – DeCoRAM’s 

Failure-aware Look-ahead 
Feasibility algorithm allocates 
applications & replicas to 
hosts while minimizing the 
number of processors utilized

• number of processors 
utilized is lesser than the 
number of processors 
utilized using active 
replication 

DeCoRAM Allocation Engine
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DeCoRAM Evaluation Hypothesis
• Hypothesis – DeCoRAM’s 

Failure-aware Look-ahead 
Feasibility algorithm allocates 
applications & replicas to 
hosts while minimizing the 
number of processors utilized

• number of processors 
utilized is lesser than the 
number of processors 
utilized using active 
replication 

• Deployment-time configured 
real-time fault-tolerance 
solution works at runtime 
when failures occur

• none of the applications 
lose high availability & 
timeliness assurances

DeCoRAM Allocation Engine
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Experiment Configurations
• Determine # of processors                                                    

utilized by
• varying number of tasks                                               

dimension)
• varying the number of                                                       

replicas (FT dimension)
• varying the maximum CPU                                                  

utilization of any task in the                                                 
task set

• periods of tasks randomly generated                              
between 1ms & 1000ms
• each task execution time between                                                     

0% & maximum load % of the period
• each task state synchronization                                        

time between 1% & 2% of the                                               
worst case execution times



DeCoRAM Allocation Engine
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Comparison Schemes

No replicas in 
the task set

• Comparison schemes for evaluation
• lower bound on number of                                                                

processors utilized 
• Implementing the optimal                                                                    

allocation algorithm in                                                                       
[Dhall:78]  - uses First Fit bin                                                      
packing scheme
• Optimal no fault-tolerance                                                             

scenario (No FT)
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Comparison Schemes

All replicas have 
same worst case 
execution times

• Comparison schemes for evaluation
• lower bound on number of                                                                

processors utilized 
• Implementing the optimal                                                                    

allocation algorithm in                                                                       
[Dhall:78]  - uses First Fit bin                                                      
packing scheme
• Optimal no fault-tolerance                                                             

scenario (No FT)
• Upper bound on # of processors

• Multiplying # of processors                                                                    
utilized in the No FT case with                                                                         
# of replicas
• Optimal active replication                                                                 

scenario (AFT)
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Comparison Schemes

DeCoRAM Allocation Engine

Replicas with 
varying 

execution times

• Comparison schemes for evaluation
• lower bound on number of                                                                

processors utilized 
• Implementing the optimal                                                                    

allocation algorithm in                                                                       
[Dhall:78]  - uses First Fit bin                                                      
packing scheme
• Optimal no fault-tolerance                                                             

scenario (No FT)
• Upper bound on # of processors

• Multiplying # of processors                                                                    
utilized in the No FT case with                                                                         
# of replicas
• Optimal active replication                                                                 

scenario (AFT)
• DeCoRAM allocation heuristic

• First Fit (FF-FT) & Best Fit  (BF-FT) schemes
• Optimal passive replication (FF-FT & BF-FT)
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Experiment Results

Linear increase in # 
of processors utilized 
in AFT compared to 

NO FT
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Experiment Results

Rate of increase is 
much more slower 

when compared to AFT
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Experiment Results

DeCoRAM only uses 
approx. 50% of the 

number of processors 
used by AFT
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Experiment Results

As task load increases, 
# of processors utilized 

increases
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Experiment Results

As task load increases, 
# of processors utilized 

increases
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Experiment Results

As task load increases, 
# of processors utilized 

increases
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Experiment Results

DeCoRAM scales well, 
by continuing to save 
~50% of processors
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DeCoRAM Pluggable Allocation Engine Architecture
• Design driven by separation of concerns
• Use of design patterns
• Input Manager component – collects per-task FT & RT requirements
• Task Replicator component – decides the order in which tasks are allocated
• Node Selector component – decides the node in which allocation will be checked
• Admission Controller component – applies DeCoRAM’s novel algorithm
• Placement Controller component – calls the admission controller repeatedly to 

deploy all the applications & their replicas

Input Manager

Task Replicator

Node Selector

Admission 
Controller

Placement 
Controller

Allocation Engine implemented in 
~7,000 lines of C++ code

Output decisions realized by 
DeCoRAM’s D&C Engine



DeCoRAM Deployment & Configuration Engine
• Automated deployment & 

configuration support for fault-
tolerant real-time systems

• XML Parser
• uses middleware D&C 

mechanisms to decode 
allocation decisions

• Middleware Deployer
• deploys FT middleware-

specific entities
• Middleware Configurator

• configures the underlying           
FT-RT middleware artifacts

• Application Installer
• installs the application 

components & their replicas
• Easily extendable

• Current implementation on top 
of CIAO, DAnCE, & FLARe 
middleware 

117DeCoRAM D&C Engine implemented in ~3,500 lines of C++ code
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Post-Specification Phase: Generative Techniques 
to Support Missing Semantics

Run-time

Specification

Composition

Configuration

Deployment

Resolves 
challenges in

• Generative Aspects for Fault-Tolerance (GRAFT)
• Multi-stage model-driven development process
• Weaving Dependability Concerns in System 

Artifacts
• Provides model-to-model, model-to-text, model-to-

code transformations

Focus on Generative Techniques 
for Introducing New Semantics 

into Middleware Implementations
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Related Research: Transparent FT Provisioning
Category Related Research (Transparent FT Provisioning)

Model-driven 1. Aspect-Oriented Programming Techniques to support Distribution, 
Fault Tolerance, & Load Balancing in the CORBA(LC) Component 
Model by D. Sevilla, J. M. García, & A. Gómez

2. CORRECT - Developing Fault-Tolerant Distributed Systems by A. 
Capozucca, B. Gallina, N. Guelfi, P. Pelliccione, & A. Romanovsky

3. Automatic Generation of Fault-Tolerant CORBA-Services by A. 
Polze, J. Schwarz, & M. Malek

4. Adding fault-tolerance to a hierarchical DRE system by P. Rubel, 
J. Loyall, R. Schantz, & M. Gillen

Using AOP 
languages

1. Implementing Fault Tolerance Using Aspect Oriented 
Programming by R. Alexandersson & P. Öhman

2. Aspects for improvement of performance in fault-tolerant software
by D. Szentiványi

3. Aspect-Oriented Fault Tolerance for Real-Time Embedded 
Systems by F. Afonso, C. Silva, N. Brito, S. Montenegro

Meta-Object 
Protocol 
(MOP)

1. A Multi-Level Meta-Object Protocol for Fault-Tolerance in Complex 
Architectures by F. Taiani & J.-C. Fabre

2. Reflective fault-tolerant systems: From experience to challenges
by J. C. Ruiz, M.-O. Killijian, J.-C. Fabre, & P. Thévenod-Fosse
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Related Research: Transparent FT Provisioning
Category Related Research (Transparent FT Provisioning)

Model-driven 1. Aspect-Oriented Programming Techniques to support Distribution, 
Fault Tolerance, & Load Balancing in the CORBA(LC) Component 
Model by D. Sevilla, J. M. García, & A. Gómez

2. CORRECT - Developing Fault-Tolerant Distributed Systems by A. 
Capozucca, B. Gallina, N. Guelfi, P. Pelliccione, & A. Romanovsky

3. Automatic Generation of Fault-Tolerant CORBA-Services by A. 
Polze, J. Schwarz, & M. Malek

4. Adding fault-tolerance to a hierarchical DRE system by P. Rubel, 
J. Loyall, R. Schantz, & M. Gillen

Using AOP 
languages

1. Implementing Fault Tolerance Using Aspect Oriented 
Programming by R. Alexandersson & P. Öhman

2. Aspects for improvement of performance in fault-tolerant software
by D. Szentiványi

3. Aspect-Oriented Fault Tolerance for Real-Time Embedded 
Systems by F. Afonso, C. Silva, N. Brito, S. Montenegro

Meta-Object 
Protocol 
(MOP)

1. A Multi-Level Meta-Object Protocol for Fault-Tolerance in Complex 
Architectures by F. Taiani & J.-C. Fabre

2. Reflective fault-tolerant systems: From experience to challenges
by J. C. Ruiz, M.-O. Killijian, J.-C. Fabre, & P. Thévenod-Fosse

M2M 
transformation 

& code 
generation

Performance 
improvement 
for FT using 

AOP

Performance 
improvement 
for FT using 

AOP
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Run-time

Specification

Composition

Configuration

Deployment

Development 
Lifecycle

What is Missing? Transparent FT Provisioning
• Not all the necessary steps are supported coherently

1. Automatic component instrumentation for fault-handling code
2. Deciding placement of components & their replicas 
3. Deploying primaries, replicas, & monitoring infrastructure
4. Platform-specific metadata synthesis (XML)

• Missing domain-specific recovery semantics (run-time 
middleware)
• Group failover is DRE-specific & often neglected
• Costly to modify the middleware
• Application-level solutions lose transparency & reusability

• Missing transparent network QoS provisioning (D&C 
middleware)
• Configuration of network resources (edge routers)
• Configuration of containers for correct packet marking

1. How to add domain-specific recovery 
semantics in COTS middleware retroactively?

2. How to automate it to improve productivity & 
reduce cost?



Soln: Generative Aspects for Fault Tolerance (GRAFT)

