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Abstract

The adage “the whole is not equal to the sum of its
parts” is very appropriate in the context of verifying a
range of systemic properties, such as deadlocks, correct-
ness, and conformance to quality of service (QoS) require-
ments, for component-based distributed real-time and em-
bedded (DRE) systems. For example, end-to-end worst case
response time (WCRT) in component-based DRE systems
is not as simple as accumulating WCRT for each individ-
ual component in the system because of inherent complex-
ities introduced by the large solution space of possible de-
ployment and configurations. This paper describes a novel
process and tool-based artifacts that simplify the formal
specification of component-based DRE systems for verifi-
cation of systemic QoS properties. Our approach is based
on the mathematical formalism of Timed Input/Output Au-
tomata and uses generative programming techniques for
automating the verification of systemic QoS properties for
component-based DRE systems.

Keywords component-based distributed real-time and
embedded systems, formal specification, generative pro-
gramming, model-driven engineering, Timed I/O Au-
tomata, system verification

1 Introduction

Complexities in verifying systemic properties of
component-based DRE systems. Component-based mid-
dleware technologies such as the Lightweight CORBA
Component Model (LwCCM) [15] are becoming the de
facto choice for implementing distributed real-time and em-
bedded (DRE) systems. One benefit of using component-
based technologies is it allows developers to capture the ap-
plication’s “business-logic” into components that can be as-
sembled (i.e., wired together) to realize a deployed system.
Moreover, individual components or partial assemblies can
be reused across multiple application domains thereby pre-
venting reinvention of core intellectual property.

Although component technologies raise the level of ab-
straction to improve software development productivity

and reuse [7], system developers who use such technolo-
gies possess reduced knowledge of complete system be-
havior. Existing techniques for verifying systemic proper-
ties [3,8,19], such as deadlock free execution or correctness,
rely heavily on formal methods, such as automata-based
languages [3, 5, 12, 14, 20]. In order to formally specify a
component-based DRE system, however, developers must
possess complete knowledge of the deployed system’s be-
havior.

In general, formal specification and verification of
component-based DRE systems require system developers
to understand the behavior of the system’s artifacts, such
as the intercommunication channels between components,
threads scheduled to handle events received by components,
and individual components of the system. The behavior of
the individual components, however, is the only aspect of
the entire system within system developer’s knowledge do-
main. To verify systemic QoS properties, such as worst-
case response time (WCRT), is even “harder” for system
developers because it also requires them to understand and
formally specify the intricate timing aspects of all artifacts
of the system in insolation and in conjunction with one an-
other.

Consequently, it is inherently difficult for component-
based system developers to formally specify the deployed
system’s complete behavior because both the details of the
system and—more so—the use of formal methods is out-
side their knowledge domain. System developers, there-
fore, need new techniques and tools that operate within
their knowledge domain, i.e, at the application level, and
simplify—as much as possible—the verification process of
component-based DRE systems.

Solution approach → Model-driven verification of
component-based DRE systems. Ideally, to sim-
plify component-based DRE system verification, devel-
opers need tools and techniques that automatically trans-
form high-level behavior specifications (i.e., specifications
within their knowledge domain) into formal specifications
thereby alleviating many of the accidental complexities of
component-based system verification. Model-driven en-
gineering (MDE) [17] is showing promise in addressing
many complexities within component-based system devel-
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opment [18, 21, 22]. MDE raises the level of abstraction
via domain-specific modeling languages (DSMLs) [13] so
system developers construct models using artifacts that are
related to their domain.

This paper describes our approach of formally specifying
component-based DRE systems for verifying QoS proper-
ties, such as WCRT, which is realized within an MDE tool
called CUTS Uses TIOA for System Verification (CUTSV ).
CUTSV uses a standalone behavioral DSML called the
Component Behavior Modeling Language (CBML) [9].
CBML is based on the mathematical formalism of Timed
Input/Output Automata (TIOA) [12] and designed to inte-
grate with DSMLs that model only system structure, e.g.,
the Platform Independent Component Modeling Language
(PICML) [2]. System developers use CBML to model
the behavior of individual components and use the host-
ing structural DSML to model the system’s composition.
Model interpreters then auto-generate TIOA configuration
files that can be used in model checkers and simulators to
verify systemic QoS properties. The approach can also be
generalized to verify other properties, such as state reacha-
bility, safety, and deadlocks.

