
Resource-aware Deployment, Configuration
and Adaptation for Fault-tolerance in

Distributed Real-time Embedded Systems

Department of Electrical Engineering & Computer Science
Vanderbilt University, Nashville, TN, USA

Work supported in part by DARPA PCES and ARMS programs,
and NSF CAREER and NSF SHF/CNS Awards

Prof. Aniruddha Gokhale
a.gokhale@vanderbilt.edu

www.dre.vanderbilt.edu/~gokhale

With contributions from
Jaiganesh Balasubramanian, Sumant Tambe and Friedhelm Wolf

http://www.dre.vanderbilt.edu/~gokhale�

2

Objectives for this Tutorial

• To showcase research ideas from academia

• To demonstrate how these ideas can be realized using OMG
standardized technologies

• To illustrate how the resulting artifacts can be integrated within
existing industry development processes for large, service-
oriented architectures

• To facilitate discussion on additional real-world use cases and
further need for research on unresolved issues

3

Presentation Road Map

• Technology Context: DRE Systems
• DRE System Lifecycle & FT-RT Challenges
• Design-time Solutions
• Deployment & Configuration-time Solutions
• Runtime Solutions
• Ongoing Work
• Concluding Remarks

4

Context: Distributed Real-time Embedded (DRE) Systems

(Images courtesy Google)

Heterogeneous soft real-time applications
Stringent simultaneous QoS demands
 High availability, Predictability (CPU & network)

etc
 Efficient resource utilization

Operation in dynamic & resource-constrained
environments
 Process/processor failures
 Changing system loads

Examples
 Total shipboard computing environment
 NASA’s Magnetospheric Multi-scale mission
Warehouse Inventory Tracking Systems

Component-based application model used
due to benefits stemming from:
 Separation of concerns
 Composability
 Reuse of commodity-off-the-shelf (COTS)

components

http://www.globalsecurity.org/military/systems/ship/dd-x-design.htm�

5

Motivating Case Study
• Mission Control System of the

European Space Agency (ESA)
• Short connection windows
• No physical access to the

satellites
• Software must not crash
• Very heterogeneous

infrastructure
• Must ensure correctness

of data

6

Case Study: ESA Mission Control System
• Mission Control Systems are the central

means for control & observations of space
missions

• Simultaneous operations of multiple real-
time applications

• Stringent simultaneous QoS requirements
• e.g., high availability & satisfactory

average response times

7

Case Study: ESA Mission Control System

A Network Interface
System is the WAN

gateway to the Ground
Station Network

• Mission Control Systems are the central
means for control & observations of space
missions

• Simultaneous operations of multiple real-
time applications

• Stringent simultaneous QoS requirements
• e.g., high availability & satisfactory

average response times

8

Case Study: ESA Mission Control System

Telemetry Server
processes telemetry data

from mission satellites

• Mission Control Systems are the central
means for control & observations of space
missions

• Simultaneous operations of multiple real-
time applications

• Stringent simultaneous QoS requirements
• e.g., high availability & satisfactory

average response times

9

Case Study: ESA Mission Control System

Data stored
permanently in

an Archive

• Mission Control Systems are the central
means for control & observations of space
missions

• Simultaneous operations of multiple real-
time applications

• Stringent simultaneous QoS requirements
• e.g., high availability & satisfactory

average response times

10

Case Study: ESA Mission Control System

Telecommand Server sends
new operational commands

to mission satellites

• Mission Control Systems are the central
means for control & observations of space
missions

• Simultaneous operations of multiple real-
time applications

• Stringent simultaneous QoS requirements
• e.g., high availability & satisfactory

average response times

11

Case Study: ESA Mission Control System

Mission Planning System
configures & observes the

other system entities
based on the specific

mission characteristics

• Mission Control Systems are the central
means for control & observations of space
missions

• Simultaneous operations of multiple real-
time applications

• Stringent simultaneous QoS requirements
• e.g., high availability & satisfactory

average response times

12

Case Study: ESA Mission Control System

Client access, such as
an operator GUI,

needs to interact with
several components

• Mission Control Systems are the central
means for control & observations of space
missions

• Simultaneous operations of multiple real-
time applications

• Stringent simultaneous QoS requirements
• e.g., high availability & satisfactory

average response times

13

Presentation Road Map

• Technology Context: DRE Systems
• DRE System Lifecycle & FT-RT Challenges
• Design-time Solutions
• Deployment & Configuration-time Solutions
• Runtime Solutions
• Ongoing Work
• Concluding Remarks

Component-based Design of DRE Systems

14

• Operational String model of component-based DRE systems
• A multi-tier processing model focused on the end-to-end QoS requirements
• Functionality is a chain of tasks scheduled on a pool of computing nodes
• Resources, QoS, & deployment are managed end-to-end

• End-to-end QoS requirements
• Critical Path: The chain of tasks that is time-critical from source to destination
• Need predictable scheduling of computing resources across components
• Need network bandwidth reservations to ensure timely packet delivery
• Failures may compromise end-to-end QoS

Detector1

Detector2

Planner3 Planner1

Error
Recovery

Effector1

Effector2

Config

LEGEND

Receptacle

Event Sink

Event Source

Facet

Must support highly available operational strings!

15

A Perspective of Component-based DRE System Lifecycle

Run-time

Specification

Composition

Configuration

Deployment

Development
Lifecycle

• Gathering and specifying functional and non
functional requirements of the system

• Defining the operational strings through
component composition

• Deploying components onto computing nodes
• Configuring the hosting infrastructure to support

desired QoS properties

• Mechanisms to provide real-time fault recovery
• Mechanisms to deal with the side effects of

replication & non-determinism at run-time

QoS (e.g. FT) provisioning should
be integrated within this lifecycle

Specification: Fault Tolerance Criteria (1/4)
The fault-model consists of fail-stop failures

• Cause delays & requires software/hardware redundancy
• Recovery must be quick to meet the deadline (soft real-time)

What are reliability alternatives?
 Roll-back recovery
 Transactional

 Roll-forward recovery: replication schemes
 Active replication (multiple concurrent executions)
 Passive replication (primary-backup approach)

16

Roll-back recovery Active Replication Passive Replication

Needs transaction support
(heavy-weight)

Resource hungry
(compute & network)

Less resource consuming
than active (only network)

Must compensate
non-determinism

Must enforce
determinism

Handles non-determinism
better

Roll-back & re-execution
(slowest recovery)

Fastest recovery Re-execution
(slower recovery)

Resources

Non-
determinism

Recovery
time

17

Specification: Fault Tolerance Criteria (2/4)

N N

NN
N

N N

NN
N

Pool 1

Pool 2

What is failover granularity for passive replication?
 Single component failover only? or
 Larger than a single component?

Scenario 1: Must tolerate catastrophic faults
• e.g., data center failure, network failure

N N

NN
N

Clients

Replica

Whole
operational
string must

failover

C
A

A’

18

Specification: Fault Tolerance Criteria (3/4)
Scenario 2: Must tolerate Bohrbugs
 A Bohrbug repeats itself predictably when the same state reoccurs

Preventing Bohrbugs by “reliability through diversity”
 Diversity via non-isomorphic replication

Non-isomorphic
work-flow

and
implementation

of Replica

Different
End-to-end

QoS
(thread pools, deadlines, priorities)

Whole operational string must failover

19

Need a methodology to capture these requirements
and provision them for DRE systems

Specification: Fault Tolerance Criteria (4/4)

Scenario 3: Must tolerate non-determinism
 Sources of non-determinism in DRE systems
 Local information (sensors, clocks), thread-scheduling, timers, timeouts, & more

 Enforcing determinism is not always possible
Must tolerate side-effects of replication + non-determinism
 Problem: Orphan request & orphan state
 Solution based on single component failover require costly roll-backs

Fault-tolerance provisioning should be transparent
 Separation of availability concerns from the business logic
 Improves reusability, productivity, & perceived availability of the system

ReplicationNon-determinism Potential orphan
state

20

Deployment: Criteria for Fault-tolerance
• Deployment of applications & replicas

21

Deployment: Criteria for Fault-tolerance
• Deployment of applications & replicas

• Identify different hosts for deploying applications & each of their
replicas

• no two replicas of the same application are hosted in the same
processor

• allocate resources for applications & replicas
• deploy applications & replicas in the chosen hosts

22

Challenges in Deployment of Fault-tolerant DRE Systems
• Ad-hoc allocation of applications & replicas could provide FT

• could lead to resource minimization, however,
• system might not be schedulable

Schedulability depends on
the tasks collocated in the

same processor

23

Challenges in Deployment of Fault-tolerant DRE Systems
• Ad-hoc allocation of applications & replicas could provide FT

• could lead to resource minimization, however,
• system might not be schedulable

• could lead to system schedulability & high availability, however,
• could miss collocation opportunities => performance suffers
• could cause inefficient resource utilization

A good FT solution –
but not a resource

efficient RT solution

24

Challenges in Deployment of Fault-tolerant DRE Systems
• Ad-hoc allocation of applications & replicas could provide FT

• could lead to resource minimization, however,
• system might not be schedulable

• could lead to system schedulability & high availability, however,
• could miss collocation opportunities => performance suffers
• could cause inefficient resource utilization

• inefficient allocations – for both applications & replicas – could lead to
resource imbalance & affect soft real-time performance

• applications & their replicas must be
deployed in their appropriate
physical hosts

• need for resource-aware
deployment techniques

Need for Real-time,
Fault-aware and
Resource-aware

Allocation Algorithms

25

Configuration: Criteria for Fault-tolerance
• Configuration of RT-FT Middleware

• Install & configure fault detectors that periodically monitor liveness on
each processor

26

Configuration: Criteria for Fault-tolerance
• Configuration of RT-FT Middleware

• Install & configure fault detectors that periodically monitor liveness on
each processor

• register all the applications, their replicas, & fault detectors with a
replication manager to provide group membership management

27

Configuration: Criteria for Fault-tolerance
• Configuration of RT-FT Middleware

• Install & configure fault detectors that periodically monitor liveness on
each processor

• register all the applications, their replicas, & fault detectors with a
replication manager to provide group membership management

• configure client-side middleware to catch failure exceptions & with
failure recovery actions

28

Configuration: Criteria for Fault-tolerance
• Configuration of RT-FT Middleware

• Install & configure fault detectors that periodically monitor liveness on
each processor

• register all the applications, their replicas, & fault detectors with a
replication manager to provide group membership management

• configure client-side middleware to catch failure exceptions & with
failure recovery actions

• bootstrap applications

29

Challenges in Configuring Fault-tolerant DRE Systems
• Configuring RT-FT middleware is hard

• developers often need to make tedious & error-prone invasive source
code changes to manually configure middleware

Code for interacting with
middleware-based fault
detectors coupled with

business logic

Code for interacting
with middleware-

based group
management
mechanismsCode for interacting with

middleware-based client-
side failure detector &
recovery mechanisms

30

• Configuring RT-FT middleware is hard
• developers often need to make tedious & error-prone invasive source

code changes to manually configure middleware
• manual source code modifications require knowledge of underlying

middleware – which is hard

Code for interacting with
middleware-based client-

side failure detector &
recovery mechanisms

Challenges in Configuring Fault-tolerant DRE Systems

31

• Configuring RT-FT middleware is hard
• developers often need to make tedious & error-prone invasive source

code changes to manually configure middleware
• manual source code modifications require knowledge of underlying

middleware – which is hard
• need to repeat configuration actions as underlying middleware

changes

Code for interacting with
middleware-based client-

side failure detector &
recovery mechanisms

Challenges in Configuring Fault-tolerant DRE Systems

32

• Configuring RT-FT middleware is hard
• developers often need to make tedious & error-prone invasive source

code changes to manually configure middleware
• manual source code modifications require knowledge of underlying

middleware – which is hard
• need to repeat configuration actions as underlying middleware

changes
Scale & complexity of DRE systems make
it infeasible to adopt manual techniques Code for interacting with

middleware-based client-
side failure detector &
recovery mechanisms

Challenges in Configuring Fault-tolerant DRE Systems

33

Need for Scalable
Deployment &
Configuration

Middleware

• Configuring RT-FT middleware is hard
• developers often need to make tedious & error-prone invasive source

code changes to manually configure middleware
• manual source code modifications require knowledge of underlying

middleware – which is hard
• need to repeat configuration actions as underlying middleware

changes
• Applications must seamlessly leverage advances in middleware mechanisms

• QoS goals change, but business logic does not
• need for scalable deployment

& configuration techniques

Challenges in Configuring Fault-tolerant DRE Systems

34

Runtime: Criteria for Fault-tolerant DRE Systems
• Runtime management

• detect failures

35

Runtime: Criteria for Fault-tolerant DRE Systems
• Runtime management

• detect failures
• transparently failover to alternate replicas & provide high

availability to clients

36

Challenges in Runtime Management of Fault-tolerant DRE Systems
• Providing high availability & soft real-time performance at runtime is hard

• failures need to be detected quickly so that failure recovery actions can
proceed

Client-side middleware should
catch failure exception

37

• Providing high availability & soft real-time performance at runtime is hard
• failures need to be detected quickly so that failure recovery actions can

proceed
• failure recovery should be fast

Client-side middleware
should have sufficient

information about replicas
to provide fast failover

Challenges in Runtime Management of Fault-tolerant DRE Systems

38

• Providing high availability & soft real-time performance at runtime is hard
• failures need to be detected quickly so that failure recovery actions can

proceed
• failure recovery should be fast

Client-side middleware
should have sufficient

information about replicas
to provide fast failover

Challenges in Runtime Management of Fault-tolerant DRE Systems

But why failover to
Telemetry Server A’’?

39

• Providing high availability & soft real-time performance at runtime is hard
• failures need to be detected quickly so that failure recovery actions can

proceed
• failure recovery should be fast

Client-side middleware
should have sufficient

information about replicas
to provide fast failover

But why failover to
Telemetry Server A’’? why not failover to

Telemetry Server A’?

Challenges in Runtime Management of Fault-tolerant DRE Systems

40

• Providing high availability & soft real-time performance at runtime is hard
• failures need to be detected quickly so that failure recovery actions can

proceed
• failure recovery should be fast

Decision on where to failover
should be taken in a resource-
aware manner based on the

loads on the replica processors

Challenges in Runtime Management of Fault-tolerant DRE Systems

But why failover to
Telemetry Server A’’? why not failover to

Telemetry Server A’?

41

• Providing high availability & soft real-time performance at runtime is hard
• failures need to be detected quickly so that failure recovery actions can

proceed
• failure recovery should be fast

• Ad-hoc mechanisms to recover from failures & overloads could affect soft real-time
performance of clients

• need for adaptive fault-tolerance techniques

Need for Adaptive Fault-tolerant Middleware

React to dynamic
system load changes &

adapt system FT-RT
configurations

Challenges in Runtime Management of Fault-tolerant DRE Systems

42

Summary of FT QoS Provisioning Challenges Across DRE Lifecycle

Run-time

Specification

Composition

Configuration

Deployment

Development
Lifecycle

• How to specify FT & other end-to-end QoS
requirements?

• How to compose & deploy application
components & their replicas with concern for
minimizing resources used yet satisfying FT-RT
requirements?

• How to configure the underlying middleware to
provision QoS?

• How to provide real-time fault recovery?
• How to deal with the side effects of replication &

non-determinism at run-time?