• Multi-stage model-driven
generative process

• Incremental model-
refinement using 
transformations

• Model-to-model
• Model-to-text
• Model-to-code

• Weaves dependability 
concerns in system 
artifacts

12
2



Stage 1: Isomorphic M2M Transformation

M2M Transformation

QoS View

Structural View

12
3

• Step1: Model structural composition of 
operational string

• Step2: Annotate components with 
failover unit(s) marking them “fault-tolerant” 
in the QoS view

• Step3: Use aspect-oriented M2M 
transformation developed using Embedded 
Constraint Language (ECL) of C-SAW

• Step4: Component replicas & 
interconnections are generated 
automatically

• Step 5: FOU annotations are removed but 
other QoS annotations are cloned (uses 
Dependency Inversion Principle of CQML)

• Step 6: Isomorphic clone can be modified 
manually (reliability through diversity)
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Strategic placement of components, e.g. using 
DeCoRAM
 Improves availability of the system
 Several constraint satisfaction algorithms exist

Placement comparison heuristic 
 Hop-count between replicas
 Formulation based on the co-failure probabilities 

captured using Shared Risk Group (SRG)
 E.g., shared power supply, A/C, fire zone

 Reduces simultaneous failure probability
GRAFT transformations weave the decisions 

back into the model

Stage 2: Determine Component Placement

RootRiskGroup

SRG SRG

PR



Stage 3: Synthesizing Fault Monitoring Infrastructure

Detector1

Detector2

Planner3 Planner1

Error 
Recovery

Effector1

Effector2

Config

LEGEND

Receptacle

Event Sink

Event Source

Facet

Failover unit

Detector1

Detector2

Planner3 Planner1

Error 
Recovery

Effector1

Effector2

Config

LEGEND

Receptacle

Event Sink

Event Source

Facet

M2M Transformation

Collocated Heartbeat Components
Fault Detector

12
5

Transformation Algorithm

QoS View

Structural View
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Stage 4: Synthesizing Code for Group Failover (1/2)
 Code generation for fault handling
 Reliable fault detection
 Transparent fault masking
 Fast client failover

 Location of failure determines handling behavior

Head component failure Tail component failure
Client-side code detects the failure Only other FOU participants detect 

the failure. Client waits.
--- Trigger client-side exception by 

forcing FOU to shutdown
Client-side code does transparent
failover

Client-side code detects passivation
of the head component & does 
transparent failover

A

Client

B

Head Tail

FOU

 FOU shutdown is achieved using seamless integration with D&C 
middleware APIs
 e.g., Domain Application Manager (DAM) of CCM

 Shutdown method calls are generated in fault-handling code



Stage 4: Synthesizing Code for Group Failover (2/2)

 Two behaviors based on 
component position
 FOU participant’s behavior
 Detects the failure
 Shuts down the FOU 

including itself
 FOU client’s behavior
 Detects the failure
 Does an automatic failover 

to a replica FOU
 Optionally shuts down the 

FOU to save resources
 Generated code: 

AspectC++ 

 AspectC++ compiler weaves in the generated code in the respective 
component stubs

12
7



Stage 5: Synthesizing Platform-specific Metadata

• Component Technologies use XML metadata to configure 
middleware

• Existing model interpreters can be reused without any modifications
• CQML’s FT modeling is opaque to existing model interpreters
• GRAFT model transformations are transparent to the model interpreters

128

GRAFT synthesizes the necessary artifacts for transparent 
FT provisioning for DRE operational strings



Evaluating Modeling Efforts Reduction Using GRAFT

129

 Case-study - Warehouse Inventory 
Tracking System
 GRAFT’s isomorphic M2M transformation 

eliminates human modeling efforts of 
replicas
 Components
 Connections
 QoS requirements



Evaluating Programming Efforts Reduction Using GRAFT

130

 GRAFT’s code generator reduces human 
programming efforts
 Code for fault-detection, fault-masking, & 

failover
 # of try blocks
 # of catch blocks
 Total # of lines



Evaluating Client Perceived Failover Latency Using GRAFT

131

 Client perceived failover latency
 Sensitive to the location of failure
 Sensitive to the implementation of DAM
 Head component failure
 Constant failover latency

 Tail component failover
 Linear increase in failover latency

Head component failure Tail component failure
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Presentation Road Map

• Technology Context: DRE Systems
• DRE System Lifecycle & FT-RT Challenges
• Design-time Solutions
• Deployment & Configuration-time Solutions
• Runtime Solutions
• Ongoing Work
• Concluding Remarks
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Specification

Composition

Configuration

Deployment

Run-time

Development 
Lifecycle

• Fault Tolerant Lightweight Adaptive 
Middleware (FLARe) 

• Two algorithms (LAAF and ROME)

Runtime Phase: Real-time Fault Detection 
& Recovery



134

Related Research
Category Related Research

CORBA-based 
Fault-tolerant 
Middleware 
Systems

P. Felber et. al., Experiences, Approaches, & Challenges in Building Fault-
tolerant CORBA Systems, in IEEE Transactions on Computers, May 2004
T. Bennani et. al., Implementing Simple Replication Protocols Using CORBA 
Portable Interceptors & Java Serialization, in Proceedings of the IEEE 
International Conference on Dependable Systems & Networks (DSN 2004), 
Italy, 2004
P. Narasimhan et. al., MEAD: Support for Real-time Fault-tolerant CORBA, in 
Concurrency & Computation: Practice & Experience, 2005

Adaptive 
Passive 
Replication 
Systems

S. Pertet et. al., Proactive Recovery in Distributed CORBA Applications, in 
Proceedings of the IEEE International Conference on Dependable Systems & 
Networks (DSN 2004), Italy, 2004
P. Katsaros et. al., Optimal Object State Transfer – Recovery Policies for Fault-
tolerant Distributed Systems, in Proceedings of the IEEE International 
Conference on Dependable Systems & Networks (DSN 2004), Italy, 2004
Z. Cai et. al., Utility-driven Proactive Management of Availability in Enterprise-
scale Information Flows, In Proceedings of the ACM/IFIP/USENIX Middleware 
Conference (Middleware 2006), Melbourne, Australia, November 2006
L. Froihofer et. al., Middleware Support for Adaptive Dependability, In 
Proceedings of the ACM/IFIP/USENIX Middleware Conference (Middleware 
2007), Newport Beach, CA, November 2007

Middleware building blocks for 
fault-tolerant systems

Runtime adaptations to reduce 
failure recovery times
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Related Research
Category Related Research

Load-Aware 
Adaptations of 
Fault-tolerance 
Configurations

T. Dumitras et. al., Fault-tolerant Middleware & the Magical 1%, In Proceedings 
of the ACM/IFIP/USENIX Middleware Conference (Middleware 2005), 
Grenoble, France, November 2005
O. Marin et. al., DARX: A Framework for the Fault-tolerant Support of Agent 
Software, In Proceedings of the IEEE International Symposium on Software 
Reliability Engineering (ISSRE 2003), Denver, CO, November 2003
S. Krishnamurthy et. al., An Adaptive Quality of Service Aware Middleware for 
Replicated Services, in IEEE Transactions on Parallel & Distributed Systems 
(IEEE TPDS), 2003

Real-time 
Fault-tolerant 
Systems

D. Powell et. al., Distributed Fault-tolerance: Lessons from Delta-4, In IEEE 
MICRO, 1994
K. H. Kim et. al., The PSTR/SNS Scheme for Real-time Fault-tolerance Via 
Active Object Replication & Network Surveillance, In IEEE Transactions on 
Knowledge & Data Engineering (IEEE TKDE), 2000
S. Krishnamurthy et. al., Dynamic Replica Selection Algorithm for Tolerating 
Timing Faults, in Proceedings of the IEEE International Conference on 
Dependable Systems & Networks (DSN 2001), 2001
H. Zou et. al., A Real-time Primary Backup Replication Service, in IEEE 
Transactions on Parallel & Distributed Systems (IEEE TPDS), 1999

Load-aware adaptations –
change of replication styles, 

reduced degree of active 
replication 

Schedulability analysis to schedule 
backups in case primary replica 

fails, faster processing times
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• Existing passive replication solutions 
do not deal with overloads

• workload fluctuations & multiple 
failures could lead to overloads

• response times affected – if 
overloads not handled

Related Research: What is Missing?

