
An Approach to Middleware Specialization for Cyber Physical Systems

Akshay Dabholkar and Aniruddha Gokhale
Dept. of EECS, Vanderbilt University

Nashville, TN 37235, USA
{aky,gokhale}@dre.vanderbilt.edu

Abstract

Contemporary computing infrastructure, such as net-
working stacks, OS and middleware, are made up of lay-
ers of software functionality that have evolved over decades
to support the broadest range of applications. The feature-
richness and the layers of functionality, however, tend to be
excessive and a source of performance overhead for Cyber-
physical Systems (CPS). Yet it is necessary to leverage the
decades of proven patterns and principles in these infras-
tructures. This paper presents an approach to systemati-
cally specialize general-purpose middleware used to host
CPS. Our approach is based on the principles of Feature-
Oriented Software Development (FOSD), which requires
deducing an algebraic structure of contemporary middle-
ware based on a higher level of abstraction of features. The
paper showcase how Origami matrices and generative pro-
gramming can play a key role in realizing the specializa-
tions. The paper concludes by delving in to future open
areas of middleware specialization research.

Keywords: Architecture and infrastructure, FOSD, mid-
dleware specialization, features, annotations.

1 Introduction

Research in middleware over the past decade [3, 17,
21] has significantly advanced the quality and feature-
richness of general-purpose middleware, such as J2EE,
.NET, CORBA, and DDS. Middleware serves as the back-
bone for applications across many domains that have signif-
icant societal impact including electronic medical records
in health care, air traffic control in transportation, industrial
automation, among many others. The economic benefits
of middleware are significant with up to 50% decrease re-
ported in software development time and costs [15].

Despite these benefits, general-purpose middleware
poses numerous challenges when developing Cyber-
Physical Systems (CPS). First, owing to the stringent de-
mands of CPS on quality of service (QoS) (e.g. real-time

response in industrial automation) and/or constraints on re-
sources (e.g. memory footprint of embedded medical de-
vices monitoring a patient), the feature-richness and flexi-
bility of general-purpose middleware becomes a source of
excessive memory footprint overhead and a lost opportunity
to optimize for significant performance gains and/or energy
savings.

Second, general-purpose middleware lack out of the
box support for modular extensibility of both domain-
specific and domain-independent features within the mid-
dleware without unduly expending extensive manual efforts
at retrofitting these capabilities. For example, CPS in two
different domains as in industrial automation and automo-
tive may require different forms of domain-specific fault
tolerance and failover support. Arguably, it is not feasi-
ble for general-purpose middleware developers to have ac-
counted for these domain-specific requirements ahead-of-
time in their design. Doing so would in fact contradict
the design goals of middleware, which aim to make them
broadly applicable to a wide range of domains, i.e., general-
purpose.

Developing proprietary and customized middleware so-
lutions for individual CPS is not a feasible alternative due to
the excessive costs of development, maintenance and test-
ing. Moreover, such solutions often tend to reinvent many
solutions that already exist in general-purpose middleware.
Current trends and economies of scale in software devel-
opment actually call for extensive reuse and rapid assembly
of application functionality from off-the-shelf infrastructure
and application components.

Addressing this dilemma requires an approach that will
enable CPS developers to derive the benefits of general-
purpose middleware, however, without incurring the over-
head of unwanted features while seamlessly allowing
domain-specific extensions. Such an approach must be
rooted in scientific principles, which is

1

2 Motivating CPS Example for Middleware
Specialization

We use a CPS case study to highlight the inherent struc-
tural and design constraints of middleware that makes the
middleware specialization problem hard.