Our approach is designed so developers (1) do not have
to possess complete system knowledge to model the behav-
ior of their system, and (2) work within their knowledge
domain since the formal specifications, such as TIOA files,
are automatically generated from the CBML models. Sys-
tem developers, therefore, can focus more on verifying sys-
temic properties as opposed to manually constructing for-
mal models of their deployed system.

Paper Organization. The remainder of this paper is or-
ganized as follows: Section 2 presents a case study in which
we highlight several challenges for verifying component-
based systems; Section 3 describes our preliminary work
CUTSV for verifying QoS properties of component-based
systems; Section 4 discusses related work; and Section 5
provides concluding remarks and future research direc-
tions.

2 Challenges in Verifying Systemic QoS
Properties of Component-based DRE Sys-
tems

This section describes the challenges in developing a
framework for verifying QoS properties of component-
based DRE systems. We use a case study to highlight these
challenges.

2.1 A Shipboard Computing Environment Case
Study

We use a representative example drawn from the ship-
board computing domain called the SLICE scenario [10] as
a case study to illustrate challenges of verifying QoS prop-
erties of component-based DRE systems. We also use the

example to show how our research artifacts described in this
paper enable us to construct a framework for verifying QoS
properties of component-based DRE systems.

SenMain
(Sensor)

SenSec
(Sensor)

PlanOne
(Planner)

PlanTwo
(Planner)

Config
(ConfigOp)

EffMain
(Effector)

EffSec
(Effector)

Figure 1. High-level structural composition of
the SLICE scenario.

Figure 1 shows the high-level structural composition of
the SLICE scenario. The rectangular objects in Figure 1
represent the individual components that are assembled to
create the SLICE scenario. The directed lines between the
components represent the communication channel for inter-
component communication, such as an event channel. As
illustrated in Figure 1, the SLICE scenario consists of 7
different component implementations: SenMain, SenSec,
PlanOne, PlanTwo, Config, EffMain, and EffSec. Although
the SLICE scenario is assembled from 7 different compo-
nent implementations, it only has 4 different component
types: Sensor, Planner, ConfigOp, and Effector.

The component implementations in the SLICE scenario
are deployed across 3 computing nodes because the work-
load generated by the deployed system cannot be handled
by a single host. Moreover, SenMain and EffMain are
deployed on separate nodes to reflect the placement of phys-
ical equipment in the production shipboard environment.
Finally, events that propagate along the inter-component
communication path marked by the dashed (red) lines in
Figure 1 have an end-to-end WCRT of 350 msec.

2.2 Impediments to Verifying Systemic QoS Prop-
erties of Component-based DRE Systems

There are many ways to deploy (i.e., place components
on nodes) and configure (i.e., set component properties) the
SLICE scenario. Only a subset of possible deployment
and configurations (D&Cs), however, will achieve the de-
sired QoS specification stated in Section 2.1, e.g., the 350
msec WCRT. Below we outline the challenges in verify-
ing the systemic QoS properties of component-based DRE
systems, which stem from the fact that verifying systemic
properties does not boil down to simply aggregating veri-
fied properties for individual components.
• Limitations of emulation-based verification: In previ-
ous work [10], we used emulation and instrumentation to
search the D&C solution space and find possible D&Cs that
met the QoS requirements. Although emulation and in-
strumentation techniques yield realistic results, it is by no
means any form of system verification since it is not based
on any formal methods. Moreover, it is “hard” to cover
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the entire solution space of a system under verification (i.e.,
evaluate every possible state of the system) using emulation
and instrumentation as it is with model-checking tools and
simulation.
• Limitations of isolated component verification: In pre-
vious work [9], we showed how we can convert CBML
models into TIOA configuration files via semantic anchor-
ing [4] for verification purposes. In that work, however,
we only permitted verification of components in isolation
and assumed only one event is active in a component at any
given time to contain the problem of formally describing
a component. We, therefore, could not verify a deployed
system because we did not take into account the target en-
vironment’s behavior or the interaction between compo-
nents. Verifying components in isolation and aggregating
their verified properties does not illustrate the properties of
the whole system since effects of communication and the
hosting environment are not taken into account.