Our solutions integrate within the
traditional DRE system lifecycle

43

Presentation Road Map

• Technology Context: DRE Systems
• DRE System Lifecycle & FT-RT Challenges
• Design-time Solutions
• Deployment & Configuration-time Solutions
• Runtime Solutions
• Ongoing Work
• Concluding Remarks

44

Specifying FT & Other QoS Properties

Run-time

Composition

Configuration

Deployment

Specification

Resolves
challenges in • Component QoS Modeling Language (CQML)

• Aspect-oriented Modeling for Modularizing QoS
Concerns

Focus on Model-driven
Engineering and generative
techniques to specify and
provision QoS properties

4545

Related Research: QoS Modeling
Category Related Research (QoS & FT Modeling)

Using UML 1. UML Profile for Schedulability, Performance, & Time (SPT)
2. UML Profile for Modeling Quality of Service & Fault Tolerance

Characteristics & Mechanisms (QoS&FT)
3. UML Profile for Modeling & Analysis of Real-Time & Embedded

Systems (MARTE)
4. Component Quality Modeling Language by J. ÃŸyvind Aagedal
5. Modeling & Integrating Aspects into Component Architectures by

L. Michotte, R. France, & F. Fleurey
6. A Model-Driven Development Framework for Non-Functional

Aspects in Service Oriented Architecture by H. Wada, J. Suzuki, &
K. Oba

Using
domain-
specific
languages
(DSL)

1. Model-based Development of Embedded Systems: The
SysWeaver Approach by D. de Niz, G. Bhatia, & R. Rajkumar

2. A Modeling Language & Its Supporting Tools for Avionics Systems
by G. Karsai, S. Neema, B. Abbott, & D. Sharp

3. High Service Availability in MaTRICS for the OCS by M. Bajohr &
T. Margaria

4. Modeling of Reliable Messaging in Service Oriented Architectures
by L. Gönczy & D. Varró

5. Fault tolerance AOP approach by J. Herrero, F. Sanchez, & M.
Toro

4646

Related Research: QoS Modeling
Category Related Research (QoS & FT Modeling)

Using UML 1. UML Profile for Schedulability, Performance, & Time (SPT)
2. UML Profile for Modeling Quality of Service & Fault Tolerance

Characteristics & Mechanisms (QoS&FT)
3. UML Profile for Modeling & Analysis of Real-Time & Embedded

Systems (MARTE)
4. Component Quality Modeling Language by J. ÃŸyvind Aagedal
5. Modeling & Integrating Aspects into Component Architectures by

L. Michotte, R. France, & F. Fleurey
6. A Model-Driven Development Framework for Non-Functional

Aspects in Service Oriented Architecture by H. Wada, J. Suzuki, &
K. Oba

Using
domain-
specific
languages
(DSL)

1. Model-based Development of Embedded Systems: The
SysWeaver Approach by D. de Niz, G. Bhatia, & R. Rajkumar

2. A Modeling Language & Its Supporting Tools for Avionics Systems
by G. Karsai, S. Neema, B. Abbott, & D. Sharp

3. High Service Availability in MaTRICS for the OCS by M. Bajohr &
T. Margaria

4. Modeling of Reliable Messaging in Service Oriented Architectures
by L. Gönczy & D. Varró

5. Fault tolerance AOP approach by J. Herrero, F. Sanchez, & M.
Toro

Lightweight &
Heavyweight

UML
extensions

Recovery block
modeling

and
QoS for SOA

MoC = service
logic graphs,

state machine,
Java extension

47

Deployment

Configuration

Run-time

Composition

Specification

Development
Lifecycle

QoS Specification: What is Missing for DRE Systems?
• Crosscutting availability requirements

• Tangled with primary structural dimension
• Tangled with secondary dimensions (deployment, QoS)
• Composing replicated & non-replicated functionality
• Example: Replicas must be modeled, composed, & deployed

• Imposes modeling overhead
• Supporting non-isomorphic replication

• Reliability through diversity (structural & QoS)
• Supporting graceful degradation through diversity

Composing
connections

A

Client

B C

A’ B’ C’

A’’ B’’ C’’

Composing
replicas

Imposes modeling overhead

48

QoS Specification: What is Missing for DRE Systems?
• Variable granularity of failover

• Whole operational string, sub-string, or a component group
• Variable QoS association granularity

• Network-level QoS specification (connection level)
• Differentiated service based on traffic class & flow

• Example: High priority, high reliability, low latency
• Bidirectional bandwidth requirements

A

Client

B CDeployment

Configuration

Run-time

Composition

Specification

Development
Lifecycle

Component-level

Port-level Connection-level

Our Solution: Domain Specific Modeling

49

• Component QoS Modeling Language
(CQML)
• A modeling framework for declarative QoS

specification
• Reusable for multiple composition

modeling languages
• Failover unit for Fault-tolerance

• Capture the granularity of failover
• Specify # of replicas

• Network-level QoS
• Annotate component connections
• Specify priority of communication

traffic
• Bidirectional bandwidth requirements

• Security QoS
• Real-time CORBA configuration
• Event channel configuration

Separation of Concerns in CQML
• Resolving tangling of functional composition & QoS concerns
• Separate Structural view from the QoS view
• GRAFT transformations use aspect-oriented model weaving to coalesce

both the views of the model

50

Granularity of QoS Associations in CQML
• Commonality/Variability analysis of composition modeling languages

• e.g., PICML for CCM, J2EEML for J2EE, ESML for Boeing Bold-Stroke

• Feature model of composition modeling languages

51

Dictates
QoS

association
granularity

• Enhance composition
language to model QoS

• GME meta-model
composition

Composition Modeling
Language

Composing CQML (1/3)

52

CQML

Goal: Create reusable & loosely coupled
associations

Composition
Modeling
Language

Concrete
QoS

Elements

PICML
or

J2EEML
or

ESML

53

CQML

Composition
Modeling
Language

CQML
Join-point

Model

Concrete
QoS

Elements

PICML
or

J2EEML
or

ESML
Dependency

Inversion
Principle

Composing CQML (2/3)

54

CQML

Composition
Modeling
Language

CQML
Join-point

Model

Abstract
QoS

Elements

Concrete
QoS

Elements

PICML
or

J2EEML
or

ESML

Grouping of QoS elements using is-a
relationship

Composing CQML (3/3)

55

CQML

Composition
Modeling
Language

CQML
Join-point

Model

Abstract
QoS

Elements

Concrete
QoS

Elements

PICML
or

J2EEML
or

ESML

Composing CQML (3/3)

Evaluating Composability of CQML

56

 Three composition modeling
languages
 PICML
 J2EEML
 ESML

 Available feature-set
determines the extent of
applicability of the join-point
model
 Three composite languages

with varying QoS modeling
capabilities
 PICML’
 J2EEML’
 ESML’

57

Presentation Road Map

• Technology Context: DRE Systems
• DRE System Lifecycle & FT-RT Challenges
• Design-time Solutions
• Deployment & Configuration-time Solutions
• Runtime Solutions
• Ongoing Work
• Concluding Remarks

58

Post-Specification Phase: Resource Allocation,
Deployment and Configuration

Run-time

Specification

Composition

Configuration

Deployment

Resolves
challenges in

• Deployment & Configuration Reasoning &
Analysis via Modeling (DeCoRAM)

• Provides a specific deployment algorithm
• Algorithm-agnostic deployment engine
• Middleware-agnostic configuration engine

Focus on Resource Allocation
Algorithms and Frameworks

used in Deployment and
Configuration Phases

59

Related Research
Category Related Research

CORBA-based
Fault-tolerant
Middleware
Systems

P. Felber et. al., Experiences, Approaches, & Challenges in Building Fault-
tolerant CORBA Systems, in IEEE Transactions on Computers, May 2004
T. Bennani et. al., Implementing Simple Replication Protocols Using CORBA
Portable Interceptors & Java Serialization, in Proceedings of the IEEE
International Conference on Dependable Systems & Networks (DSN 2004),
Italy, 2004
P. Narasimhan et. al., MEAD: Support for Real-time Fault-tolerant CORBA, in
Concurrency & Computation: Practice & Experience, 2005

Adaptive
Passive
Replication
Systems

S. Pertet et. al., Proactive Recovery in Distributed CORBA Applications, in
Proceedings of the IEEE International Conference on Dependable Systems &
Networks (DSN 2004), Italy, 2004
P. Katsaros et. al., Optimal Object State Transfer – Recovery Policies for Fault-
tolerant Distributed Systems, in Proceedings of the IEEE International
Conference on Dependable Systems & Networks (DSN 2004), Italy, 2004
Z. Cai et. al., Utility-driven Proactive Management of Availability in Enterprise-
scale Information Flows, In Proceedings of the ACM/IFIP/USENIX Middleware
Conference (Middleware 2006), Melbourne, Australia, November 2006
L. Froihofer et. al., Middleware Support for Adaptive Dependability, In
Proceedings of the ACM/IFIP/USENIX Middleware Conference (Middleware
2007), Newport Beach, CA, November 2007

60

Related Research
Category Related Research

CORBA-based
Fault-tolerant
Middleware
Systems

P. Felber et. al., Experiences, Approaches, & Challenges in Building Fault-
tolerant CORBA Systems, in IEEE Transactions on Computers, May 2004
T. Bennani et. al., Implementing Simple Replication Protocols Using CORBA
Portable Interceptors & Java Serialization, in Proceedings of the IEEE
International Conference on Dependable Systems & Networks (DSN 2004),
Italy, 2004
P. Narasimhan et. al., MEAD: Support for Real-time Fault-tolerant CORBA, in
Concurrency & Computation: Practice & Experience, 2005

Adaptive
Passive
Replication
Systems

S. Pertet et. al., Proactive Recovery in Distributed CORBA Applications, in
Proceedings of the IEEE International Conference on Dependable Systems &
Networks (DSN 2004), Italy, 2004
P. Katsaros et. al., Optimal Object State Transfer – Recovery Policies for Fault-
tolerant Distributed Systems, in Proceedings of the IEEE International
Conference on Dependable Systems & Networks (DSN 2004), Italy, 2004
Z. Cai et. al., Utility-driven Proactive Management of Availability in Enterprise-
scale Information Flows, In Proceedings of the ACM/IFIP/USENIX Middleware
Conference (Middleware 2006), Melbourne, Australia, November 2006
L. Froihofer et. al., Middleware Support for Adaptive Dependability, In
Proceedings of the ACM/IFIP/USENIX Middleware Conference (Middleware
2007), Newport Beach, CA, November 2007

Middleware building blocks for
fault-tolerant systems

Runtime adaptations to reduce
failure recovery times

61

Related Research
Category Related Research

Real-time
Fault-tolerance
for Transient
Failures

H. Aydin, Exact Fault-Sensitive Feasibility Analysis of Real-time Tasks, In IEEE
Transactions of Computers, 2007
G. Lima et. al., An Optimal Fixed-Priority Assignment Algorithm For Supporting
Fault-Tolerant Hard Real-Time Systems, In IEEE Transactions on Computers,
2003
Y. Zhang et. al., A Unified Approach For Fault Tolerance & Dynamic Power
Management in Fixed-Priority Real-Time Systems, in IEEE Transactions on
Computer-Aided Design of Integrated Circuits & Systems, 2006

Real-time
Fault
Tolerance for
Permanent
Failures

J. Chen et. al., Real-Time Task Replication For Fault-Tolerance in Identical
Multiprocessor Systems, In Proceedings of the IEEE Real-Time & Embedded
Technology & Applications Symposium (IEEE RTAS), 2007
P. Emberson et. al., Extending a Task Allocation Algorithm for Graceful
Degradation of Real-time Distributed Embedded Systems, In Proceedings of
the IEEE Real-time Systems Symposium (IEEE RTSS), 2008
A. Girault et. al., An Algorithm for Automatically Obtaining Distributed & Fault-
Tolerant Static Schedules, in Proceedings of the IEEE International Conference
on Dependable Systems & Networks (IEEE DSN), 2003
S. Gopalakrishnan et. al., Task Partitioning with Replication Upon
Heterogeneous Multiprocessor Systems, in Proceedings of the IEEE Real-Time
& Embedded Technology & Applications Symposium (IEEE RTAS), 2006

62

Related Research
Category Related Research

Real-time
Fault-tolerance
for Transient
Failures

H. Aydin, Exact Fault-Sensitive Feasibility Analysis of Real-time Tasks, In IEEE
Transactions of Computers, 2007
G. Lima et. al., An Optimal Fixed-Priority Assignment Algorithm For Supporting
Fault-Tolerant Hard Real-Time Systems, In IEEE Transactions on Computers,
2003
Y. Zhang et. al., A Unified Approach For Fault Tolerance & Dynamic Power
Management in Fixed-Priority Real-Time Systems, in IEEE Transactions on
Computer-Aided Design of Integrated Circuits & Systems, 2006

Real-time
Fault
Tolerance for
Permanent
Failures

J. Chen et. al., Real-Time Task Replication For Fault-Tolerance in Identical
Multiprocessor Systems, In Proceedings of the IEEE Real-Time & Embedded
Technology & Applications Symposium (IEEE RTAS), 2007
P. Emberson et. al., Extending a Task Allocation Algorithm for Graceful
Degradation of Real-time Distributed Embedded Systems, In Proceedings of
the IEEE Real-time Systems Symposium (IEEE RTSS), 2008
A. Girault et. al., An Algorithm for Automatically Obtaining Distributed & Fault-
Tolerant Static Schedules, in Proceedings of the IEEE International Conference
on Dependable Systems & Networks (IEEE DSN), 2003
S. Gopalakrishnan et. al., Task Partitioning with Replication Upon
Heterogeneous Multiprocessor Systems, in Proceedings of the IEEE Real-Time
& Embedded Technology & Applications Symposium (IEEE RTAS), 2006

Static allocation algorithms that
deal with transient failures

Used active replication schemes

63

Related Research
Category Related Research

Passive
Replication
Based Real-
time Fault-
Tolerant Task
Allocation
Algorithms

R. Al-Omari et. al., An Adaptive Scheme for Fault-Tolerant Scheduling of Soft
Real-time Tasks in Multiprocessor Systems , In Journal of Parallel & Distributed
Computing, 2005
W. Sun et. al., Hybrid Overloading & Stochastic Analysis for Redundant Real-
time Multiprocessor Systems, In Proceedings of the IEEE Symposium on
Reliable Distributed Systems (IEEE SRDS), 2007
Q. Zheng et. al., On the Design of Fault-Tolerant Scheduling Strategies Using
Primary-Backup Approach for Computational Grids with Low Replication Costs,
in IEEE Transactions on Computers, 2009

64

Related Research
Category Related Research

Passive
Replication
Based Real-
time Fault-
Tolerant Task
Allocation
Algorithms

R. Al-Omari et. al., An Adaptive Scheme for Fault-Tolerant Scheduling of Soft
Real-time Tasks in Multiprocessor Systems , In Journal of Parallel & Distributed
Computing, 2005
W. Sun et. al., Hybrid Overloading & Stochastic Analysis for Redundant Real-
time Multiprocessor Systems, In Proceedings of the IEEE Symposium on
Reliable Distributed Systems (IEEE SRDS), 2007
Q. Zheng et. al., On the Design of Fault-Tolerant Scheduling Strategies Using
Primary-Backup Approach for Computational Grids with Low Replication Costs,
in IEEE Transactions on Computers, 2009

All these algorithms deal with
dynamic scheduling

65

• Existing passive replication
middleware solutions are not
resource-aware
• provide mechanisms – but no

intuition on how to use them to
obtain the required solution

• timeliness assurances might get
affected as failures occur

D&C: What is Missing for DRE Systems?