• Existing passive replication systems do not deal with resource-aware 
failovers
• If clients are redirected to heavily loaded replicas upon failure, their 

response time requirements will not be satisfied
• failover strategies are most often static, which means that clients get a 

failover behavior that is optimal at deployment-time & not at runtime 

Solution Approach: FLARe : Fault-tolerant Middleware with adaptive 
failover target selection & overload management support
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Our Approach: FLARe RT-FT Middleware
• FLARe = Fault-tolerant 

Lightweight Adaptive 
Real-time Middleware
• RT-CORBA based 

lightweight FT
• Resource-aware FT

• Resource manager –
pluggable resource 
management algorithms

• FT decisions made in 
conjunction with 
middleware replication 
manager
• manages primary & 

backup replicas
• provides registration 

interfaces
• handles failure detection
• starts new replicas
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Our Approach: FLARe RT-FT Middleware
• Real-time performance 

during failures & overloads
• monitor CPU utilizations at 

hosts where primary & backups 
are deployed

• Load-Aware Adaptive       
Failover Strategy (LAAF)

• failover targets chosen on the 
least loaded host hosting the 
backups 

• Resource Overload 
Management Redirector 
(ROME) strategy

• clients are forcefully redirected 
to least loaded backups –
overloads are treated as failures

• LAAF & ROME adapt to 
changing system loads & 
resource availabilities
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Our Approach: FLARe RT-FT Middleware
• Transparent & Fast 

Failover
• Redirection using client-

side portable 
interceptors

• catches processor and 
process failure 
exceptions and redirects 
clients to alternate 
targets

• Failure detection can be 
improved with better 
protocols – e.g., SCTP
• middleware supports 

pluggable transports
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Our Approach: FLARe RT-FT Middleware
• Predictable failover

• failover target decisions 
computed periodically by 
the resource manager

• conveyed to client-side 
middleware agents –
forwarding agents

• agents work in tandem 
with portable 
interceptors

• redirect clients quickly & 
predictably to 
appropriate targets

• agents 
periodically/proactively 
updated when targets 
change
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FLARe Evaluation Criteria

• Hypotheses: FLARe’s
• LAAF failover target selection strategy selects failover targets that maintain 

satisfactory response times for clients & alleviates processor overloads.
• no processor’s utilization is more than 70% 

• ROME overload management strategy reacts to overloads rapidly, selects 
appropriate targets to redirect clients, & maintains satisfactory response times for 
clients

• no processor’s utilization is more than 70%
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Experiment Setup

• Experiment setup 
• 6 different clients – 2 clients CL-5 & CL-6 are dynamic clients (start after 50 

seconds)
• 6 different servers – each have 2 replicas, 2 servers are dynamic as well
• Each client has a forwarding agent deployed – they get the failover target 

information from the middleware replication manager
• Experiment ran for 300 seconds – each server consumes some CPU load

• some servers share processors – they follow rate-monotonic scheduling for 
prioritized access to CPU resources
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Experiment Configurations

• Static Failover Strategy
• each client knows the order in which they access the server replicas in 

the presence of failures – i.e., the failover targets are known in advance
• for e.g., CL-2 makes remote invocations on B-1, on B-3 if B-1 fails, & on 

B-2 if B3-fails
• this strategy is optimal at deployment-time (B-3 is on a processor lightly 

loaded than the processor hosting B-2)
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Experiment Configurations

• LAAF Failover Strategy
• each client knows only the reference of the primary replica
• failover targets are determined at runtime while monitoring the CPU 

utilizations at all processors – that is why dynamic loads are added in the 
experiment
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LAAF Algorithm Results

At 50 secs, 
dynamic loads 
are introduced
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LAAF Algorithm Results

At 150 secs, 
failures are 
introduced
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LAAF Algorithm Results

Till 150 seconds the response 
times of all the clients are 

similar in both the strategies
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LAAF Algorithm Results

After failure, response times of 
both CL-2 & CL-5 increases

After failure, response time of CL-5 
remains the same, better yet 

response time of CL-2 decreases

LAAF makes adaptive failover target decisions that maintain 
response times !!
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LAAF Algorithm Results

Response times of CL-3 & CL-4 
increase after failure – because 
of rate-monotonic scheduling 
behavior – they are no longer 

accessing highest priority 
servers
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LAAF Algorithm Results

CPU utilizations skewed – some 
processors are very heavily 
loaded, while some are not

CPU utilizations are more 
evenly balanced – none of them 
more than 70% - LAAF makes 

sure of that !!
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Summary of Results

• FLARe’s LAAF failover strategy maintains client response times & 
processor utilizations after failure recovery when compared to the static 
failover strategy (no processor is utilized more than 70%)
• LAAF failover strategy always adapts the failover targets whenever 

system loads change – client failover to the least loaded backup
• static failover strategy does not change the previously deployment-time 

optimal failover targets at runtime
• client failover results in overload & hence higher response times
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Summary of FLARe Results

• ROME strategy reacts to overloads & maintains client response times – no 
processor is utilized more than 70%
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Specification

Composition

Configuration

Deployment

Run-time

Development 
Lifecycle

• Component Replication-based on Failover 
Units (CORFU)

• Raise the level of fault tolerance to 
component level

• Support group failover

Runtime Phase: Component-based Fault Tolerance
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Component Replication Based on 
Failover Units (CORFU)
• Raises the level of abstraction, from 

objects to

Hardware

Domain-Specific
Services

Common
Middleware Services

Distribution
Middleware

Host Infrastructure
Middleware

Operating Systems 
& Protocols

Applications

CORBA 2.x
Lightweight

Fault Tolerance

CORFU Contributions
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Component Replication Based on 
Failover Units (CORFU)
• Raises the level of abstraction, from 

objects to

a) Fault-tolerance for single 
components

NIS A
NIS A

Hardware

Domain-Specific
Services

Common
Middleware Services

Distribution
Middleware

Host Infrastructure
Middleware

Operating Systems 
& Protocols

Applications

CORBA 2.x
Lightweight

Fault Tolerance

CORFU

CORFU Contributions
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Component Replication Based on 
Failover Units (CORFU)
• Raises the level of abstraction, from 

objects to

a) Fault-tolerance for single 
components

b) Components with Heterogenous 
State Synchronisation (CHESS)

NIS A
NIS A “Archive”

R3

R2

R1 CHESS

Hardware

Domain-Specific
Services

Common
Middleware Services

Distribution
Middleware

Host Infrastructure
Middleware

Operating Systems 
& Protocols

Applications

CORBA 2.x
Lightweight

Fault Tolerance

CORFU

CORFU Contributions
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Component Replication Based on 
Failover Units (CORFU)
• Raises the level of abstraction, from 

objects to

a) Fault-tolerance for single 
components

b) Components with Heterogenous 
State Synchronisation (CHESS)

c) Fault-tolerance for groups of 
components

NIS A
NIS A

Archive A

Mission
Planning
System A

Telemetry
Server A

Telecommand
Server A

Archive A

Mission
Planning
System A

Telemetry
Server A

Telecommand
Server A

Bridges the abstraction gap for fault-tolerance

“Archive”
R3

R2

R1 CHESS

Hardware

Domain-Specific
Services

Common
Middleware Services

Distribution
Middleware

Host Infrastructure
Middleware

Operating Systems 
& Protocols

Applications

CORBA 2.x
Lightweight

Fault Tolerance

CORFU

CORFU Contributions



Prior Work: Object-based Fault Tolerance

• Conventional Fault-Tolerance solutions provide replication capabilities 
on the granularity of objects

operation() Object : 
Interface X: Client

Middleware

158



• Conventional Fault-Tolerance solutions provide replication capabilities 
on the granularity of objects

• FLARe takes a lightweight approach for DRE systems based on 
passive replication

operation() Object : 
Interface X: Client

Middleware

159

Prior Work: Object-based Fault Tolerance



• Conventional Fault-Tolerance solutions provide replication capabilities 
on the granularity of objects

• FLARe takes a lightweight approach for DRE systems based on 
passive replication

• It provides mechanisms for

1. Grouping of replica objects as one logical application

“TelemetryServer”

R3

R2

R1
operation() Object : 

Interface X: Client

Middleware
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• Conventional Fault-Tolerance solutions provide replication capabilities 
on the granularity of objects

• FLARe takes a lightweight approach for DRE systems based on 
passive replication

• It provides mechanisms for

1. Grouping of replica objects as one logical application

2. Failure detection

“TelemetryServer”

R3

R2

R1
operation() Object : 

Interface X: Client

Middleware

161

Prior Work: Object-based Fault Tolerance



• Conventional Fault-Tolerance solutions provide replication capabilities 
on the granularity of objects

• FLARe takes a lightweight approach for DRE systems based on 
passive replication

• It provides mechanisms for

1. Grouping of replica objects as one logical application

2. Failure detection

3. Failover to backup replica

“TelemetryServer”

R3

R2

R1
operation() Object : 

Interface X: Client

Middleware
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Prior Work: Object-based Fault Tolerance



Object-based Server-side Fault Tolerance

CORBA 2.x Server Obligations

server
163



CORBA 2.x Server Obligations
Object 

Implementation
1. Implementation of 

get_state/set_state 
methods

2. Triggering state 
synchronization 
through state_changed 
calls

3. Getter & setter 
methods for object id & 
state synchronization 
agent attributes

server

Servant
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CORBA 2.x Server Obligations
Object 

Implementation Initialization

1. Implementation of 
get_state/set_state 
methods

2. Triggering state 
synchronization 
through state_changed 
calls

3. Getter & setter 
methods for object id & 
state synchronization 
agent attributes

1. Registration of IORInterceptor

server

Servant

IOR
Interceptor
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CORBA 2.x Server Obligations
Object 

Implementation Initialization

1. Implementation of 
get_state/set_state 
methods

2. Triggering state 
synchronization 
through state_changed 
calls

3. Getter & setter 
methods for object id & 
state synchronization 
agent attributes

1. Registration of IORInterceptor
2. HostMonitor thread instantiation 
3. Registration of thread with HostMonitor

Host
Monitor

server

Servant

HM
thread

IOR
Interceptor

166

Object-based Server-side Fault Tolerance



CORBA 2.x Server Obligations
Object 

Implementation Initialization

1. Implementation of 
get_state/set_state 
methods

2. Triggering state 
synchronization 
through state_changed 
calls

3. Getter & setter 
methods for object id & 
state synchronization 
agent attributes

1. Registration of IORInterceptor
2. HostMonitor thread instantiation 
3. Registration of thread with HostMonitor
4. StateSynchronizationAgent instantiation
5. Registration of State Synchronization Agent with 

