
Automating Middleware Configuration and
Specializations via Model-based

Aspect-Oriented Software Development

Dimple Kaul
Metavante Corp, USA

Aniruddha Gokhale
Vanderbilt University, USA



Preface

Abstract

Distributed computing infrastructures, such as middleware and virtual ma-
chines, are designed to be highly flexible and feature-rich to support a wide
range of applications and product lines in multiple domains. Applications
with stringent quality of service (QoS) demands (e.g., latency, fault toler-
ance, and throughput), however, find this feature richness and flexibility to
be a source of excessive memory footprint overhead and a lost opportunity
to optimize for significant performance gains. To alleviate this tension, a
key objective is to specialize the middleware, which comprises removing the
sources of excessive generality while simultaneously optimizing the required
features of middleware functionality in an automated fashion.

This work provides three main contributions to research to make a highly
specialized middleware. First, it illustrates about the modeling language we
developed to compose and configure systems. Secondly, it demonstrates an
approach to middleware specialization using aspects oriented programming.
Third, it discusses our approach of automating middleware specialization by
integrating our model-based tool and aspect-oriented software development
techniques. It also describes our investigations into discovering various sec-
ondary and crosscutting concerns in metadata management for large-scale
distributed data storage. We describe how we have applied aspect-oriented
technique to address these crosscutting concerns in metadata management
for a high performance distributed storage framework.

Acknowledgments

Dimple Kaul’s Acknowledgments

I would like to express my sincere gratitude to my advisor, Dr. Aniruddha
Gokhale, for providing me with this great opportunity to work in his group.
Without his support, guidance and mentorship this work would have not
been possible. I would also like to thank Dr. Douglas Schmidt for guiding
and giving constructive comments.

During my research work I have collaborated with many colleagues for
whom I have great regard, and I wish to extend my thanks to all those

2



who have guided me with my work in the Institute of Software Integrated
Systems (ISIS) and Advanced Computing Center for Research and Education
(ACCRE) at Vanderbilt University department.

I am also grateful to my defense committee Dr. Aniruddha Gokhale,
Dr. Jeff Gray and Dr. Alan Tackett for their time and support for reviewing
this work.

On the personal note I own my loving thanks to my husband Deepak and
daughter Shireen for their understanding, support, and patience. And finally
to my parents, who taught me value of education and who’s best wishes and
prayers were always with me.

Aniruddha Gokhale’s Acknowledgments

I am honored to have had Dimple Kaul as my student who worked with a
great deal of dedication that resulted in this wonderful thesis.

I would like to thank the Department of Electrical Engineering and Com-
puter Science at Vanderbilt University for all their support. I would also like
to thank my family for the support.

Finally, we thank VDM Verlag Dr. Muller for providing us the opportu-
nity to publish this thesis as a monograph.

3



4



Contents

1 Introduction 11

1.1 Our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Pattern Oriented Software Architecture Modeling Language 15

2.1 Challenges in Middleware Provisioning . . . . . . . . . . . . . 15

2.2 Designing Visual Tools for Middleware Provisioning . . . . . . 19

2.3 Acceptor-Connector Pattern . . . . . . . . . . . . . . . . . . . 25

2.3.1 Metamodel of Acceptor-Connector Pattern . . . . . . . 26

2.3.2 Modeling of Acceptor-Connector Pattern . . . . . . . . 32

2.4 Bridge Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 Metamodel of Bridge Pattern . . . . . . . . . . . . . . 34

2.4.2 Modeling of Bridge Pattern . . . . . . . . . . . . . . . 36

2.5 Feature View in POSAML . . . . . . . . . . . . . . . . . . . . 37

2.5.1 Metamodel of Feature View . . . . . . . . . . . . . . . 38

2.5.2 Modeling of Feature View . . . . . . . . . . . . . . . . 40

3 Middleware Specialization 43

3.1 Various Specialization Techniques . . . . . . . . . . . . . . . . 43

3.2 Overview of Aspect-Oriented Programming . . . . . . . . . . . 44

3.3 Aspect-Oriented vs. Object-Oriented Programming . . . . . . 46

3.4 Approach to Specialize Middleware via AOP . . . . . . . . . . 47

3.5 Reactor Specialization using AOP . . . . . . . . . . . . . . . . 48

4 Automating Generation of Specialization Aspects 53

4.1 Metamodel of Aspect for POSAML . . . . . . . . . . . . . . . 53

4.2 Modeling of Aspect for POSAML . . . . . . . . . . . . . . . . 55

5



5 Case Study 61
5.1 Logistical Storage . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Challenges: Crosscutting Concerns in Logistical Storage . . . . 63
5.3 Solution Approach: Use of Aspect-Oriented Techniques . . . . 67
5.4 Scalable Metadata Management Implementation . . . . . . . . 75

6 Results and Observations 77
6.1 Configuration and Specialization Files Generation . . . . . . . 77
6.2 Latency and Throughput Results . . . . . . . . . . . . . . . . 79

7 Related work 85

8 Summary and Conclusion 87
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6



List of Tables

3.1 Difference between AOP and FOP . . . . . . . . . . . . . . . . 44

6.1 Average Percentage Change . . . . . . . . . . . . . . . . . . . 84

7



8



List of Figures

2.1 Middleware Structure . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Middleware Patterns and Pattern Languages . . . . . . . . . . 20
2.3 Top-level Metamodel of Middleware Structure . . . . . . . . . 22
2.4 Overview of POSAML . . . . . . . . . . . . . . . . . . . . . . 24
2.5 UML diagram of Acceptor-Connector Pattern . . . . . . . . . 26
2.6 Connector Pattern Dynamics . . . . . . . . . . . . . . . . . . 27
2.7 Metamodel of Connector Pattern . . . . . . . . . . . . . . . . 28
2.8 Acceptor Pattern Dynamics . . . . . . . . . . . . . . . . . . . 30
2.9 Metamodel of Acceptor Pattern . . . . . . . . . . . . . . . . . 31
2.10 Model of Acceptor-Connector Pattern . . . . . . . . . . . . . . 32
2.11 GoF UML diagram of Bridge Pattern . . . . . . . . . . . . . . 34
2.12 Metamodel of Bridge Pattern . . . . . . . . . . . . . . . . . . 35
2.13 Model of Bridge Pattern . . . . . . . . . . . . . . . . . . . . . 36
2.14 POSAML Metamodel: Feature View . . . . . . . . . . . . . . 38
2.15 POSAML Model: Feature View . . . . . . . . . . . . . . . . . 40

3.1 Comparing Object-Oriented and Aspect-Oriented Model . . . 46
3.2 Phases of AOSD for an existing project . . . . . . . . . . . . . 47
3.3 Reactor Specialization using AOP . . . . . . . . . . . . . . . . 49
3.4 Specialization file for Single threaded reactor . . . . . . . . . . 50
3.5 Specialization file for Thread Pool reactor . . . . . . . . . . . 51

4.1 Metamodel of Aspect for POSAML . . . . . . . . . . . . . . . 54
4.2 Modeling of Aspect in POSAML . . . . . . . . . . . . . . . . 55
4.3 Modeling of Aspect constructs in POSAML . . . . . . . . . . 56
4.4 Metamodel of Aspect construct Pointcut . . . . . . . . . . . . 57
4.5 Example of Pointcut Model . . . . . . . . . . . . . . . . . . . 58

5.1 Identification Based Access Control configuration . . . . . . . 74

9



5.2 Access Control using AOP . . . . . . . . . . . . . . . . . . . . 75

6.1 Select Reactor Latency . . . . . . . . . . . . . . . . . . . . . . 80
6.2 Select Reactor Throughput . . . . . . . . . . . . . . . . . . . . 81
6.3 Threadpool Reactor Latency . . . . . . . . . . . . . . . . . . . 82
6.4 Threadpool Reactor Throughput . . . . . . . . . . . . . . . . 83

10



Chapter 1

Introduction

Distributed computing infrastructures including general-purpose middleware
solutions, such as Java Enterprise Edition (Java EE), CORBA and .NET,
and virtual machines (VMs) have been one of the key enabling technologies
responsible for the rapid and timely growth of a wide variety of network-based
applications and application families (i.e., product lines) found in multiple
domains, such as real-time and embedded systems [2], enterprise systems and
grid computing [15].

Complex distributed applications hosted on these middleware platforms
illustrate the need for various functional and para-functional, such as quality
of service (QoS), concerns that must be addressed simultaneously when these
properties are provisioned on the middleware platforms. Para-functional con-
cern provisioning comprises the challenge of choosing the right set of config-
uration and composition parameters of the middleware platforms, and vali-
dating that these meet the para-functional requirements of the applications.

Meeting these objectives is a hard problem, which stems primarily from
the characteristics of the middleware platforms. Middleware is designed to
be general-purpose, highly flexible and very feature-rich i.e., middleware pro-
vides a rich set of capabilities along with configurability to support a wide
range of application classes in many domains. There are multiple software
layers in middleware and these layers provide platform-independent execution
semantics and reusable services (e.g., concurrency management, connection
management, data marshaling, location transparency), which coordinate how
application components are composed and interoperate.

There are many applications with stringent QoS demands (e.g., latency,
fault tolerance, and throughput) and they find the feature richness and flex-

11



ibility to be a source of excessive memory footprint overhead and a lost op-
portunity to optimize for significant performance gains. There is a need one
hand for applications to continue to benefit from the elegant, object-oriented
designs and interfaces of middleware for maximum reuse and interoperability.
On the other hand, it is necessary for applications to use only the required
features of the middleware by automatically specializing it and derive maxi-
mum benefits in response to their QoS needs.

Additionally, traditional approaches to middleware provisioning typically
use low-level, non-intuitive, and technology-specific mechanisms, which are
not reusable across multiple middleware technologies and across applications.
For example, we have seen how provisioning requires the manual configura-
tion of XML files [45] that are several thousand lines long. Furthermore,
often the QoS validation phase is decoupled from the configuration phase.
Moreover, the validation phase uses processes that do not leverage decisions
made at the configuration phase, which limits the optimizations and fidelity
of the QoS validation phases.

A solution to address these problems is to provide a mechanism that raises
the level of abstraction at which system integrators can provision middleware,
where we define middleware provisioning to include the specialization of mid-
dleware so that only the required features of the middleware are selected and
configured for the para-functional properties. This phase is followed by val-
idating that these specializations and configurations meet the QoS needs of
the applications. Visual aids are one of the best known techniques to in-
tuitively reason about any system [17] at higher levels of abstractions. A
desired capability of a visual tool for the middleware provisioning problem is
one that can provide a clean separation of concerns [37] between the feature
selection and parameter configuration, and QoS validation phases, yet unifies
the two phases such that decisions at one phase can automate and optimize
steps at subsequent phases.

Research in various advanced programming technologies such as Aspect-
Oriented and Feature-Oriented design methodologies [6, 14, 28] have shown
promise in terms of managing the complexity of large-scale software design
through explicit separation of concerns (SoC) [37]. These qualities largely
eliminate the overhead of the trial-and-error, iterative process incurred by
traditional methodologies. These approaches within a visual tool provide
the most benefit by enabling the reasoning of application QoS requirements
and desired functionality at an intuitive and higher level of abstraction, and
be able to automatically synthesize the low-level middleware specialization

12



aspects so that other Aspect-Oriented Programming (AOP) tools, such as
AspectC++ [48], can subsequently specialize middleware code.

1.1 Our approach

In our research we combined the power of two important paradigms called
Model Driven Engineering (MDE) [40] and Aspect-Oriented Software Devel-
opment (AOSD). In this context we describe our Domain-Specific Modeling
Language (DSML) called Pattern Oriented Software Architecture Model-
ing Language (POSAML) [24], which incorporates the notion of middleware
building blocks that are viewed as being made up of software patterns [16,43]
for building network-centric software systems.

We will discuss the generative capability of this modeling language to
generate middleware specific artifacts and AOP specialization files containing
important constructs of aspects i.e., pointcuts and advice. Using this model-
driven technique to generate these artifacts can result in a highly efficient and
optimized middleware system by removing manual steps in configuring and
specialization of middleware. We also describe the use of AOP to automate
the middleware specialization [22]. In addition to these contributions we will
present a case study of using AOSD techniques to address various crosscut-
ting challenges for an application called Logistical Store (L-Store) [51].

1.2 Thesis Organization

The remainder of this work is organized as follows: In Chapter 2 we describe
the pattern language modeling details of the POSAML language; In Chap-
ter 3 we describe different middleware specialization techniques mentioned
in the literature and point out the reasons why we used AOP to specialize
middleware. It also illustrates how we applied AOP to resolve the gener-
ality challenges of middleware by focusing on a subset of the middleware
used for specialization [22]; In Chapter 4 describes how we specialized mid-
dleware by adding modeling capability to POSAML to automate specializa-
tion of middleware system. In Chapter 5,we describe a case study of how we
used AOSD techniques to address various crosscutting challenges; In Chap-
ter 6 we describe the results and analysis of our experiments comparing the
non-specialized and specialized middleware and also the middleware artifacts

13



generated; In Chapter 7 we discuss related research; Finally in Chapter 8 we
describe the conclusion, lessons learned and future work.

14



Chapter 2

Pattern Oriented Software
Architecture Modeling
Language

In this Chapter we describe challenges in middleware provisioning and how
visual domain-specific modeling languages provide the solutions to address
these challenges. Middleware provisioning is the activity that comprises the
specialization of the middleware platform and its configuration, and vali-
dating that these meet the QoS needs of the application under expected
workloads.