• Existing real-time fault-tolerant task
allocation algorithms are not appropriate for closed DRE systems
• they deal with active replication which is not ideal for resource-constrained

systems
• those that deal with passive replication

• support only one processor failure
• require dynamic scheduling – which adds extra unnecessary overhead

66

Our Solution: The DeCoRAM D&C Middleware

• DeCoRAM = “Deployment &
Configuration Reasoning via
Analysis & Modeling”

• DeCoRAM consists of
• Pluggable Allocation Engine
that determines appropriate node
mappings for all applications &
replicas using installed algorithm

• Deployment & Configuration
Engine that deploys &
configures (D&C) applications
and replicas on top of
middleware in appropriate hosts

• A specific allocation algorithm
that is real time-, fault- and
resource-aware

No coupling with
allocation algorithm

Middleware-agnostic
D&C Engine

67

Overview of DeCoRAM Contributions

1. Provides a replica allocation
algorithm that is
• Real time-aware
• Fault-aware
• Resource-aware

2. Supports a large class of
DRE systems => No tight
coupling to any single
allocation algorithm

3. Supports multiple middleware
technologies => Automated
middleware configuration that
is not coupled to any
middleware

68

DeCoRAM Allocation Algorithm
• System model

• N periodic DRE
system tasks

• RT requirements –
periodic tasks, worst-
case execution time
(WCET), worst-case
state synchronization
time (WCSST)

• FT requirements – K
number of processor
failures to tolerate
(number of replicas)

• Fail-stop processors

How many processors shall we
need for a primary-backup
scheme? – A basic intuition
Num proc in No-fault case <=
Num proc for passive replication <=
Num proc for active replication

69

DeCoRAM Allocation Algorithm (1/2)

• System model
• N periodic DRE
system tasks

• RT requirements –
periodic tasks, worst-
case execution time
(WCET), worst-case
state synchronization
time (WCSST)

• FT requirements – K
number of processor
failures to tolerate
(number of replicas)

• Fail-stop processors

How many processors shall we
need for a primary-backup
scheme? – A basic intuition
Num proc in No-fault case <=
Num proc for passive replication <=
Num proc for active replication

70

DeCoRAM Allocation Algorithm (2/2)

• System objective
• Find a mapping of N
periodic DRE tasks &
their K replicas so as
to minimize the total
number of
processors utilized
• no two replicas are
in the same
processor

• All tasks are
schedulable both in
faulty as well as
non-faulty
scenarios

DeCoRAM Allocation Engine

Similar to bin-packing, but harder due to
combined FT & RT constraints

Designing the DeCoRAM Allocation Algorithm (1/5)
Task WCET WCSST Period Util

A 20 0.2 50 40
B 40 0.4 100 40
C 50 0.5 200 25
D 200 2 500 40
E 250 2.5 1,000 25

71

Basic Step 1: No fault tolerance
• Only primaries exist consuming

WCET each
• Apply first-fit optimal bin-packing

using the [Dhall:78]* algorithm
• Consider sample task set shown
• Tasks arranged according to rate

monotonic priorities

*[Dhall:78] S. K. Dhall & C. Liu, “On a Real-time
Scheduling Problem”, Operations Research, 1978

Designing the DeCoRAM Allocation Algorithm (1/5)
Task WCET WCSST Period Util

A 20 0.2 50 40
B 40 0.4 100 40
C 50 0.5 200 25
D 200 2 500 40
E 250 2.5 1,000 25

72

Basic Step 1: No fault tolerance
• Only primaries exist consuming

WCET each
• Apply first-fit optimal bin-packing

using the [Dhall:78] algorithm
• Consider sample task set shown
• Tasks arranged according to rate

monotonic priorities

P1

A

B

Designing the DeCoRAM Allocation Algorithm (1/5)
Task WCET WCSST Period Util

A 20 0.2 50 40
B 40 0.4 100 40
C 50 0.5 200 25
D 200 2 500 40
E 250 2.5 1,000 25

73

Basic Step 1: No fault tolerance
• Only primaries exist consuming

WCET each
• Apply first-fit optimal bin-packing

using the [Dhall:78] algorithm
• Consider sample task set shown
• Tasks arranged according to rate

monotonic priorities

P1

A

B

C

Designing the DeCoRAM Allocation Algorithm (1/5)
Task WCET WCSST Period Util

A 20 0.2 50 40
B 40 0.4 100 40
C 50 0.5 200 25
D 200 2 500 40
E 250 2.5 1,000 25

74

Basic Step 1: No fault tolerance
• Only primaries exist consuming

WCET each
• Apply first-fit optimal bin-packing

using the [Dhall:78] algorithm
• Consider sample task set shown
• Tasks arranged according to rate

monotonic priorities

P1

A

B

P2

C

Designing the DeCoRAM Allocation Algorithm (1/5)
Task WCET WCSST Period Util

A 20 0.2 50 40
B 40 0.4 100 40
C 50 0.5 200 25
D 200 2 500 40
E 250 2.5 1,000 25

75

Basic Step 1: No fault tolerance
• Only primaries exist consuming

WCET each
• Apply first-fit optimal bin-packing

using the [Dhall:78] algorithm
• Consider sample task set shown
• Tasks arranged according to rate

monotonic priorities

P1

A

B

P2

C

D

E

Designing the DeCoRAM Allocation Algorithm (1/5)
Task WCET WCSST Period Util

A 20 0.2 50 40
B 40 0.4 100 40
C 50 0.5 200 25
D 200 2 500 40
E 250 2.5 1,000 25

76

Basic Step 1: No fault tolerance
• Only primaries exist consuming

WCET each
• Apply first-fit optimal bin-packing

using the [Dhall:78] algorithm
• Consider sample task set shown
• Tasks arranged according to rate

monotonic priorities

Outcome -> Lower bound
established

• System is schedulable
• Uses minimum number of

resources

RT & resource constraints satisfied; but no FT

Designing the DeCoRAM Allocation Algorithm (2/5)
Task WCET WCSST Period

A1,A2,A3 20 0.2 50
B1,B2,B3 40 0.4 100
C1,C2,C3 50 0.5 200
D1,D2,D3 200 2 500
E1,E2,E3 250 2.5 1,000

77

Refinement 1: Introduce replica
tasks
• Do not differentiate between

primary & replicas
• Assume tolerance to 2 failures =>

2 replicas each
• Apply the [Dhall:78] algorithm

Designing the DeCoRAM Allocation Algorithm (2/5)
Task WCET WCSST Period

A1,A2,A3 20 0.2 50
B1,B2,B3 40 0.4 100
C1,C2,C3 50 0.5 200
D1,D2,D3 200 2 500
E1,E2,E3 250 2.5 1,000

78

Refinement 1: Introduce replica
tasks
• Do not differentiate between

primary & replicas
• Assume tolerance to 2 failures =>

2 replicas each
• Apply the [Dhall:78] algorithm

Designing the DeCoRAM Allocation Algorithm (2/5)
Task WCET WCSST Period

A1,A2,A3 20 0.2 50
B1,B2,B3 40 0.4 100
C1,C2,C3 50 0.5 200
D1,D2,D3 200 2 500
E1,E2,E3 250 2.5 1,000

79

Refinement 1: Introduce replica
tasks
• Do not differentiate between

primary & replicas
• Assume tolerance to 2 failures =>

2 replicas each
• Apply the [Dhall:78] algorithm

Designing the DeCoRAM Allocation Algorithm (2/5)
Task WCET WCSST Period

A1,A2,A3 20 0.2 50
B1,B2,B3 40 0.4 100
C1,C2,C3 50 0.5 200
D1,D2,D3 200 2 500
E1,E2,E3 250 2.5 1,000

80

Refinement 1: Introduce replica
tasks
• Do not differentiate between

primary & replicas
• Assume tolerance to 2 failures =>

2 replicas each
• Apply the [Dhall:78] algorithm

Designing the DeCoRAM Allocation Algorithm (2/5)
Task WCET WCSST Period

A1,A2,A3 20 0.2 50
B1,B2,B3 40 0.4 100
C1,C2,C3 50 0.5 200
D1,D2,D3 200 2 500
E1,E2,E3 250 2.5 1,000

81

Refinement 1: Introduce replica
tasks
• Do not differentiate between

primary & replicas
• Assume tolerance to 2 failures =>

2 replicas each
• Apply the [Dhall:78] algorithm

Outcome -> Upper bound is established
• A RT-FT solution is created – but with Active replication
• System is schedulable
• Demonstrates upper bound on number of resources needed

Minimize resource using passive replication

Designing the DeCoRAM Allocation Algorithm (3/5)
Task WCET WCSST Period

A1,A2,A3 20 0.2 50
B1,B2,B3 40 0.4 100
C1,C2,C3 50 0.5 200
D1,D2,D3 200 2 500
E1,E2,E3 250 2.5 1,000

82

Refinement 2: Passive replication
• Differentiate between primary &

replicas
• Assume tolerance to 2 failures =>

2 additional backup replicas each
• Apply the [Dhall:78] algorithm

Designing the DeCoRAM Allocation Algorithm (3/5)
Task WCET WCSST Period

A1,A2,A3 20 0.2 50
B1,B2,B3 40 0.4 100
C1,C2,C3 50 0.5 200
D1,D2,D3 200 2 500
E1,E2,E3 250 2.5 1,000

83

Refinement 2: Passive replication
• Differentiate between primary &

replicas
• Assume tolerance to 2 failures =>

2 additional backup replicas each
• Apply the [Dhall:78] algorithm

Primaries
contribute WCET

Backups only
contribute WCSST
in no failure case

Designing the DeCoRAM Allocation Algorithm (3/5)
Task WCET WCSST Period

A1,A2,A3 20 0.2 50
B1,B2,B3 40 0.4 100
C1,C2,C3 50 0.5 200
D1,D2,D3 200 2 500
E1,E2,E3 250 2.5 1,000

84

Refinement 2: Passive replication
• Differentiate between primary &

replicas
• Assume tolerance to 2 failures =>

2 additional backup replicas each
• Apply the [Dhall:78] algorithm

C1 Backups only
contribute WCSST
in no failure case

Primaries
contribute WCET

Designing the DeCoRAM Allocation Algorithm (3/5)
Task WCET WCSST Period

A1,A2,A3 20 0.2 50
B1,B2,B3 40 0.4 100
C1,C2,C3 50 0.5 200
D1,D2,D3 200 2 500
E1,E2,E3 250 2.5 1,000

85

Refinement 2: Passive replication
• Differentiate between primary &

replicas
• Assume tolerance to 2 failures =>

2 additional backup replicas each
• Apply the [Dhall:78] algorithm

Primaries
contribute WCET

C1 Backups only
contribute WCSST
in no failure case

Designing the DeCoRAM Allocation Algorithm (3/5)
Task WCET WCSST Period

A1,A2,A3 20 0.2 50
B1,B2,B3 40 0.4 100
C1,C2,C3 50 0.5 200
D1,D2,D3 200 2 500
E1,E2,E3 250 2.5 1,000

86

Refinement 2: Passive replication
• Differentiate between primary &

replicas
• Assume tolerance to 2 failures =>

2 additional backup replicas each
• Apply the [Dhall:78] algorithm

C1

Backups only
contribute WCSST
in no failure case

Designing the DeCoRAM Allocation Algorithm (3/5)
Task WCET WCSST Period

A1,A2,A3 20 0.2 50
B1,B2,B3 40 0.4 100
C1,C2,C3 50 0.5 200
D1,D2,D3 200 2 500
E1,E2,E3 250 2.5 1,000

87

Refinement 2: Passive replication
• Differentiate between primary &

replicas
• Assume tolerance to 2 failures =>

2 additional backup replicas each
• Apply the [Dhall:78] algorithm

C1

Allocation is fine
when A2/B2 are

backups

Allocation is fine
when A2/B2 are

backups

Backups only
contribute WCSST
in no failure case

Designing the DeCoRAM Allocation Algorithm (3/5)
Task WCET WCSST Period

A1,A2,A3 20 0.2 50
B1,B2,B3 40 0.4 100
C1,C2,C3 50 0.5 200
D1,D2,D3 200 2 500
E1,E2,E3 250 2.5 1,000

88

Refinement 2: Passive replication
• Differentiate between primary &

replicas
• Assume tolerance to 2 failures =>

2 additional backup replicas each
• Apply the [Dhall:78] algorithm

C1

Designing the DeCoRAM Allocation Algorithm (3/5)
Task WCET WCSST Period

A1,A2,A3 20 0.2 50
B1,B2,B3 40 0.4 100
C1,C2,C3 50 0.5 200
D1,D2,D3 200 2 500
E1,E2,E3 250 2.5 1,000

89

Refinement 2: Passive replication
• Differentiate between primary &

replicas
• Assume tolerance to 2 failures =>

2 additional backup replicas each
• Apply the [Dhall:78] algorithm

Promoted backups now
contribute WCET

C1

Failure triggers
promotion of A2/B2

to primaries

Designing the DeCoRAM Allocation Algorithm (3/5)
Task WCET WCSST Period

A1,A2,A3 20 0.2 50
B1,B2,B3 40 0.4 100
C1,C2,C3 50 0.5 200
D1,D2,D3 200 2 500
E1,E2,E3 250 2.5 1,000

90

Refinement 2: Passive replication
• Differentiate between primary &

replicas
• Assume tolerance to 2 failures =>

2 additional backup replicas each
• Apply the [Dhall:78] algorithm

Backups only
contribute WCSST

C1

Allocation is fine
when A2/B2 are

backups

System unschedulable
when A2/B2 are

promoted

Designing the DeCoRAM Allocation Algorithm (3/5)
Task WCET WCSST Period

A1,A2,A3 20 0.2 50
B1,B2,B3 40 0.4 100
C1,C2,C3 50 0.5 200
D1,D2,D3 200 2 500
E1,E2,E3 250 2.5 1,000

91

Refinement 2: Passive replication
• Differentiate between primary &

replicas
• Assume tolerance to 2 failures =>

2 additional backup replicas each
• Apply the [Dhall:78] algorithm

Outcome
• Resource minimization & system schedulability feasible in non faulty

scenarios only -- because backup contributes only WCSST
• Unrealistic not to expect failures
• Need a way to consider failures & find which backup will

be promoted to primary (contributing WCET)?

C1/D1/E1 cannot
be placed here --
unschedulable

C1/D1/E1 may be
placed on P2 or
P3 as long as
there are no

failures

Designing the DeCoRAM Allocation Algorithm (4/5)

92

Refinement 3: Enable the offline algorithm to consider failures
• “Look ahead” at failure scenarios of already allocated tasks & replicas

determining worst case impact on a given processor
• Feasible to do this because system properties are invariant

Designing the DeCoRAM Allocation Algorithm (4/5)

93

Refinement 3: Enable the offline algorithm to consider failures
• “Look ahead” at failure scenarios of already allocated tasks & replicas

determining worst case impact on a given processor
• Feasible to do this because system properties are invariant

Looking ahead that any of
A2/B2 or A3/B3 may be
promoted, C1/D1/E1 must be
placed on a different processor

Designing the DeCoRAM Allocation Algorithm (4/5)

94

Refinement 3: Enable the offline algorithm to consider failures
• “Look ahead” at failure scenarios of already allocated tasks & replicas

determining worst case impact on a given processor
• Feasible to do this because system properties are invariant

Where should backups of
C/D/E be placed? On P2 or
P3 or a different processor?

P1 is not a choice.

Designing the DeCoRAM Allocation Algorithm (4/5)

95

Refinement 3: Enable the offline algorithm to consider failures
• “Look ahead” at failure scenarios of already allocated tasks & replicas

determining worst case impact on a given processor
• Feasible to do this because system properties are invariant

• Suppose the allocation of the backups
of C/D/E are as shown

• We now look ahead for any 2 failure
combinations

Designing the DeCoRAM Allocation Algorithm (4/5)

96

Refinement 3: Enable the offline algorithm to consider failures
• “Look ahead” at failure scenarios of already allocated tasks & replicas

determining worst case impact on a given processor
• Feasible to do this because system properties are invariant

• Suppose P1 & P2 were to fail
• A3 & B3 will be promoted

Schedule is feasible
=> original placement
decision was OK

Designing the DeCoRAM Allocation Algorithm (4/5)

97

Refinement 3: Enable the offline algorithm to consider failures
• “Look ahead” at failure scenarios of already allocated tasks & replicas

determining worst case impact on a given processor
• Feasible to do this because system properties are invariant

• Suppose P1 & P4 were to fail
• Suppose A2 & B2 on P2 were to be

promoted, while C3, D3 & E3 on P3
were to be promoted

Schedule is feasible
=> original placement
decision was OK

Designing the DeCoRAM Allocation Algorithm (4/5)

98

Refinement 3: Enable the offline algorithm to consider failures
• “Look ahead” at failure scenarios of already allocated tasks & replicas

determining worst case impact on a given processor
• Feasible to do this because system properties are invariant

• Suppose P1 & P4 were to fail
• Suppose A2, B2, C2, D2 & E2 on P2

were to be promoted

Schedule is not
feasible => original
placement decision
was incorrect

Designing the DeCoRAM Allocation Algorithm (4/5)

99

Refinement 3: Enable the offline algorithm to consider failures
• “Look ahead” at failure scenarios of already allocated tasks & replicas

determining worst case impact on a given processor
• Feasible to do this because system properties are invariant

Outcome
• Due to the potential for an

infeasible schedule, more
resources are suggested by
the Lookahead algorithm

• Look-ahead strategy cannot determine impact
of multiple uncorrelated failures that may make
system unschedulable

Looking ahead that any of
A2/B2 or A3/B3 may be
promoted, C1/D1/E1 must be
placed on a different processor

Placing backups of C/D/E here
points at one potential combination

that leads to infeasible schedule

Designing the DeCoRAM Allocation Algorithm (5/5)

100

Refinement 4: Restrict the order in which failover targets are chosen
• Utilize a rank order of replicas to dictate how failover happens
• Enables the Lookahead algorithm to overbook resources due to

guarantees that no two uncorrelated failures will make the system
unschedulable

• Suppose the replica allocation is as
shown (slightly diff from before)

• Replica numbers indicate order in the
failover process

Replica number
denotes ordering in
the failover process

Designing the DeCoRAM Allocation Algorithm (5/5)

101

Refinement 4: Restrict the order in which failover targets are chosen
• Utilize a rank order of replicas to dictate how failover happens
• Enables the Lookahead algorithm to overbook resources due to

guarantees that no two uncorrelated failures will make the system
unschedulable

• Suppose P1 & P4 were to fail (the
interesting case)

• A2 & B2 on P2, & C2, D2, E2 on P3
will be chosen as failover targets due
to the restrictions imposed