To facilitate complete system verification, we have to
solve the challenges of (1) formally specifying the assem-
bled components that represent the deployed system, and
(2) relaxing the assumption that one event is active in a com-
ponent (and system) at any given point in time. Moreover,
developers who want to specify and verify QoS properties
of their system, such as WCRT, should be (3) required to
only model at the same level of abstraction as their devel-
opment process, i.e., at the application level. The remainder
of this paper discusses our MDE-based approach that ad-
dresses these key challenges when verifying QoS properties
of component-based DRE systems.

3 Model-driven Verification of QoS Proper-
ties for Component-based DRE Systems

This section describes our design of CUTSV , a MDE
tool for formally specifying component-based DRE systems
to verify QoS properties.

3.1 Overview of the CUTSV

The Component Behavior Modeling Language (CBML)
is the foundation of CUTSV for verifying QoS properties of
component-based DRE systems. CBML is a DSML imple-
mented in the Generic Modeling Environment (GME) [13]
and based on the mathematical formalisms of Timed In-
put/Output Automata (TIOA). System developers who use
CBML do not need prior knowledge of either TIOA seman-
tics or syntax. Moreover, system developers only focus on
modeling behavior at the application level, which is within
their knowledge domain (i.e., Challenge 3 in Section 2.2).

Formally, we define a behavior model BM =
(V, S,Θ, I, O,A, T,E) of a component in CBML as:

• A set V of internal variables.
• A set S ⊆ val(V ) of states.

Input Action

Action State

Finish Connection Output Action

Figure 2. CBML model for the Effector com-
ponent type in the SLICE scenario.

• A nonempty set Θ ⊆ S of start states.
• A set I of input actions, which are events received

from an external source, e.g., a connected component.
• A set O of output actions, which are events sent to an

external destination, e.g., a connected component.
• A set A of actions, which are events (or actions) vis-

ible only to the component hosting the behavior, i.e.,
internal operations.
• A set T of transitions such that given ∆ ∈ T and s ∈
S:

∆(s)→ α, (1)

where α ∈ (A ∪O).
• A set E of effects such that given Γ ∈ E and a ∈

(I ∪O ∪A):

Γ(a)→ s, (2)

where s ∈ S.

Figure 2 highlights an example CBML model for the
Effector component type in the SLICE scenario. As il-
lustrated in Figure 2, CBML models are a sequence of ac-
tion and state elements—similar to a process model [16].
Each series begins with an input action and terminates with
a finish connection from the final state to the initial input ac-
tion. CBML models alone, however, cannot verify systemic
QoS properties of the realized system since it does not con-
tain any information about either the system’s composition
or its D&C.

TIAO 
ModelTIAO 

ModelTIAO 
Model

Figure 3. Conceptual workflow of CUTSV .
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As illustrated in Figure 3, CBML models are integrated
with structural models to define the deployed system’s be-
havior and composition. Such models include the behav-
ior of the individual components, their intercommunication
channels for passing messages (or events) between com-
ponents, and their D&C within the realized system. The
CBML and structural models are then transformed automat-
ically into TIOA models via model interpreters thereby sim-
plifying the formal specification of the system.

We selected TIOA as the target formal language be-
cause (1) CBML is based on the mathematical formalisms
of TIOA, (2) input and output actions in TIOA are con-
sidered first-class entities similar to components, and (3)
TIOA is better suited for component-based systems since
components are reactive and inputs can occur at any given
point in time (i.e., input actions are always enabled). Lastly,
the auto-generated TIOA files are read by model check-
ers, theorem provers, or simulators to verify QoS prop-
erties. The remainder of this section discusses workings
on transforming CBML and structural models into TIOA
models to facilitate verification via model checking us-
ing the Tempo Toolkit (www.veromodo.com) and UP-
PAAL (www.uppaal.com) model checker.