2.1 Challenges in Middleware Provisioning

The motivation for designing visual tools in middleware provisioning stems
from the non-intuitive, non-reusable, and error-prone nature of traditional
approaches. There are many challenges involved in designing a visual tool.
For visual tools to be effective, they must meet a set of criteria described
below and should be able resolve the challenges arising in meeting these
criteria.

15



Figure 2.1: Middleware Structure

16



1. Accounting for variability across a range of mid-
dleware technologies:

Figure 2.1 illustrates the structure of contemporary middleware technologies.
It depicts multiple layers of middleware each of which addresses specific re-
quirements and provides reusable functional capabilities. For example, the
host infrastructure middleware provides a uniform layer of abstraction to
mask the heterogeneity arising from different operating systems, hardware
and networks; the distributed middleware provides location transparency;
common services include directory services, messaging services, and transac-
tion services among others; and domain-specific services include additional
reusable capabilities that are specific to a domain (e.g., avionics or telecom).

In a networked environment, distributed applications are typically hosted
on multiple heterogeneous middleware platforms. For each host in the de-
ployment environment, the middleware stacks on which an application is
hosted may need to be fine-tuned in different ways to meet the different
QoS requirements of applications. To support a wide range of application
QoS needs, contemporary middleware technologies provide several different
reusable capabilities that can be individually configured and composed with
each other. This flexibility offered by individual middleware technologies
gives rise to variability that a systems integrator faces when provisioning
applications on the middleware platforms.

The visual tool used for middleware provisioning must handle this vari-
ability in the context of application QoS needs, and provide an intuitive user
interface to the system integrator to eliminate provisioning errors. Our ap-
proach to resolve these challenges is based on abstracting away the implementation-
specific and technology-specific details of contemporary middleware solutions
and focus on the patterns of reuse [16] that form the building blocks of the
different layers of middleware. Section 2.2 describes how we leverage and
formalize these insights to design and implement the POSAML visual tool
for middleware provisioning.

2. Separation of concerns:

Each phase of middleware provisioning is filled with numerous accidental
complexities. For example, the specialization and configuration phase re-
quires the actors to make the right decisions on the selection of features
and their configuration options. When confronted with multiple different

17



middleware technologies, the actor is required to have detailed understand-
ing of the flexibility and configurability of the middleware stack. Different
middleware technologies use different data models and messaging standards
which require different kinds of optimizations.

The QoS validation phase involves analytical and empirical evaluation of
QoS properties. It requires the systems integrators to construct appropriate
application testing and middleware benchmarking code in accordance to the
configuration decisions. Many different techniques exist for such evaluations
and different middleware stacks will need potentially different methods to
validate QoS. Each of these phases thus incurs substantial accidental com-
plexity as described, which is further compounded by the fact that they are
all driven by the same QoS requirements of the application and decisions at
one phase impact the other. There is a need to disentangle the phases at an
intuitive level of abstraction that addresses the challenges incurred by the
accidental complexities in each phase.

In addition to the previously discussed challenges, their is one more chal-
lenge of providing a capability to model and automatically synthesize the
aspects for middleware so that there is desired functionality at an intuitive
and higher level of abstraction. There is need to do AOSD modeling for
automatic generation of specialization files. It is very difficult to control and
manage features if the specialization files are hand written. This framework
must provide the means to model aspects and its constructs so that special-
ization files can be generated. This challenge and the solution by adding
capability of modeling AOP and synthesis of specialization files to a visual
tool are discussed in detail in Chapter 4.

3. Need for a unified framework:

As noted earlier, middleware provisioning needs to be guided by the appli-
cation QoS needs. This requires that the QoS validation must be performed
based on decisions made in the specialization and configuration phase. Thus,
the QoS validation phase needs to have complete knowledge of the earlier
decisions. The QoS validation phase requires systems developers to develop
appropriate application testing and middleware benchmarking code in accor-
dance to the specialization and configuration decisions.

These requirements add a new dimension of variability and dependability
to the challenges described in Section 2.1. To address these challenges, visual
tools should provide a unified framework that can address the tangled con-

18



cerns between multiple phases that arise in middleware provisioning. Such a
framework must provide the means to capture the specialization and config-
uration decisions, and make them available in the QoS validation phase.

2.2 Designing Visual Tools for Middleware

Provisioning

Model-Driven Environment (MDE) [21,36] has gained prominence in assist-
ing application developers to make the right choices in configuring and com-
posing large systems. Such model-based solutions can help resolve the vari-
ability in middleware provisioning and QoS validation. In this Section we
describe a Domain-Specific Modeling Language (DSML) called POSAML
(Patterns-oriented Software Architecture Modeling Language), which enables
the modeling of middleware stacks, their configurations and aspects by pro-
viding intuitive visual abstractions of middleware building blocks. Moreover,
POSAML provides middleware-specific QoS validation and generation of spe-
cialization files by virtue of plugging in different modeling interpreters.

Variability in Middleware Composition

When deploying complex applications, systems developers must decide the
composition and customization of middleware that hosts the application com-
ponents. Middleware composition includes assembling individual but com-
patible building blocks of middleware. The building blocks of middleware
are most often patterns-based implementations.

A software pattern [16] codifies recurring solutions to a particular problem
occurring in different contexts, which is embodied as a reusable software
building block. There are several benefits of design patterns to the software
community [44]:

• Design patterns offer reusable solutions to common recurring problems.

• Design patterns make communication between designers more efficient
by using common terminology.

• Patterns give a high-level of perspective on the problem and on the
process of design and object orientation.

The systems developer chooses a block based on various factors including
the context in which the application will be deployed, the concurrency and

19



Figure 2.2: Middleware Patterns and Pattern Languages

20



distribution requirements of the application, the end-to-end latency, timeli-
ness requirements for real-time systems, or throughput for other enterprise
systems (e.g., telecommunications call processing). We refer to this incurred
design space variability as middleware compositional variability.

Figure 2.2 illustrates a family of interacting patterns forming a pattern
language [1] for middleware designed to support such applications. In ad-
dition to these patterns there are some software design patterns which are
almost part of every software system. The middleware can be customized
by composing compatible patterns. For example, event de-multiplexing and
dispatching via the Reactor or Proactor pattern can be composed with the
concurrent event handling provided by the Leader-Follower or Active Ob-
ject pattern. However, an Asynchronous Completion Token (ACT) pattern
works only with asynchronous event de-multiplexing provided by the Proac-
tor. Thus, a combination of Reactor and ACT is invalid.

Building Block Configuration Variability

Middleware developers provide numerous configuration options to customize
the behavior of individual building blocks. This flexibility further exacerbates
the already incurred variability in design choices that the systems developer
is required to make. Any ad hoc decision affects the time-to-market and
also can deliver less-than-desired performance. Since the impact is on a per
building block basis – as opposed to a composition described in the previous
challenge – we refer to this as configuration dimension variability.

As a concrete example, the Reactor pattern can be configured in many
different ways depending on the event de-multiplexing capabilities provided
by the underlying OS and the concurrency requirements of an application.
For example, the de-multiplexing capabilities of a Reactor could be based
on the select() or poll() system calls provided by POSIX-compliant or
WaitForMultipleObject() available on Windows operating system. More-
over, the handling of the event in the Reactor’s event handler can be managed
by a single thread of control or handed over to a pool of threads depending
on the concurrency requirements.

Our research contributions to address the challenges illustrated in pre-
vious Sections leverage the fact that standardized middleware are made up
of different layers of software performing numerous activities, such as data
marshaling, event handling, brokering, concurrency handling and connection
management. In an object-oriented design of a middleware framework, these

21



capabilities are realized by building blocks based on proven patterns of soft-
ware design [16].

Thus a visual representation of these patterns enables systems integrators
to view the middleware stacks at a higher level of abstraction that is indepen-
dent of any specific middleware technology. The QoS validation mechanisms
associated with the visual capability subsequently map these abstractions
to specific platforms. The architectural patterns present in contemporary
middleware systems are discussed extensively in the POSA (Pattern Ori-
ented Software Architecture: Patterns for Networked and Concurrent Sys-
tems) book [43].

It enables modeling of the patterns described in the POSA book as well
as some commonly used software design patterns [16]. In addition to pat-
tern modeling, POSAML provides a clean separation of concerns between
the specializations and configurations, generation of specialization files and
QoS validation phases within the same unified framework. Besides pattern
modeling, POSAML also incorporates feature, benchmark and simulation
modeling.

Figure 2.3: Top-level Metamodel of Middleware Structure

The POSAML modeling language has been developed using the Generic
Modeling Environment (GME) [32]. Figure 2.3 shows the meta-model for the

22



top-level view of POSAML. GME is a tool that enables domain experts to
develop visual modeling languages and generative tools associated with those
languages. The modeling languages in GME are represented as metamodels.
A meta-model in GME depicts a class diagram using UML-like constructs
showcasing the elements of the modeling language and how they are associ-
ated with each other. For example, the “model” element defines an element
that can comprise other elements. The “Aspect” element describes a spe-
cific view provided by the modeling environment. By providing such views,
the modeling environment effectively allows visual separation of concerns.
The “Connection” element describes the type of association between other
modeling elements of the language. The GME environment can be used by
application developers to model examples that conform to the syntax and
semantics of the modeling language captured in the metamodels.

The meta-model illustrated in Figure 2.3 consists of the visual syntactic
and semantic elements that describe individual patterns, and specifies how
they can be connected to each other. This Figure also illustrates how the
meta-model separates the concerns of modeling the pattern, its configuration
and their compositions, and system QoS validation.

Figure 2.3 shows the meta-model for the top-most view of pattern model-
ing. This meta-model consists of the individual pattern models, and specifies
how they can be connected to each other. In addition to this, this meta-model
also defines the four aspects:

a. Pattern Aspect: The pattern aspect is where a system modeler
can compose and model the various patterns in the system. Fig-
ure 2.4 shows an example where the designer has modeled the Reactor,
Acceptor-Connector, Active Object and Bridge pattern. In addition to
this high-level view, the user can click on any one of the patterns and
model its internals, as shown in the Figure. Section 2.3 and Section 2.4
describes in depth about pattern modeling of the Acceptor-Connector
and Bridge patterns respectively.
From Figure 2.4, it can be seen that POSAML follows a hierarchical
structure. At the top-most level one can model inter-pattern relation-
ships and constraints. At the lower level, a designer can drill down
“inside” each pattern to model the participants of the pattern and the
intra-pattern relationships between them.

b. Feature Aspect: The system designer can set various features of each
pattern in the feature aspect of POSAML. For example, the designer

23



Figure 2.4: Overview of POSAML

24



can specify the “End-points” feature for the Acceptor-Connector Pat-
tern. The features are written to a configuration files by the Feature
interpreter. This configuration file can be used to change the config-
uration of the middleware system. Section 2.5 discusses the Feature
Aspect of POSAML in more detail.

c. Benchmarking Aspect: The designer can select which benchmarking
parameters to set for the performance analysis of the modeled system.
This aspect is out of scope of this work and is described in detailed
in [24]

d. Simulation Aspect: The designer can model different simulation pa-
rameters needed to evaluate trade-offs between configurations. This
aspect is out of scope of this work.

The rest of the Section describes the pattern aspect, which allows a sys-
tems engineer to model a middleware building block comprising the indi-
vidual patterns. We focus on a subset of the POSA and simple software
design patterns describing the visual modeling elements provided in pattern
modeling.

In Section 2.3 and Section 2.4 we illustrate the use of POSAML to
model Acceptor-Connector and Bridge patterns and Section 2.5 describes
how POSAML provides the provisioning and QoS capabilities by modeling
features

2.3 Acceptor-Connector Pattern

The Acceptor-Connector pattern pair decouples connection establishment
and service initialization in a distributed system from subsequent processing
performed by the two end points of a service once they are connected and
initialized [38]. This decoupling is achieved by acceptors, connectors, and
service handlers. Connection-oriented protocols provide reliable delivery of
data between two or more end points of communication [43]. Establishing
connection between end points involves two roles:

• Passive role: This type of role initializes end points of communication
at a particular address and waits passively for other end points to
connect with it.

• Active role: This type of role actively initiates a connection to one or
more end points that are playing the passive role.

25



It is important to know the communication role in terms of server and
client. Most often the client plays an active role in connecting with a passive
server. Thus, in the Acceptor-Connector pattern, the acceptor provides the
passive role and the connector plays an active role.

Figure 2.5: UML diagram of Acceptor-Connector Pattern

Figure 2.3 shows the UML structure of the acceptor and connector pat-
tern. Based on this structure we designed the Acceptor-Connector meta-
model.

2.3.1 Metamodel of Acceptor-Connector Pattern

In order to understand the detailed relationship between various partici-
pants of Acceptor-Connector pattern, we will discuss different phases that
are in this pattern. This pattern is actually composed of two patterns called
Acceptor and Connector. The Connector pattern contains options to have
synchronous or asynchronous type of connection but in POSAML we are
supporting only synchronous mode of connection.