2.1 Reconfigurable Conveyor Belt System: A CPS
Case Study

M1 M2M1'M2'

MC1' MC1 MC2MC2'

FC
FC’

Replica Distributed Processing Unit

(F’, MC1', MC2')

Primary Distributed Processing Unit

(F, MC1, MC2)

Software
Components

Software
Controlled

Motor

Software Controlled
Flipper

 MFC

Belt

B

Belt A

Belt
C

F F’

Figure 1: Reconfigurable Conveyor Belt CPS

Figure 1 represents a portion of a reconfigurable con-
veyor belt system found in CPS domains such as industrial
automation. A material flow control (MFC) component di-
rects a part using the route BELT A→BELT B or the route
BELT A→BELT C. A flipper F and F′ assist in using BELT
B and BELT C from BELT A, respectively. Further, hard-
ware interface layer components, such as Motor Controllers
(MC1, MC2) and the Flipper Controller (FC), control the
belt motors and flippers, respectively. The MFC component
instructs the Flipper Controller component to flip, which in
turn instructs the Motor Controller components to start the
motors and begin moving the parts. The MFC component
uses the route BELT A→BELT C only if BELT B fails or gets
jammed because of overloads or stuck parts.

2.2 Need for Middleware Specialization in CPS
Case Study

We view the middleware used to support our case study
(and in general other CPS) as made up of layers of features
targeted to perform specific activities. For our case study
we use real-time CORBA (RTCORBA) [13], which is com-
pliant with our layered middleware system model. CORBA
is used here only for illustration purpose. RTCORBA fea-
tures shown in Figure 2 define standard interfaces and QoS
policies that allow applications to configure and control (1)
processor resources via thread pools, priority mechanisms,
intra-process mutexes, and a global scheduling service, (2)

communication resources via protocol properties and ex-
plicit bindings, and (3) memory resources via buffering re-
quests in queues and bounding the size of thread pools.

Thread Pool

Lane
Prio = 100

Lane
Prio = 200

Thread Pool

ORB CORE

Card

buffering

CLIENT
ORB CORE

P1-5 P10-20 P21-100

SERVER
ORB CORE

_bind_priority_band()

P1-5 P10-20 P21-100

_bind_priority_band()

CLIENT
ORB CORE

P1-5 P10-20 P21-100

SERVER
ORB CORE

_bind_priority_band()

P1-5 P10-20 P21-100

_bind_priority_band()

Client

Object Adapter

ORB CORE

ATM Link16IIOP IIOPVME

Server

OBJ

REF

Link16

Figure 2: RTCORBA Features

The software components of the case study use multiple
features of RTCORBA. For example, the extensible trans-
port feature is used to leverage a proprietary signaling pro-
tocol for message communication instead of TCP/IP. The
CLIENT_PROPAGATED priority propagation model is used
for requests made between the software components. These
requests comprise commands for motor start/stop, motor
speed change, and flip activate, which must be handled at
different priorities by the thread pool-with-lanes feature.

Despite the richness of the real-time feature set in
RTCORBA, these features tend to be excessive for our case
study. For example, we do not envision requests to get
buffered. Similarly, we use a particular signaling proto-
col yet our software components must pay the price both
in memory footprint and performance to use the extensi-
ble transport mechanism. These properties are known at
design-time.

When the system is deployed we must ensure that the
same middleware configurations exist across the software
components. Based on ahead-of-time known properties, we
can also determine different run-time overheads imposed by
the middleware. For example, our system supports a known
number of requests with known number and values for the
parameters, e.g., motor speeds. Similarly, the CORBA ob-
jects that implement the logic are also statically created and
remain invariant over the lifecycle.

Despite knowing these properties, the layered architec-
ture and design of the middleware forces requests to be
dynamically created and deallocated, incur unwanted mar-
shaling, and pass through several layers of request de-
multiplexing logic. On the other hand, some needed ca-
pabilities including a coordination layer between compo-
nents (to stop all motors simultaneously) is not provided by
RTCORBA requiring complex engineering efforts to inte-
grate new functionality in the middleware.