• Never can C3, D3, E3 become
primaries along with A2 & B2 unless
more than two failures occur

Designing the DeCoRAM Allocation Algorithm (5/5)

102

Refinement 4: Restrict the order in which failover targets are chosen
• Utilize a rank order of replicas to dictate how failover happens
• Enables the Lookahead algorithm to overbook resources due to

guarantees that no two uncorrelated failures will make the system
unschedulable

Resources minimized from 6 to 4 while assuring both RT & FT

For a 2-fault tolerant system, replica
numbered 3 is assured never to become
a primary along with a replica numbered

2. This allows us to overbook the
processor thereby minimizing resources

103

DeCoRAM Evaluation Criteria
• Hypothesis – DeCoRAM’s

Failure-aware Look-ahead
Feasibility algorithm allocates
applications & replicas to
hosts while minimizing the
number of processors utilized

• number of processors
utilized is lesser than the
number of processors
utilized using active
replication

DeCoRAM Allocation Engine

104

DeCoRAM Evaluation Hypothesis
• Hypothesis – DeCoRAM’s

Failure-aware Look-ahead
Feasibility algorithm allocates
applications & replicas to
hosts while minimizing the
number of processors utilized

• number of processors
utilized is lesser than the
number of processors
utilized using active
replication

• Deployment-time configured
real-time fault-tolerance
solution works at runtime
when failures occur

• none of the applications
lose high availability &
timeliness assurances

DeCoRAM Allocation Engine

DeCoRAM Allocation Engine

105

Experiment Configurations
• Determine # of processors

utilized by
• varying number of tasks

dimension)
• varying the number of

replicas (FT dimension)
• varying the maximum CPU

utilization of any task in the
task set

• periods of tasks randomly generated
between 1ms & 1000ms
• each task execution time between

0% & maximum load % of the period
• each task state synchronization

time between 1% & 2% of the
worst case execution times

DeCoRAM Allocation Engine

106

Comparison Schemes

No replicas in
the task set

• Comparison schemes for evaluation
• lower bound on number of

processors utilized
• Implementing the optimal

allocation algorithm in
[Dhall:78] - uses First Fit bin
packing scheme
• Optimal no fault-tolerance

scenario (No FT)

DeCoRAM Allocation Engine

107

Comparison Schemes

All replicas have
same worst case
execution times

• Comparison schemes for evaluation
• lower bound on number of

processors utilized
• Implementing the optimal

allocation algorithm in
[Dhall:78] - uses First Fit bin
packing scheme
• Optimal no fault-tolerance

scenario (No FT)
• Upper bound on # of processors

• Multiplying # of processors
utilized in the No FT case with
of replicas
• Optimal active replication

scenario (AFT)

108

Comparison Schemes

DeCoRAM Allocation Engine

Replicas with
varying

execution times

• Comparison schemes for evaluation
• lower bound on number of

processors utilized
• Implementing the optimal

allocation algorithm in
[Dhall:78] - uses First Fit bin
packing scheme
• Optimal no fault-tolerance

scenario (No FT)
• Upper bound on # of processors

• Multiplying # of processors
utilized in the No FT case with
of replicas
• Optimal active replication

scenario (AFT)
• DeCoRAM allocation heuristic

• First Fit (FF-FT) & Best Fit (BF-FT) schemes
• Optimal passive replication (FF-FT & BF-FT)

109

Experiment Results

Linear increase in #
of processors utilized
in AFT compared to

NO FT

110

Experiment Results

Rate of increase is
much more slower

when compared to AFT

111

Experiment Results

DeCoRAM only uses
approx. 50% of the

number of processors
used by AFT

112

Experiment Results

As task load increases,
of processors utilized

increases

113

Experiment Results

As task load increases,
of processors utilized

increases

114

Experiment Results

As task load increases,
of processors utilized

increases

115

Experiment Results

DeCoRAM scales well,
by continuing to save
~50% of processors

116

DeCoRAM Pluggable Allocation Engine Architecture
• Design driven by separation of concerns
• Use of design patterns
• Input Manager component – collects per-task FT & RT requirements
• Task Replicator component – decides the order in which tasks are allocated
• Node Selector component – decides the node in which allocation will be checked
• Admission Controller component – applies DeCoRAM’s novel algorithm
• Placement Controller component – calls the admission controller repeatedly to

deploy all the applications & their replicas

Input Manager

Task Replicator

Node Selector

Admission
Controller

Placement
Controller

Allocation Engine implemented in
~7,000 lines of C++ code

Output decisions realized by
DeCoRAM’s D&C Engine

DeCoRAM Deployment & Configuration Engine
• Automated deployment &

configuration support for fault-
tolerant real-time systems

• XML Parser
• uses middleware D&C

mechanisms to decode
allocation decisions

• Middleware Deployer
• deploys FT middleware-

specific entities
• Middleware Configurator

• configures the underlying
FT-RT middleware artifacts

• Application Installer
• installs the application

components & their replicas
• Easily extendable

• Current implementation on top
of CIAO, DAnCE, & FLARe
middleware

117DeCoRAM D&C Engine implemented in ~3,500 lines of C++ code

118

Post-Specification Phase: Generative Techniques
to Support Missing Semantics

Run-time

Specification

Composition

Configuration

Deployment

Resolves
challenges in

• Generative Aspects for Fault-Tolerance (GRAFT)
• Multi-stage model-driven development process
• Weaving Dependability Concerns in System

Artifacts
• Provides model-to-model, model-to-text, model-to-

code transformations

Focus on Generative Techniques
for Introducing New Semantics

into Middleware Implementations

119119

Related Research: Transparent FT Provisioning
Category Related Research (Transparent FT Provisioning)

Model-driven 1. Aspect-Oriented Programming Techniques to support Distribution,
Fault Tolerance, & Load Balancing in the CORBA(LC) Component
Model by D. Sevilla, J. M. García, & A. Gómez

2. CORRECT - Developing Fault-Tolerant Distributed Systems by A.
Capozucca, B. Gallina, N. Guelfi, P. Pelliccione, & A. Romanovsky

3. Automatic Generation of Fault-Tolerant CORBA-Services by A.
Polze, J. Schwarz, & M. Malek

4. Adding fault-tolerance to a hierarchical DRE system by P. Rubel,
J. Loyall, R. Schantz, & M. Gillen

Using AOP
languages

1. Implementing Fault Tolerance Using Aspect Oriented
Programming by R. Alexandersson & P. Öhman

2. Aspects for improvement of performance in fault-tolerant software
by D. Szentiványi

3. Aspect-Oriented Fault Tolerance for Real-Time Embedded
Systems by F. Afonso, C. Silva, N. Brito, S. Montenegro

Meta-Object
Protocol
(MOP)

1. A Multi-Level Meta-Object Protocol for Fault-Tolerance in Complex
Architectures by F. Taiani & J.-C. Fabre

2. Reflective fault-tolerant systems: From experience to challenges
by J. C. Ruiz, M.-O. Killijian, J.-C. Fabre, & P. Thévenod-Fosse

120120

Related Research: Transparent FT Provisioning
Category Related Research (Transparent FT Provisioning)

Model-driven 1. Aspect-Oriented Programming Techniques to support Distribution,
Fault Tolerance, & Load Balancing in the CORBA(LC) Component
Model by D. Sevilla, J. M. García, & A. Gómez

2. CORRECT - Developing Fault-Tolerant Distributed Systems by A.
Capozucca, B. Gallina, N. Guelfi, P. Pelliccione, & A. Romanovsky

3. Automatic Generation of Fault-Tolerant CORBA-Services by A.
Polze, J. Schwarz, & M. Malek

4. Adding fault-tolerance to a hierarchical DRE system by P. Rubel,
J. Loyall, R. Schantz, & M. Gillen

Using AOP
languages

1. Implementing Fault Tolerance Using Aspect Oriented
Programming by R. Alexandersson & P. Öhman

2. Aspects for improvement of performance in fault-tolerant software
by D. Szentiványi

3. Aspect-Oriented Fault Tolerance for Real-Time Embedded
Systems by F. Afonso, C. Silva, N. Brito, S. Montenegro

Meta-Object
Protocol
(MOP)

1. A Multi-Level Meta-Object Protocol for Fault-Tolerance in Complex
Architectures by F. Taiani & J.-C. Fabre

2. Reflective fault-tolerant systems: From experience to challenges
by J. C. Ruiz, M.-O. Killijian, J.-C. Fabre, & P. Thévenod-Fosse

M2M
transformation

& code
generation

Performance
improvement
for FT using

AOP

Performance
improvement
for FT using

AOP

121
Run-time

Specification

Composition

Configuration

Deployment

Development
Lifecycle

What is Missing? Transparent FT Provisioning
• Not all the necessary steps are supported coherently

1. Automatic component instrumentation for fault-handling code
2. Deciding placement of components & their replicas
3. Deploying primaries, replicas, & monitoring infrastructure
4. Platform-specific metadata synthesis (XML)

• Missing domain-specific recovery semantics (run-time
middleware)
• Group failover is DRE-specific & often neglected
• Costly to modify the middleware
• Application-level solutions lose transparency & reusability

• Missing transparent network QoS provisioning (D&C
middleware)
• Configuration of network resources (edge routers)
• Configuration of containers for correct packet marking

1. How to add domain-specific recovery
semantics in COTS middleware retroactively?

2. How to automate it to improve productivity &
reduce cost?

Soln: Generative Aspects for Fault Tolerance (GRAFT)

• Multi-stage model-driven
generative process

• Incremental model-
refinement using
transformations

• Model-to-model
• Model-to-text
• Model-to-code

• Weaves dependability
concerns in system
artifacts

12
2

Stage 1: Isomorphic M2M Transformation

M2M Transformation

QoS View

Structural View

12
3

• Step1: Model structural composition of
operational string

• Step2: Annotate components with
failover unit(s) marking them “fault-tolerant”
in the QoS view

• Step3: Use aspect-oriented M2M
transformation developed using Embedded
Constraint Language (ECL) of C-SAW

• Step4: Component replicas &
interconnections are generated
automatically

• Step 5: FOU annotations are removed but
other QoS annotations are cloned (uses
Dependency Inversion Principle of CQML)

• Step 6: Isomorphic clone can be modified
manually (reliability through diversity)

12
4

Strategic placement of components, e.g. using
DeCoRAM
 Improves availability of the system
 Several constraint satisfaction algorithms exist

Placement comparison heuristic
 Hop-count between replicas
 Formulation based on the co-failure probabilities

captured using Shared Risk Group (SRG)
 E.g., shared power supply, A/C, fire zone

 Reduces simultaneous failure probability
GRAFT transformations weave the decisions

back into the model

Stage 2: Determine Component Placement

RootRiskGroup

SRG SRG

PR

Stage 3: Synthesizing Fault Monitoring Infrastructure

Detector1

Detector2

Planner3 Planner1

Error
Recovery

Effector1

Effector2

Config

LEGEND

Receptacle

Event Sink

Event Source

Facet

Failover unit

Detector1

Detector2

Planner3 Planner1

Error
Recovery

Effector1

Effector2

Config

LEGEND

Receptacle

Event Sink

Event Source

Facet

M2M Transformation

Collocated Heartbeat Components
Fault Detector

12
5

Transformation Algorithm

QoS View

Structural View

12
6

Stage 4: Synthesizing Code for Group Failover (1/2)
 Code generation for fault handling
 Reliable fault detection
 Transparent fault masking
 Fast client failover

 Location of failure determines handling behavior

Head component failure Tail component failure
Client-side code detects the failure Only other FOU participants detect

the failure. Client waits.
--- Trigger client-side exception by

forcing FOU to shutdown
Client-side code does transparent
failover

Client-side code detects passivation
of the head component & does
transparent failover

A

Client

B

Head Tail

FOU

 FOU shutdown is achieved using seamless integration with D&C
middleware APIs
 e.g., Domain Application Manager (DAM) of CCM

 Shutdown method calls are generated in fault-handling code

Stage 4: Synthesizing Code for Group Failover (2/2)

 Two behaviors based on
component position
 FOU participant’s behavior
 Detects the failure
 Shuts down the FOU

including itself
 FOU client’s behavior
 Detects the failure
 Does an automatic failover

to a replica FOU
 Optionally shuts down the

FOU to save resources
 Generated code:

AspectC++

 AspectC++ compiler weaves in the generated code in the respective
component stubs

12
7

Stage 5: Synthesizing Platform-specific Metadata

• Component Technologies use XML metadata to configure
middleware

• Existing model interpreters can be reused without any modifications
• CQML’s FT modeling is opaque to existing model interpreters
• GRAFT model transformations are transparent to the model interpreters

128

GRAFT synthesizes the necessary artifacts for transparent
FT provisioning for DRE operational strings

Evaluating Modeling Efforts Reduction Using GRAFT

129

 Case-study - Warehouse Inventory
Tracking System
 GRAFT’s isomorphic M2M transformation

eliminates human modeling efforts of
replicas
 Components
 Connections
 QoS requirements

Evaluating Programming Efforts Reduction Using GRAFT

130

 GRAFT’s code generator reduces human
programming efforts
 Code for fault-detection, fault-masking, &

failover
 # of try blocks
 # of catch blocks
 Total # of lines

Evaluating Client Perceived Failover Latency Using GRAFT

131

 Client perceived failover latency
 Sensitive to the location of failure
 Sensitive to the implementation of DAM
 Head component failure
 Constant failover latency

 Tail component failover
 Linear increase in failover latency

Head component failure Tail component failure

13
2

Presentation Road Map

• Technology Context: DRE Systems
• DRE System Lifecycle & FT-RT Challenges
• Design-time Solutions
• Deployment & Configuration-time Solutions
• Runtime Solutions
• Ongoing Work
• Concluding Remarks

133

Specification

Composition

Configuration

Deployment

Run-time

Development
Lifecycle

• Fault Tolerant Lightweight Adaptive
Middleware (FLARe)

• Two algorithms (LAAF and ROME)

Runtime Phase: Real-time Fault Detection
& Recovery

134

Related Research
Category Related Research

CORBA-based
Fault-tolerant
Middleware
Systems

P. Felber et. al., Experiences, Approaches, & Challenges in Building Fault-
tolerant CORBA Systems, in IEEE Transactions on Computers, May 2004
T. Bennani et. al., Implementing Simple Replication Protocols Using CORBA
Portable Interceptors & Java Serialization, in Proceedings of the IEEE
International Conference on Dependable Systems & Networks (DSN 2004),
Italy, 2004
P. Narasimhan et. al., MEAD: Support for Real-time Fault-tolerant CORBA, in
Concurrency & Computation: Practice & Experience, 2005

Adaptive
Passive
Replication
Systems

S. Pertet et. al., Proactive Recovery in Distributed CORBA Applications, in
Proceedings of the IEEE International Conference on Dependable Systems &
Networks (DSN 2004), Italy, 2004
P. Katsaros et. al., Optimal Object State Transfer – Recovery Policies for Fault-
tolerant Distributed Systems, in Proceedings of the IEEE International
Conference on Dependable Systems & Networks (DSN 2004), Italy, 2004
Z. Cai et. al., Utility-driven Proactive Management of Availability in Enterprise-
scale Information Flows, In Proceedings of the ACM/IFIP/USENIX Middleware
Conference (Middleware 2006), Melbourne, Australia, November 2006
L. Froihofer et. al., Middleware Support for Adaptive Dependability, In
Proceedings of the ACM/IFIP/USENIX Middleware Conference (Middleware
2007), Newport Beach, CA, November 2007

Middleware building blocks for
fault-tolerant systems

Runtime adaptations to reduce
failure recovery times

135

Related Research
Category Related Research

Load-Aware
Adaptations of
Fault-tolerance
Configurations

T. Dumitras et. al., Fault-tolerant Middleware & the Magical 1%, In Proceedings
of the ACM/IFIP/USENIX Middleware Conference (Middleware 2005),
Grenoble, France, November 2005
O. Marin et. al., DARX: A Framework for the Fault-tolerant Support of Agent
Software, In Proceedings of the IEEE International Symposium on Software
Reliability Engineering (ISSRE 2003), Denver, CO, November 2003
S. Krishnamurthy et. al., An Adaptive Quality of Service Aware Middleware for
Replicated Services, in IEEE Transactions on Parallel & Distributed Systems
(IEEE TPDS), 2003

Real-time
Fault-tolerant
Systems

D. Powell et. al., Distributed Fault-tolerance: Lessons from Delta-4, In IEEE
MICRO, 1994
K. H. Kim et. al., The PSTR/SNS Scheme for Real-time Fault-tolerance Via
Active Object Replication & Network Surveillance, In IEEE Transactions on
Knowledge & Data Engineering (IEEE TKDE), 2000
S. Krishnamurthy et. al., Dynamic Replica Selection Algorithm for Tolerating
Timing Faults, in Proceedings of the IEEE International Conference on
Dependable Systems & Networks (DSN 2001), 2001
H. Zou et. al., A Real-time Primary Backup Replication Service, in IEEE
Transactions on Parallel & Distributed Systems (IEEE TPDS), 1999

Load-aware adaptations –
change of replication styles,

reduced degree of active
replication

Schedulability analysis to schedule
backups in case primary replica

fails, faster processing times

136

• Existing passive replication solutions
do not deal with overloads

• workload fluctuations & multiple
failures could lead to overloads

• response times affected – if
overloads not handled

Related Research: What is Missing?