Now we will discuss the collaboration between server and client among
different participants of Acceptor and Connector patterns at a very low-level
of abstraction. Both the Acceptor and Connector pattern meta-model is part

26



of a single paradigm sheet called Acceptor-Connector. In order to understand
the Acceptor-Connector meta-model and model properly we have simplified
it by dividing the meta-model into two parts. These two parts are shown in
Figure 2.9 and 2.7 and are based on the UML diagram of Acceptor-Connector
shown in Figure 2.3.

In Figure 2.7 we can see that the root element of this meta-model is
Acceptor-Connector proxy model and it is a proxy of Acceptor-Connector
model, which is a part of our basic paradigm meta model called middleware
shown in Figure 2.3. Acceptor-Connector model proxy is in equivalence re-
lation with local Acceptor-Connector model. Dispatcher atom and Reactor
atom proxy are equivalent and these are basically proxies of Reactor atom
of Reactor pattern [24]. The Dispatcher atom acts as event handler for both
abstract Acceptor atom and Connector atom.

Next we will discuss meta-model of Connector and Acceptor separately:

Collaboration of Connector:

Figure 2.6: Connector Pattern Dynamics

The behavior and flow of connector can be seen in Figure 2.6. The col-
laboration between the participants in the synchronous Connector scenario
can be divided into following stages:

27



Figure 2.7: Metamodel of Connector Pattern

28



a. Connection & Service initialization phase: In Figure 2.7 a client
creates a Dispatcher atom that handles the events associated with
that client. Then it creates one concrete Connector atom derived
from Abstract\_Connector atom. It also activates concrete Service\
_Handler atom that is derived from Abstract\_Service\_Handler

atom. This will be in charge of requesting the server peer service
handler for each type of service needed using Activate\_Connector

connection. For this, then the Connector atom generates an event and
sends it on the Transport\_Handle\_Connector atom of the server
Acceptor of Figure 2.9 in charge of the desired service. In return,
the Connector atom gets a connection using End\_Point atom that
corresponds to the Transport\_Handle\_Connector atom of the peer
Service\_Handler atom. This End Points atom is again equivalent to
End\_Points atom proxy from the feature meta-model 2.5. This atom
has three attributes like host name, listening port, and the protocol. It
can then register itself to the Dispatcher atom.

b. Service processing phase: When the Dispatcher atom detects an
event on the Transport\_Handle\_Connector atom of the client Service\
_Handler atom, it notifies the handle event method of this Service\

_Handler atom using Notify\_Connector connection. When the Dis-
patcher atom detects a ready event on the client Service\_Handler

atom, it calls its handle event method. The Service\_Handler atom
then obtains the results from the server. If a client Service\_Handler
atom wants to close the service, it generates a close event on its server
Service\_Handler atom Handle. It is then removed from the list of
Dispatcher atom by calling the remove handler method.

Collaboration of Acceptor:

The behavior and flow of acceptor can be seen in Figure 2.8. Acceptor com-
ponent provides a means for passive connection establishment. The collab-
oration between Acceptor and service handler participants are divided into
three phases:

a. Initialization phase: In Figure 2.9 we can see the meta-model of
the acceptor part. The Acceptor atom is derived from Abstract\

_Acceptor atom. It acts as a server and initializes a connection pas-
sively. When an application calls the open method on Acceptor atom.

29



Figure 2.8: Acceptor Pattern Dynamics

This method creates a passive mode Transport\_Handler\_Acceptor

atom which encapsulates End\_Points atom. It binds to end points
i.e., IP address, TCP Port and Protocol and then like a server it listens
to connection requests from peer Connectors. These End\_Points are
used by Transport\_Handlers using End\_Point\_Connection con-
nection proxy obtained from feature view of POSAML.
Transport\_Handler\_Acceptor is owned by Acceptor by using Owns\
_Acceptor connection. After this the open method registers the Accep-
tor atom object itself to the Dispatcher atom. The Dispatcher atom
is equivalent to the Reactor proxy atom. This Reactor proxy atom
and AbstractEvenHandler proxy atom are defined in Reactor pattern
in [24] as Reactor atom and AbstractEventHandler atom. After this
the Dispatcher atom can notify using Notify\_Acceptor connection
to Acceptor atom whenever a connection event is coming from a client
on the Transport\_Handle\_Acceptor atom.

b. Service handler initialization phase: The Dispatcher atom detects
some event on the Transport\_Handle\_Acceptor atom of some Ac-
ceptor. It then calls the handle event method of this Acceptor atom
for it to handle this particular event. Acceptor atom uses passive mode
transport endpoint to create a new Transport\_Handle atom using

30



Figure 2.9: Metamodel of Acceptor Pattern

31



Create\_Connection connection. It next activates a new Service\

_Handler atom using Activate\_Acceptor connection that will be in
charge of processing the requests of the client. This Service\_Handler
stores these new Transport\_Handles atom information and registers
itself to the Dispatcher atom.

c. Service processing phase: This stage is about the service usage and
closure. After the above two stages, the Dispatcher atom will directly
initiate server client communication using Service\_Handler atom. In
this stage, exchange of data between peers can happen directly using
already connected Transport\_Handles (using transport endpoints).
After the whole process is complete, Service\_Handler atom will call
the remove handler method of the Dispatcher atom to make it stop
listening on its Transport\_Handle for the events he had registered
before.

2.3.2 Modeling of Acceptor-Connector Pattern

Figure 2.10: Model of Acceptor-Connector Pattern

A system engineer can model the Acceptor-Connector pattern in POSAML
for the sample application as shown in Figure 2.10. Various constraints min-
imize the risk of choosing a wrong combination of elements in the pattern.

32



Only the correct combinations of connections and features are allowed for a
particular pattern. For example, only the “End Point” feature can be added
to the Acceptor-Connector pattern. The middleware provisioner models the
following participants of the Acceptor-Connector pattern:

a. Acceptor: The Acceptor is a factory that implements a passive strat-
egy to establish a connection and initialize the associated Service Han-
dler. It creates a passive mode end point transport handle that has
necessary end points needed by the Service Handlers.

b. Connector: A Connector is a factory that implements the active strat-
egy to establish a connection and initialize the associated Service Han-
dler. It initiates the connection with a remote Acceptor and has syn-
chronous mode (using the Reactor pattern) and asynchronous mode
(using the Proactor pattern) connections.

c. Dispatcher: The Dispatcher manages registered Event Handlers. In
case of the Acceptor, the Dispatcher de-multiplexes connection indica-
tion events received on transport handles. Multiple Acceptors can be
registered within the Dispatcher. For Connector, the Dispatcher de-
multiplexes completion events that arrive in response to connections.

d. Service Handler: A Service Handler is an abstract class that is inher-
ited from Event Handler. It implements an application service playing
the client role, server role or both roles. It provides a hook method
that is called by an Acceptor or Connector to activate the application
service when the connection is established.

e. Transport End points: These represent a factory that listens for
connection requests to arrive, accepts those connection requests, and
creates transport handles that encapsulate the newly connected trans-
port end points. By using these end points data can be exchanged by
reading or writing to their associated transport handles. A transport
handle encapsulates a transport end point.

2.4 Bridge Pattern

The intent of Bridge pattern shown in Figure 2.11 is to decouple an abstrac-
tion from its implementation so that the two can vary independently [16].

This pattern is the most commonly used structural design pattern. In
terms of the basic intent of the Bridge Pattern, abstraction refers to how dif-

33



Figure 2.11: GoF UML diagram of Bridge Pattern

ferent things relate to each other, and the implementator is the object that
the abstract class and its derivation use to implant themselves with [44]. The
purpose of this pattern is to the information hiding principle “The designer
of every module must select a subset of the module’s properties as the offi-
cial information about the module, to be made available to authors of client
modules” [35].

2.4.1 Metamodel of Bridge Pattern

By tailoring bridge pattern 2.11, we designed its meta-model as in Fig-
ure 2.12.

Various participants in the bridge meta-model are:

• Abstraction: It defines the abstract interface that is used by the client
for interaction with the abstraction. It is also used to maintain imple-
mentor reference. The collaboration between the objects and patterns
is such that the client requests are forwarded by the Abstraction to the
implementor through this reference [16].

34



Figure 2.12: Metamodel of Bridge Pattern

35



• Implementor: It defines the interface for any or all implementation of
the Abstraction. There is no requirement that the Abstraction interface
and the Implementor interface have a one-to-one correspondence. This
is one of the main reasons for the additional flexibility gained from this
pattern. Typically the Implementor interface provides only primitive
operations, and Abstraction defines higher-level operations based on
these primitives [16].

• Refined Abstraction: It extends the interface defined for Abstraction
class.

• ConcreteImplementor: It implements the interface defined by the Im-
plementor class. In other words, it defines a concrete implementation
of the Abstraction.

2.4.2 Modeling of Bridge Pattern

The system modeler can model the Bridge pattern in POSAML. The two
main essential elements that can be modeled are Abstraction, which is re-
sponsible for initiating any operation, and Implementation, which is an object
responsible to carry out an operation.

Figure 2.13: Model of Bridge Pattern

36



Figure 2.13 shows a sample application of modeling Bridge pattern. In
this model we can see that the abstract base class ACE_Reactor_Impl and
concrete implementation of subclasses like ACE_Select_Reactor, ACE_WFMO_
Reactor and ACE_TP_Reactor. In Chapter 4 we describe how to model spe-
cialization aspects for this particular example and how automatic generation
of the specialization file is possible using modeling interpreters [32].

2.5 Feature View in POSAML

A Feature model [11] is defined as an abstraction of a family of systems in a
particular domain capturing commonalities and variabilities among the mem-
bers of the family. In POSAML, a feature modeling aspect provides domain-
specific artifacts to model a system, in contrast to using low-level platform-
specific artifacts. The feature modeling capabilities in POSAML provide
structural representations of different possible middleware pattern properties.
In our case, the feature modeling comprises several para-functional require-
ments such as the choice of network transport, listening end points, concur-
rency requirements, and periodicity of requests, all represented as higher-level
artifacts.

This level of modeling enables system provisioners to select various strate-
gies, resource settings, and factories within the middleware that can be pa-
rameterized according to user needs by driving the selection process using
the visual feature modeling framework. For example, the designer can spec-
ify the “End points” feature for the Acceptor-Connector Pattern to describe
the ports and communication mechanisms used by the client and server to
communicate with each other.

The middleware configuration is accomplished through POSAML’s fea-
ture modeling [5,11] capability, which assists a systems engineer in configur-
ing a variety of different middleware features (e.g., choosing the pattern and
its configuration parameters). The traditional middleware architectures suf-
fer from insufficient model level reusability. This model aspect of POSAML
brings a way to set behavioral of middleware.

Developing a feature model out of a meta-model involves defining valid
entity and relationships in the schema. All these features are pattern specific.
For example Concurrency, Thread Queue, and Reactor Type are Reactor
specific, Active Object map size is Active Object pattern specific and End
points are Acceptor and Connector pattern specific.

37



2.5.1 Metamodel of Feature View

This part of the Section discusses about the GME meta model of feature
aspect of POSAML shown in Figure 2.14. Some of the features designed in
the meta model are as following:

Figure 2.14: POSAML Metamodel: Feature View

a. Concurrency: This feature is important for different middleware to
manage concurrency and allow long running operations to execute si-
multaneously without impeding the progress of other operations. It
specifies the concurrency strategy an ORB uses. Concurrency has
Concurrency\_Option as attribute and this attribute has two strate-
gies as menu items. Server concurrency strategies found in contempo-
rary middleware solutions, such as the TAO CORBA middleware [42],
support different types of concurrency strategies
(1) Reactive : This is a default concurrency type. It registers the con-
nections transport end points with Reactor. When events occur, it
starts dispatching these events to the reactive connections in order. In
this mechanism, an ORB handles each request reactively i.e., the ORB

38



runs in one thread and service multiple requests/connections simulta-
neously using the ACE_Reactor, which uses select or a similar event
demultiplexing mechanism supported by the platform. Its connections
are single-threaded and that is it is scalable but is not a very good
concurrency mechanism.
(2) Thread Per Connection : The ORB handles new connections by
spawning a new thread whose job is to service requests coming from
the connection.

b. Reactor Type: This feature is used to specify the kind of reactor used
by the system. For example, depending on the concurrency strategy
chosen, the reactor could be single-threaded or multi-threaded.
It is an advanced resource factory option and if this type of factory
is loaded, any default directives of original resource factory will have
no effect. Different strategies can be plugged within the reactor for
event demultiplexing. This depends on whether the reactor is used
to demultiplex network events or GUI events. Reactor\_Type has
Reactor\_Type\_Option as attribute and this attribute has five strate-
gies as different reactor types:
(1) Thread pool (tp) : It uses the ACE_TP_Reactor, a select based
thread pool reactor which is the default.
(2) Multi threaded (select mt) : It uses the multi-thread select based
reactor.
(3) Single threaded (select st) : It uses single-thread select based reac-
tor.
(4) Wait for multiple objects (wfmo) : It uses WFMO reactor and can
be used only for windows.
(5) Message Wait for multiple objects (msg wfmo) : It uses Msg WFMO
reactor. It is used only for Windows.

c. Thread Queue: In the case of concurrent request handling by a re-
actor, different strategies can be selected for handling queued events
(e.g., FIFO or LIFO). Thread Queue has an attribute called Thread\

_Queue\_Options. This attribute has two options i.e., first-in-first-out
(FIFO) and last-in-first-out (LIFO). This feature applies only to the
ACE_TP_Reactor, i.e., when the reactor type is thread pool. This spec-
ifies the order, LIFO, the default, or FIFO, in which waiting threads
are selected to run by the ACE_Select_Reactor_Token. Thread Queue
is also a part of an advance resource factory.