3.2 Modeling Multi-event Component Behavior

Component-based systems are characterized as reactive
systems where any number of events can be active within a
component, or the entire system, at any given point in time.
The number of events active in a component, or the sys-
tem, however, depends on the configuration of the underly-
ing component technology. For example, the event handler
for a component’s input port may be configured to handle
at most N active events simultaneously, which equates to at
most N active threads. Likewise, a component has |I| input
ports and thus each input port can be configured to handle
Ni events simultaneously, where i ∈ I and Ni is the max
number of events active on port i. To simplify our solution,
however, we make the assumption that at most one event is
active per port in a component (i.e, Ni = 1). Each individ-
ual component, therefore, can have at most |I| active events
at any given point in time (i.e., Challenge 2 in Section 2.2).

Listing 1 highlights a snippet of the TIOA specification
for CommandEvent port of the Effector component
type as illustrated in Figure 2. As showcased in Listing 1,
each component has |I| number of recv event(i) input
actions where i ∈ I and allows selection of the appropriate
event queue (evq) for the incoming event (line 16). Like-
wise, each component has one send event(o) where
o ∈ O selects the output port for the new event (line 26).
1 % l e g e n d :
2 % CE = CommandEvent ; SE = S t a t u s E v e n t
3 automaton E f f e c t o r ( myid , ch CE , ch SE : I n t )
4 s i g n a t u r e
5 input r e c v e v e n t ( i : I n t )
6 output s e n d e v e n t ( o : I n t )

Table 1. Select Keywords in TIOA
Keyword Description
automaton Beginning of a TIOA definition
eff Effect of a transition
evolve Continuous variable evolution over time
input Input transition from external automaton
internal Transition visible only to self
output Output transition to external automaton
pre Precondition (guard) of a transition
trajdef Define a new trajectory
trajectories Trajectory section of automaton
transitions Implementation section for transitions
signature Definition section for transitions
states Variable section of automaton

7 i n t e r n a l handle CE
8 . . .
9 i n t e r n a l i h e a p d e a l l o c a t e

10 s t a t e s
11 t ime : Real ;
12 mode : [ Po r t , L o c a t i o n ] ;
13 t h r s t a t e : Array [ Por t , T h r S t a t e ] ;
14 evq : Array [ Por t , I n t ] ;
15 t r a n s i t i o n s
16 input r e c v e v e n t ( i )
17 e f f i f i = ch CE
18 then evq [CE] := succ ( evq [CE ] ) ; f i ;
19 i n t e r n a l handle CE
20 pre t h r s t a t e [CE] = r e a d y ∧
21 mode [CE] = n i l ∧ evq [CE] > 0 ;
22 e f f evq [CE] := p red ( evq [CE ] ) ;
23 t h r s t a t e [CE] := r u n n i n g ;
24 mode [CE] := s t a t e 1 ;
25 . . .
26 output s e n d e v e n t ( o )
27 pre mode [CE] = s t a t e 3 ∧ o = ch SE ;
28 e f f mode [CE] := s t a t e 4 ;
29 i n t e r n a l i h e a p d e a l l o c a t e
30 pre mode [CE] = s t a t e 4 ;
31 e f f t ime := t ime + 0 ; mode [CE] := n i l ;
32 t h r s t a t e [CE] := c o m p l e t e ;
33 t r a j e c t o r i e s
34 t r a j d e f d e f a u l t
35 e v o l v e d ( t ime ) = 1 ;

Listing 1. Code snippet of Effector compo-
nent’s TIOA model.

To support the assumption that each port has only one
event active at a time, each port is assigned at most one
thread (line 13). When the current thread on the correspond-
ing port is ready (i.e., not handling another event) and there
are events waiting on the queue, the thread is allowed to
process the next event (line 19). The thread then executes
the sequence of internal actions as specified by the original
CBML model. When the last action in the sequence is exe-
cuted (line 29), the thread repeats the process if any events
are remaining in the port’s event queue.

The TIOA specification in Listing 1 is automatically gen-
erated from a CBML model constructed by system devel-
opers of a single port in one component. In general, system
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developers construct high level CBML models of all their
component’s behavior and CUTSV automatically generates
a formal specification similar to Listing 1. System develop-
ers, therefore, remain within their knowledge domain and
do not have to focus as much on formally specifying the
behavior of each component type in the system (i.e., Chal-
lenge 3 in Section 2.2). Likewise, the TIOA specification
supports individual components to handling multiple events
simultaneously, which implicitly scales to the system han-
dling multiple events simultaneously (i.e., Challenge 2 in
Section 2.2).