• Existing passive replication systems do not deal with resource-aware
failovers
• If clients are redirected to heavily loaded replicas upon failure, their

response time requirements will not be satisfied
• failover strategies are most often static, which means that clients get a

failover behavior that is optimal at deployment-time & not at runtime

Solution Approach: FLARe : Fault-tolerant Middleware with adaptive
failover target selection & overload management support

137

Our Approach: FLARe RT-FT Middleware
• FLARe = Fault-tolerant

Lightweight Adaptive
Real-time Middleware
• RT-CORBA based

lightweight FT
• Resource-aware FT

• Resource manager –
pluggable resource
management algorithms

• FT decisions made in
conjunction with
middleware replication
manager
• manages primary &

backup replicas
• provides registration

interfaces
• handles failure detection
• starts new replicas

138

Our Approach: FLARe RT-FT Middleware
• Real-time performance

during failures & overloads
• monitor CPU utilizations at

hosts where primary & backups
are deployed

• Load-Aware Adaptive
Failover Strategy (LAAF)

• failover targets chosen on the
least loaded host hosting the
backups

• Resource Overload
Management Redirector
(ROME) strategy

• clients are forcefully redirected
to least loaded backups –
overloads are treated as failures

• LAAF & ROME adapt to
changing system loads &
resource availabilities

139

Our Approach: FLARe RT-FT Middleware
• Transparent & Fast

Failover
• Redirection using client-

side portable
interceptors

• catches processor and
process failure
exceptions and redirects
clients to alternate
targets

• Failure detection can be
improved with better
protocols – e.g., SCTP
• middleware supports

pluggable transports

140

Our Approach: FLARe RT-FT Middleware
• Predictable failover

• failover target decisions
computed periodically by
the resource manager

• conveyed to client-side
middleware agents –
forwarding agents

• agents work in tandem
with portable
interceptors

• redirect clients quickly &
predictably to
appropriate targets

• agents
periodically/proactively
updated when targets
change

141

FLARe Evaluation Criteria

• Hypotheses: FLARe’s
• LAAF failover target selection strategy selects failover targets that maintain

satisfactory response times for clients & alleviates processor overloads.
• no processor’s utilization is more than 70%

• ROME overload management strategy reacts to overloads rapidly, selects
appropriate targets to redirect clients, & maintains satisfactory response times for
clients

• no processor’s utilization is more than 70%

142

Experiment Setup

• Experiment setup
• 6 different clients – 2 clients CL-5 & CL-6 are dynamic clients (start after 50

seconds)
• 6 different servers – each have 2 replicas, 2 servers are dynamic as well
• Each client has a forwarding agent deployed – they get the failover target

information from the middleware replication manager
• Experiment ran for 300 seconds – each server consumes some CPU load

• some servers share processors – they follow rate-monotonic scheduling for
prioritized access to CPU resources

143

Experiment Configurations

• Static Failover Strategy
• each client knows the order in which they access the server replicas in

the presence of failures – i.e., the failover targets are known in advance
• for e.g., CL-2 makes remote invocations on B-1, on B-3 if B-1 fails, & on

B-2 if B3-fails
• this strategy is optimal at deployment-time (B-3 is on a processor lightly

loaded than the processor hosting B-2)

144

Experiment Configurations

• LAAF Failover Strategy
• each client knows only the reference of the primary replica
• failover targets are determined at runtime while monitoring the CPU

utilizations at all processors – that is why dynamic loads are added in the
experiment

145

LAAF Algorithm Results

At 50 secs,
dynamic loads
are introduced

146

LAAF Algorithm Results

At 150 secs,
failures are
introduced

147

LAAF Algorithm Results

Till 150 seconds the response
times of all the clients are

similar in both the strategies

148

LAAF Algorithm Results

After failure, response times of
both CL-2 & CL-5 increases

After failure, response time of CL-5
remains the same, better yet

response time of CL-2 decreases

LAAF makes adaptive failover target decisions that maintain
response times !!

149

LAAF Algorithm Results

Response times of CL-3 & CL-4
increase after failure – because
of rate-monotonic scheduling
behavior – they are no longer

accessing highest priority
servers

150

LAAF Algorithm Results

CPU utilizations skewed – some
processors are very heavily
loaded, while some are not

CPU utilizations are more
evenly balanced – none of them
more than 70% - LAAF makes

sure of that !!

151

Summary of Results

• FLARe’s LAAF failover strategy maintains client response times &
processor utilizations after failure recovery when compared to the static
failover strategy (no processor is utilized more than 70%)
• LAAF failover strategy always adapts the failover targets whenever

system loads change – client failover to the least loaded backup
• static failover strategy does not change the previously deployment-time

optimal failover targets at runtime
• client failover results in overload & hence higher response times

152

Summary of FLARe Results

• ROME strategy reacts to overloads & maintains client response times – no
processor is utilized more than 70%

153

Specification

Composition

Configuration

Deployment

Run-time

Development
Lifecycle

• Component Replication-based on Failover
Units (CORFU)

• Raise the level of fault tolerance to
component level

• Support group failover

Runtime Phase: Component-based Fault Tolerance

154

Component Replication Based on
Failover Units (CORFU)
• Raises the level of abstraction, from

objects to

Hardware

Domain-Specific
Services

Common
Middleware Services

Distribution
Middleware

Host Infrastructure
Middleware

Operating Systems
& Protocols

Applications

CORBA 2.x
Lightweight

Fault Tolerance

CORFU Contributions

155

Component Replication Based on
Failover Units (CORFU)
• Raises the level of abstraction, from

objects to

a) Fault-tolerance for single
components

NIS A
NIS A

Hardware

Domain-Specific
Services

Common
Middleware Services

Distribution
Middleware

Host Infrastructure
Middleware

Operating Systems
& Protocols

Applications

CORBA 2.x
Lightweight

Fault Tolerance

CORFU

CORFU Contributions

156

Component Replication Based on
Failover Units (CORFU)
• Raises the level of abstraction, from

objects to

a) Fault-tolerance for single
components

b) Components with Heterogenous
State Synchronisation (CHESS)

NIS A
NIS A “Archive”

R3

R2

R1 CHESS

Hardware

Domain-Specific
Services

Common
Middleware Services

Distribution
Middleware

Host Infrastructure
Middleware

Operating Systems
& Protocols

Applications

CORBA 2.x
Lightweight

Fault Tolerance

CORFU

CORFU Contributions

157

Component Replication Based on
Failover Units (CORFU)
• Raises the level of abstraction, from

objects to

a) Fault-tolerance for single
components

b) Components with Heterogenous
State Synchronisation (CHESS)

c) Fault-tolerance for groups of
components

NIS A
NIS A

Archive A

Mission
Planning
System A

Telemetry
Server A

Telecommand
Server A

Archive A

Mission
Planning
System A

Telemetry
Server A

Telecommand
Server A

Bridges the abstraction gap for fault-tolerance

“Archive”
R3

R2

R1 CHESS

Hardware

Domain-Specific
Services

Common
Middleware Services

Distribution
Middleware

Host Infrastructure
Middleware

Operating Systems
& Protocols

Applications

CORBA 2.x
Lightweight

Fault Tolerance

CORFU

CORFU Contributions

Prior Work: Object-based Fault Tolerance

• Conventional Fault-Tolerance solutions provide replication capabilities
on the granularity of objects

operation() Object :
Interface X: Client

Middleware

158

• Conventional Fault-Tolerance solutions provide replication capabilities
on the granularity of objects

• FLARe takes a lightweight approach for DRE systems based on
passive replication

operation() Object :
Interface X: Client

Middleware

159

Prior Work: Object-based Fault Tolerance

• Conventional Fault-Tolerance solutions provide replication capabilities
on the granularity of objects

• FLARe takes a lightweight approach for DRE systems based on
passive replication

• It provides mechanisms for

1. Grouping of replica objects as one logical application

“TelemetryServer”

R3

R2

R1
operation() Object :

Interface X: Client

Middleware

160

Prior Work: Object-based Fault Tolerance

• Conventional Fault-Tolerance solutions provide replication capabilities
on the granularity of objects

• FLARe takes a lightweight approach for DRE systems based on
passive replication

• It provides mechanisms for

1. Grouping of replica objects as one logical application

2. Failure detection

“TelemetryServer”

R3

R2

R1
operation() Object :

Interface X: Client

Middleware

161

Prior Work: Object-based Fault Tolerance

• Conventional Fault-Tolerance solutions provide replication capabilities
on the granularity of objects

• FLARe takes a lightweight approach for DRE systems based on
passive replication

• It provides mechanisms for

1. Grouping of replica objects as one logical application

2. Failure detection

3. Failover to backup replica

“TelemetryServer”

R3

R2

R1
operation() Object :

Interface X: Client

Middleware

162

Prior Work: Object-based Fault Tolerance

Object-based Server-side Fault Tolerance

CORBA 2.x Server Obligations

server
163

CORBA 2.x Server Obligations
Object

Implementation
1. Implementation of

get_state/set_state
methods

2. Triggering state
synchronization
through state_changed
calls

3. Getter & setter
methods for object id &
state synchronization
agent attributes

server

Servant

164

Object-based Server-side Fault Tolerance

CORBA 2.x Server Obligations
Object

Implementation Initialization

1. Implementation of
get_state/set_state
methods

2. Triggering state
synchronization
through state_changed
calls

3. Getter & setter
methods for object id &
state synchronization
agent attributes

1. Registration of IORInterceptor

server

Servant

IOR
Interceptor

165

Object-based Server-side Fault Tolerance

CORBA 2.x Server Obligations
Object

Implementation Initialization

1. Implementation of
get_state/set_state
methods

2. Triggering state
synchronization
through state_changed
calls

3. Getter & setter
methods for object id &
state synchronization
agent attributes

1. Registration of IORInterceptor
2. HostMonitor thread instantiation
3. Registration of thread with HostMonitor

Host
Monitor

server

Servant

HM
thread

IOR
Interceptor

166

Object-based Server-side Fault Tolerance

CORBA 2.x Server Obligations
Object

Implementation Initialization

1. Implementation of
get_state/set_state
methods

2. Triggering state
synchronization
through state_changed
calls

3. Getter & setter
methods for object id &
state synchronization
agent attributes

1. Registration of IORInterceptor
2. HostMonitor thread instantiation
3. Registration of thread with HostMonitor
4. StateSynchronizationAgent instantiation
5. Registration of State Synchronization Agent with

Replication Manager

Replication
Manager

Host
Monitor

server

Servant
SSA

HM
thread

IOR
Interceptor

167

Object-based Server-side Fault Tolerance

CORBA 2.x Server Obligations
Object

Implementation Initialization

1. Implementation of
get_state/set_state
methods

2. Triggering state
synchronization
through state_changed
calls

3. Getter & setter
methods for object id &
state synchronization
agent attributes

1. Registration of IORInterceptor
2. HostMonitor thread instantiation
3. Registration of thread with HostMonitor
4. StateSynchronizationAgent instantiation
5. Registration of State Synchronization Agent with

Replication Manager
6. Registration with State Synchronization Agent for

each object
7. Registration with Replication Manager for each

object

Replication
Manager

Host
Monitor

server

Servant
SSA

HM
thread

IOR
Interceptor

168

Object-based Server-side Fault Tolerance

CORBA 2.x Server Obligations
Object

Implementation Initialization Configuration

1. Implementation of
get_state/set_state
methods

2. Triggering state
synchronization
through state_changed
calls

3. Getter & setter
methods for object id &
state synchronization
agent attributes

1. Registration of IORInterceptor
2. HostMonitor thread instantiation
3. Registration of thread with HostMonitor
4. StateSynchronizationAgent instantiation
5. Registration of State Synchronization Agent with

Replication Manager
6. Registration with State Synchronization Agent for

each object
7. Registration with Replication Manager for each

object

1. ReplicationManag
er reference

2. HostMonitor
reference

3. Replication object
id

4. Replica role
(Primary/Backup)

Replication
Manager

Host
Monitor

server

Servant
SSA

HM
thread

IOR
Interceptor

169

Object-based Server-side Fault Tolerance

Object-based Client-side Fault Tolerance

CORBA 2.x Client Obligations

server
client

170

CORBA 2.x Client Obligations

Initialization

1. Registration of Client Request
Interceptor

server
client

Request
Interceptor

171

Object-based Client-side Fault Tolerance

CORBA 2.x Client Obligations

Initialization

1. Registration of Client Request
Interceptor

2. ForwardingAgent instantiation
3. Registration of ForwardingAgent with

ReplicationManager

Replication
Manager

server
client

Request
Interceptor

Forwarding
Agent

172

Object-based Client-side Fault Tolerance

CORBA 2.x Client Obligations

Initialization Configuration

1. Registration of Client Request
Interceptor

2. ForwardingAgent instantiation
3. Registration of ForwardingAgent with

ReplicationManager

1. ReplicationManager
reference

Replication
Manager

server
client

Request
Interceptor

Forwarding
Agent

173

Object-based Client-side Fault Tolerance

174

Addressing Limitations with Object-based FT

Object-based fault-tolerance incurs additional
development effort for

1. Object implementation
2. Initialization and setup of the fault-tolerance

infrastructure
3. Configuration of fault-tolerance properties

This adds additional sources for accidential errors
such as missed intialization steps of wrong order of
steps.

CORFU uses component-based infrastructure to reduce this effort

175

Single Component Replication Context

Archive
Component

Container

Object :
Archive

Component Middleware

 Creates a standard “virtual
boundary” around application
component implementations that
interact only via well-defined
interfaces

 Defines standard container
mechanisms needed to execute
components in generic
component servers

 Specifies the infrastructure
needed to configure & deploy
components throughout a
distributed system

176

Single Component Replication Challenges

… …
…

Components cause additional
complexities for fault tolerance

since they …

component Archive
{

provides Stream data;
provides Admin mgt;

};

177

… …
…

Components cause additional
complexities for fault tolerance

since they …
 can consist of several

objects

component Archive
{

provides Stream data;
provides Admin mgt;

};

Object :
Admin

Object :
Stream

Object :
Archive

Single Component Replication Challenges

178

… …
…

Components cause additional
complexities for fault tolerance

since they …
 can consist of several

objects
 have connections that need

to be maintained

component Archive
{

provides Stream data;
provides Admin mgt;

};

Object :
Admin

Object :
Stream

Object :
Archive

Single Component Replication Challenges

Container

Middleware Bus

Container

179

… …
…

Components cause additional
complexities for fault tolerance

since they …
 can consist of several

objects
 have connections that need

to be maintained
 are shared objects & have

no direct control over their
run-time infrastructure

component Archive
{

provides Stream data;
provides Admin mgt;

};

Object :
Admin

Object :
Stream

Object :
Archive

Single Component Replication Challenges

Single Component Replication Solutions

Solution Part 1: Hierarchical naming scheme for
grouping objects implementing one component

“Archive”

R1
R2

R3

component Archive
{

};

180

“Archive”

R1
R2

R3

“Archive.data”

R1
R2

R3

component Archive
{

provides Stream data;

};

181

Solution Part 1: Hierarchical naming scheme for
grouping objects implementing one component

Single Component Replication Solutions

“Archive”

R1
R2

R3

“Archive.data”

R1
R2

R3

“Archive.mgt”

R1
R2

R3

component Archive
{

provides Stream data;
provides Admin mgt;

};

182

Solution Part 1: Hierarchical naming scheme for
grouping objects implementing one component