39



d. End points: This feature applies to the acceptor-connector patterns,
which instructs the system of the listening end points for the server role.
The range of available end points in POSAML include listening ports
(e.g., TCP port number), host IP addresses or canonical names, and
the protocol used (e.g., TCP, UDP, Shared Memory or other custom
transports).

2.5.2 Modeling of Feature View

Figure 2.15: POSAML Model: Feature View

A middleware developer uses the feature aspect of POSAML as a visual
tool to select different pattern-specific features of middleware. In Figure 2.15
we can see the how modeler can model various features in this modeling
language. A modeler can model zero or more features using this tool. Once
the feature modeling part is completed, then the next step is to transform
pattern-specific features into a configuration file using model interpreters. If
features are not selected from the model, default values of these features will
be picked.

In order to minimize the risk of choosing wrong connections and options,
various constraints. Some of these constraints are checked using OCL con-
straint language i.e., checking for non-null references or proxies and some of
them are checked at the time of execution of interpreters, i.e., when we inter-
preter a model that time we check if a feature is connected to correct pattern

40



or not. The selected features set with different options are exported into files
using configuration interpreter and are used to configure middleware system
. We will discuss the configuration model interpreter in Section 6.1.

41



42



Chapter 3

Middleware Specialization

3.1 Various Specialization Techniques

Chapter 1 motivated the need for specializing middleware to suit the require-
ments of different variants of product lines. Middleware specialization can
be achieved by traditional software design and implementation techniques
including code refactoring, “ahead of time” design or even using component
frameworks [18]. But all these techniques illustrate several drawbacks in-
cluding large memory requirements stemming from the use of component
frameworks, error prone configurations which is usually attempted manually
and large performance overheads. Owing to all these drawbacks of above
specializations, they are not best suited for the product variants of product
lines which may have a specific set of performance requirements.

There are various specialization techniques described in the literature,
which can be leveraged to specialize middleware. For example, Feature-
Oriented Programming (FOP) [5, 7] is an appropriate technique to design
and implement program families, and which uses incremental and stepwise
refinement approaches [7, 49]. FOP aims to cope with the increasing com-
plexity and increasing lack of reusability and customizability of contempo-
rary software systems. Aspect-Oriented Programming (AOP) [26] is another
related programming paradigm and has similar goals: It focuses primarily
on separating and encapsulating crosscutting concerns to increase maintain-
ability, understandability, and customizability. However, it does not focus
explicitly on incremental designs or program families.

Aspect-Oriented Programming can change an existing functionality with-

43



out refactoring of code, addresses concerns with minimum coupling, makes
it reusable and implements no hierarchy refinements. These features of AOP
can lead to error free and efficient code. It can prevent code clutter, tangling
and scattering and makes it easy to add new functionality by creating new
aspects. New features or behavior can be added at any stage of develop-
ment thus relieving the developer of committing to under/over design. So
an unknown functionality which cannot be predicted ahead of time is not
a problem. These characteristics of AOP can be leveraged to create an im-
plementation that is easier to design, understand, and maintain resulting in
higher productivity, improved quality, and better ability to implement newer
features. We therefore leverage these capabilities of AOP as a middleware
specialization technique for product lines.

AOP FOP
1 Lack of Stepwise Refinement Stepwise Refinement
2 Homogeneous concerns Heterogeneous concerns
3 Non Hierarchy-Conform refinement Hierarchy-Conform refinement
4 Cross cutting modularity Lack crosscutting modularity
5 Excessive method extension Higher level of abstraction
6 Power of quantification Same as OO framework
7 Hard to Implement Simple to Implement
8 Used in Industry Concept in academics
9 Java, C, C++, Perl Only Java

Table 3.1: Difference between AOP and FOP

Table 3.1 lists various differences between Aspect-Oriented and Feature-
Oriented Programming techniques.

3.2 Overview of Aspect-Oriented Program-

ming

Without causing any intrusive changes to the entire code base, AOP tech-
nology helps modularize the implementation, and helps reduce dependencies
between modules [48]. The currently most used tools are AspectJ [3], As-
pectC++ [49], AspectWorkz, JBoss AOP and Spring AOP. Almost for every

44



programming language there is an aspect-oriented programming tool. AOP
principles supported by such tools address the challenges of crosscutting con-
cerns which pure OO methods do not. According to [25] all these tools are
built on similar principles, which are Advice, Aspect, Joinpoint and Pointcut.
Using pointcuts and advice, an aspect weaver brings aspects and components
together. An advice defines the code that is defined on these joinpoints.

1. Advice: This is the code that is applied to, or that crosscuts the ex-
isting code. There are three choices when advice is executed (a) before
- advice code is executed before the original code. It can be used to
read/modify parameter values, (b) after - advice code is executed after
a particular control flow or original code is executed. It can be used
read/modify return values. and (c) around - advice body is executed
instead of control flow.

2. Join point: It denotes a position to give advice in an aspect. Different
points in the code where aspects can be woven e.g., class, methods,
structures etc.

3. Pointcut: This is the term given to the point of execution in the
application at which crosscutting concern needs to be applied. In our
example, a pointcut is reached when the thread enters a method, and
another pointcut is reached when the thread exits the method. Some
of the Join points described by pointcut expressions are execution (),
call (), cflow (), throws () etc.

4. Aspect: The combination of the pointcut and the advice is termed an
aspect.

When we are using Aspect-Oriented Programming, we can write aspect
code in aspect files and in most of the cases we do not have to modify
primary concern or main business logic classes. This makes the code flexible,
extensible and less error prone. AOP is the best way to specialize ACE
middleware because AOP does not change the original code base. Instead,
different specializations can be captured as aspects in different files and these
can then transform the original code base into specialized form.

45



3.3 Aspect-Oriented vs. Object-Oriented Pr-

ogramming

Figure 3.1: Comparing Object-Oriented and Aspect-Oriented Model

Aspect-Oriented refactoring [10] offers more expressive power than can
be achieved by object orientation alone. Our experience conducting this
research revealed that aspect-oriented refactoring was often simpler. For ex-
ample, consider Figure 3.1, which shows how in pure OOP the classes and
the requirements relationship form a mesh. This implies that a requirement
is dependent on multiple classes and if there is any change in one requirement
it will lead to change in all the classes leading to unnecessary maintenance
complexity. Thus, in pure OOP in order to change any code using object-
oriented process only introduces significant complexity in already existing
source code. Using AOP by capturing aspects in separate files, however,
ensures that the actual source code is hardly touched. In AOP every re-
quirement can be modeled as an aspect. Hence, maintaining and changing
of requirements is easier and maintainable.

Figure 3.2 illustrates the different aspect-oriented development phases
that can be applied to already existing software systems. The first phase
identifies a list of various secondary concerns such as transaction control,
security, and logging as described in Chapter 5. These secondary concerns

46



Figure 3.2: Phases of AOSD for an existing project

can be different specialization which are discussed in the next Section. In
the next phase, these secondary concerns are implemented separately using
aspect-oriented techniques. Finally, an aspect weaver weaves these aspects
with the object-oriented classes of the already existing project.

In order to achieve the vision of specialized middleware, which comprises
removing generalization, achieving high degree of configuration and optimiza-
tion of required features, and validation according to product line-specific
needs we need tool-driven mechanisms that will automate the process. This
specialization technique will be helpful only if features are selectable based
solely on the various middleware strategies or specifications that will fulfill
user requirements.

3.4 Approach to Specialize Middleware via

AOP

In this Section we explore the use of Aspect-Oriented Programming (AOP)
incorporated by the AspectC++ [49] tool to automate the middleware spe-
cializations. For this work we chose the ACE C++ middleware [39] as the
platform to demonstrate our ideas.

Because the size of the aspect code is less and this code is totally isolated
from actual source code, their management is relatively easy, less error prone

47



and easy to plug and play. All this was possible without making any change
to the actual code base. Source code transformation, i.e., weaving is done
based on aspects at compile time using the AspectC++ compiler (ag++ of
version 1.0pre2). This compiler supports a superset of the C++ language.
This language contains constructs to identify join points in the component
code and to specify advice in the form of code fragments that should be
executed or will execute at these join points.

The output of the AspectC++ compiler is plain C++ code, which can be
translated with standard C++ compilers to executable code. The compile
time for building ACE with AspectC++ woven code is slightly more than the
non-aspectized code, however, as shown later this overhead has no impact on
the runtime performance. Also, while building the full functional middleware
with selected specializations, the resulting executable passed all the build
verification tests in ACE indicating validity of aspectized code.

Middleware is often developed as a set of frameworks that can support
and is portable for all the platforms and supports large number of function-
alities. This overly excessive generality of functionalities can be configured
using different options, such as different concurrency models (Thread-per-
connection, Thread pool, or Thread-per-request).

3.5 Reactor Specialization using AOP

In this Section, we describe our work that illustrates the use of AspectC++
for the specialization of ACE middleware, in particular we are targeting a
class of product lines that are network centric and must deal with event-
driven style of programming. An OO based event-driven interface in ACE
is the Reactor. In particular, for specialization we focused on the Reactor
pattern within ACE. To add or modify different features in Reactor imple-
mentations, different aspects were defined. These aspects were defined in
different files and for different combinations of these aspect files made it
possible to achieve different middleware specializations.

The Reactor framework in ACE implements the Reactor pattern, which
decouples the demultiplexing and dispatching of events from the handling
of the events. It was developed to support different types of alternative
concurrency models as show in Figure 3.3. ACE middleware framework sup-
ports several implementations of Reactor pattern. (1)ACE_Select_Reactor–
single-thread event demultiplexer , (2)ACE_TP_Reactor– multi-threaded event

48



Figure 3.3: Reactor Specialization using AOP

demultiplexer and (3)ACE_WFMO_Reactor– windows event demultiplexer. The
OOP design philosophy in ACE enables support for all these alternate mech-
anisms transparently, which is achieved by an elegant class hierarchy of base
and subclasses, and template parameterization.

As proof of concept we will focus on two types of concurrency models i.e.,
single threaded and thread-pool reactor. For example, for all types of con-
currency models of reactor implementations, ACE uses the ACE_Reactor_

Impl as the abstract base class which delegates the actual work to its sub-
classes, e.g., ACE_Select_Reactor (for single threaded reactor implementa-
tion) or ACE_TP_Reactor (for thread pool reactor implementation) via virtual
method calls and Bridge pattern.

The choice of the reactor implementation is chosen via ACE-specific con-
figuration mechanisms. It is assumed that once a particular type of reactor
is selected, it never changes during the lifetime of a system.

A product variant may need only one implementation at run-time. Based
on this choice of the reactor implementation, we use AspectC++ advice
whose goal is to eliminate the virtual method call between the abstract base
class and the implementation of the reactor chosen. Thus, the advice ef-
fectively replaces the abstract base class ACE_Reactor_Impl method call by
child class ACE_Select_Reactor or ACE_TP_Reactor method directly. This
way the application specific reactor implementation method is called directly.
This specialization removes the generality penalty by removing the extra in-

49



direction caused by virtualness.
In the following code snippet we illustrate some of the specializations we

implemented using method transformations in the Select and Thread Pool
Reactor classes.

/**

* Aspect for Single Threaded specialization

*/

aspect Single_Thread_Aspect

{

/**

* It redirects purge_pending_notifications

* method of ACE_Reactor_Impl to same method

* of ACE_Select_Reactor subclass.

*/

advice call ("% ACE_Reactor_Impl

::purge_pending_notifications(...)"):around ()

{

((ACE_Select_Reactor_Impl *) tjp->target ())->

ACE_Select_Reactor_Impl

::purge_pending_notifications

(*tjp->arg < 0 >(),*tjp->arg < 1 >());

}

}

Figure 3.4: Specialization file for Single threaded reactor

In the code snippet shown in Figure 3.4, it shows the single thread imple-
mentation of ACE reactor. Here we are redirecting method purge_pending_

notification of abstract class to the same method name of concrete imple-
mentation directly. It should be noted that this method is called almost 16
times in a single server/client scenario.

Similar transformations are achieved in the code snippet shown in Fig-
ure 3.5. It shows that the threadpool implementation for ACE reactor for
other method. The removal of the indirection provides performance gains
that are amortized over a large number of requests. This is expected in event
driven services that have to deal with a large number of client requests.

50



/**

* Aspect for Thread Pool specialization

*/

aspect TP_Thread_Aspect

{

/**

* It redirects handle_events method of

* ACE_Reactor_Impl to same method of

* ACE_Select_Reactor subclass.

*/

advice call ("% ACE_Reactor_Impl

::handle_events(int)"):around ()

{

((ACE_TP_Reactor *) tjp->target ())->

ACE_TP_Reactor

::handle_events (*tjp->arg < 0 >());

}

}

Figure 3.5: Specialization file for Thread Pool reactor

51



52



Chapter 4

Automating Generation of
Specialization Aspects

Visual modeling and Aspect-Oriented Programming Software Development
are two different software engineering paradigms which have been developed
independently. In this Chapter we argue for their integration to address the
challenges of middleware specialization. We added a capability in POSAML
to model aspects and used the modeling interpreter to automate generation
of specialization file for middleware. Automating the generation of using
modeling is an important feature because the solution and the description of
a feature will be localized and hence will be easy to control and manage.