3.3 Modeling the Hosting Environment

The hosting environment for component-based systems
comprises both hardware artifacts (e.g., servers and commu-
nication links) and software artifacts (e.g., component con-
tainers1). In the case of software artifacts, and more so com-
ponent containers, system developers can create D&Cs such
that all components—or a disjoint subset of components—
deployed on the same host are executed in the same con-
tainer, or within their own container. Each of these resulting
configurations defines a different processing model, which
impacts the system’s overall behavior and QoS properties,
such as end-to-end WCRT.

To simplify our solution, however, we make the assump-
tion that all components deployed on the same host are exe-
cuted within the same process. Moreover, instead of requir-
ing developers to formally specify the host’s behavior, we
provide it for them so they remain within their knowledge
domain (i.e., Challenge 3 in Section 2.2). System develop-
ers, therefore, only have to select which host’s behavior to
use in the deployed system (see Section 3.4).
1 automaton Host ( hid , t h r c o u n t : I n t )
2 s i g n a t u r e
3 input t h r r e q u e s t ( hos t , c id , c h i d : I n t )
4 input t h r r e l e a s e ( h o s t : I n t )
5 output t h r a s s i g n ( c id , c h i d : I n t )
6 i n t e r n a l i b l o c k , i u n b l o c k
7 s t a t e s
8 mode : L o c a t i o n := w a i t i n g ;
9 t ime : Real ;

10 t h r i n u s e : I n t := 0 ;
11 t a r g e t c i d , t a r g e t c h i d : I n t ;
12 t r a n s i t i o n s
13 input t h r r e q u e s t ( hos t , c id , c h i d )
14 e f f i f h o s t = h i d ∧ mode = w a i t i n g ∧
15 t h r i n u s e < t h r c o u n t
16 then mode := d i s p a t c h i n g ;
17 t a r g e t c i d := c i d ;
18 t a r g e t c h i d := c h i d ; f i ;
19 input t h r r e l e a s e ( h o s t )
20 e f f i f h o s t = h i d ∧ t h r i n u s e > 0
21 then t h r i n u s e := p red ( t h r i n u s e ) ; f i ;
22 output t h r a s s i g n ( c id , c h i d )
23 pre c i d = t a r g e t c i d ∧ c h i d = t a r g e t c h i d ∧
24 mode = d i s p a t c h i n g ∧ t h r i n u s e < t h r c o u n t ;
25 e f f t h r i n u s e := succ ( t h r i n u s e ) ;
26 mode := w a i t i n g ;
27 i n t e r n a l i u n b l o c k
28 pre mode = b l o c k e d ∧ t h r i n u s e < t h r c o u n t ;

1A component container is an isolated environment that can be config-
ured to meet the execution requirements of the hosted component(s).

29 e f f mode := w a i t i n g ;
30 i n t e r n a l i b l o c k
31 pre mode = w a i t i n g ∧ t h r i n u s e = t h r c o u n t ;
32 e f f mode := b l o c k e d ;
33 t r a j e c t o r i e s
34 t r a j d e f t r a j
35 e v o l v e d ( t ime ) = 1 ;

Listing 2. Code snippet of TIOA model for a
component’s hosting environment.

Listing 2 contains an example TIOA specification of a
host provided by CUTSV to illustrate the effort that would
have otherwise been required by system developers to de-
fine the behavior of a simple host (or component con-
tainer). As illustrated in Listing 2, each Host is config-
ured to have a unique id for identification purposes and
specify the number of threads available for use by hosted
components (line 1). Components request threads via the
thr reqeust input action (line 13). If threads are avail-
able, then the requesting port of the requesting component
is assigned a thread to process its event (line 22). If there are
no threads available, then a thread is not assigned until one
is available via the thr release input action (line 19).
1 % l e g e n d :
2 % CE = CommandEvent , SE = S t a t u s E v e n t
3 automaton E f f e c t o r ( myid , hos t , ch CE , ch SE : I n t )
4 s i g n a t u r e
5 input t h r a s s i g n ( c id , c h i d : I n t )
6 output t h r r e q u e s t ( hos t , c id , c h i d : I n t )
7 output t h r r e l e a s e ( h o s t : I n t )
8 t r a n s i t i o n s
9 output t h r r e l e a s e ( h i d )