Replication Manager

Replication
Manager

Host
Monitor

server

Servant
SSA

HM
thread

IOR
Interceptor
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CORBA 2.x Server Obligations
Object 

Implementation Initialization

1. Implementation of 
get_state/set_state 
methods

2. Triggering state 
synchronization 
through state_changed 
calls

3. Getter & setter 
methods for object id & 
state synchronization 
agent attributes

1. Registration of IORInterceptor
2. HostMonitor thread instantiation 
3. Registration of thread with HostMonitor
4. StateSynchronizationAgent instantiation
5. Registration of State Synchronization Agent with 

Replication Manager
6. Registration with State Synchronization Agent for 

each object
7. Registration with Replication Manager for each 

object

Replication
Manager

Host
Monitor

server

Servant
SSA

HM
thread

IOR
Interceptor
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CORBA 2.x Server Obligations
Object 

Implementation Initialization Configuration

1. Implementation of 
get_state/set_state 
methods

2. Triggering state 
synchronization 
through state_changed 
calls

3. Getter & setter 
methods for object id & 
state synchronization 
agent attributes

1. Registration of IORInterceptor
2. HostMonitor thread instantiation 
3. Registration of thread with HostMonitor
4. StateSynchronizationAgent instantiation
5. Registration of State Synchronization Agent with 

Replication Manager
6. Registration with State Synchronization Agent for 

each object
7. Registration with Replication Manager for each 

object

1. ReplicationManag
er reference

2. HostMonitor 
reference

3. Replication object 
id

4. Replica role 
(Primary/Backup)

Replication
Manager

Host
Monitor

server

Servant
SSA

HM
thread

IOR
Interceptor
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Object-based Client-side Fault Tolerance

CORBA 2.x Client Obligations

server
client

170



CORBA 2.x Client Obligations

Initialization

1. Registration of Client Request 
Interceptor

server
client

Request
Interceptor
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CORBA 2.x Client Obligations

Initialization

1. Registration of Client Request 
Interceptor

2. ForwardingAgent instantiation
3. Registration of ForwardingAgent with 

ReplicationManager

Replication
Manager

server
client

Request
Interceptor

Forwarding
Agent
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CORBA 2.x Client Obligations

Initialization Configuration

1. Registration of Client Request 
Interceptor

2. ForwardingAgent instantiation
3. Registration of ForwardingAgent with 

ReplicationManager

1. ReplicationManager 
reference

Replication
Manager

server
client

Request
Interceptor

Forwarding
Agent

173

Object-based Client-side Fault Tolerance
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Addressing Limitations with Object-based FT

Object-based fault-tolerance incurs additional 
development effort for

1. Object implementation
2. Initialization and setup of the fault-tolerance 

infrastructure
3. Configuration of fault-tolerance properties

This adds additional sources for accidential errors 
such as missed intialization steps of wrong order of 
steps.

CORFU uses component-based infrastructure to reduce this effort



175

Single Component Replication Context

Archive 
Component

Container

Object : 
Archive 

Component Middleware

 Creates a standard “virtual 
boundary” around application 
component implementations that 
interact only via well-defined 
interfaces

 Defines standard container
mechanisms needed to execute 
components in generic 
component servers

 Specifies the infrastructure 
needed to configure & deploy
components throughout a 
distributed system
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Single Component Replication Challenges

… …
…

Components cause additional 
complexities for fault tolerance 

since they …

component Archive
{

provides Stream data;
provides Admin mgt;

};
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… …
…

Components cause additional 
complexities for fault tolerance 

since they …
 can consist of several 

objects

component Archive
{

provides Stream data;
provides Admin mgt;

};

Object : 
Admin 

Object : 
Stream 

Object : 
Archive 

Single Component Replication Challenges
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… …
…

Components cause additional 
complexities for fault tolerance 

since they …
 can consist of several 

objects
 have connections that need 

to be maintained

component Archive
{

provides Stream data;
provides Admin mgt;

};

Object : 
Admin 

Object : 
Stream 

Object : 
Archive 

Single Component Replication Challenges



Container

Middleware Bus

Container

179

… …
…

Components cause additional 
complexities for fault tolerance 

since they …
 can consist of several 

objects
 have connections that need 

to be maintained
 are shared objects & have 

no direct control over their 
run-time infrastructure

component Archive
{

provides Stream data;
provides Admin mgt;

};

Object : 
Admin 

Object : 
Stream 

Object : 
Archive 

Single Component Replication Challenges



Single Component Replication Solutions

Solution Part 1: Hierarchical naming scheme for 
grouping objects implementing one component

“Archive”

R1
R2

R3

component Archive
{

};
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“Archive”

R1
R2

R3

“Archive.data”

R1
R2

R3

component Archive
{

provides Stream data;

};
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Solution Part 1: Hierarchical naming scheme for 
grouping objects implementing one component

Single Component Replication Solutions



“Archive”

R1
R2

R3

“Archive.data”

R1
R2

R3

“Archive.mgt”

R1
R2

R3

component Archive
{

provides Stream data;
provides Admin mgt;

};
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Solution Part 1: Hierarchical naming scheme for 
grouping objects implementing one component

Single Component Replication Solutions



Solution Part 2: Integration of FLARE into a fault tolerant 
component server

Host
Monitor

Host
Monitor

Replication
Manager

Host
Monitor

Host
Monitor

FLARe infrastructure 
coexists with 

Component Runtime 
Infrastructure
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Single Component Replication Solutions



Solution Part 2: Integration of FLARE into a fault tolerant 
component server

Host
Monitor

Host
Monitor

Replication
Manager

Host
Monitor

Host
Monitor

Component Server

Container
Request

Interceptor

Forwarding
Agent SSA

IOR
InterceptorHM

thread

All client & server side 
entities related to 

FLARe are instantiated 
in a component server
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Single Component Replication Solutions



Solution Part 2: Integration of FLARE into a fault tolerant 
component server

Host
Monitor

Host
Monitor

Replication
Manager

Host
Monitor

Host
Monitor

Component Server

Container
Request

Interceptor

Forwarding
Agent SSA

IOR
Interceptor

AdminStream
Archive

HM
thread

Component Implementation 
Instances are loaded into 

the Container & are 
automatically integrated 

into FLARe
185

Single Component Replication Solutions
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Component State Synchronization w/CHESS

Components maintain internal state that needs to be propagated to backup 
replicas

“Archive”

R3

R2

R1

State per Component can vary in

1. Location
2. Size

3. Complexity & Distribution
4. Dynamics of Changes

CHESS = “Components 
with HEterogeneous 

State Synchronization”
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Components maintain internal state that needs to be propagated to backup 
replicas

“Archive”

R3

R2

R1

Component State Synchronization w/CHESS
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Components maintain internal state that needs to be propagated to backup 
replicas
The CHESS Framework applies the Strategy pattern to allow

1. Registration of component instances in the local process space

“Archive”

R3

R2

R1 CHESS

Component State Synchronization w/CHESS
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Components maintain internal state that needs to be propagated to backup 
replicas
The CHESS Framework applies the Strategy pattern to allow

1. Registration of component instances in the local process space
2. Choice of the transport protocol for state dissemination (e.g. CORBA or 

DDS)

“Archive”

R3

R2

R1 CHESS

Component State Synchronization w/CHESS
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Components maintain internal state that needs to be propagated to backup 
replicas
The CHESS Framework applies the Strategy pattern to allow

1. Registration of component instances in the local process space
2. Choice of the transport protocol for state dissemination (e.g. CORBA or 

DDS)
3. Connection management for communication with other components

“Archive”

R3

R2

R1 CHESS

Component State Synchronization w/CHESS
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Components maintain internal state that needs to be propagated to backup 
replicas
The CHESS Framework applies the Strategy pattern to allow

1. Registration of component instances in the local process space
2. Choice of the transport protocol for state dissemination (e.g. CORBA or 

DDS)
3. Connection management for communication with other components
4. State Dissemination

“Archive”

R3

R2

R1 CHESSCHESS gives flexibility in
1. Serialization of State

2. Timing Behavior
3. Protocol Choice

Component State Synchronization w/CHESS
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CORFU integrates Fault Tolerance mechanisms into component-based 
systems

 Server & client side functionality is both integrated into one container

CCM Component Obligations
Object 

Implementation Initialization Configuration

1. Implementation of 
get_state/set_state 
methods

2. Triggering state 
synchronization 
through state_changed 
calls

3. Getter & setter 
methods for object id & 
state synchronization 
agent attributes

1. Registration of IORInterceptor
2. HostMonitor thread instantiation 
3. Registration of thread with HostMonitor
4. StateSynchronizationAgent instantiation
5. Registration of State Synchronization Agent with 

Replication Manager
6. Registration with State Synchronization Agent for 

each object
7. Registration with Replication Manager for each 

object

1. ReplicationManag
er reference

2. HostMonitor 
reference

3. Replication object 
id

4. Replica role 
(Primary/Backup)

Benefits of CORFU FT vs. Object-based FT
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CORFU integrates Fault Tolerance mechanisms into component-based 
systems