This capability of POSAML to specify or model different AOP constructs
like aspects, pointcuts, and advice is used to generate specialization files.
These specialization files, in turn are used to optimize middleware system.
Modeling of AOP design is similar as that of normal OO design and the
only difference is the way the variables are constrained. For every secondary
concern an aspect can be modeled and specialization files can be generated.

4.1 Metamodel of Aspect for POSAML

Figure 4.1 shows the metamodel of the Aspects for POSAML. In this meta-
model AspectFeature model is the specialization aspect feature we want to
model. For every feature or specialization we can have an AspectFeature.
It has an attribute for specifying the type of aspect. There are some fixed
types of aspects, like Logging, VerifyAccess and RemoveVirtualness. While

53



Figure 4.1: Metamodel of Aspect for POSAML

54



modeling aspects in our modeling tool we can select one of these types of
aspects or generate our own aspect feature. These types of aspects would
provide more flexibility for our future work. Every AspectFeature has an
Advice atom and a Pointcut model. A Pointcut model can be connected
to an Advice atom. An advice can have only one pointcut and an aspect
can have multiple advice. Multiple joinpoints can be linked together using
different logical operators to form a pointcut. The detailed description of
modeling a pointcut is discussed in Section 4.2.

4.2 Modeling of Aspect for POSAML

Figure 4.2: Modeling of Aspect in POSAML

Figure 4.2 shows an example of how we can model the bridge pattern
with the different specialization or aspect features. In this example we
have modeled abstract base class ACE_Reactor_Impl with its concrete im-
plementation of subclasses like ACE_Select_Reactor, ACE_WFMO_Reactor

and ACE_TP_Reactor. It also shows two modeled specialization aspects:
these aspects are named as Single_Thread_Aspect and TP_Thread_Aspect.

55



Single_Thread_Aspect specialization is for single threaded implementation
of Reactor and TP_Thread_Aspect specialization is for threadpool implemen-
tation of Reactor as discussed in Section 3.5.

Modeling of constructs

Figure 4.3: Modeling of Aspect constructs in POSAML

Delving deeper into the model reveals that the modeled aspect contains
different constructs. Some of these constructs are advice and pointcut. In
order to model aspects, we have to model these constructs also. These con-
structs vary according to the functionality of the feature. An aspect can
have more than one advice and each advice has a pointcut connected to it
as shown in Figure 4.2. Advice has only one attribute to define advice code
and this attribute is variable for all other features. There is a constraint
that a particular advice can have only one pointcut at a time. In case we
want to have more than one pointcut for an advice, we can design that while
modeling pointcut.

Metamodel and Model of Pointcut

Figure 4.4 shows the meta-model of pointcut. The pointcuts can be designed
by having different set of joinpoints having different logical operator relation-
ships (AND, OR) between them. This modeling tool provides the capability
to design very complex pointcuts. In Figure 4.5, we have given a sample
model of pointcut. In this example there are eight separate joinpoints (a, b,
c, d, e, f, g, h) with different joinpoint equations. For ever joinpoint we can

56



Figure 4.4: Metamodel of Aspect construct Pointcut

57



set two attributes (1) Type of joinpoint i.e., call, execute (2) Equation of the
joinpoint.

Figure 4.5: Example of Pointcut Model

There are four sets in the model. Two of the sets are for the joinpoint
i.e., JoinPointSetAND and JoinPointSetOR and two are for pointcut sets
i.e., PointcutSetAND and PointcutSetOR. These are there to manage the
logical operation relationship between different joinpoint and pointcut sets.

The joinpoint equations combine according to needed logical operator
relationship between them by linking these individual joinpoints to Join-
PointSetAND or JoinPointSetOR sets. These sets have logical operation
between themselves, giving us main joinpoints. These main joinpoints ac-
cording to logical operation between them are linked to PointcutSetAND or
PointcutSetOR. These sets again have logical operation between them and
supplies the main pointcut expression.

The relationship between different joinpoints and sets and pointcuts are
resolved by an associated modeling interpreter. It parses through the model
and gets the relationship with the different joinpoints and pointcuts to form
a final pointcut. The automatic generation of aspect or specialization files

58



is done by these modeling interpreters. It parses through the model and
gathers all the information to build an aspect file. It internally forms a final
pointcut, gets information about the advice and aspect code etc and then
generates aspect files.

The generated files have AspectC++ code as shown in Figure 3.4 and
Figure 3.5. These files are saved by the AspectFeature model name in the
directory pointed. As illustrated in Chapter 3 we proved how we could use
these specialization files to optimize a middleware system. By combining
both approaches of modeling and AOP we can get better control on the
design of an application to be changed. To integrate POSAML and the new
capability of modeling AOP we needed a technique to model aspect-oriented
constructs in our modeling tool. Using AOP compilers these specializations
or aspects are woven into the target application code at the joinpoints.

59



60



Chapter 5

Case Study

This Chapter presents a case study illustrating how using AOSD [23] is useful
to resolve the tangled concerns for a distributed storage management system
for a High performance computing (HPC) application called L-Store [51].
Such applications require huge data storage in the order of tera to peta bytes
over a span ranging from a few seconds to weeks or even years for their correct
operation. This huge data is stored at geographically distributed sites. It
leverages use of enabling technologies such as Logistical Networking (LN) [8]
and the Internet Backplane Protocol (IBP) [4]. LN provides new capabilities
to schedule data movement and storage on a global scale while IBP provides
a middleware for managing remote storage and data objects of varying sizes.
They mask the distribution of the storage and instead provide a single file
system abstraction to applications.

To elucidate these design challenges better, we first outline our L-Store
metadata management system architecture. We then illustrate how different
crosscutting concerns make the design of such systems complex.

5.1 Logistical Storage

Logistical storage (L-Store) is a Java based distributed file system providing
a virtualization of a single file system to the applications that use it. It is
used for storing arbitrary sized data objects. L-Store was created primarily
to assist campus researchers who have accumulated large datasets like High
Energy Physics (HEP) pile up sample and image process, remote data min-
ing applications, for areas such as weather simulation. It stores metadata

61



information of stored files in a database server for relatively smaller sized
metadata but has the ability to leverage the Chord Distributed Hash Table
(DHT) architecture for scalability.

L-Store has the ability to transfer huge amounts of data for storing and
access between remote labs and between different data centers. It provides
real-time data transfer across geographically isolated data stores. L-Store
is a conceptually designed complete virtual file system. It uses the Inter-
net Backplane Protocol (IBP) as the underlying abstraction of distributed
storage, distributed hash tables (DHT) as a scalable mechanism for manag-
ing distributed metadata and software agent technology for implementing a
distributed architecture.

In Internet Backplane Protocol (IBP) [4] Exnodes are the pointers to
allocations. IBP is a service that allows users to store data in the network.
IBP allows allocations up to 4 GB in size. When system developer requests
an allocation, a depot (which is an IBP server) returns a capability (or key).
It is safer to use these capabilities than ftp or http for file distribution since
the allocation key provides a secure access to the files. Unlike ftp and http,
the key does not reveal details about the underlying file system. The IBP
protocol transfers data between IBP depots by treating the entire data as
a big chunk and transferring individual smaller slices. IBP provides fault
tolerance and recovery features in a transparent fashion. This protocol is
used by L-Store for the storage of files distributed across different storage
sites.

In order to manage distributed data and to provide a single file sys-
tem abstraction, L-Store is required to maintain metadata information for
the distributed data. With increasing number of files that store these large
distributed data sets, the corresponding amount of metadata also increases.
With an explosion in the size of the metadata itself, the problem of metadata
management must be resolved for applications like L-Store.

When the amount of metadata is relatively small, L-Store manages it on
a single metadata server and was using Postgresql database server to store
metadata. This kind of metadata management cannot scale to large sized
systems. In order to make data more scalable we are leverage the Chord
distributed hash table architecture [50]. During our research we worked on
the two versions of L-Store, one was database based metadata server and
other was using DHT architecture.

After understanding the design and implementation of these two versions
of L-Store it revealed scope for some secondary design concerns for L-Store,

62



such as transaction management, logging, and exception handling which was
tangled across the code. Some new concerns like connection pooling and
security that needed to be added were found to be crosscutting with respect
to the primary design concern of L-Store. The primary sources of these
crosscutting concerns stemmed from the need to assure transactional and
persistence control, connection pooling, authentication and authorization,
and exception handling and logging, which are deemed orthogonal to the
primary goals of L-Store.

To improve the maintainability, extensibility, and portability of code, we
resolved these sources of code tangling using aspect-oriented programming.
To remove the crosscutting nature of these concerns better, we first outline
our L-Store metadata management system architecture. We then illustrate
how different crosscutting concerns make the design of such systems complex.

Our experience with the design and implementation of the L-Store meta-
data storage management system revealed a number of sources of crosscut-
ting concerns that affect the maintainability, flexibility, extensibility and in
some cases even performance. Below we describe the crosscutting concerns
and how they manifest themselves in the L-Store architecture and then we
describe how we resolved these design challenges.

5.2 Challenges: Crosscutting Concerns in Lo-

gistical Storage

Maintaining persistence in transactions

Maintaining correct transaction control and persistence is vital for database
or any system consistency. A transaction is a logical unit of work that may in-
clude any number of database updates. During normal behavior, the issue of
transaction consistency arises only in a few cases, such as before any transac-
tions have been executed, between the completion of a successful transaction
and before the next transaction begins, when the application terminates nor-
mally, or the database is closed. However, in the case of failures, without
proper rollback mechanisms, transaction processing can result in inconsistent
data.

L-Store internally maintains database tables for access control manage-
ment and other functionalities it provides. There are some tables to store
the IBP exnodes, exnode mappings, user to exnode mappings, protected

63



rights of exnodes, among others. L-Store database transactions are executed
during application operations, such as an upload of a file, which requires
L-Store to update the corresponding metadata information stored across dif-
ferent database tables. For example, database entries that may need to
be updated based on an application action include updates to the exnode,
exnode mappings and some access control related tables like protected objects

and protected rights.
Thus, during this transaction if any exception is raised or an error oc-

curs, and the transaction is aborted, there is a need to rollback the partially
executed transaction. If not handled, a user may see inconsistencies such as
a file being listed as available but cannot be accessed. This can prove to be a
bottleneck for the application if it is not responsible to handle these failures.
Handling these database transaction failures is a crosscutting concern since
each different operation supported by L-Store will require handling these
cases in order to maintain consistency of metadata. Thus, it is necessary to
make transactions persistent so that rollbacks or other failure handling can
be seamlessly implemented.

Conventional connection pooling methods

As alluded to earlier, L-Store stores some meta data for the metadata man-
agement. Connection management is an important parameter that dictates
resulting performance. For metadata management, connection management
involves a number of steps. First, the connection to the server is established
over the network. Next, the user trying to connect is authenticated with the
server. Finally, a connection is established and operations are performed.
Once all activities are performed, the connection is closed resulting in the
connection and server resources being freed.

Owing to all these steps, connection management can be a bottleneck for
applications using L-Store, whose main objective is to provide real time access
to large quantities of distributed storage virtualized as a single file system.
Thus, it is important to optimize connection management in L-Store.

Connection Pooling is a process of obtaining and managing connections
faster in an application. Conventional database connection pooling maintains
a pool of connections in which a connection is allocated to an application
when it requests a new connection and this connection is returned to the
pool once the application closes the connection. This type of connection
pooling is available only for databases.

64



For L-Store we moved from database version of metadata management
to DHT version, so keeping connection pooling the same for both versions
was a challenge. In addition to this there are several conventional database
connection pooling drivers like JDBC 2.0 which provide a rich set of features
to the applications. They provide a standard way of creating and disposing
database connections. They reduce time to obtain new database connections
but may cause extra memory and resource constraints.

Moreover, the feature richness can become excessive for many applications
since they must use all the functionality provided by these drivers even when
they do not need them. Even if there is an option to configure some of these
drivers, it is very difficult to configure them and then to test them.

In many application scenarios that use L-Store there is a need to bypass
some features so that performance can be improved. In the current set of
database drivers, this is not feasible and in most cases these standardized
drivers may have to be replaced with proprietary drivers, which is not an
acceptable alternative since the cost of developing and maintaining the code
base increases.

There may be times during the lifecycle of L-Store that the connection
pooling feature may have to be toggled on and off. With conventional pool-
ing it may require changing most of the modules that use pooling [31]. These
database connection pooling drivers provide a good database connection
pooling solution for the application, but the application becomes tightly cou-
pled to the database driver for resource pooling. The tangling between the
resource pooling and database connectivity concern is thus a big challenge
needing resolution.

Authentication and authorization feature

Security is important in any software system. It is particularly an important
challenge for distributed systems and by nature it tends to crosscut other
design issues in any application. It consists of many components like au-
thentication, authorization, auditing, and cryptography. In L-Store there is
significant sharing and storing of data across geographical distributed loca-
tions. In order to provide secure access and proper protection to the data and
resources there should be a security aspect for L-Store. In order to provide
security in L-Store based application we focused on the two main components
– authentication and authorization.

Authentication is a process that verifies that a user’s credentials are valid

65



at the time of login or in subsequent sessions. Authorization determines if
the authenticated users have permission to access some system resource. For
example user ’A’ cannot download a file which has been uploaded by user
’B’ unless user ’A’ has been permitted to do so.