10 pre h i d = h o s t ∧ t h r s t a t e [CE] = c o m p l e t e ;
11 e f f t h r s t a t e [CE] := n i l ;
12 output t h r r e q u e s t ( hid , c id , c h i d )
13 pre h i d = h o s t ∧ c i d = myid ∧
14 c h i d = ch CE ∧ evq [CE] > 0 ∧ mode = n i l ;
15 input t h r a s s i g n ( c id , c h i d )
16 e f f i f c i d = myid ∧ c h i d = ch CE
17 then t h r s t a t e [CE] := r e a d y ; f i ;

Listing 3. Code snippet of the Effector com-
ponent’s TIOA model with support for host-
ing environment interaction.

Likewise, Listing 3 contains a snippet of the TIOA spec-
ification, which is an extension of the Effector compo-
nent from Listing 1 in Section 3.2, that system develop-
ers would have to write to support components requesting
threads from their host to process events. As highlighted in
Listing 3, when there are events in the corresponding port’s
queue and no events are being processed, the component
can request a thread from its host (line 12). If there are
threads available, then the requesting port of the requesting
component is assigned a thread (line 15). After the compo-
nent’s port is finished processing the event, it releases the
thread so the host can assign it to another port of the same,
or a different component (line 9).
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Because CUTSV provides TIOA models of the host-
ing environments, system developers do not have to worry
about formally specifying low-level details of the system’s
behavior. Likewise, since the formal specification of a com-
ponent’s behavior is autonomously generated by CUTSV ,
this simplifies formally specifying how components inter-
acting with their target environment. System developers,
therefore, are still able to remain within knowledge domain
when using CUTSV by focusing mainly on modeling sys-
tem behavior and composition (i.e., Challenge 3 in Sec-
tion 2.2).

3.4 Modeling System Composition

To model system composition of a component-based
system, it is necessary to construct formal models that re-
flect instances of component types (see Section 3.2) be-
ing deployed on hosts in the target environment (see Sec-
tion 3.3), and intercommunication channels that compo-
nents use to communicate with each other. Since sys-
tem developers use CBML to model the behavior of in-
dividual components and the hosting structural language,
such as PICML, to model the system’s composition, we
have enough information to formally specify the deployed
component-based system autonomously (i.e., Challenge 1
in Section 2.2)—thereby alleviating the complexity of for-
mally specifying the realized system.

Before we can formally specify a deployed (or wired)
system, we must first describe the behavior of communi-
cation channels (or connections) between components. As
illustrated in Figure 1 of Section 2, component instances
communicate with each other via connections. These con-
nections can be configured such that there may or may not
be a limit on the number of events allowed on an connec-
tion before the underlying component middleware begins
to drop events. Likewise, to verify systemic QoS proper-
ties, it may be feasible to allow system developers to spec-
ify network properties, such as delayed delivery based on
event size. To simplify our solution, however, we currently
assume that the connection between events is unbounded
and there are no network properties associated with connec-
tions. Although we make these assumptions, our approach
does allow system models to incorporate network properties
if we (i.e., CUTSV ) provide the necessary TIOA connection
models that allow developers to set different network con-
figuration parameters, such as network delay.

Listing 4 highlights the TIOA model for an unbounded
event connection with no network properties, which is
provided by CUTSV . As illustrated in Listing 4, each
connection is given a unique id so components can
select which communication channel to use for trans-
mitting an event. Connections receive events via the
send event(chid) input action (line 11), which cor-
responds to the send event(o) output action of a com-

ponent (see line 26 in Listing 1) such that chid = o.
1 automaton C o n n e c t i o n ( e c i d : I n t )
2 s i g n a t u r e
3 input s e n d e v e n t ( c h i d : I n t )
4 output r e c v e v e n t ( c h i d : I n t )
5 i n t e r n a l i s e t e m p t y , i s e t n e m p t y
6 s t a t e s
7 mode : L o c a t i o n := empty ;
8 t ime : Real ;
9 c o u n t : I n t := 0 ;