Single Component Replication Solutions

Solution Part 2: Integration of FLARE into a fault tolerant
component server

Host
Monitor

Host
Monitor

Replication
Manager

Host
Monitor

Host
Monitor

FLARe infrastructure
coexists with

Component Runtime
Infrastructure

183

Single Component Replication Solutions

Solution Part 2: Integration of FLARE into a fault tolerant
component server

Host
Monitor

Host
Monitor

Replication
Manager

Host
Monitor

Host
Monitor

Component Server

Container
Request

Interceptor

Forwarding
Agent SSA

IOR
InterceptorHM

thread

All client & server side
entities related to

FLARe are instantiated
in a component server

184

Single Component Replication Solutions

Solution Part 2: Integration of FLARE into a fault tolerant
component server

Host
Monitor

Host
Monitor

Replication
Manager

Host
Monitor

Host
Monitor

Component Server

Container
Request

Interceptor

Forwarding
Agent SSA

IOR
Interceptor

AdminStream
Archive

HM
thread

Component Implementation
Instances are loaded into

the Container & are
automatically integrated

into FLARe
185

Single Component Replication Solutions

186

Component State Synchronization w/CHESS

Components maintain internal state that needs to be propagated to backup
replicas

“Archive”

R3

R2

R1

State per Component can vary in

1. Location
2. Size

3. Complexity & Distribution
4. Dynamics of Changes

CHESS = “Components
with HEterogeneous

State Synchronization”

187

Components maintain internal state that needs to be propagated to backup
replicas

“Archive”

R3

R2

R1

Component State Synchronization w/CHESS

188

Components maintain internal state that needs to be propagated to backup
replicas
The CHESS Framework applies the Strategy pattern to allow

1. Registration of component instances in the local process space

“Archive”

R3

R2

R1 CHESS

Component State Synchronization w/CHESS

189

Components maintain internal state that needs to be propagated to backup
replicas
The CHESS Framework applies the Strategy pattern to allow

1. Registration of component instances in the local process space
2. Choice of the transport protocol for state dissemination (e.g. CORBA or

DDS)

“Archive”

R3

R2

R1 CHESS

Component State Synchronization w/CHESS

190

Components maintain internal state that needs to be propagated to backup
replicas
The CHESS Framework applies the Strategy pattern to allow

1. Registration of component instances in the local process space
2. Choice of the transport protocol for state dissemination (e.g. CORBA or

DDS)
3. Connection management for communication with other components

“Archive”

R3

R2

R1 CHESS

Component State Synchronization w/CHESS

191

Components maintain internal state that needs to be propagated to backup
replicas
The CHESS Framework applies the Strategy pattern to allow

1. Registration of component instances in the local process space
2. Choice of the transport protocol for state dissemination (e.g. CORBA or

DDS)
3. Connection management for communication with other components
4. State Dissemination

“Archive”

R3

R2

R1 CHESSCHESS gives flexibility in
1. Serialization of State

2. Timing Behavior
3. Protocol Choice

Component State Synchronization w/CHESS

192

CORFU integrates Fault Tolerance mechanisms into component-based
systems

 Server & client side functionality is both integrated into one container

CCM Component Obligations
Object

Implementation Initialization Configuration

1. Implementation of
get_state/set_state
methods

2. Triggering state
synchronization
through state_changed
calls

3. Getter & setter
methods for object id &
state synchronization
agent attributes

1. Registration of IORInterceptor
2. HostMonitor thread instantiation
3. Registration of thread with HostMonitor
4. StateSynchronizationAgent instantiation
5. Registration of State Synchronization Agent with

Replication Manager
6. Registration with State Synchronization Agent for

each object
7. Registration with Replication Manager for each

object

1. ReplicationManag
er reference

2. HostMonitor
reference

3. Replication object
id

4. Replica role
(Primary/Backup)

Benefits of CORFU FT vs. Object-based FT

193

CORFU integrates Fault Tolerance mechanisms into component-based
systems

 Server & client side functionality is both integrated into one container

 Fault tolerance related tasks are automated

CCM Component Obligations
Object

Implementation Initialization Configuration

1. Implementation of
get_state/set_state
methods

2. Triggering state
synchronization
through state_changed
calls

3. Getter & setter
methods for object id &
state synchronization
agent attributes

1. Registration of IORInterceptor
2. HostMonitor thread instantiation
3. Registration of thread with HostMonitor
4. StateSynchronizationAgent instantiation
5. Registration of State Synchronization Agent with

Replication Manager
6. Registration with State Synchronization Agent for

each object
7. Registration with Replication Manager for each

object

1. ReplicationManag
er reference

2. HostMonitor
reference

3. Replication object
id

4. Replica role
(Primary/Backup)

Initialization is done automatically within the
component server & container

Configuration of
components is

done in the
deployment plan

through
configPropertiesPartly automated

through code generation

Benefits of CORFU FT vs. Object-based FT

194

Component Group Replication Context

Assemblies of Components with Fault dependencies

Archive A

Telemetry
Server A

Telecommand
Server A

Archive A

Telecommand
Server A

Mission
Planning
System A

195

Component Group Replication Context

Assemblies of Components with Fault dependencies
• Component Assemblies are characterized by a high degree

of interactions

Archive A

Telemetry
Server A

Telecommand
Server A

Archive A

Telecommand
Server A

Mission
Planning
System A

196

Component Group Replication Context

Assemblies of Components with Fault dependencies
• Component Assemblies are characterized by a high degree

of interactions
• Failures of one component can affect other components

Archive A

Telemetry
Server A

Telecommand
Server A

Archive A

Telecommand
Server A

Telemetry
Server A

Mission
Planning
System A

Faults can propagate across
components through

1. Shared Hardware
Infrastructure

2. Shared Networking
Infrastructure

3. Shared Middleware Services
4. Component Port

Connections

197

Component Group Replication Context

Assemblies of Components with Fault dependencies
• Component Assemblies are characterized by a high degree

of interactions
• Failures of one component can affect other components
• Detecting errors early on allows to take correcting

means & isolate the fault effects

Archive A

Telemetry
Server A

Telecommand
Server A

Archive A

Telecommand
Server A

Telemetry
Server A

Mission
Planning
System A

198

Component Group Replication Related Work

Approach Solution Reference

Static
Dependency
Modeling

Cadena
Dependency Model

John Hatcliff, Xinghua Deng, Matthew B. Dwyer, Georg Jung, &
Venkatesh Prasad Ranganath. “Cadena: An integrated
development, analysis, & verification environment for component-
based systems.” International Conference on Software
Engineering, pages 0 - 160, 2003.

Component Based
Dependency
Modeling (CBDM)

M. Vieira & D. Richardson. “Analyzing dependencies in large
component-based systems.” Automated Software Engineering,
2002. Proceedings. ASE 2002. 17th IEEE International
Conference on, pages 241–244, 2002.

Event Correlation Boris Gruschke. “A new approach for event correlation based on
dependency graphs.” In In 5th Workshop of the OpenView
University Association, 1998.

White Box approach where
dependencies are defined

declaratively

199

Approach Solution Reference

Static
Dependency
Modeling

Cadena
Dependency Model

John Hatcliff, Xinghua Deng, Matthew B. Dwyer, Georg Jung, &
Venkatesh Prasad Ranganath. “Cadena: An integrated
development, analysis, & verification environment for component-
based systems.” International Conference on Software
Engineering, pages 0 - 160, 2003.

Component Based
Dependency
Modeling (CBDM)

M. Vieira & D. Richardson. “Analyzing dependencies in large
component-based systems.” Automated Software Engineering,
2002. Proceedings. ASE 2002. 17th IEEE International
Conference on, pages 241–244, 2002.

Event Correlation Boris Gruschke. “A new approach for event correlation based on
dependency graphs.” In In 5th Workshop of the OpenView
University Association, 1998.

Observation
based
Dependency
Modeling

Active Dependecy
Discovery (ADD)

A. Brown, G. Kar, A. Keller, “An Active Approach to Characterizing
Dynamic Dependencies for Problem Determination in a
Distributed Application Environment,” IEEE/IFIP International
Symposium on Integrated Network Management, pp. 377-390,
2001.

Automatic Failure
Path Inference
(AFPI)

George Candea, Mauricio Delgado, Michael Chen, & Armando
Fox. “Automatic failure-path inference: A generic introspection
technique for internet applications.” In WIAPP ’03: Proceedings of
the The Third IEEE Workshop on Internet Applications, page
132,Washington, DC, USA, 2003.

Black Box approach
where dependencies are

detected through fault
injection & monitoring

Component Group Replication Related Work

200

CORFU Requirements

Fault Tolerance dependency information is used to group
components according to their dependencies

201

CORFU Requirements

Fault Tolerance dependency information is used to group
components according to their dependencies
CORFU is a middleware solution that provides fault tolerance
capabilities based on such dependency groups

202

CORFU Requirements

Fault Tolerance dependency information is used to group
components according to their dependencies
CORFU is a middleware solution that provides fault tolerance
capabilities based on such dependency groups
Requirements that have to be met are:
1. Fault Isolation

203

CORFU Requirements

Fault Tolerance dependency information is used to group
components according to their dependencies
CORFU is a middleware solution that provides fault tolerance
capabilities based on such dependency groups
Requirements that have to be met are:
1. Fault Isolation
2. Fail-Stop Behavior

204

CORFU Requirements

Fault Tolerance dependency information is used to group
components according to their dependencies
CORFU is a middleware solution that provides fault tolerance
capabilities based on such dependency groups
Requirements that have to be met are:
1. Fault Isolation
2. Fail-Stop Behavior
3. Server Recovery

205

Requirement 1: Fault Isolation

NIS B

Archive A

Mission
Planning
System A

Telemetry
Server A

Telecommand
Server A

Primary Chain

NIS A

Archive B

Mission
Planning
System B

Telemetry
Server B

Telecommand
Server B

Client
Backup Chain

Mission
Planning
System A

Archive A

Telemetry
Server A

Telecommand
Server A

Primary Chain

 Occurrence of
Server or Process
faults

 Such faults need
to be detected

 To isolate the fault
all affected
components need
to be identified

206

Requirement 2: Fail-Stop Behavior

NIS B

Archive A

Mission
Planning
System A

Telemetry
Server A

Telecommand
Server A

Primary Chain

NIS A

Archive B

Mission
Planning
System B

Telemetry
Server B

Telecommand
Server B

Client
Backup Chain

Mission
Planning
System A

Archive A

Telemetry
Server A

Telecommand
Server A

Primary Chain

 All affected
components need
to be stopped to
prevent
inconsistent
system state

 This has to
happen as
synchronously as
possible in a
distributed system
and

 As close to the
detection of the
failure as possible

207

Archive B

Mission
Planning
System B

Telemetry
Server B

Telecommand
Server B

Backup Chain

Requirement 3: Server Recovery

• Component failover
mechanisms
operate on a per
component basis

• Failover needs to
be coordinated for
all failed
components

• The right backup
replica needs to be
activated for each
component to
ensure consistent
system state after
failover

NIS B

Archive A

Mission
Planning
System A

Telemetry
Server A

Telecommand
Server A

Primary Chain

NIS A

Client

Mission
Planning
System A

Archive A

Telemetry
Server A

Telecommand
Server A

Primary Chain

Archive B

Mission
Planning
System B

Telemetry
Server B

Telecommand
Server B

Backup Chain

Archive B

Mission
Planning
System B

Telemetry
Server B

Telecommand
Server B

208

Component Group Fault Tolerance Challenges

 Standard Interfaces do not provide FT capabilities & cannot be altered
 Additional Functionality needs to be standard compatible

 Interaction with DAnCE services is necessary to access system structure
without reducing component performance significantly

Node

Domain
Application

Node
Manager

Node
Application

Node
Application
Manager

createPlan
Launcher

startstartDeployment
Plan Component

ServerComponent
Server

Execution
Manager

Domain
Application
Manager

create

209

 Standard Interfaces do not provide FT capabilities & cannot be
altered

 Additional Functionality needs to be standard compatible
 Interaction with DAnCE services is necessary to access system

structure without reducing component performance significantly
 This includes

1. Deployment Plan Preparation
2. Integration of Failover Functionality
3. Object Replica Ordering

Node

Domain
Application

Node
Manager

Node
Application

Node
Application
Manager

createPlan
Launcher

startstartDeployment
Plan Component

ServerComponent
Server

Execution
Manager

Domain
Application
Manager

create

Component Group Fault Tolerance Challenges

210

Challenge 1: Deployment
Plan Preparation

 The Standard format for
defining a component
systems structure is the
Deployment Plan

 Fault-tolerance
information needs to be
added without breaking
the data schema

FLARe
Replication
Manager

Domain
Application
Manager

Domain
Application
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain
Application
Manager

Host
Monitor Host

Monitor

Host
Monitor

System structure is
captured in Deployment

Plans

Deployment Plan Preparation Solution

211

Solution: Failover Units

FLARe
Replication
Manager

Domain
Application
Manager

Domain
Application
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain
Application
Manager

Host
Monitor Host

Monitor

Host
Monitor

Deployment Plan Preparation Solution

212

Solution: Failover Units

 Each failover unit is
represented by a
deployment plan with
additional
configProperties

FLARe
Replication
Manager

Domain
Application
Manager

Domain
Application
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain
Application
Manager

Host
Monitor Host

Monitor

Host
Monitor

Failover
Unit

Deployment Plan Preparation Solution

213

Solution: Failover Units

 Each failover unit is
represented by a
deployment plan with
additional
configProperties

 Component dependency
information is used …

FLARe
Replication
Manager

Domain
Application
Manager

Domain
Application
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain
Application
Manager

Host
Monitor Host

Monitor

Host
Monitor

Failover
Unit

Dependency
Information

Deployment Plan Preparation Solution

214

Solution: Failover Units

 Each failover unit is
represented by a
deployment plan with
additional
configProperties

 Component dependency
information is used …

 … to split a master
deployment plan into
failover units

FLARe
Replication
Manager

Domain
Application
Manager

Domain
Application
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain
Application
Manager

Host
Monitor Host

Monitor

Host
Monitor

Failover
Unit

Deployment
Plan

Dependency
Information

SPLIT-FOU

The ExecutionManager
starts the deployment
process by creating a

DomainApplication
Manager for each

deployment.

Deployment Plan Preparation Solution

215

Deployment Plan Preparation Solution

Solution: Failover Units

 Each failover unit is
represented by a
deployment plan with
additional
configProperties

 Component dependency
information is used …

 … to split a master
deployment plan into
failover units

FLARe
Replication
Manager

Domain
Application
Manager

Domain
Application
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain
Application
Manager

Host
Monitor Host

Monitor

Host
Monitor

One Domain
Application Manager

represents one
Failover Unit

216

Challenge 2 : Integration of Failover
Functionality

 Deployment and configuration entities
have standardized interfaces that
cannot be altered and have no notion
of fault-tolerance

 Fault-tolerance capabilities have to be
seamlessly integrated without breaking
standard compatibility

FLARe
Replication
Manager

Domain
Application
Manager

Domain
Application
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain
Application
Manager

Host
Monitor Host

Monitor

Host
Monitor

Fault
Correlation
Manager

Integration of Failover Functionality Solution

217

Solution: Fault Correlation Manager
(FCM)

 FCM is added into call chain between
Plan Launcher & ExecutionManager

FLARe
Replication
Manager

Domain
Application
Manager

Domain
Application
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain
Application
Manager

Host
Monitor Host

Monitor

Host
Monitor

Fault
Correlation
Manager

Deployment plans
are analyzed

Integration of Failover Functionality Solution

218

Solution: Fault Correlation Manager
(FCM)

 FCM is added into call chain between
Plan Launcher & ExecutionManager

FLARe
Replication
Manager

Domain
Application
Manager

Domain
Application
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain
Application
Manager

Host
Monitor Host

Monitor

Host
Monitor

Fault
Correlation
Manager

All requests are
passed on the

Execution Manager &
all replies are

intercepted as well

Integration of Failover Functionality Solution

219

Solution: Fault Correlation Manager
(FCM)

 FCM is added into call chain between
Plan Launcher & ExecutionManager

 Applies the Decorator Pattern

« interface »

FaultCorrelationManager
+ preparePlan (plan: DeploymentPlan)

: DomainApplicationManager
+ getManagers ()

: DomainApplicationManagers
+ destroyManager (

manager: DomainApplicationManager)
: void

« interface »

ExecutionManager
+ preparePlan (plan: DeploymentPlan)

: DomainApplicationManager
+ getManagers ()

: DomainApplicationManagers
+ destroyManager (

manager: DomainApplicationManager)
: void

- exec_mgr: ExecutionManager

preparePlan (plan)
{

// …
DomainApplicationManager dam =

exec_mgr->PreparePlan (plan);
// …

return dam;
}

Integration of Failover Functionality Solution

220

Solution: Fault Correlation Manager
(FCM)

 FCM is added into call chain between
Plan Launcher & ExecutionManager

 Applies the Decorator Pattern
 Integration of FLARe

FLARe
Replication
Manager

Domain
Application
Manager

Domain
Application
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain
Application
Manager

Host
Monitor Host

Monitor

Host
Monitor

Fault
Correlation
Manager

The Replication Manager
monitors the component

status & reports failures to the
FaultCorrelationManager

Integration of Failover Functionality Solution

221

Solution: Fault Correlation Manager
(FCM)

 FCM is added into call chain between
Plan Launcher & ExecutionManager

 Applies the Decorator Pattern
 Integration of FLARe

FLARe
Replication
Manager

Domain
Application
Manager

Domain
Application
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain
Application
Manager

Host
Monitor Host

Monitor

Host
Monitor

Fault
Correlation
Manager

The FCM maintains data structures to
1. Associate components with the failover

unit deployment they belong to
2. Associate nodes with components hosted

on these nodes

Integration of Failover Functionality Solution

222

Integration of Failover Functionality Solution

Solution: Fault Correlation Manager
(FCM)

 FCM is added into call chain between
Plan Launcher & ExecutionManager

 Applies the Decorator Pattern
 Integration of FLARe

FLARe
Replication
Manager

Domain
Application
Manager

Domain
Application
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain
Application
Manager

Host
Monitor Host

Monitor

Host
Monitor

Fault
Correlation
Manager

The DomainApplication
Manager is instructed by the
FaultCorrelation Manager to

shutdown all components
within its deployment & is

then destroyed itself.