Using conventional methods of providing security including different API’s
like OpenSSL, x.509 and JAAS leads to changing multiple modules in the
code base of the application. The access control of L-Store was designed
based on the entity relation of the various database tables. To add security
to the architecture would have forced a change to a large number of mod-
ules in our code base. After analyzing our design we found out that the
authentication part was straightforward and was not really an orthogonal
concern.

L-Store’s core functionality was designed in such a way that it was better
to use an object-oriented approach to implement this feature. However, after
designing authorization we found that it was going to affect all the important
modules of L-Store and it was really an orthogonal concern. There were many
file related functionalities like upload, download, list, make directory, remove
directory and stat among others, which needed verifying of access control.

These challenges stem from the conventional object-oriented design of
applications, which are tailored to meet the primary concerns. It is diffi-
cult to accommodate secondary concerns such as authorization seamlessly in
the same object-oriented design framework and leads to a scattering of deci-
sions [31] i.e., the decision for operations to be checked against permissions
is scattered throughout the system, and therefore any modifications to it can
cause invasive changes.

Lack of consistency in exception handling

Exception handling and logging are an integral part of almost every ap-
plication. Making applications exception safe is the responsibility of the
application developer. Logging may be necessary for accounting or debug-
ging. Often times, however, application developers ignore these secondary
concerns and concentrate on the core design challenges of the application.
The secondary concerns, such as exception handling and logging, become an
afterthought in the design of complex systems [33].

We observed that the design of L-Store suffered from the same weaknesses.
Various logging techniques and toolkits can be used for logging. For any
logging toolkit, such as log4j [20], developers are still required to write log

66



statements wherever logging is needed. Similar arguments hold for exception
handling. Logging and exceptions are interrelated to each other. Logging
of exceptions is an important part of the system. Whenever an exception
is thrown, applications need to log it so that system failures and problems
can be recorded and monitored. This type of logging is also called tracing or
monitoring.

Logging and exception handling are fundamentally secondary concerns
that crosscut the application code base. Due to code tangling, any changes
to the logging or exception handling policy will affect large portions of the
code base requiring most often manual changes.

In Section 5.3 we have shown another example of RequestHandler and
there system developer can see that exception handling has been done. This
type of inconsistency can result in many problems.

5.3 Solution Approach: Use of Aspect-Oriented

Techniques

We used Aspect-Oriented programming to provide an elegant solution to ad-
dress the outlined crosscutting concerns in L-Store. AOP is an advanced pro-
gramming technique used to separate crosscutting concerns in a modularized
fashion. For example, since authorization is to be uniformly implemented in
all the units of application, it is better to use aspect oriented techniques so
that any changes to authorization are done at one place. In the future if this
application may expand or change access control functionality it will be very
easy if we make it a separate concern.

In traditional object-oriented programming languages if we add this type
of concern on top of existing system core functionality we have to convert
these secondary concerns into a class and then use them in primary concerns.
These classes would not be reusable and they cannot be inherited and refined
properly. They will ultimately be scattered across the program and will be
very difficult to manage and work with.

Since access control is a feature which tends to change with the evolu-
tion of an application, it is always a good idea to use aspects to design it.
We can easily modify and understand security very clearly. AOP provides
many powerful techniques to enhance code but sometimes it creates problems
because it does not directly affect source code. Reading through code and

67



understanding it becomes difficult but then even comprehension of object-
oriented programming is also difficult often times. Also, we have to make
sure that the code added or the changes made by AOP to the application
should be orthogonal in nature. But, sometimes aspects can be deeply cross-
cutting, and this happens when the application state, structure and the logic
influence the aspect code in such a way that the aspect is only applicable in
one specific application context [52].

Applying AOP Technologies to L-Store Design

Section 5.2 described various secondary and crosscutting concerns that make
designing complex systems, such as L-Store challenging. In this Section we
illustrate how we resolved these challenges using AOP techniques. While
addressing these secondary concerns we took care of the changeability and
extensibility issues of the code. L-Store is a Java based application; hence,
we used the AspectJ [3] to resolve the challenges. In the remainder of this
Section we first briefly describe AspectJ and then show how we used AspectJ
to resolve the challenges outlined earlier.

AspectJ

AspectJ [26] is a general purpose aspect-oriented extension to Java. The
aspect-oriented constructs support the separate definition of crosscutting
concerns that affect several units of a system. This separation of concerns
allows better modularity, avoiding tangled code and code spread over several
units thereby improving system maintainability. AOP [27] does for crosscut-
ting concerns what OOP has done for object encapsulation and inheritance by
providing language extensions and mechanisms that explicitly capture cross-
cutting structure. This makes it possible to program crosscutting concerns
in a modular way and achieve the usual benefits of improved modularity:
simpler code that is easier to develop and maintain, and that has greater
potential for reuse. We have applied AspectJ to resolve the crosscutting con-
cerns in L-Store. We used the AspectJ Development Tool (AJDT) on the
Eclipse IDE for our R&D.

68



Transaction Control and Persistence

L-Store is a Java based distributed file storage application. This application
needs to store file information, i.e., Metadata information of the stored files
into database server. This metadata server is used by a large number of
users and is designed to support millions of transactions. As we described in
Section 5.2, because of the lack of persistence there could be loss of updates,
inconsistency of data and dirty reads. It is essential for a database transaction
to be persistent and all database dependent applications to guarantee the
ACID properties [12], i.e., atomicity of operations, data consistency, isolation
when performing operations, and data durability even if the system fails.

To address these challenges, there was a need to make some modifications
to some part of the original L-Store core code to implement transaction
control. Originally in every operation provided by L-Store, there was a call
to a database connect and release. The coupling with the primary concern
was such that in order to provide transaction control we had to modify some
of the methods which ended up establishing and releasing connection to the
database. In the code snippet below we show parts of the original L-Store
code before the secondary concerns were modularized.

1: public void HandleRequest() throws Exception {

2: String parent = br.readLine();

3: String newDir = br.readLine();

4:

5: try {

6: Connection dbConn = null;

7: dbConn = DbUtil.getDBConnection();

8: DbLstore.insert_directory(dbConn, parent, newDir);

9: bw.write(LStoreRequests.ALL_OK);

10: bw.write(LStoreRequests.EOR);

11: bw.flush();

12:

13: } catch (SQLException sqle) {

14: throw new Exception ("Error creating directory: " + sqle);

15:

16: } finally {

17: DbUtil.releaseDBConnection(dbConn); }

18: }

In the above code snippet we see that for every method there is a separate
getDBConnection() method call (line 7). This method call is used to create
a database connection and here it is used in insert_directory method (line
8) and then releaseDBConnection (line 17) is called. The modularization of
transaction control as an aspect is required for lines 7 through line 17 since

69



otherwise any intermediate failures will result in inconsistencies. To avoid
this database inconsistency for every call to the database we introduced an
aspect called transaction control is shown in the code snippet below.

1: /**

2: * This aspect is for transaction control

3: * of database connection

4: */

5: public aspect TransactionControl {

6:

7: /**

8: * On call of methods that match this pointcut

9: */

10: pointcut transactionMethod (Connection conn)

11: :call(public static * *.*.*.DbLstore.*(..))

12: && args(conn, ..);

13:

14:

15: /**

16: * Placeholder for transaction policies

17: */

18: Object around(Connection conn):transactionMethod(conn){

19:

20: Object res = null;

21: try{

22: conn = DbUtil.getDBConnection();

23: res = proceed(conn);

24: commitTransaction(conn);

25: DbUtil.releaseDBConnection(conn);

26: } catch(SQLException qle){

27: rollbackTransaction(conn);

28: System.out.println ("Rolled back transaction");

29:

30: }

31: return res;

32: }

33: }

In the above code snippet line 5 shows the TransactionControl aspect
created to handle transaction control of the database. Line 10 is the pointcut
named transactionMethod. It picks out the set of join points i.e., the well
defined points in the program flow where the database connection is required.
It will pick all the methods of DbLstore library having arguments as database
connection. DbLstore is a database library used by L-Store application for
database related connections. Whenever these methods of DbLStore library
are called, we need a database connection.

Whenever any functionality or method needs storage connection, it is
called from the main business logic. Using a proper pointcut definition it is
detected by the aspect. And the advice in the aspect provides the necessary

70



connection. For example, this aspect code (line 22) will establish a database
connection. This database connection is passed on to the methods of DbL-
store using ‘proceed(conn)’ (line 23) where ‘conn’ is the database connection.
This database connection is used in the method being called and then if ev-
erything is fine it will commit the transaction (line 24) and then release the
database connection (line 25).

If any kind of failure or any exception is raised it is caught in the same
advice and the database transaction is rolled back (line 27). This common al-
gorithm is modularized into an aspect and woven into the code base automati-
cally by the AspectJ weaver. In TransactionControl aspect, rollbackTransactions()
and commitTransaction() are the methods that invokes the java.sql.

Connection.commit() and java.sql.Connection.rollback() methods.
Another approach to transaction control can be through implementing

three advice instructions i.e., to start, successfully terminate, and abort
transactions. The first one is a ‘before’ advice that starts a transaction just
before the execution of any transactional method. It will be similar to initial-
ization of database. The second one uses the “after returning” advice when
a method returns with success and in this case we can commit the transac-
tion. The third one uses the “after throwing” advice, which is called when
some exception is raised due to some failure. In this step we can rollback the
transaction. This type of implementation is given in detail in [46].

Connection Pooling

In order to make connection pooling more optimized and portable we used
AspectJ to add a connection pooling feature. As discussed in Section 5.2
there are various constraints in bypassing traditional database connection
pooling drivers when not required, and these issues can be overcome by using
aspectized connection pooling [31].

In this approach, if the metadata management is done using a pre-existing
driver-supported connection pooling mechanism, it will act as the secondary
pooling strategy because AspectJ will override the default connection pooling
strategy. This type of connection pooling is easy to use. Connection pooling
functionality generated by AspectJ is customized according to the needs of an
application and can be independent of the storage mechanism used. Using
AspectJ we can provide connection pooling for only those modules where
the benefits of improved speed outweighs the cost of extra space [31]. This
implementation of connection pooling is based on [31]. The advantage of

71



this scheme is that only selected clients will be impacted by the new strategy,
which can be driven by modifying a pointcut to select any number of packages
and classes in an application. At any time, if the specialized strategy is not
needed, an advice can nullify the effect.

Two types of pointcuts are designed in this case:
Connection creation: This pointcut (see code snippet below) is used

to capture all the join points where an L-Store primary concern needs a
connection from the pool instead of creating a new one.

1: pointcut connectionCreation()

2: : call(public static Connection org.lstore.util.DbUtil.getDBConnection());

Connection destruction: This pointcut (see code snippet below) is
used to capture all the join points where the connection is returned to the
pool of connections instead of destroying it.

1: pointcut connectionRelease

2: (Connection connection)

3: : call(public void org.lstore.util.DbUtil.releaseDBConnection(Connection))&& target(connection);

The above two pointcuts will be used in the following manner. First,
we create an advice for the connection pooling logic for any connection to
use it from a pool instead of creating a new one. This advice is called
connectionCreation and is shown below.

1: Connection around()

2: : connectionCreation() {

3:

4: Connection connection = null;

5: try{

6: connection = connPool.getPoolConnection();

7: if (connection == null) {

8: connection = proceed();

9: connPool.registerPoolConnection(connection);

10:

11: }

12: }catch(SQLException e){

13: //Handle exception

14: }

15: return connection;

16: }

The next advice is to put the connection back to the pool after using it,
as seen in the pointcut connectionRelease below. In this connection release
aspect we use the “around” advice indicating the condition when the aspect
must be applied.

72



We could have also used “before” advice as well. But in the “around”
advice it is easy to add exception handling. If we want to have exception
handling using “before” advice we have to add an additional “after” advice.
The original body of the method is the same as the body of the advice with
special handling for “proceed” in the “around” advice.

Whenever core methods or the transaction control aspect try to release
any connection this advice will try to put the connection into the connection
pool and on failure, it will use “proceed” to release connection.

1: void around(Connection connection)

2: : connectionRelease(connection) {

3:

4: if (!connPool.putPoolConnection(connection))

5: proceed(connection);

6: }

Authentication and Authorization:

Section 5.2 describes how security is a one of the major crosscutting concern
which can be addressed by aspect-oriented techniques very well. For authen-
tication we did not use any AOSD techniques so we do not discuss this issue,
however, aspects were required for authorization.

We implemented a very basic preliminary access control. To authorize
users and to keep track of what are the users’ rights we decided to use the
Policy Machine model. A Policy Machine model (PM) [13] is a standardized
access control mechanism and requires changes only in its configuration in
the enforcement of arbitrary and organization specific attributes-based access
control policies. Some of the enforceable policies are combinations of different
access control policy instances like Role-Based Access Control (RBAC) [29],
Multi-Level Security (MLS) [34] and Identity-Based Access Control (IBAC).

To address the crosscutting challenges with authorization, as a proof of
concept, we started with the basic idea of Identification Based Access Control
(IBAC) policy in L-Store. In the future we plan to implement the entire PM.
IBAC is a very straightforward access control mechanism where the owner
of the resource can set access control. Most of the file systems like Unix and
NTFS use this type of access control. For authorization, most of the access
control was done using proper entity relation between database tables. The
database table relationship is designed in such way that it follows IBAC.