10 t r a n s i t i o n s
11 input s e n d e v e n t ( c h i d )
12 e f f i f c h i d = e c i d
13 then c o u n t := succ ( c o u n t ) ; f i ;
14 output r e c v e v e n t ( c h i d )
15 pre mode = n o t e m p t y ∧
16 c o u n t > 0 ∧ c h i d = e c i d ;
17 e f f c o u n t := p red ( c o u n t ) ;
18 i n t e r n a l i s e t e m p t y
19 pre mode = n o t e m p t y ∧ c o u n t = 0 ;
20 e f f mode := empty ;
21 i n t e r n a l i s e t n e m p t y
22 pre mode = empty ∧ c o u n t > 0 ;
23 e f f mode := n o t e m p t y ;
24 t r a j e c t o r i e s
25 t r a j d e f t r a j
26 e v o l v e d ( t ime ) = 1 ;

Listing 4. Code snippet of a TIOA model for
an unbounded event connection between two
or more components.

Likewise, connections send events to the correct com-
ponent port via the recv event(chid) output action
(line 14), which corresponds to the recv event(i) in-
put action of a component (see line 16 in Listing 1) such that
chid = i. This allows more than one component to receive
an output event from a single source component (i.e., simu-
late publishing an event to multiple destinations), or multi-
ple components to publish events to the same input port of a
component. Finally, since this is an unbounded connection,
the recv event(chid) output action can fire as long as
there is an event on the connection, i.e., count > 0.
1 automaton SLICE ( hid SenMain , h id SenSec ,
2 h id P lanOne , hid PlanTwo , h i d C o n f i g ,
3 h id Ef fMain , h i d E f f S e c : I n t )
4 components
5 c0 : C o n n e c t i o n ( 0 ) ;
6 c1 : C o n n e c t i o n ( 1 ) ;
7 c2 : C o n n e c t i o n ( 2 ) ;
8 c3 : C o n n e c t i o n ( 3 ) ;
9 c4 : C o n n e c t i o n ( 4 ) ;

10 c5 : C o n n e c t i o n ( 5 ) ;
11 SenMain : S ens o r ( 1 , hid SenMain , 1 ) ;
12 SenSec : S ens o r ( 2 , h id SenSeconda ry , 1 ) ;
13 PlanOne : P l a n n e r ( 3 , h id P lanOne , 1 , 2 ) ;
14 PlanTwo : P l a n n e r ( 4 , hid PlanTwo , 2 , 3 ) ;
15 Conf ig : ConfigOp ( 5 , h i d C o n f i g , 3 , 4 , 5 ) ;
16 EffMain : E f f e c t o r ( 6 , h id Ef fMain , 4 , 0 ) ;
17 E f f S ec : E f f e c t o r ( 6 , h i d E f f S e c , 5 , 0 ) ;

Listing 5. TIOA model of the SLICE scenario
assembly.

Listing 5 shows the TIOA model for the SLICE scenario
assembly, which is autonomously generated by CUTSV .
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To formally specify the assembled system, we leverage
the composition features of TIOA. As illustrated in List-
ing 5, the assembled system is composed of artifacts au-
tonomously generated from CBML models (e.g., the com-
ponent behavior model) or provided by CUTSV , (e.g., the
Connection model). Each component assembly is de-
rived from the structural model of the system created by
system developers and parameterized by the host id of each
component instance (line 1). This allows CUTSV to sim-
plify the specification of different D&Cs, or systems based
on partial assemblies, by reusing the appropriate TIOA
composition model. The assembly also contains instances
of connections for each separate communication channel in
the deployed assembly (line 5– 10). Finally, each compo-
nent instance is declared in the composition with a unique
id, assigned to a host via its corresponding host parameter,
and associated with the appropriate communication chan-
nels (line 11– 17).

To formally specify the D&C of an assembled system,
such as SLICE scenario exemplified in Figure 1 and List-
ing 5, for verification, CUTSV provides a D&C compo-
sition of the system. The deployment composition is also
autonomously derived from the structural model created by
system developers. Listing 6 shows a example deployment
of the SLICE scenario, which is ready to undergo system
verification.
1 automaton ExampleDeployment
2 components
3 h1 : Host ( 1 ) ;
4 h2 : Host ( 2 ) ;
5 h3 : Host ( 3 ) ;
6 sys tem : SLICE ( 1 , 2 , 3 , 1 , 3 , 2 , 3 ) ;

Listing 6. TIOA model of an example deploy-
ment of the SLICE scenario.