223

Replica Failover Ordering Challenges

Challenge 3: Replica
Failover Ordering

 Failovers happen on a
per component /object
basis

A

A’

A’’

B

B’

B’’

C

C’

C’’

224

primary failover unit

Replica Failover Ordering Challenges

Challenge 3: Replica
Failover Ordering

 Failovers happen on a
per component /object
basis
 FLARe uses a client

side failover
mechanism
 An ordered list

determines the
failover order

A B C

backup failover unit 1

A’ B’ C’

backup failover unit 2

A’’ B’’ C’’

!

225

primary failover unit

Replica Failover Ordering Challenges

Challenge 3: Replica
Failover Ordering

 Failovers happen on a
per component /object
basis
 FLARe uses a client

side failover
mechanism
 An ordered list

determines the
failover order

 The
ReplicationManager
needs to provide
correct ordering

A B C

backup failover unit 1

A’ B’ C’

backup failover unit 2

A’’ B’’ C’’

!

Replica Failover Ordering Solution

Solution: Failover
Constraints

• Separation of Concerns
• Fault Correlation Manager

is responsible for Failover
Unit level

FLARe
Replication
Manager

Domain
Application
Manager

Domain
Application
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain
Application
Manager

Host
Monitor Host

Monitor

Host
Monitor

Fault
Correlation
Manager

A B C

A’ B’ C’

A’’ B’’ C’’

FCM creates
constraints based
on failover units

226

Replica Failover Ordering Solution

Solution: Failover
Constraints

• Separation of Concerns
• Fault Correlation Manager

is responsible for Failover
Unit level

• ReplicationManager is
responsible for object
failover

FLARe
Replication
Manager

Domain
Application
Manager

Domain
Application
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain
Application
Manager

Host
Monitor Host

Monitor

Host
Monitor

Fault
Correlation
Manager

A B C

A’ B’ C’

A’’ B’’ C’’

C
1. C’
2. C’’

B
1. B’
2. B’’

A
1. A’
2. A’’

The algorithm for
ordering replicas in the

Replication Manager
uses the constraints as

input to create
RankLists.

227

Replica Failover Ordering Solution

Solution: Failover
Constraints

• Separation of Concerns
• Fault Correlation Manager

is responsible for Failover
Unit level

• ReplicationManager is
responsible for object
failover

FLARe
Replication
Manager

Domain
Application
Manager

Domain
Application
Manager

Execution
Manager

Plan
Launcher

Deployment
Plans

Domain
Application
Manager

Host
Monitor Host

Monitor

Host
Monitor

Fault
Correlation
Manager

RankLists are
distributed to the
Components for

Failover A B C

A’ B’ C’

A’’ B’’ C’’

C
1. C’
2. C’’

B
1. B’
2. B’’

A
1. A’
2. A’’

228

229

Experimental Evaluation of CORFU

Testing Environment
• ISISLab LAN virtualization

environment
• Identical blades with two 2.8GHz

Xeon CPUs, 1 GB of RAM, 40 GB
HDD, & 4 Gbps network
interfaces (only one CPU used by
kernel)

• Fedora Core 6 linux with rt11
real-time kernel patches

• Compiler gcc 3.4.6
• CORBA Implementation: TAO

branch based on version 1.6.8
with FLARe

• CCM Implementation: CIAO
branch based on version 0.6.8
with CORFU additions

Experimental Evaluation of CORFU

client

server
primary

server
backup

Experiment 1 - Overhead of Client Failover

Replicated Server is
called periodically by a

client
(period = 200 ms)

230

Experimental Evaluation of CORFU

1. Two Setups: CORBA 2.x based
executables & components

client

server
primary

server
backup

Experiment 1 - Overhead of Client Failover

CUTS CPU Worker on the
server side

(execution time = 20 ms)

231

232

Experimental Evaluation of CORFU

1. Two Setups: CORBA 2.x based
executables & components

2. After a defined number of calls a fault
is injected in the server that causes it
to finish

client

server
primary

server
backup

Experiment 1 - Overhead of Client Failover

233

Experimental Evaluation of CORFU

1. Two Setups: CORBA 2.x based
executables & components

2. After a defined number of calls a fault
is injected in the server that causes it
to finish

3. Measure server response times in
the client during failover

client

server
primary

server
backup

client server

tstc

Communication Overhead tr = tc - ts

Experiment 1 - Overhead of Client Failover

234

Experimental Evaluation of CORFU

1. Two Setups: CORBA 2.x based
executables & components

2. After a defined number of calls a fault
is injected in the server that causes it
to finish

3. Measure server response times in
the client during failover

4. Compare response times between
both versions

5. Three experiment configurations: 1
server application (10% load), 2
server applications (20%) & 4
server applications (40%)

client

server
primary

server
backup

client server

tstc

Communication Overhead tr = tc - ts

Experiment 1 - Overhead of Client Failover

235

Experiment 1 - Results

Default
Communication

Overhead is
between 0 & 1ms

236

Experiment 1 - Results

After 10 invocations the
server shuts down & a

failover with 4ms
latency occurs

237

Experiment 1 - Results

The backup server
responds in the same
interval as the primary

238

Experiment 1 - Results

CORBA 2.x
scenarios

239

Experiment 1 - Results

CCM scenarios

240

Experiment 1 - Results

3 ms failover
latency with
10% load

241

Experiment 1 - Results

3 ms failover
latency with
10% load 4ms latency with

10% load

→ 1ms overhead

242

Node 1

Experimental Evaluation

Experiment 2:
Fail-Stop shutdown latency
• Five Failover Units on

Five Nodes

Node 4

Node 5

Node 6

Node 2

Node 3

FOU 0

B0

A0

C0

D0

E0

FOU 1

A1

E1

B1

C1

D1

FOU 2

E2

D2

A2

B2

C2

FOU 3

D3

C3

E3

A3

B3

FOU 4

C4

B4

D4

E4

A4

HM

HM

HM

HM

HM

RM FCM EMDAMDAM

243

Node 1

Node 4

Node 5

Node 6

Experimental Evaluation

Experiment 2:
Fail-Stop shutdown latency
• Five Failover Units on

Five Nodes
• Use ReplicationManager

as point of measurement
for ‘failure roundtrip’

• Measure time between
detection of initial failure
& shutdown of
components in the same
failover unit.

Node 2

Node 3

RM FCM

FOU 1FOU 0

B0

A0

A1

E1
FOU 2

E2

D2
FOU 3

D3

C3
FOU 4

C4

B4

C0 B1 A2 E3 D4

D0 C1 B2 A3 E4

E0 D1 C2 B3 A4

HM

HM

HM

HM

HM

EMDAMDAM
4

1 2 3
t4-t1 = troundtrip ~70ms

t3-t2 = tshutdown ~56ms

24
4

Presentation Road Map

• Technology Context: DRE Systems
• DRE System Lifecycle & FT-RT Challenges
• Design-time Solutions
• Deployment & Configuration-time Solutions
• Runtime Solutions
• Ongoing Work
• Concluding Remarks

245

Specification

Composition

Configuration

Deployment

Run-time

Development
Lifecycle

• TACOMA Adaptive State Consistency
Middleware

• Tune frequency of update and number of
replicas with which state is made consistent

Ongoing Work (1): Tunable State Consistency

246

Related Research
Category Related Research

Optimizations
in Real-time
Systems

H. Zou et. al., A Real-time Primary Backup Replication Service, in IEEE
Transactions on Parallel & Distributed Systems (IEEE TPDS), 1999
S. Krishnamurthy et. al., An Adaptive Quality of Service Aware Middleware for
Replicated Services, in IEEE Transactions on Parallel & Distributed Systems
(IEEE TPDS), 2003
T. Dumitras et. al., Architecting & Implementing Versatile Dependability, in
Architecting Dependable Systems Vol. III, 2005

Optimizations
in Distributed
Systems

T. Marian et. al., A Scalable Services Architecture, in Proceedings of the IEEE
Symposium on Reliable Distributed Systems (SRDS 2006), Leeds, UK, 2006
Z. Cai et. al., Utility-driven Proactive Management of Availability in Enterprise-
scale Information Flows, In Proceedings of the ACM/IFIP/USENIX Middleware
Conference (Middleware 2006), Melbourne, Australia, November 2006
X. Zhang et. al., Customizable Service State Durability for Service-Oriented
Architectures, In Proceedings of the 6th European Dependable Computing
Conference (EDCC 2006), Portugal, 2006

Optimizations
in Real-time
Databases

M. Xiong et. al., A Deferrable Scheduling Algorithm for Real-time Transactions
Maintaining Data Freshness, in Proceedings of the IEEE International Real-time
Systems Symposium (RTSS 2005), Lisbon, 2005
T. Gustafsson et. al., Data Management in Real-time Systems: A Case of On-
demand Updates in Vehicle Control Systems, in Proceedings of the IEEE Real-
time Embedded Technology & Applications Symposium (RTAS 2004), Toronto,
2004

247

Related Research
Category Related Research

Optimizations
in Real-time
Systems

H. Zou et. al., A Real-time Primary Backup Replication Service, in IEEE
Transactions on Parallel & Distributed Systems (IEEE TPDS), 1999
S. Krishnamurthy et. al., An Adaptive Quality of Service Aware Middleware for
Replicated Services, in IEEE Transactions on Parallel & Distributed Systems
(IEEE TPDS), 2003
T. Dumitras et. al., Architecting & Implementing Versatile Dependability, in
Architecting Dependable Systems Vol. III, 2005

Optimizations
in Distributed
Systems

T. Marian et. al., A Scalable Services Architecture, in Proceedings of the IEEE
Symposium on Reliable Distributed Systems (SRDS 2006), Leeds, UK, 2006
Z. Cai et. al., Utility-driven Proactive Management of Availability in Enterprise-
scale Information Flows, In Proceedings of the ACM/IFIP/USENIX Middleware
Conference (Middleware 2006), Melbourne, Australia, November 2006
X. Zhang et. al., Customizable Service State Durability for Service-Oriented
Architectures, In Proceedings of the 6th European Dependable Computing
Conference (EDCC 2006), Portugal, 2006

Optimizations
in Real-time
Databases

M. Xiong et. al., A Deferrable Scheduling Algorithm for Real-time Transactions
Maintaining Data Freshness, in Proceedings of the IEEE International Real-time
Systems Symposium (RTSS 2005), Lisbon, 2005
T. Gustafsson et. al., Data Management in Real-time Systems: A Case of On-
demand Updates in Vehicle Control Systems, in Proceedings of the IEEE Real-
time Embedded Technology & Applications Symposium (RTAS 2004), Toronto,
2004

resource optimizations – number of
active replicas processing requests,

available resources to schedule
updates, change of replication styles

resource optimizations – lazy update
propagation, where to store state?

database or process?

schedule lazy updates based
on data values

248

• Optimizations related to replication
management restricted to tuning &
optimizing frequency of checkpoints

• lack of optimizations related to tuning &
optimizing the depth of consistency

• number of replicas that are made
consistent with the primary replica
- more time spent if more replicas
are synchronized

• lack of offline analysis of the operating
region

• e.g., if performance needs to be
optimized, how much FT can be
provided? (vice-versa for FT)

• lack of adaptive and configurable
middleware architectures to tune
optimizations related to consistency
depth

Related Research: What is Missing?

Need middleware architecture & optimization algorithms to optimize
resource usage related to managing replica consistency

249

• Performance versus Fault-tolerance – optimize resource usage
• Need for configurable application consistency management

• support for range of consistency assurances – weak to strong
• Need for analyzing & selecting trade-offs among FT & performance

• resource usage for FT versus resource usage for performance
• Need for multi-modal operations – degraded levels of FT & performance

• dynamic adaptations to system loads & failures

Current Work: Resource-aware Replica Consistency Management

Missing Capabilities in Our Prior Work

250

Replica & State Management in Passive Replication

• Resource consumption trade-offs
• performance (response times) versus fault-tolerance
• e.g., if goal is better performance => lesser resources for state

management => lesser levels of FT
• e.g., if goal is better fault-tolerance => response time suffers until all

replicas are made consistent

Resource consumption for FT affects performance
assurances provided to applications & vice versa

• Replica Management
• synchronizing the

state of the primary
replicas with the
state of the backup
replicas

251

• Need tunable adaptive fault-tolerance
• cater to the needs of variety of applications

• no point solutions
• configurable per-application fault-tolerance properties

• optimized for desired performance
• monitor available system resources

• auto-configure fault-tolerance levels provided for applications

• Diverse application QoS
requirements
• for some applications,

FT important
• for others,

performance
important

Focus on operating region for FT as opposed to an operating point

Replica & State Management in Passive Replication

252

• Need tunable adaptive fault-tolerance
• input → available system resources
• control → per-application fault-tolerance properties
• output → desired application performance/reliability
• fairness → optimize resource consumption to provide minimum QoS
• trade-offs needed in resource-constrained environments

• goal → maximize both performance and fault-tolerance
• degrade QoS – either of FT or performance – as resource levels

decrease

• Diverse application QoS
requirements
• for some applications,

FT important
• for others,

performance
important

Focus on operating region as opposed to an operating point

Replica & State Management in Passive Replication

253

• Different applications have different
requirements

• e.g., FT more important than
performance and vice-versa

• Configurable resource consumption
needed on per-application basis

• Under resource constraints
• trade-offs need to be made to

balance the use of available
resources for

• fault-tolerance
• response times

Resource Optimizations in Fault-tolerant Systems

Need mechanisms that can
focus on an operating region
rather than an operating point

to tune state management

254

Solution Approach: TACOMA
• Tunable Adaptive COnsistency

Management middlewAre
(TACOMA)
• built on top of the FLARe

middleware
• configurable consistency

management middleware
• resource-aware tuning of

application consistency – i.e.,
number of replicas made
consistent with the primary
replica

• use of different transports to
manage consistency – e.g.,
CORBA AMI, DDS

• Local Resource Manager – TACOMA agent
• added on each processor hosting primary replicas
• application informs the agent when state changes
• agents synchronize the state of the backup replicas

• works with FLARe replication manager to obtain object references

255

TACOMA: Configurable Consistency Management (1/2)

• Determine configurable consistency for each application
• to respond to a client within a certain deadline, the state of how many

backup replicas can be made consistent with the primary replica by the
TACOMA agent?