In Figure 5.1 we can see that a user can have read or write permissions
for files. If the user is the owner of the directory by default it can upload,

73



stat, list or download file. If a user is not the owner of the file it cannot
perform all these operations. A user can grant permissions to any other user
to access file for either read or write.

For this secondary concern we had to add some code directly into core
code. The following are the code snippets showing some part of code to check
permissions of the user logged in. This aspect was called every time a user
performs some system call like make directory, add user, change permission,
grant permissions of object.

Figure 5.1: Identification Based Access Control configuration

1: Object around(BaseTransaction tran)

2: :execution(public * org.lstore.core.

3: BaseTransaction.perform(..)) && this(tran){

4:

5: try {

6: if(verifyAccess(tran))

7: return proceed(tran);

8:

9: } catch( Exception ex) {

10: ex.printStackTrace();

11: }

12: return LStoreRequests.createBasicReply(false);

13: }

14:

In this code snippet we see an advice which is called on execution of the
“perform” method of any transaction. For all transactions we verify access
rights (line 6) and if the user is authorized, the transaction proceeds with
the actual functionality but if the authorization fails, a reply (line 12) to the
client is sent indicating unauthorized access. As a side effect of addressing
these challenges exception handling is also addressed as in the verifyAccess
method (line 6) or in proceed (line 7) which is the call for original function-
ality.

In Figure 5.2 we show how aspects intercept different types of transactions
for verifying access of user for different read and write functionalities. In this

74



Figure 5.2: Access Control using AOP

Figure we see that there are various modules like upload make directory,
list, stat, and remove directory etc. When a user tries to execute any of
the functionalities, the user needs to be authorized. Instead of checking
permission in each and every module individually, we used AOP to verify
access at base transaction level.

Logging and Exception Handling

Logging and Exception Handling are the most common example uses of as-
pects. They are an inherent crosscutting concern and tend to spread across
entire application code. Exception handling was already provided in L-Store
but everywhere these exceptions were implemented differently and inconsis-
tently since they were implemented by different people at different stages of
development.

In order to generalize all the exceptions we used softened exception han-
dling of AspectJ. For exceptions which are not handled those exceptions are
caught by using ‘after throwing’ advice. We also created some aspects to
trace, profile and debug application code.

5.4 Scalable Metadata Management Imple-

mentation

In order to make the metadata server more scalable and secure and not
to be a single point of failure we move to Chord Distributed Hash table
implementation for distributing the metadata on multiple servers.

75



Chord supports a single operation: given a key, it maps the key onto a
node. In our case the “key” is a hash of the directory and file name. A
client only needs to know a Chord node on the ring to perform a key lookup.
For this type of distributed file storage system we designed and implemented
secondary concerns like security, transaction control, and logging. There
were many changes in the main business logic code but there were very few
changes to the aspects already implemented for the database version of L-
Store. More details of the L-Store distributed file system metadata server
architecture is given in [51].

76



Chapter 6

Results and Observations

6.1 Configuration and Specialization Files Gen-

eration

A unified framework should provide the mechanisms for the decisions made
at configuration time to be available at QoS validation time, and enable
the synthesis of validation artifacts. In a MDE framework, such capabili-
ties are realized via generative programming capabilities. Within the GME
DSML development environment, in particular, these capabilities are real-
ized by GME model interpreters, which traverse the graphical hierarchy of
a model. The POSAML meta-model is a middleware-independent model-
ing language. By leveraging the GME environment’s capabilities, different
middleware-specific interpreters can be plugged in. The following describes
model interpreters that we have developed as a part of our visual tool:

Interpreter to generate Configuration Files

This interpreter is used to generate two artifacts which are required to con-
figure middleware. One of the generated artifacts is a service configuration
file which is used to set QoS related configuration policies by middleware for
different applications. It has different options that control the behavior of
strategies and resources used by middleware framework. This file allows an
application to configure service objects statically and dynamically configur-
ing middleware. For different configuration we have different options. These
Options [41] in service configuration file can represent either the components

77



provided by middleware framework or customized components developed by
users. If this configuration file is not available, ACE/TAO middleware frame-
work selects all default configurations.

Following are the different factories that can be configured:

1. Advance Resource Factories: This factory controls the creation of
configurable resources used by ACE/TAO’s ORB core. The resource
factory is responsible for constructing and providing access to various
resources used by the ORB irrespective of whether they perform client
or server roles.

2. Server Strategy factory: This factory creates various strategies of
special utility to the ORB that is useful for controlling the behavior
of servers. This factory is responsible for creating strategies useful for
server objects like the concurrency strategy and the request demulti-
plexing strategies used by the POA.

3. Client Strategy factory: This factory creates various strategies of
special utility to the ORB, useful for controlling the behavior of clients.
This factory is responsible for creating strategies useful for clients such
as request multiplexing strategies, wait strategies, connect strategies.

The service configuration file will contain strategies as shown below:

static Advanced_Resource_Factory "-ORBReactorType tp -ORBReactorThreadQueue LIFO"

static Server_Strategy_Factory "-ORBConcurrency reactive"

Additonally another configuration file generated is a script file. This
script file has inputs to run any application like Naming service or a bench-
marking evaluation tool with proper end points like listening ports, protocol
and host name. These endpoints are also used by Acceptor-Connector pat-
tern for different transport handles.

benchmark_test -ORBEndpoint iiop://127.0.0.1:9000

The middleware provisioner is shielded from these details since the inter-
preters automate the task of generating the platform-specific details.

78



Interpreter to generate Specialization Files

This interpreter is used to generate specialization files which are required to
specialize middleware. The code snippet shown in Figure 3.4 and Figure 3.5
is the specialized aspect code. These specialization files are used for the two
different specializations discussed in Section 6.2 and Section 6.2. Different
types of specializations can be captured as aspects in different files and can
be used transform original code into a specialized form according to our
requirements.

6.2 Latency and Throughput Results

This Section describes results of our experiment comparing the performance
of the original ACE reactor pattern with the specialized version. We col-
lected empirical data that compared the specialized version of ACE with the
original version along different dimensions including latency and through-
put. We used the ACE middleware’s performance test suite to conduct these
performance tests and study the impact of AOP on latency and round trip
throughput changes.

For our experiment we used Red Hat Linux 9 with kernel version 2.4.20-8
operating system with CPU speed 2.7GHz, memory of 1GB RAM and 1MB
of cache size. For testing our specialized and non-specialized middleware
system we used ACE_ROOT/TAO/performance-tests/Latency/* testing pro-
grams and for all test cases we used Real-Time scheduling class.

Our experiments illustrate that the refactored middleware framework
showed a significant improvement running the ACE performance tests. To
demonstrate the benefits of implementing AOP for ACE middleware frame-
work we discuss two specializations of ACE concurrency models in the reactor
and illustrate the improvements in performance i.e., latency and throughput.

Single Threaded Reactor

In this case we use AOP to remove the virtual table indirection by bypassing
the virtualness of abstract base class methods of reactor and calling the child
class methods directly assuming that in this case the application is using only
single threaded reactor. After applying specialization of AOP to the single
threaded implementation of reactor, improvements in latency and throughput
were observed.

79



(a) Average

(b) Standard Deviation

Figure 6.1: Select Reactor Latency

80



Figure 6.1 and shows improved average and standard deviation end-to-
end latency. Figures 6.2 shows the increase in the average and standard
deviation in throughput after specialization.

(a) Average

(b) Standard Deviation

Figure 6.2: Select Reactor Throughput

Thread-Pool Reactor

In this case we use AOP to remove the virtual table indirection by bypassing
the virtualness of abstract base class methods of reactor and calling the child
class methods directly assuming that in this case application is using only
thread-pool threaded reactor.

After applying specialization of AOP to the thread-pool implementation
of reactor, improvements to latency and throughput were observed. Fig-
ure 6.3 shows improved average and standard deviation end-to-end latency.

81



(a) Average

(b) Standard Deviation

Figure 6.3: Threadpool Reactor Latency

82



(a) Average

(b) Standard Deviation

Figure 6.4: Threadpool Reactor Throughput

83



Figure 6.4 shows increase in the average and standard deviation in through-
put after specialization.

Reactor Select ThreadPool
Latency -3% -4%

Throughput 2% 3%

Table 6.1: Average Percentage Change

Table 6.1 lists out the percentage decrease of latency and increase in
throughput in select and thread pool reactor implementation.

84



Chapter 7

Related work

One of the tools developed specifically for middleware specialization is Feature-
Oriented Customizer (FOCUS) [30]. It is a domain-specific modeling tool
that has been developed to automate specialization of middleware. In this
specialization tool code is annotated with specialization rules and middleware
developer has to select suitable specialization rules. Its transformation en-
gine is a Perl based tool which selects the appropriate specialization files and
transforms it into changed source code file. Then using general middleware
compiler, executable code is generated. In this tool join-points need to be
identified and the source code changed manually to insert in these join-points
(hooks). Correctness of the transformation has to be validated externally. It
is expected that the FOCUS approach will be used by middleware developers
and not system developers.

Skeletons and Templates are alternatives to achieve separation of concern
between the core functionality and secondary concerns. One main difference
between skeletons [47] and reusable AOP modules is related to how secondary
concerns and core functionality are composed together to yield an applica-
tion. In the former approach, the core functionality must be decomposed
into code fragments to fill the hooks provided by the skeleton/template. In
the AOP approaches, this composition is based on joinpoints, which results
in less invasive changes to the core functionality.

In paper [19] authors discuss the generation of aspect oriented code (As-
pectJ [3]) skeletons from a UML model. Their approach offers a mapping
between the structure of the model and the structure of the resulting pro-
gram. The skeletons, however, cannot be executed, as the actual behavior is
not modeled. Our work differs from this because we generate fully executable

85



specialization aspect code from the POSAML model. One can make code
alteration at modeling level i.e., expressive power of aspects can be defined
at modeling level.

There has been some research related to aspect-oriented design model [9,
53] which discuss creation of UML metamodels to integrate aspect-oriented
ideas and concepts into design phase of software engineering.

86



Chapter 8

Summary and Conclusion

Distributed systems implemented with standardized middleware present sev-
eral challenges with respect to the accidental complexities associated with
provisioning (i.e., configuration and QoS validation) and specialization of
middleware. In current practice, these challenges are solved through low-
level, non intuitive and non reusable means. The manual nature of these
techniques is error prone and tedious, and prohibits a system provisioner
from rapidly exploring various design alternatives. To address these chal-
lenges, our research work presents POSAML, which is a visual modeling
language that addresses the provisioning, and approach to express special-
ization requirement problem at a higher-level of abstraction. It also presents
our work related to use of aspect-oriented programming technique to special-
ize middleware.

We have found that POSAML allows various provisioning scenarios to be
explored in a rapid manner that is middleware-independent. The concerns
that are separated among the various aspects in POSAML provide an ability
to evolve the configuration in a manner that isolates the effect to a single
design change. When a choice is made for a pattern, POSAML removes all
of the inconsistent choices among other patterns. This allows the provisioner
to work with a narrowed search space and ignore all incompatible configu-
rations. Furthermore, model interpreters associated with POSAML assist in
generating the artifacts needed to perform QoS validation.

Model-Driven Engineering and Aspect-Oriented Programming approaches
are considered to be very useful paradigms. Their approaches are considered
to be two complementary solutions which have almost similar goals. There
are some areas where they can work together and in some areas they compete.

87



Our initial results of specializations indicated that the performance of
the system improved with increase in number of specialization. If there are
very few opportunities for specialization, the use of POSAML and AOP is
probably not desirable, however with more opportunities for specialization
across multiple layers of the middleware, the automation capabilities are
desirable.

Lessons Learned

During our research work we applied POSAML to model several case studies
implemented in the ACE/TAO middleware. Although our experience in us-
ing POSAML to configure and provision these case studies has been positive,
there are still a few limitations that remain. For example, our generative tech-
niques are applied only for the TAO middleware i.e., configuration and QoS
validation are specific to this middleware only. The limitations for adding
capabilities of modeling aspect to POSAML are that the designer needs to
be AOP aware since for applying aspect constructs like advice, pointcuts and
joinpoints, the model designer needs to know AOP.

While working on the case study we discussed in Chapter 5 we noticed
that there are many concerns like logging and exception handling which are
perfect examples of concerns that can be cleanly separated out from the
primary concerns, and plugged into the fabric of the application code base.
There are however other secondary concerns that cannot be cleanly sepa-
rated out from the core logic because of the tight integration with the core
functionality. For example for security and transaction control we had to
modify the system code to some extent.

Some of the limitations of aspect-oriented programming we learned during
this work is that it can sometimes increase the complexity in the design of
the basic architecture since factoring out some secondary concerns is hard
due to the need for minor but invasive changes in existing code base.

The problem is even more prominent when the modularization of sec-
ondary concerns and additional development of primary concerns goes on
in parallel. In our case we had to deal with a situation where application
developers were restructuring the code base as we were modularizing the sec-
ondary concerns, which impacted our effort since it affected the conditions
when the aspects were to be woven in.

For some developers who do not know about the structure of the code

88



base, it becomes very difficult to fix software defects by just reviewing or
inspecting code. One more limitation which is a very well known problem is
that a developer cannot add code or functionality at any arbitrary location.
There has to be a well defined joinpoint for every change. This limitation
sometimes is fixed by making minor modification to the primary concern.