As illustrated in Listing 6, each deployment has a collec-
tion of Host instances—each having a unique id for iden-
tification purposes—for deploying components (line 3– 5).
The main assembly is also declared and parameterized with
the appropriate host id (line 6) for each component instance
(see Listing 5). This will force each component to request
threads of execution from the correct host when attempting
to process events. Once the TIOA model for the given D&C
is autonomously generated by CUTSV , system developers
use the Tempo Toolkit to convert the TIOA models into
Timed Automata [1] models (see Figure 3 in Section 3.1).
The Timed Automata models can then be imported into UP-
PAAL to verify systemic properties.

4 Related Work

Gössler et al [6] present a framework for modeling and
verifying properties of component-based systems. Their
approach separates component behavior from component

interaction, and makes component artifacts, such as con-
nectors, first-class entities in their formal language. Our
approach is similar because we separate component be-
havior from component interaction, but we do so at the
DSML level. This simplifies the formal specification of
component-based systems for system developers because
they operate within their knowledge domain as opposed to
manually writing formal specifications—the equivalent of
manually writing TIOA specifications. We also make com-
ponent artifacts first-class entities, but we do so at the a
higher level of abstraction, i.e., the DSML level, and imple-
ment the first-class entities as reusable artifacts in the target
formal language, i.e., TIOA. This prevents the creation of
a new formal language, which must be theoretically proven
valid.

Zschaler [23] presents initial workings on a framework
for specifying and verifying non-functional requirements,
such as WCET, for component-based systems. Our ap-
proach is similar to Zschaler in that we are not trying to
create a new formal language to verify non-functional prop-
erties, but define a framework that leverages existing for-
malisms to define the component-based system interactions.
The resultant is the ability to “plugin” reusable artifacts,
such as connectors, containers and components, which im-
plicitly map to existing theories that can be proven, or dis-
proved. Our approach differs because we operate within the
knowledge domain of component-based system developers
(i.e., the application level) when formally specifying the
system’s behavior and composition, and leverage DSMLs
to simplify specification. Finally, the verification of non-
functional properties in both Zschaler’s and our approach is
still a work in progress.

5 Concluding Remarks

In this paper, we presented our preliminary ideas on
a framework called CUTSV for automating the formal
specification of component-based DRE systems to verify
systemic QoS properties. We also showed how CUTSV

is designed to work at the same level of abstraction as
component-based system developers are used to, i.e., at the
application level. System developers use CBML and struc-
tural models to capture the behavior and composition of the
system, respectively. Model interpreters then automatically
transform the CBML and structural model into Timed In-
put/Ouput Automata (TIOA) configuration files for system
verification. We believe CUTSV will help simplify ver-
ifying multiple QoS properties of component-based DRE
systems because the system developers operate within their
knowledge domain and the formal specification process is
automated.

The following list summarizes the future research direc-
tions of CUTSV for verifying systematic QoS properties of
component-based DRE systems:
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• Ideally, system developers should be required to spec-
ify their system at a high level of abstraction, including
the QoS requirements, and let the tool autonomously
search the solution space to locate and verify candi-
date D&Cs that meet QoS requirements. Future work,
therefore, includes fully automating the verification
process to reach the ideal tooling environment.
• The verification process is not complete without vali-

dation, i.e., ensuring candidate D&Cs meet their QoS
requirements in the target environment. Future work,
therefore, includes using the emulation and instrumen-
tation features of CUTS to validate if candidate D&Cs
located during the verification process also meet their
QoS requirements in the target domain.
• As systems grow larger and more complex, the D&C

solution space inadvertently grows larger. Using TIOA
to formal specify such a system may not be a feasi-
ble solution. Future work, therefore, includes under-
standing how our solution approach scales to larger
and more complex systems, e.g., ultra-large-scale sys-
tems [11].

CUTSV is available in open-source format for download
at www.dre.vanderbilt.edu/CUTS.
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