• Time taken to make one backup replica consistent equals
• the worst case execution time of an update task initiated by the TACOMA

agent in the primary replica
• Sum of worst case execution times of update tasks at all backup replicas +

processing time at primary replica = client response time

256

TACOMA: Configurable Consistency Management (2/2)

• Determine worst case execution times of update tasks
• use time-demand analysis

• Tunable consistency management
• input → available system resources
• control → per-application consistency depth
• output → desired application performance/reliability
• fairness → provide minimum QoS assurances

• Configure TACOMA agents with the consistency depth determined

257

TACOMA Evaluation Criteria

• Hypotheses: TACOMA
• is customizable & can be applied to a wide range of DRE systems

• consistency depth range (1 to number of replicas)
• utilizes available CPU & network resources in the system efficiently, & provides

applications with the required QoS (performance or high availability)
• response times are always met – no deadline misses

• tunes application replication consistency depth at runtime, as resource
availability fluctuates

• consistency depth decreases from MAX (number of replicas) to MIN (1)

258

Specification

Composition

Configuration

Deployment

Run-time

Development
Lifecycle

• End-to-end Reliability of Non-deterministic
Stateful Components

• Address the orphan state problem

Ongoing Work (2): End-to-end Reliability of
Non-deterministic Stateful Components

25
9

Execution Semantics & High Availability
 Execution semantics in distributed systems
 May-be – No more than once, not all subcomponents may execute
 At-most-once – No more than once, all-or-none of the subcomponents will be

executed (e.g., Transactions)
 Transaction abort decisions are not transparent

 At-least-once – All or some subcomponents may execute more than once
 Applicable to idempotent requests only

 Exactly-once – All subcomponents execute once & once only
 Enhances perceived availability of the system

 Exactly-once semantics should hold even upon failures
 Equivalent to single fault-free execution
 Roll-forward recovery (replication) may violate exactly-once semantics
 Side-effects of replication must be rectified

A B C D

Client

Partial
execution

should seem
like no-op

upon recovery

State
Update

State
Update

State
Update

260

Exactly-once Semantics, Failures, & Determinism

Orphan request &
orphan state

Caching of
request/reply

rectifies the problem

Deterministic component A
 Caching of request/reply at

component B is sufficient

Non-deterministic
component A
Two possibilities upon

failover
1. No invocation
2. Different invocation

Caching of request/reply
does not help
 Non-deterministic code

must re-execute

261261

Related Research: End-to-end Reliability
Category Related Research (QoS & FT Modeling)

Integrated
transaction
& replication

1. Reconciling Replication & Transactions for the End-to-End
Reliability of CORBA Applications by P. Felber & P. Narasimhan

2. Transactional Exactly-Once by S. Frølund & R. Guerraoui
3. ITRA: Inter-Tier Relationship Architecture for End-to-end QoS by

E. Dekel & G. Goft
4. Preventing orphan requests in the context of replicated invocation

by Stefan Pleisch & Arnas Kupsys & Andre Schiper
5. Preventing orphan requests by integrating replication &

transactions by H. Kolltveit & S. olaf Hvasshovd
Enforcing
determinism

1. Using Program Analysis to Identify & Compensate for
Nondeterminism in Fault-Tolerant, Replicated Systems by J.
Slember & P. Narasimhan

2. Living with nondeterminism in replicated middleware applications
by J. Slember & P. Narasimhan

3. Deterministic Scheduling for Transactional Multithreaded Replicas
by R. Jimenez-peris, M. Patino-Martínez, S. Arevalo, & J. Carlos

4. A Preemptive Deterministic Scheduling Algorithm for
Multithreaded Replicas by C. Basile, Z. Kalbarczyk, & R. Iyer

5. Replica Determinism in Fault-Tolerant Real-Time Systems by S.
Poledna

6. Protocols for End-to-End Reliability in Multi-Tier Systems by P. Romano

Database in
the last tier

Program
analysis to

compensate
nondeterminism

Deterministic
scheduling

262

Unresolved Challenges: End-to-end Reliability of
Non-deterministic Stateful Components

 Integration of replication & transactions
 Applicable to multi-tier transactional web-based systems only
 Overhead of transactions (fault-free situation)
 Join operations in the critical path
 2 phase commit (2PC) protocol at the end of invocation

A B C D

Client

State
Update

State
Update

State
Update

Join Join Join

263

Unresolved Challenges: End-to-end Reliability of
Non-deterministic Stateful Components

 Integration of replication & transactions
 Applicable to multi-tier transactional web-based systems only
 Overhead of transactions (fault-free situation)
 Join operations in the critical path
 2 phase commit (2PC) protocol at the end of invocation

 Overhead of transactions (faulty situation)
 Must rollback to avoid orphan state
 Re-execute & 2PC again upon recovery

 Complex tangling of QoS: Schedulability & Reliability
 Schedulability of rollbacks & join must be ensured

 Transactional semantics are not transparent
 Developers must implement: prepare, commit, rollback (2PC phases)

A B C D

Client

Potential
orphan

state
growing

Orphan state bounded in B, C, D

State
Update

State
Update

State
Update

264

Unresolved Challenges: End-to-end Reliability of
Non-deterministic Stateful Components

 Integration of replication & transactions
 Applicable to multi-tier transactional web-based systems only
 Overhead of transactions (fault-free situation)
 Join operations in the critical path
 2 phase commit (2PC) protocol at the end of invocation

 Overhead of transactions (faulty situation)
 Must rollback to avoid orphan state
 Re-execute & 2PC again upon recovery

 Complex tangling of QoS: Schedulability & Reliability
 Schedulability of rollbacks & join must be ensured

 Transactional semantics are not transparent
 Developers must implement all: commit, rollback, 2PC phases

 Enforcing determinism
 Point solutions: Compensate specific sources of non-determinism
 e.g., thread scheduling, mutual exclusion

 Compensation using semi-automated program analysis
 Humans must rectify non-automated compensation

265

Ongoing Research: Protocol for End-to-end
Exactly-once Semantics with Rapid Failover

 Rethinking Transactions
 Overhead is undesirable in DRE systems
 Alternative mechanism needed to rectify the orphan state

 Proposed research: A distributed protocol that
1. Supports exactly-once execution semantics in presence of
 Nested invocations
 Non-deterministic stateful components
 Passive replication

2. Ensures state consistency of replicas
3. Does not require intrusive changes to the component implementation
 No need to implement prepare, commit, & rollback

4. Supports fast client failover that is insensitive to
 Location of failure in the operational string
 Size of the operational string

 Evaluation Criteria
 Less communication overhead during fault-free & faulty situations
 Nearly constant client-perceived failover delay irrespective of the location of the

failure

Concluding Remarks
 Operational string is a component-based model of distributed computing

focused on end-to-end deadline
 Operational strings need group failover
 Not provided out-of-the-box in contemporary middleware

 Solution:
 Component QoS Modeling Language (CQML) for end-to-end QoS specification
 Failover unit modeling

 Generative Aspects for Fault-Tolerance (GRAFT) for transparent FT provisioning
 M2M, M2C, & M2T transformations

 Proposed research: End-to-end reliability of non-deterministic stateful
components
 Protocol to rectify orphan state problem allowing fast failover

26
6

Detector1

Detector2

Planner3 Planner1

Error
Recovery

Effector1

Effector2

Config

LEGEND

Receptacle

Event Sink

Event Source

Facet

267

Questions

	Resource-aware Deployment, Configuration and Adaptation for Fault-tolerance in Distributed Real-time Embedded Systems
	Objectives for this Tutorial
	Presentation Road Map
	Context: Distributed Real-time Embedded (DRE) Systems
	Motivating Case Study
	Case Study: ESA Mission Control System
	Case Study: ESA Mission Control System
	Case Study: ESA Mission Control System
	Case Study: ESA Mission Control System
	Case Study: ESA Mission Control System
	Case Study: ESA Mission Control System
	Case Study: ESA Mission Control System
	Presentation Road Map
	Component-based Design of DRE Systems
	A Perspective of Component-based DRE System Lifecycle
	Specification: Fault Tolerance Criteria (1/4)
	Specification: Fault Tolerance Criteria (2/4)
	Specification: Fault Tolerance Criteria (3/4)
	Specification: Fault Tolerance Criteria (4/4)
	Deployment: Criteria for Fault-tolerance
	Deployment: Criteria for Fault-tolerance
	Challenges in Deployment of Fault-tolerant DRE Systems
	Challenges in Deployment of Fault-tolerant DRE Systems
	Challenges in Deployment of Fault-tolerant DRE Systems
	Configuration: Criteria for Fault-tolerance
	Configuration: Criteria for Fault-tolerance
	Configuration: Criteria for Fault-tolerance
	Configuration: Criteria for Fault-tolerance
	Challenges in Configuring Fault-tolerant DRE Systems
	Challenges in Configuring Fault-tolerant DRE Systems
	Challenges in Configuring Fault-tolerant DRE Systems
	Challenges in Configuring Fault-tolerant DRE Systems
	Challenges in Configuring Fault-tolerant DRE Systems
	Runtime: Criteria for Fault-tolerant DRE Systems
	Runtime: Criteria for Fault-tolerant DRE Systems
	Challenges in Runtime Management of Fault-tolerant DRE Systems
	Challenges in Runtime Management of Fault-tolerant DRE Systems
	Challenges in Runtime Management of Fault-tolerant DRE Systems
	Challenges in Runtime Management of Fault-tolerant DRE Systems
	Challenges in Runtime Management of Fault-tolerant DRE Systems
	Challenges in Runtime Management of Fault-tolerant DRE Systems
	Summary of FT QoS Provisioning Challenges Across DRE Lifecycle
	Presentation Road Map
	Slide Number 44
	Slide Number 45
	Slide Number 46
	QoS Specification: What is Missing for DRE Systems?
	QoS Specification: What is Missing for DRE Systems?
	Slide Number 49
	Separation of Concerns in CQML
	Granularity of QoS Associations in CQML
	Composing CQML (1/3)
	Composing CQML (2/3)
	Composing CQML (3/3)
	Composing CQML (3/3)
	Evaluating Composability of CQML
	Presentation Road Map
	Slide Number 58
	Related Research
	Related Research
	Related Research
	Related Research
	Related Research
	Related Research
	D&C: What is Missing for DRE Systems?
	Slide Number 66
	Overview of DeCoRAM Contributions
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Designing the DeCoRAM Allocation Algorithm (1/5)
	Designing the DeCoRAM Allocation Algorithm (1/5)
	Designing the DeCoRAM Allocation Algorithm (1/5)
	Designing the DeCoRAM Allocation Algorithm (1/5)
	Designing the DeCoRAM Allocation Algorithm (1/5)
	Designing the DeCoRAM Allocation Algorithm (1/5)
	Designing the DeCoRAM Allocation Algorithm (2/5)
	Designing the DeCoRAM Allocation Algorithm (2/5)
	Designing the DeCoRAM Allocation Algorithm (2/5)
	Designing the DeCoRAM Allocation Algorithm (2/5)
	Designing the DeCoRAM Allocation Algorithm (2/5)
	Designing the DeCoRAM Allocation Algorithm (3/5)
	Designing the DeCoRAM Allocation Algorithm (3/5)
	Designing the DeCoRAM Allocation Algorithm (3/5)
	Designing the DeCoRAM Allocation Algorithm (3/5)
	Designing the DeCoRAM Allocation Algorithm (3/5)
	Designing the DeCoRAM Allocation Algorithm (3/5)
	Designing the DeCoRAM Allocation Algorithm (3/5)
	Designing the DeCoRAM Allocation Algorithm (3/5)
	Designing the DeCoRAM Allocation Algorithm (3/5)
	Designing the DeCoRAM Allocation Algorithm (3/5)
	Designing the DeCoRAM Allocation Algorithm (4/5)
	Designing the DeCoRAM Allocation Algorithm (4/5)
	Designing the DeCoRAM Allocation Algorithm (4/5)
	Designing the DeCoRAM Allocation Algorithm (4/5)
	Designing the DeCoRAM Allocation Algorithm (4/5)
	Designing the DeCoRAM Allocation Algorithm (4/5)
	Designing the DeCoRAM Allocation Algorithm (4/5)
	Designing the DeCoRAM Allocation Algorithm (4/5)
	Designing the DeCoRAM Allocation Algorithm (5/5)
	Designing the DeCoRAM Allocation Algorithm (5/5)
	Designing the DeCoRAM Allocation Algorithm (5/5)
	DeCoRAM Evaluation Criteria
	DeCoRAM Evaluation Hypothesis
	Experiment Configurations
	Comparison Schemes
	Comparison Schemes
	Comparison Schemes
	Experiment Results
	Experiment Results
	Experiment Results
	Experiment Results
	Experiment Results
	Experiment Results
	Experiment Results
	DeCoRAM Pluggable Allocation Engine Architecture
	DeCoRAM Deployment & Configuration Engine
	Slide Number 118
	Slide Number 119
	Slide Number 120
	What is Missing? Transparent FT Provisioning
	Soln: Generative Aspects for Fault Tolerance (GRAFT)
	Stage 1: Isomorphic M2M Transformation
	Stage 2: Determine Component Placement
	Stage 3: Synthesizing Fault Monitoring Infrastructure
	Stage 4: Synthesizing Code for Group Failover (1/2)
	Stage 4: Synthesizing Code for Group Failover (2/2)
	Stage 5: Synthesizing Platform-specific Metadata
	Evaluating Modeling Efforts Reduction Using GRAFT
	Evaluating Programming Efforts Reduction Using GRAFT
	Evaluating Client Perceived Failover Latency Using GRAFT
	Presentation Road Map
	Slide Number 133
	Related Research
	Related Research
	Related Research: What is Missing?
	Slide Number 137
	Slide Number 138
	Slide Number 139
	Slide Number 140
	FLARe Evaluation Criteria
	Experiment Setup
	Experiment Configurations
	Experiment Configurations
	LAAF Algorithm Results
	LAAF Algorithm Results
	LAAF Algorithm Results
	LAAF Algorithm Results
	LAAF Algorithm Results
	LAAF Algorithm Results
	Summary of Results
	Summary of FLARe Results
	Slide Number 153
	Slide Number 154
	Slide Number 155
	Slide Number 156
	Slide Number 157
	Prior Work: Object-based Fault Tolerance
	Prior Work: Object-based Fault Tolerance
	Prior Work: Object-based Fault Tolerance
	Prior Work: Object-based Fault Tolerance
	Slide Number 162
	Object-based Server-side Fault Tolerance
	Slide Number 164
	Slide Number 165
	Slide Number 166
	Slide Number 167
	Slide Number 168
	Slide Number 169
	Object-based Client-side Fault Tolerance
	Slide Number 171
	Slide Number 172
	Slide Number 173
	Addressing Limitations with Object-based FT
	Single Component Replication Context
	Single Component Replication Challenges
	Slide Number 177
	Slide Number 178
	Slide Number 179
	Single Component Replication Solutions
	Slide Number 181
	Slide Number 182
	Slide Number 183
	Slide Number 184
	Slide Number 185
	Component State Synchronization w/CHESS
	Slide Number 187
	Slide Number 188
	Slide Number 189
	Slide Number 190
	Slide Number 191
	Benefits of CORFU FT vs. Object-based FT
	Slide Number 193
	Component Group Replication Context
	Component Group Replication Context
	Component Group Replication Context
	Component Group Replication Context
	Component Group Replication Related Work
	Slide Number 199
	CORFU Requirements
	CORFU Requirements
	CORFU Requirements
	CORFU Requirements
	CORFU Requirements
	Requirement 1: Fault Isolation
	Requirement 2: Fail-Stop Behavior
	Requirement 3: Server Recovery
	Component Group Fault Tolerance Challenges
	Slide Number 209
	Slide Number 210
	Slide Number 211
	Slide Number 212
	Slide Number 213
	Slide Number 214
	Deployment Plan Preparation Solution
	Slide Number 216
	Slide Number 217
	Slide Number 218
	Slide Number 219
	Slide Number 220
	Slide Number 221
	Integration of Failover Functionality Solution
	Replica Failover Ordering Challenges
	Replica Failover Ordering Challenges
	Replica Failover Ordering Challenges
	Replica Failover Ordering Solution
	Replica Failover Ordering Solution
	Replica Failover Ordering Solution
	Experimental Evaluation of CORFU
	Experimental Evaluation of CORFU
	Experimental Evaluation of CORFU
	Experimental Evaluation of CORFU
	Experimental Evaluation of CORFU
	Experimental Evaluation of CORFU
	Experiment 1 - Results
	Experiment 1 - Results
	Experiment 1 - Results
	Experiment 1 - Results
	Experiment 1 - Results
	Experiment 1 - Results
	Experiment 1 - Results
	Experimental Evaluation
	Experimental Evaluation
	Presentation Road Map
	Slide Number 245
	Related Research
	Related Research
	Related Research: What is Missing?
	Slide Number 249
	Replica & State Management in Passive Replication
	Slide Number 251
	Slide Number 252
	Resource Optimizations in Fault-tolerant Systems
	Slide Number 254
	TACOMA: Configurable Consistency Management (1/2)
	TACOMA: Configurable Consistency Management (2/2)
	TACOMA Evaluation Criteria
	Slide Number 258
	Slide Number 259
	Slide Number 260
	Slide Number 261
	Slide Number 262
	Slide Number 263
	Slide Number 264
	Slide Number 265
	Slide Number 266
	Slide Number 267