2

2.3 Challenges in Middleware Specialization
Addressing these domain-imposed requirements is hard

for the following limitations of middleware:
(a) fundamental restrictions and limited flexibility of pro-
gramming languages such as C++ or Java do not allow inter-
ception of the control flow at arbitrary points in the control
flow graph to inject required application-specific function-
ality or remove certain unnecessary functionality. This is
currently feasible only at limited points in the code known
as interception points, which is often not sufficient.
(b) although object-oriented designs help develop modular
middleware code, this modularity incurs a price and is hard
to break to satisfy the performance and footprint require-
ments of the domain.
(c) the combinatorial complexity of the feature composi-
tions makes it hard to find valid configurations manually
because of the large number of middleware configuration
options and complex semantic relationships between them.
(d) deployment- and run-time specializations are hard be-
cause feature removal and additions need to be considered
simultaneously, systematically and in a semantically con-
sistent and coordinated manner such that domain-specified
requirements on performance and footprint are satisfied.

3 Related Research

Despite their often object-oriented approaches, different
middleware are not designed [7] with the aim of allowing
fine grained specializations. Thus, many existing special-
ization efforts discussed below rely on handcrafting these
solutions. Handcrafted solutions, however, often tend to ad-
dress only a specific need making it hard to generalize the
solution approach.
• Eliminating overhead of object-orientation: Lohmann et.
al. [12] argue that fine-grained and resource-efficient em-
bedded system software requires a means for separation of
concerns that does not lead to extra overhead in terms of
memory and performance. Aspect-oriented programming
(AOP) [9] is shown to eliminate this overhead.
• Aspects for footprint reduction: AOP provides a novel
mechanism to reduce footprint by enabling crosscutting
concerns between software modules to be encapsulated into
user selectable aspects. For example, FACET [6] identi-
fies the core functionality of a middleware framework and
then codifies all additional functionality into separate as-
pects that can be woven in when needed.
• Combining modeling and aspects for refinement: The
Modelware [19] project combines model-driven architec-
ture (MDA) with AOP. Modelware advocates the use of
models and views to separate intrinsic (i.e., essential) func-
tionalities of middleware from extrinsic ones (i.e., optional).
As in FACET, AOP is used to weave in different aspects,
however, driven by a modeling tool.

• Layer collapsing and bypassing: In a typical middleware
platform every request passes through each layer, whether
or not the services provided by that layer are needed for
that specific request. For use cases where the response is a
simple function of the request input parameters, bypassing
middleware layers may be permissible and highly advanta-
geous. Devanbu et. al [14] have shown how AOP can be
used to bypass middleware layers.
• Just-in-time specializations: Edicts [4] is an approach
that shows how optimizations are also feasible at other ap-
plication lifecycle stages, such as deployment- and run-
time. Just-in-time middleware customization [20] shows
how middleware can be customized after application char-
acteristics are known. Research, such as Edicts, discover
the configuration of the target environment and compose
only the necessary modules that are best suited among al-
ternatives and configure them in the most optimal way.

4 FOSD Approach to Middleware Specializa-
tion

Aspect-oriented programming (AOP) [9] is shown to be
extensively used for middleware specialization [6, 19, 14].
However, AOP has a limited architectural model to define
transformations to the structure of programs, particularly
the ability to encapsulate new classes, which limits its suit-
ability for middleware specialization. FOSD [16] which can
represent single aspects or collections of aspects, comple-
ments model-based development (which is preferred in CPS
development), as both paradigms stress the importance of
transformations in automated program development. More-
over, FOSD supports bounded (i.e., selective) quantifica-
tion for feature manipulation in contrast to AOP techniques
which provide unbounded quantification.

FOSD is thus a candidate approach for middleware spe-
cializations since it involves manipulation of middleware
features. FOSD is best suited when the underlying con-
struct on which it operates displays a well-defined alge-
braic structure. FOSD for middleware specializations is not
straightforward, however, due to a lack of an explicit al-
gebraic structure in the middleware design as explained in
Section 2.