 Server & client side functionality is both integrated into one container

 Fault tolerance related tasks are automated

CCM Component Obligations
Object 

Implementation Initialization Configuration

1. Implementation of 
get_state/set_state 
methods

2. Triggering state 
synchronization 
through state_changed 
calls

3. Getter & setter 
methods for object id & 
state synchronization 
agent attributes

1. Registration of IORInterceptor
2. HostMonitor thread instantiation 
3. Registration of thread with HostMonitor
4. StateSynchronizationAgent instantiation
5. Registration of State Synchronization Agent with 

Replication Manager
6. Registration with State Synchronization Agent for 

each object
7. Registration with Replication Manager for each 

object

1. ReplicationManag
er reference

2. HostMonitor 
reference

3. Replication object 
id

4. Replica role 
(Primary/Backup)

Initialization is done automatically within the 
component server & container

Configuration of 
components is 

done in the 
deployment plan 

through 
configPropertiesPartly automated 

through code generation

Benefits of CORFU FT vs. Object-based FT
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Component Group Replication Context

Assemblies of Components with Fault dependencies

Archive A

Telemetry
Server A

Telecommand
Server A

Archive A

Telecommand
Server A

Mission
Planning
System A
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Component Group Replication Context

Assemblies of Components with Fault dependencies
• Component Assemblies are characterized by a high degree 

of interactions

Archive A

Telemetry
Server A

Telecommand
Server A

Archive A

Telecommand
Server A

Mission
Planning
System A
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Component Group Replication Context

Assemblies of Components with Fault dependencies
• Component Assemblies are characterized by a high degree 

of interactions
• Failures of one component can affect other components

Archive A

Telemetry
Server A

Telecommand
Server A

Archive A

Telecommand
Server A

Telemetry
Server A

Mission
Planning
System A

Faults can propagate across 
components through

1. Shared Hardware 
Infrastructure

2. Shared Networking 
Infrastructure

3. Shared Middleware Services
4. Component Port 

Connections
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Component Group Replication Context

Assemblies of Components with Fault dependencies
• Component Assemblies are characterized by a high degree 

of interactions
• Failures of one component can affect other components
• Detecting errors early on allows to take correcting 

means & isolate the fault effects

Archive A

Telemetry
Server A

Telecommand
Server A

Archive A

Telecommand
Server A

Telemetry
Server A

Mission
Planning
System A
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Component Group Replication Related Work

Approach Solution Reference

Static 
Dependency 
Modeling 

Cadena 
Dependency Model

John Hatcliff, Xinghua Deng, Matthew B. Dwyer, Georg Jung, & 
Venkatesh Prasad Ranganath. “Cadena: An integrated 
development, analysis, & verification environment for component-
based systems.” International Conference on Software 
Engineering, pages 0 - 160, 2003.

Component Based 
Dependency 
Modeling (CBDM)

M. Vieira & D. Richardson. “Analyzing dependencies in large 
component-based systems.” Automated Software Engineering, 
2002. Proceedings. ASE 2002. 17th IEEE International 
Conference on, pages 241–244, 2002.

Event Correlation Boris Gruschke. “A new approach for event correlation based on 
dependency graphs.” In In 5th Workshop of the OpenView
University Association, 1998.

White Box approach where 
dependencies are defined 

declaratively
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Approach Solution Reference

Static 
Dependency 
Modeling 

Cadena 
Dependency Model

John Hatcliff, Xinghua Deng, Matthew B. Dwyer, Georg Jung, & 
Venkatesh Prasad Ranganath. “Cadena: An integrated 
development, analysis, & verification environment for component-
based systems.” International Conference on Software 
Engineering, pages 0 - 160, 2003.

Component Based 
Dependency 
Modeling (CBDM)

M. Vieira & D. Richardson. “Analyzing dependencies in large 
component-based systems.” Automated Software Engineering, 
2002. Proceedings. ASE 2002. 17th IEEE International 
Conference on, pages 241–244, 2002.

Event Correlation Boris Gruschke. “A new approach for event correlation based on 
dependency graphs.” In In 5th Workshop of the OpenView 
University Association, 1998.

Observation 
based 
Dependency 
Modeling 

Active Dependecy 
Discovery (ADD)

A. Brown, G. Kar, A. Keller, “An Active Approach to Characterizing 
Dynamic Dependencies for Problem Determination in a 
Distributed Application Environment,” IEEE/IFIP International 
Symposium on Integrated Network Management, pp. 377-390, 
2001.

Automatic Failure 
Path Inference 
(AFPI)

George Candea, Mauricio Delgado, Michael Chen, & Armando 
Fox. “Automatic failure-path inference: A generic introspection 
technique for internet applications.” In WIAPP ’03: Proceedings of 
the The Third IEEE Workshop on Internet Applications, page 
132,Washington, DC, USA, 2003.

Black Box approach 
where dependencies are 

detected through fault 
injection & monitoring

Component Group Replication Related Work
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CORFU Requirements

Fault Tolerance dependency information is used to group 
components according to their dependencies
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CORFU Requirements

Fault Tolerance dependency information is used to group 
components according to their dependencies
CORFU is a middleware solution that provides fault tolerance 
capabilities based on such dependency groups
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CORFU Requirements

Fault Tolerance dependency information is used to group 
components according to their dependencies
CORFU is a middleware solution that provides fault tolerance 
capabilities based on such dependency groups
Requirements that have to be met are:
1. Fault Isolation
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CORFU Requirements

Fault Tolerance dependency information is used to group 
components according to their dependencies
CORFU is a middleware solution that provides fault tolerance 
capabilities based on such dependency groups
Requirements that have to be met are:
1. Fault Isolation
2. Fail-Stop Behavior
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CORFU Requirements

Fault Tolerance dependency information is used to group 
components according to their dependencies
CORFU is a middleware solution that provides fault tolerance 
capabilities based on such dependency groups
Requirements that have to be met are:
1. Fault Isolation
2. Fail-Stop Behavior
3. Server Recovery
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Requirement 1: Fault Isolation

NIS B

Archive A

Mission
Planning
System A

Telemetry
Server A

Telecommand
Server A

Primary Chain

NIS A

Archive B

Mission
Planning
System B

Telemetry
Server B

Telecommand
Server B

Client
Backup Chain

Mission
Planning
System A

Archive A

Telemetry
Server A

Telecommand
Server A

Primary Chain

 Occurrence of 
Server or Process 
faults

 Such faults need 
to be detected

 To isolate the fault 
all affected 
components need 
to be identified
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Requirement 2: Fail-Stop Behavior

NIS B

Archive A

Mission
Planning
System A

Telemetry
Server A

Telecommand
Server A

Primary Chain

NIS A

Archive B

Mission
Planning
System B

Telemetry
Server B

Telecommand
Server B

Client
Backup Chain

Mission
Planning
System A

Archive A

Telemetry
Server A

Telecommand
Server A

Primary Chain

 All affected 
components need 
to be stopped to 
prevent 
inconsistent 
system state

 This has to 
happen as 
synchronously as 
possible in a 
distributed system 
and

 As close to the 
detection of the 
failure as possible
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Archive B

Mission
Planning
System B

Telemetry
Server B

Telecommand
Server B

Backup Chain  

Requirement 3: Server Recovery

• Component failover 
mechanisms 
operate on a per 
component basis

• Failover needs to 
be coordinated for 
all failed 
components

• The right backup 
replica needs to be 
activated for each 
component to 
ensure consistent 
system state after 
failover

NIS B

Archive A

Mission
Planning
System A

Telemetry
Server A

Telecommand
Server A

Primary Chain

NIS A

Client

Mission
Planning
System A

Archive A

Telemetry
Server A

Telecommand
Server A

Primary Chain

Archive B

Mission
Planning
System B

Telemetry
Server B

Telecommand
Server B

Backup Chain  

Archive B

Mission
Planning
System B

Telemetry
Server B

Telecommand
Server B
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Component Group Fault Tolerance Challenges

 Standard Interfaces do not provide FT capabilities & cannot be altered 
 Additional Functionality needs to be standard compatible

 Interaction with DAnCE services is necessary to access system structure 
without reducing component performance significantly

Node

Domain
Application

Node
Manager

Node
Application

Node
Application
Manager

createPlan
Launcher

startstartDeployment 
Plan Component 

ServerComponent 
Server

Execution
Manager

Domain
Application
Manager

create
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 Standard Interfaces do not provide FT capabilities & cannot be 
altered 

 Additional Functionality needs to be standard compatible
 Interaction with DAnCE services is necessary to access system 

structure without reducing component performance significantly
 This includes

1. Deployment Plan Preparation
2. Integration of Failover Functionality
3. Object Replica Ordering

Node

Domain
Application

Node
Manager

Node
Application

Node
Application
Manager

createPlan
Launcher

startstartDeployment 
Plan Component 

ServerComponent 
Server

Execution
Manager

Domain
Application
Manager

create

Component Group Fault Tolerance Challenges
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Challenge 1: Deployment 
Plan Preparation

 The Standard format for 
defining a component 
systems structure is the 
Deployment Plan

 Fault-tolerance 
information needs to be 
added without breaking 
the data schema

FLARe
Replication
Manager

Domain 
Application 
Manager

Domain 
Application 
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain 
Application 
Manager

Host
Monitor Host

Monitor

Host
Monitor

System structure is 
captured in Deployment 

Plans

Deployment Plan Preparation Solution
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Solution: Failover Units