Irrespective of all these limitations AOSD helps in the overall reduction
of code tangling and increases the separation of concerns. It makes devel-
opment time faster and reduces code size. It is always easy to fine grain
your secondary concerns when it is decoupled from main business logic. It
is easy to plug in and out aspects, this feature helps in making customized
applications.

Future Work

The research work illustrated in this work is a first step towards customiza-
tion, configuration, and QoS validation of middleware systems using mod-
eling tools and automating generation of specialization using model based
aspect-oriented software development. This modeling tool is at preliminary
stage and does not cover all the desired features. We plan to pursue devel-
opment and improvement of this tool, in many ways.

There is still need to work on this tool to enhance its features. Currently
very few patterns can be modeled using POSAML. We plan to add more
patterns that are required to build to form middleware system. Only very
limited number of features can be modeled, we need to add more number of
features so that middleware system is fully configurable.

An automated code generation for other languages like AspectJ is planned.
It should very easy to add different model interpreter or code generator rules
to do specified work. But, current interpreter is very strongly coupled with
one aspect language i.e., AspectC++, and we plan to make it more gen-
eralized. We intend to improve and extend this aspect modeling. For the
generation of aspect code, all rules are not covered. Only main important
features are designed in detail. We need to develop all the AOP rules for this
tool.

89



90



Bibliography

[1] Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacob-
son, Ingrid Fiksdahl-King, and Shlomo Angel. A Pattern Language.
Oxford University Press, New York, NY, 1977.

[2] Shahzad Aslam-Mir. Experiences with Real-time embedded CORBA
in Telecom. In OMG’s First Workshop on Real-time and Embedded
Distributed Object Computing, Falls Church, VA., July 2000. Object
Management Group.

[3] AspectJ Team. The AspectJ programming guide. Version 1.5.3. Avail-
able from http://eclipse.org/aspectj, 2006.

[4] Alessandro Bassi, Micah Beck, Terry Moore, James S. Plank, Martin
Swany, Rich Wolski, and Graham Fagg. The internet backplane protocol:
A study in resource sharing. Future Generation Computing Systems,
19(4):551–561, May 2003.

[5] Don Batory. Multi-Level Models in Model Driven Development,
Product-Lines, and Metaprogramming. IBM Systems Journal, 45(3),
2006.

[6] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling
step-wise refinement. IEEE Transactions on Software Engineering,
30(6):355–371, 2004.

[7] Don Batory, Jacob Neal Sarvela, and Axel Rauschmeyer. Scaling Step-
Wise Refinement. In International Conference on Software Engineering,
pages 187–197, Portland, OR, May 2003.

[8] Micah Beck, Ying Ding, Terry Moore, and James S. Plank. Transnet
architecture and logistical networking for distributed storage, September

91



2004. Available from: http://loci.cs.utk.edu/publications/2004_
Transnet_Architecture.php.

[9] Christina Chavez and Carlos Lucena. A metamodel for aspect-oriented
modeling. In Omar Aldawud, Grady Booch, Siobhán Clarke, Tzilla
Elrad, Bill Harrison, Mohamed Kandi, and Alfred Strohmeier, edi-
tors, Workshop on Aspect-Oriented Modeling with UML (AOSD-2002),
March 2002. Available from: http://lglwww.epfl.ch/workshops/

aosd-uml/Allsubs/aspUML.pdf.

[10] Adrian Colyer and Andrew Clement. Large-scale AOSD for middleware.
In Karl Lieberherr, editor, Proc. 3rd Int’ Conf. on Aspect-Oriented Soft-
ware Development (AOSD-2004), pages 56–65. ACM Press, March 2004.

[11] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Program-
ming: Methods, Tools, and Applications. Addison-Wesley, Reading,
Massachusetts, 2000.

[12] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of database
systems (2nd ed.). Benjamin-Cummings Publishing Co., Inc., Redwood
City, CA, USA, 1994.

[13] David F. Ferraiolo, Serban Gavrila, Vincent Hu, and D. Richard Kuhn.
Composing and combining policies under the policy machine. In SAC-
MAT ’05: Proceedings of the tenth ACM symposium on Access control
models and technologies, pages 11–20, New York, NY, USA, 2005. ACM
Press.

[14] Robert Filman, Tzilla Elrad, Mehmet Aksit, and Siobhan Clarke.
Aspect-Oriented Software Development. Addison-Wesley, Reading, Mas-
sachusetts, 2004.

[15] Ian Foster and Carl Kesselman. The Grid: Blueprint for a New Com-
puting Infrastructure. Harper Collins, 1999.

[16] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, Reading, MA, 1995.

[17] Holger Giese, Ingolf H. Kruger, and Kendra M. L. Cooper. Workshop
on Visual Modeling for Software Intensive Systems. Procedings of 2005

92



IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC’05), page 4, 2005.

[18] Wasif Gilani, Nabeel Hasan Naqvi, and Olaf Spinczyk. On adaptable
middleware product lines. In ARM ’04: Proceedings of the 3rd workshop
on Adaptive and reflective middleware, pages 207–213, New York, NY,
USA, 2004. ACM Press.

[19] Iris Groher and Stefan Schulze. Generating aspect code from UML mod-
els. In Omar Aldawud, Mohamed Kandé, Grady Booch, Bill Harrison,
Dominik Stein, Jeff Gray, Siobhán Clarke, Aida Zakaria Santeon, Peri
Tarr, and Faisal Akkawi, editors, The 4th AOSD Modeling With UML
Workshop, San Francisco, CA, Oct 2003.

[20] Jakarta Log4J Homepage. Web Page. Available from: http://jakarta.
apache.org/log4j/.

[21] Gabor Karsai, Janos Sztipanovits, Akos Ledeczi, and Ted Bapty. Model-
Integrated Development of Embedded Software. Proceedings of the
IEEE, 91(1):145–164, January 2003.

[22] Dimple Kaul and Aniruddha Gokhale. Middleware Specialization us-
ing Aspect Oriented Programming. In Proceedings of the 44th Annual
Southeast Conference, Melbourne, FL, April 2006. ACM.

[23] Dimple Kaul, Aniruddha Gokhale, Alan Tackett, Larry Dawson, and
Kelly McCauley. ” applying aspect oriented programming to distributed
storage metadata management ”. In Workshop on Best Practices in
Applying Aspect-Oriented Software Development (BPAOSD’07) at the
Sixth International Conference on Aspect-Oriented Software Develop-
ment (AOSD’07), Vancouver, Canada, March 2007. AOSD.

[24] Dimple Kaul, Arundhati Kogekar, Aniruddha Gokhale, Jeff Gray, and
Swapna Gokhale. Managing Variability in Middleware Provisioning Us-
ing Visual Modeling Languages. In Proceedings of the Hawaii Interna-
tional Conference on System Sciences HICSS-40 (2007), Visual Inter-
actions in Software Artifacts Minitrack, Software Technology Track, Big
Island, Hawaii, Jan 2007.

93



[25] Mik Kersten. Aop@work: Aop tools comparison. part 1. Technical
report, University of British Columbia, 2005. Available from: www-106.
ibm.com/developerworks/java/library/j-aopwork1.

[26] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William Griswold. Getting started with aspectj. Commun. ACM,
44(10):59–65, 2001.

[27] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An overview of aspectj. In ECOOP ’01: Pro-
ceedings of the 15th European Conference on Object-Oriented Program-
ming, pages 327–353, London, UK, 2001. Springer-Verlag.

[28] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
Oriented Programming. In Proceedings of the 11th European Conference
on Object-Oriented Programming, pages 220–242, June 1997.

[29] Grzegorz Kolaczek. Specification and verification of constraints in role
based access control for enterprise security system. In International
Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises, pages 190–195, 2003.

[30] Arvind S. Krishna, Aniruddha Gokhale, Douglas C. Schmidt,
Venkatesh Prasad Ranganath, John Hatcliff, and Douglas C. Schmidt.
Model-driven Middleware Specialization Techniques for Software
Product-line Architectures in Distributed Real-time and Embedded Sys-
tems. In Proceedings of the MODELS 2005 workshop on MDD for Soft-
ware Product-lines, Half Moon Bay, Jamaica, October 2005.

[31] Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented Progr-
amming, chapter 13. Manning Publications Co., Greenwich, CT, USA,
2003.

[32] Akos Ledeczi, Arpad Bakay, Miklos Maroti, Peter Volgysei, Greg Nord-
strom, Jonathan Sprinkle, and Gabor Karsai. Composing Domain-
Specific Design Environments. IEEE Computer, pages 44–51, November
2001.

[33] Martin Lippert and Cristina Videira Lopes. A study on exception de-
tecton and handling using aspect-oriented programming. In Proceedings

94



of the 22nd International Conference on Software Engineering, pages
418–427. ACM Press, 2000.

[34] M. D. McIlroy and J. A. Reeds. Multilevel security with fewer fetters.
In Proc. Spring 1988 EUUG Conf., pages 117–122, London, April 1988.
European Unix Users Group. also in Proc. UNIX Security Workshop,
Usenix Assoc., Portland, August 1988, 24-31.

[35] Bertrand Meyer. Object-Oriented Software Construction, 2nd Edition.
Prentice Hall, Englewood Cliffs, NJ, 1997.

[36] Object Management Group. Model Driven Architecture (MDA), OMG
Document ormsc/2001-07-01 edition, July 2001.

[37] P. Tarr and H. Ossher and W. Harrison and S.M. Sutton. N Degrees of
Separation: Multi-Dimensional Separation of Concerns. In Proceedings
of the International Conference on Software Engineering, pages 107–119,
May 1999.

[38] D. C. Schmidt. Acceptor-connector: An object creational pattern for
connecting and initializing communication services. In Pattern Lan-
guages of Program Design, 1995.

[39] Douglas C. Schmidt. ACE: an Object-Oriented Framework for Develop-
ing Distributed Applications. In Proceedings of the 6th USENIX C++
Technical Conference, Cambridge, Massachusetts, April 1994. USENIX
Association.

[40] Douglas C. Schmidt. Model-Driven Engineering. IEEE Computer,
39(2):25–31, 2006.

[41] Douglas C. Schmidt. Options for tao components. In The TAO Doc-
umentation, Vanderbilt University. Available from: http://www.cs.

wustl.edu/~schmidt/ACE_wrappers/TAO/docs/Options.html.

[42] Douglas C. Schmidt, Bala Natarajan, Aniruddha Gokhale, Nanbor
Wang, and Christopher Gill. TAO: A Pattern-Oriented Object Request
Broker for Distributed Real-time and Embedded Systems. IEEE Dis-
tributed Systems Online, 3(2), February 2002.

95



[43] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank
Buschmann. Pattern-Oriented Software Architecture: Patterns for Con-
current and Networked Objects, Volume 2. Wiley & Sons, New York,
2000.

[44] Alan Shalloway and James R. Trott. Design Patterns Explained. Soft-
ware Patterns Series. Addison-Wesley, 2002.

[45] David C. Sharp. Reducing Avionics Software Cost Through Compo-
nent Based Product Line Development. In Patrick Donohoe, editor,
Software Product Lines: Experience and Research Directions, volume
576 of The Springer International Series in Engineering and Computer
Science, New York, NY, USA, Aug 2000. Springer-Verlag.

[46] S. Soares, E. Laureano, and P. Borba. Implementing distribution and
persistence aspects with aspectj, 2002.

[47] Joao L. Sobral, Miguel P. Monteiro, and Carlos A. Cunha. Aspect-
oriented support for modular parallel computing. In Yvonne Coady,
David H. Lorenz, Olaf Spinczyk, and Eric Wohlstadter, editors, Pro-
ceedings of the Fifth AOSD Workshop on Aspects, Components, and
Patterns for Infrastructure Software, pages 37–41, Bonn, Germany, Mar
2006. Published as University of Virginia Computer Science Technical
Report CS–2006–01.

[48] Olaf Spinczyk, Andreas Gal, and Wolfgang Schröder-Preikschat. As-
pectC++: An Aspect-Oriented Extension to C++. In Proceedings of the
40th International Conference on Technology of Object-Oriented Lan-
guages and Systems (TOOLS Pacific 2002), February 2002.

[49] Olaf Spinczyk and Daniel Lohmann. Aspect-Oriented Programming
with C++ and AspectC++. In Tutorial at Aspect Oriented Software
Development (AOSD), 2005.

[50] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. In Proceedings of the ACM SIGCOMM ’01 Conference,
San Diego, California, August 2001.

[51] Alan Tackett, Bobby Brown, Laurence Dawson, Santiago de Ledesma,
Dimple Kaul, Kelly McCaulley, and Surya Pathak. Qos issues with the

96



l-store distributed file system, Oct 2006. Available from: www.cis.uab.
edu/gpce-qos/papers/Alan.pdf.

[52] B. Vanhaute, B. De Win, and B. De Decker. Building frameworks in
aspectj, 2001.

[53] Christina von Flach G. Chavez and Carlos J. P. de Lucena. Design-
level support for aspect-oriented software development. In Kris
De Volder, Maurice Glandrup, Siobhán Clarke, and Robert Fil-
man, editors, Workshop on Advanced Separation of Concerns in
Object-Oriented Systems (OOPSLA 2001), October 2001. Avail-
able from: http://www.cs.ubc.ca/{\tilde}kdvolder/Workshops/

OOPSLA2001/submissions/27-chavez.pdf.

97