FLARe
Replication
Manager

Domain 
Application 
Manager

Domain 
Application 
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain 
Application 
Manager

Host
Monitor Host

Monitor

Host
Monitor

Deployment Plan Preparation Solution
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Solution: Failover Units

 Each failover unit is 
represented by a 
deployment plan with 
additional 
configProperties

FLARe
Replication
Manager

Domain 
Application 
Manager

Domain 
Application 
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain 
Application 
Manager

Host
Monitor Host

Monitor

Host
Monitor

Failover 
Unit

Deployment Plan Preparation Solution
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Solution: Failover Units

 Each failover unit is 
represented by a 
deployment plan with 
additional 
configProperties

 Component dependency 
information is used …

FLARe
Replication
Manager

Domain 
Application 
Manager

Domain 
Application 
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain 
Application 
Manager

Host
Monitor Host

Monitor

Host
Monitor

Failover 
Unit

Dependency
Information

Deployment Plan Preparation Solution
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Solution: Failover Units

 Each failover unit is 
represented by a 
deployment plan with 
additional 
configProperties

 Component dependency 
information is used …

 … to split a master 
deployment plan into 
failover units

FLARe
Replication
Manager

Domain 
Application 
Manager

Domain 
Application 
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain 
Application 
Manager

Host
Monitor Host

Monitor

Host
Monitor

Failover 
Unit

Deployment
Plan

Dependency
Information

SPLIT-FOU

The ExecutionManager 
starts the deployment 
process by creating a 

DomainApplication 
Manager for each 

deployment.

Deployment Plan Preparation Solution
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Deployment Plan Preparation Solution

Solution: Failover Units

 Each failover unit is 
represented by a 
deployment plan with 
additional 
configProperties

 Component dependency 
information is used …

 … to split a master 
deployment plan into 
failover units

FLARe
Replication
Manager

Domain 
Application 
Manager

Domain 
Application 
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain 
Application 
Manager

Host
Monitor Host

Monitor

Host
Monitor

One Domain 
Application Manager 

represents one 
Failover Unit
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Challenge 2 : Integration of Failover 
Functionality

 Deployment and configuration entities 
have standardized interfaces that 
cannot be altered and have no notion 
of fault-tolerance

 Fault-tolerance capabilities have to be 
seamlessly integrated without breaking 
standard compatibility

FLARe
Replication
Manager

Domain 
Application 
Manager

Domain 
Application 
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain 
Application 
Manager

Host
Monitor Host

Monitor

Host
Monitor

Fault
Correlation
Manager

Integration of Failover Functionality Solution
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Solution: Fault Correlation Manager 
(FCM)

 FCM is added into call chain between    
Plan Launcher & ExecutionManager

FLARe
Replication
Manager

Domain 
Application 
Manager

Domain 
Application 
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain 
Application 
Manager

Host
Monitor Host

Monitor

Host
Monitor

Fault
Correlation
Manager

Deployment plans 
are analyzed

Integration of Failover Functionality Solution
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Solution: Fault Correlation Manager 
(FCM)

 FCM is added into call chain between      
Plan Launcher & ExecutionManager

FLARe
Replication
Manager

Domain 
Application 
Manager

Domain 
Application 
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain 
Application 
Manager

Host
Monitor Host

Monitor

Host
Monitor

Fault
Correlation
Manager

All requests are 
passed on the 

Execution Manager & 
all replies are 

intercepted as well

Integration of Failover Functionality Solution
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Solution: Fault Correlation Manager 
(FCM)

 FCM is added into call chain between  
Plan Launcher & ExecutionManager

 Applies the Decorator Pattern

« interface »

FaultCorrelationManager
+ preparePlan (plan: DeploymentPlan)

: DomainApplicationManager
+ getManagers ()

: DomainApplicationManagers
+ destroyManager (

manager: DomainApplicationManager) 
: void

« interface »

ExecutionManager
+ preparePlan (plan: DeploymentPlan)

: DomainApplicationManager
+ getManagers ()

: DomainApplicationManagers
+ destroyManager (

manager: DomainApplicationManager) 
: void

- exec_mgr: ExecutionManager

preparePlan (plan)
{

// …
DomainApplicationManager dam =

exec_mgr->PreparePlan (plan);
// …

return dam;
}

Integration of Failover Functionality Solution



220

Solution: Fault Correlation Manager 
(FCM)

 FCM is added into call chain between   
Plan Launcher & ExecutionManager

 Applies the Decorator Pattern
 Integration of FLARe

FLARe
Replication
Manager

Domain 
Application 
Manager

Domain 
Application 
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain 
Application 
Manager

Host
Monitor Host

Monitor

Host
Monitor

Fault
Correlation
Manager

The Replication Manager 
monitors the component 

status & reports failures to the 
FaultCorrelationManager

Integration of Failover Functionality Solution
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Solution: Fault Correlation Manager 
(FCM)

 FCM is added into call chain between   
Plan Launcher & ExecutionManager

 Applies the Decorator Pattern
 Integration of FLARe

FLARe
Replication
Manager

Domain 
Application 
Manager

Domain 
Application 
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain 
Application 
Manager

Host
Monitor Host

Monitor

Host
Monitor

Fault
Correlation
Manager

The FCM maintains data structures to
1. Associate components with the failover 

unit deployment they belong to
2. Associate nodes with components hosted 

on these nodes

Integration of Failover Functionality Solution
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Integration of Failover Functionality Solution

Solution: Fault Correlation Manager 
(FCM)

 FCM is added into call chain between   
Plan Launcher & ExecutionManager

 Applies the Decorator Pattern
 Integration of FLARe

FLARe
Replication
Manager

Domain 
Application 
Manager

Domain 
Application 
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain 
Application 
Manager

Host
Monitor Host

Monitor

Host
Monitor

Fault
Correlation
Manager

The DomainApplication 
Manager is instructed by the 
FaultCorrelation Manager to 

shutdown all components 
within its deployment & is 

then destroyed itself.
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Replica Failover Ordering Challenges

Challenge 3: Replica 
Failover Ordering

 Failovers happen on a 
per component /object 
basis

A

A’

A’’

B

B’

B’’

C

C’

C’’
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primary failover unit

Replica Failover Ordering Challenges

Challenge 3: Replica 
Failover Ordering

 Failovers happen on a 
per component /object 
basis
 FLARe uses a client 

side failover 
mechanism
 An ordered list 

determines the 
failover order

A B C

backup failover unit 1

A’ B’ C’

backup failover unit 2

A’’ B’’ C’’

!
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primary failover unit

Replica Failover Ordering Challenges

Challenge 3: Replica 
Failover Ordering

 Failovers happen on a 
per component /object 
basis
 FLARe uses a client 

side failover 
mechanism
 An ordered list 

determines the 
failover order

 The 
ReplicationManager
needs to provide 
correct ordering

A B C

backup failover unit 1

A’ B’ C’

backup failover unit 2

A’’ B’’ C’’

!



Replica Failover Ordering Solution

Solution: Failover 
Constraints

• Separation of Concerns
• Fault Correlation Manager 

is responsible for Failover 
Unit level 

FLARe
Replication
Manager

Domain 
Application 
Manager

Domain 
Application 
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain 
Application 
Manager

Host
Monitor Host

Monitor

Host
Monitor

Fault
Correlation
Manager

A B C

A’ B’ C’

A’’ B’’ C’’

FCM creates 
constraints based 
on failover units
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Replica Failover Ordering Solution

Solution: Failover 
Constraints

• Separation of Concerns
• Fault Correlation Manager 

is responsible for Failover 
Unit level 

• ReplicationManager is 
responsible for object 
failover

FLARe
Replication
Manager

Domain 
Application 
Manager

Domain 
Application 
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain 
Application 
Manager

Host
Monitor Host

Monitor

Host
Monitor

Fault
Correlation
Manager

A B C

A’ B’ C’

A’’ B’’ C’’

C
1. C’
2. C’’

B
1. B’
2. B’’

A
1. A’
2. A’’

The algorithm for 
ordering replicas in  the 

Replication Manager 
uses the constraints as 

input to create 
RankLists.
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Replica Failover Ordering Solution

Solution: Failover 
Constraints

• Separation of Concerns
• Fault Correlation Manager 

is responsible for Failover 
Unit level 

• ReplicationManager is 
responsible for object 
failover

FLARe
Replication
Manager

Domain 
Application 
Manager

Domain 
Application 
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain 
Application 
Manager

Host
Monitor Host

Monitor

Host
Monitor

Fault
Correlation
Manager

RankLists are 
distributed to the 
Components for 

Failover A B C

A’ B’ C’

A’’ B’’ C’’

C
1. C’
2. C’’

B
1. B’
2. B’’

A
1. A’
2. A’’

228



229

Experimental Evaluation of CORFU

Testing Environment
• ISISLab LAN virtualization 

environment
• Identical blades with two 2.8GHz 

Xeon CPUs, 1 GB of RAM, 40 GB 
HDD, & 4 Gbps network 
interfaces (only one CPU used by 
kernel)

• Fedora Core 6 linux with rt11 
real-time kernel patches

• Compiler gcc 3.4.6
• CORBA Implementation: TAO 

branch based on version 1.6.8 
with FLARe

• CCM Implementation: CIAO 
branch based on version 0.6.8 
with CORFU additions



Experimental Evaluation of CORFU

client

server
primary

server
backup

Experiment 1 - Overhead of Client Failover

Replicated Server is 
called periodically by a 

client 
(period = 200 ms)
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Experimental Evaluation of CORFU

1. Two Setups: CORBA 2.x based 
executables & components

client

server
primary

server
backup

Experiment 1 - Overhead of Client Failover

CUTS CPU Worker on the 
server side

(execution time = 20 ms)
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Experimental Evaluation of CORFU

1. Two Setups: CORBA 2.x based 
executables & components

2. After a defined number of calls a fault 
is injected in the server that causes it 
to finish

client

server
primary

server
backup

Experiment 1 - Overhead of Client Failover
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Experimental Evaluation of CORFU

1. Two Setups: CORBA 2.x based 
executables & components

2. After a defined number of calls a fault 
is injected in the server that causes it 
to finish

3. Measure server response times in 
the client during failover

client

server
primary

server
backup

client server

tstc

Communication Overhead tr = tc - ts

Experiment 1 - Overhead of Client Failover
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Experimental Evaluation of CORFU

1. Two Setups: CORBA 2.x based 
executables & components

2. After a defined number of calls a fault 
is injected in the server that causes it 
to finish

3. Measure server response times in 
the client during failover

4. Compare response times between 
both versions

5. Three experiment configurations:    1 
server application (10% load),      2 
server applications (20%) &      4 
server applications (40%)

client

server
primary

server
backup

client server

tstc

Communication Overhead tr = tc - ts

Experiment 1 - Overhead of Client Failover
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Experiment 1 - Results

Default 
Communication 

Overhead is 
between 0 & 1ms
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Experiment 1 - Results

After 10 invocations the 
server shuts down & a 

failover with 4ms 
latency occurs
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Experiment 1 - Results

The backup server 
responds in the same 
interval as the primary
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Experiment 1 - Results

CORBA 2.x 
scenarios
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Experiment 1 - Results

CCM scenarios
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Experiment 1 - Results

3 ms failover 
latency with 
10% load
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Experiment 1 - Results

3 ms failover 
latency with 
10% load 4ms latency with 

10% load

→ 1ms overhead
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Node 1

Experimental Evaluation

Experiment 2:
Fail-Stop shutdown latency
• Five Failover Units on 

Five Nodes

Node 4

Node 5

Node 6

Node 2

Node 3

FOU 0
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D0

E0

FOU 1
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FOU 3

D3
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E3
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B3

FOU 4
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B4

D4

E4
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HM
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HM
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RM FCM EMDAMDAM
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Node 1

Node 4

Node 5

Node 6

Experimental Evaluation

Experiment 2:
Fail-Stop shutdown latency
• Five Failover Units on 

Five Nodes
• Use ReplicationManager 

as point of measurement 
for ‘failure roundtrip’

• Measure time between 
detection of initial failure 
& shutdown of 
components in the same 
failover unit.

Node 2

Node 3

RM FCM

FOU 1FOU 0

B0

A0

A1

E1
FOU 2

E2

D2
FOU 3

D3

C3
FOU 4

C4

B4

C0 B1 A2 E3 D4

D0 C1 B2 A3 E4

E0 D1 C2 B3 A4

HM

HM

HM

HM

HM

EMDAMDAM
4

1 2 3
t4-t1 = troundtrip ~70ms

t3-t2 = tshutdown ~56ms
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Presentation Road Map

• Technology Context: DRE Systems
• DRE System Lifecycle & FT-RT Challenges
• Design-time Solutions
• Deployment & Configuration-time Solutions
• Runtime Solutions
• Ongoing Work
• Concluding Remarks
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Specification

Composition

Configuration

Deployment

Run-time

Development 
Lifecycle

• TACOMA  Adaptive State Consistency 
Middleware

• Tune frequency of update and number of 
replicas with which state is made consistent

Ongoing Work (1): Tunable State Consistency
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Related Research
Category Related Research

Optimizations 
in Real-time 
Systems

H. Zou et. al., A Real-time Primary Backup Replication Service, in IEEE 
Transactions on Parallel & Distributed Systems (IEEE TPDS), 1999
S. Krishnamurthy et. al., An Adaptive Quality of Service Aware Middleware for 
Replicated Services, in IEEE Transactions on Parallel & Distributed Systems 
(IEEE TPDS), 2003
T. Dumitras et. al., Architecting & Implementing Versatile Dependability, in 
Architecting Dependable Systems Vol. III, 2005

Optimizations 
in Distributed 
Systems

T. Marian et. al., A Scalable Services Architecture, in Proceedings of the IEEE 
Symposium on Reliable Distributed Systems (SRDS 2006), Leeds, UK, 2006
Z. Cai et. al., Utility-driven Proactive Management of Availability in Enterprise-
scale Information Flows, In Proceedings of the ACM/IFIP/USENIX Middleware 
Conference (Middleware 2006), Melbourne, Australia, November 2006
X. Zhang et. al., Customizable Service State Durability for Service-Oriented 
Architectures, In Proceedings of the 6th European Dependable Computing 
Conference (EDCC 2006), Portugal, 2006

Optimizations 
in Real-time 
Databases

M. Xiong et. al., A Deferrable Scheduling Algorithm for Real-time Transactions 
Maintaining Data Freshness, in Proceedings of the IEEE International Real-time 
Systems Symposium (RTSS 2005), Lisbon, 2005
T. Gustafsson et. al., Data Management in Real-time Systems: A Case of On-
demand Updates in Vehicle Control Systems, in Proceedings of the IEEE Real-
time Embedded Technology & Applications Symposium (RTAS 2004), Toronto, 
2004
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Related Research
Category Related Research

Optimizations 
in Real-time 
Systems

H. Zou et. al., A Real-time Primary Backup Replication Service, in IEEE 
Transactions on Parallel & Distributed Systems (IEEE TPDS), 1999
S. Krishnamurthy et. al., An Adaptive Quality of Service Aware Middleware for 
Replicated Services, in IEEE Transactions on Parallel & Distributed Systems 
(IEEE TPDS), 2003
T. Dumitras et. al., Architecting & Implementing Versatile Dependability, in 
Architecting Dependable Systems Vol. III, 2005

Optimizations 
in Distributed 
Systems

T. Marian et. al., A Scalable Services Architecture, in Proceedings of the IEEE 
Symposium on Reliable Distributed Systems (SRDS 2006), Leeds, UK, 2006
Z. Cai et. al., Utility-driven Proactive Management of Availability in Enterprise-
scale Information Flows, In Proceedings of the ACM/IFIP/USENIX Middleware 
Conference (Middleware 2006), Melbourne, Australia, November 2006
X. Zhang et. al., Customizable Service State Durability for Service-Oriented 
Architectures, In Proceedings of the 6th European Dependable Computing 
Conference (EDCC 2006), Portugal, 2006

Optimizations 
in Real-time 
Databases

M. Xiong et. al., A Deferrable Scheduling Algorithm for Real-time Transactions 
Maintaining Data Freshness, in Proceedings of the IEEE International Real-time 
Systems Symposium (RTSS 2005), Lisbon, 2005
T. Gustafsson et. al., Data Management in Real-time Systems: A Case of On-
demand Updates in Vehicle Control Systems, in Proceedings of the IEEE Real-
time Embedded Technology & Applications Symposium (RTAS 2004), Toronto, 
2004

resource optimizations – number of 
active replicas processing requests, 

available resources to schedule 
updates, change of replication styles

resource optimizations – lazy update 
propagation, where to store state? 

database or process?

schedule lazy updates based 
on data values
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• Optimizations related to replication 
management restricted to tuning & 
optimizing frequency of checkpoints

• lack of optimizations related to tuning & 
optimizing the depth of consistency

• number of replicas that are made 
consistent with the primary replica 
- more time spent if more replicas 
are synchronized

• lack of offline analysis of the operating 
region

• e.g., if performance needs to be 
optimized, how much FT can be 
provided? (vice-versa for FT)

• lack of adaptive and configurable 
middleware architectures to tune 
optimizations related to consistency 
depth

Related Research: What is Missing?

Need middleware architecture & optimization algorithms to optimize 
resource usage related to managing replica consistency
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• Performance versus Fault-tolerance – optimize resource usage
• Need for configurable application consistency management

• support for range of consistency assurances – weak to strong
• Need for analyzing & selecting trade-offs among FT & performance

• resource usage for FT versus resource usage for performance
• Need for multi-modal operations – degraded levels of FT & performance

• dynamic adaptations to system loads & failures

Current Work: Resource-aware Replica Consistency Management

Missing Capabilities in Our Prior Work
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Replica & State Management in Passive Replication

• Resource consumption trade-offs
• performance (response times) versus fault-tolerance
• e.g., if goal is better performance => lesser resources for state 

management => lesser levels of FT
• e.g., if goal is better fault-tolerance => response time suffers until all 

replicas are made consistent

Resource consumption for FT affects performance 
assurances provided to applications & vice versa

• Replica Management
• synchronizing the 

state of the primary 
replicas with the 
state of the backup 
replicas
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• Need tunable adaptive fault-tolerance 
• cater to the needs of variety of applications

• no point solutions
• configurable per-application fault-tolerance properties

• optimized for desired performance
• monitor available system resources

• auto-configure fault-tolerance levels provided for applications 

• Diverse application QoS 
requirements
• for some applications, 

FT important
• for others, 

performance 
important

Focus on operating region for FT as opposed to an operating point

Replica & State Management in Passive Replication
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• Need tunable adaptive fault-tolerance 
• input → available system resources
• control → per-application fault-tolerance properties
• output → desired application performance/reliability
• fairness → optimize resource consumption to provide minimum QoS
• trade-offs needed in resource-constrained environments

• goal → maximize both performance and fault-tolerance
• degrade QoS – either of FT or performance – as resource levels 

decrease

• Diverse application QoS 
requirements
• for some applications, 

FT important
• for others, 

performance 
important

Focus on operating region as opposed to an operating point

Replica & State Management in Passive Replication
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• Different applications have different 
requirements

• e.g., FT more important than 
performance and vice-versa

• Configurable resource consumption 
needed on per-application basis

• Under resource constraints
• trade-offs need to be made to 

balance the use of available 
resources for

• fault-tolerance
• response times

Resource Optimizations in Fault-tolerant Systems

Need mechanisms that can 
focus on an operating region 
rather than an operating point 

to tune state management
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Solution Approach: TACOMA
• Tunable Adaptive COnsistency 

Management middlewAre 
(TACOMA)
• built on top of the FLARe 

middleware
• configurable consistency 

management middleware
• resource-aware tuning of 

application consistency – i.e., 
number of replicas made 
consistent with the primary 
replica

• use of different transports to 
manage consistency – e.g., 
CORBA AMI, DDS 

• Local Resource Manager – TACOMA agent
• added on each processor hosting primary replicas
• application informs the agent when state changes
• agents synchronize the state of the backup replicas

• works with FLARe replication manager to obtain object references
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TACOMA: Configurable Consistency Management (1/2)

• Determine configurable consistency for each application
• to respond to a client within a certain deadline, the state of how many 

backup replicas can be made consistent with the primary replica by the 
TACOMA agent?

• Time taken to make one backup replica consistent equals
• the worst case execution time of an update task initiated by the TACOMA 

agent in the primary replica
• Sum of worst case execution times of update tasks at all backup replicas + 

processing time at primary replica = client response time
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TACOMA: Configurable Consistency Management (2/2)

• Determine worst case execution times of update tasks
• use time-demand analysis

• Tunable consistency management
• input → available system resources
• control → per-application consistency depth
• output → desired application performance/reliability
• fairness → provide minimum QoS assurances

• Configure TACOMA agents with the consistency depth determined
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TACOMA Evaluation Criteria

• Hypotheses: TACOMA
• is customizable & can be applied to a wide range of DRE systems

• consistency depth range (1 to number of replicas)
• utilizes available CPU & network resources in the system efficiently, & provides 

applications with the required QoS (performance or high availability)
• response times are always met – no deadline misses

• tunes application replication consistency depth at runtime, as resource 
availability fluctuates

• consistency depth decreases from MAX (number of replicas) to MIN (1)



258

Specification

Composition

Configuration

Deployment

Run-time

Development 
Lifecycle

• End-to-end Reliability of Non-deterministic 
Stateful Components 

• Address the orphan state problem

Ongoing Work (2): End-to-end Reliability of 
Non-deterministic Stateful Components



25
9

Execution Semantics & High Availability
 Execution semantics in distributed systems
 May-be – No more than once, not all subcomponents may execute
 At-most-once – No more than once, all-or-none of the subcomponents will be 

executed (e.g., Transactions)
 Transaction abort decisions are not transparent

 At-least-once – All or some subcomponents may execute more than once
 Applicable to idempotent requests only

 Exactly-once – All subcomponents execute once & once only
 Enhances perceived availability of the system

 Exactly-once semantics should hold even upon failures
 Equivalent to single fault-free execution
 Roll-forward recovery (replication) may violate exactly-once semantics
 Side-effects of replication must be rectified

A B C D

Client

Partial 
execution

should seem 
like no-op 

upon recovery

State 
Update

State 
Update

State 
Update



260

Exactly-once Semantics, Failures, & Determinism

Orphan request & 
orphan state

Caching of 
request/reply 

rectifies the  problem

Deterministic component A
 Caching of request/reply at 

component B is sufficient

Non-deterministic 
component A
Two possibilities upon 

failover
1. No invocation
2. Different invocation

Caching of request/reply 
does not help
 Non-deterministic code 

must re-execute
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Related Research: End-to-end Reliability
Category Related Research (QoS & FT Modeling)

Integrated 
transaction 
& replication

1. Reconciling Replication & Transactions for the End-to-End 
Reliability of CORBA Applications by P. Felber & P. Narasimhan

2. Transactional Exactly-Once by S. Frølund & R. Guerraoui
3. ITRA: Inter-Tier Relationship Architecture for End-to-end QoS by 

E. Dekel & G. Goft
4. Preventing orphan requests in the context of replicated invocation 

by Stefan Pleisch & Arnas Kupsys & Andre Schiper
5. Preventing orphan requests by integrating replication & 

transactions by H. Kolltveit & S. olaf Hvasshovd
Enforcing 
determinism

1. Using Program Analysis to Identify & Compensate for 
Nondeterminism in Fault-Tolerant, Replicated Systems by J. 
Slember & P. Narasimhan

2. Living with nondeterminism in replicated middleware applications
by J. Slember & P. Narasimhan

3. Deterministic Scheduling for Transactional Multithreaded Replicas 
by R. Jimenez-peris, M. Patino-Martínez, S. Arevalo, & J. Carlos

4. A Preemptive Deterministic Scheduling Algorithm for  
Multithreaded Replicas by C. Basile, Z. Kalbarczyk, & R. Iyer

5. Replica Determinism in Fault-Tolerant Real-Time Systems by S. 
Poledna

6. Protocols for End-to-End Reliability in Multi-Tier Systems by P. Romano

Database in 
the last tier 

Program 
analysis to

compensate 
nondeterminism

Deterministic
scheduling
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Unresolved Challenges: End-to-end Reliability of 
Non-deterministic Stateful Components 

 Integration of replication & transactions
 Applicable to multi-tier transactional web-based systems only
 Overhead of transactions (fault-free situation)
 Join operations in the critical path
 2 phase commit (2PC) protocol at the end of invocation

A B C D

Client

State 
Update

State 
Update

State 
Update

Join Join Join
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Unresolved Challenges: End-to-end Reliability of 
Non-deterministic Stateful Components 

 Integration of replication & transactions
 Applicable to multi-tier transactional web-based systems only
 Overhead of transactions (fault-free situation)
 Join operations in the critical path
 2 phase commit (2PC) protocol at the end of invocation

 Overhead of transactions (faulty situation)
 Must rollback to avoid orphan state
 Re-execute & 2PC again upon recovery

 Complex tangling of QoS: Schedulability & Reliability
 Schedulability of rollbacks & join must be ensured

 Transactional semantics are not transparent
 Developers must implement: prepare, commit, rollback (2PC phases)

A B C D

Client

Potential 
orphan 

state
growing

Orphan state bounded in B, C, D

State 
Update

State 
Update

State 
Update



264

Unresolved Challenges: End-to-end Reliability of 
Non-deterministic Stateful Components 

 Integration of replication & transactions
 Applicable to multi-tier transactional web-based systems only
 Overhead of transactions (fault-free situation)
 Join operations in the critical path
 2 phase commit (2PC) protocol at the end of invocation

 Overhead of transactions (faulty situation)
 Must rollback to avoid orphan state
 Re-execute & 2PC again upon recovery

 Complex tangling of QoS: Schedulability & Reliability
 Schedulability of rollbacks & join must be ensured

 Transactional semantics are not transparent
 Developers must implement all: commit, rollback, 2PC phases

 Enforcing determinism
 Point solutions: Compensate specific sources of non-determinism
 e.g., thread scheduling, mutual exclusion

 Compensation using semi-automated program analysis
 Humans must rectify non-automated compensation
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Ongoing Research: Protocol for End-to-end 
Exactly-once Semantics with Rapid Failover

 Rethinking Transactions
 Overhead is undesirable in DRE systems
 Alternative mechanism needed to rectify the orphan state

 Proposed research: A distributed protocol that
1. Supports exactly-once execution semantics in presence of 
 Nested invocations
 Non-deterministic stateful components
 Passive replication 

2. Ensures state consistency of replicas
3. Does not require intrusive changes to the component implementation
 No need to implement prepare, commit, & rollback

4. Supports fast client failover that is insensitive to 
 Location of failure in the operational string
 Size of the operational string

 Evaluation Criteria
 Less communication overhead during fault-free & faulty situations
 Nearly constant client-perceived failover delay irrespective of the location of the 

failure



Concluding Remarks
 Operational string is a component-based model of distributed computing 

focused on end-to-end deadline
 Operational strings need group failover
 Not provided out-of-the-box in contemporary middleware

 Solution:
 Component QoS Modeling Language (CQML) for end-to-end QoS specification
 Failover unit modeling

 Generative Aspects for Fault-Tolerance (GRAFT) for transparent FT provisioning
 M2M, M2C, & M2T transformations

 Proposed research: End-to-end reliability of non-deterministic stateful
components
 Protocol to rectify orphan state problem allowing fast failover

26
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Detector1

Detector2

Planner3 Planner1

Error 
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Effector1
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Questions
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