4.1 An Algebraic Structure for Contemporary
Middleware

We ask ourselves whether it is possible to impose an al-
gebraic structure on contemporary middleware so that it is
amenable to FOSD-based specialization. A closer scrutiny
of the middleware design reveals that if we raise the level of
abstraction [18] to the level of features the middleware of-
fers instead of focusing on source code-level details (which
is the traditional view point of FOSD), then a strong alge-

3

braic structure unfolds wherein features can be manipulated
using the FOSD paradigm subject to some constraints.

We have chosen the principles of AHEAD (Algebraic
Hierarchical Equations for Application Design) [2], which
is an implementation of FOSD that uses stepwise refine-
ment to synthesize application and their families, as the
basis of our approach. Static analysis and Partial Evalua-
tion [5, 1] are potential alternatives to AHEAD though these
alternatives are useful only in design-time specialization.

The notion of a feature in AHEAD is tied to basic object-
oriented programming concepts, such as classes and meth-
ods. Although middleware also often uses object-oriented
design principles, the level of abstraction for features that
we are interested in is at a higher level of abstraction involv-
ing frameworks and class libraries that provide properties,
such as real-timeliness and fault tolerance. Moreover, while
AHEAD starts with a small set of base capabilities and re-
fines them by incrementally adding features, our middle-
ware specializations start with a much larger software base
pruning unwanted features and customizing the needed ones
with domain-specific properties.

4.2 Exploiting the Algebraic Structure

Once an algebraic structure is imposed on the middle-
ware, the next step is to map the specialization problem into
AHEAD’s FOSD approach. AHEAD provides a tool called
an Origami matrix to drive feature compositions. Origami
is a generalization of binary decision matrices, where ma-
trix axes define different sets of features, and matrix entries
define feature interactions. Origami matrices possess a spe-
cial property in that they allow folding along the rows or
columns or both. We discuss how this property will be used.

Table 1 depicts our initial attempt to capture the alge-
braic structure of RTCORBA capabilities we deduced as
features within an Origami matrix. Note that our level of
abstraction for features is different that the traditional view
of AHEAD.

PPPPPBase
RT BasicRT Priority Conc Synch

ORB RTORB PriMapper TPReactor
POA RTPOA
Xport ExtXport BandConn

ReqHndl CLI_PROP TPLane MUTEX

Table 1: Origami Matrix for RTCORBA

We use rows to denote the basic CORBA features, such
as the object request broker (ORB) that mediates requests
and manages resources, the portable object adapter (POA)
that manages object lifecycle, the Transport (shown as
Xport) which handles communication, and ReqHandling
which provides the data marshaling and handling of re-
quests. The columns denote the real-time features that re-
fine the basic features of CORBA with real-time capabili-

ties. For example, BasicRT indicates the base capabilities
that introduce real-time properties, Priority indicates the
priority handling mechanisms, Concurrency and Synchro-
nization are classic distributed computing properties and de-
scribe the RTCORBA mechanisms that support these.

The individual cells illustrate the feature interactions
across the row and column. For example, the CLI_PR-
OP cell indicates the priority model to be used in request
handling. We assume that the RTORB shown in the top-left
cell is the constant required by AHEAD. In reality, how-
ever, a single cell such as RTORB can itself be formed by
its own nested Origami matrix where different features are
composed to realize the notion of an RTORB. An empty
cell indicates a composition identity, which does not change
anything to the feature on which it is composed.

Now imagine a stepwise folding of columns onto each
other, which in turn folds individual cells onto each other
for all the rows. This cell-wise folding results in the com-
position of features of the folded cells. Table 2 depicts the
folding of the third and fourth column in the original matrix.

PPPPPBase
RT BasicRT Priority • Conc Synch

ORB RTORB PriMapper • TPReactor
POA RTPOA
Xport ExtXport BandConn

ReqHndl CLI_PROP • TPLane MUTEX

Table 2: Origami Matrix for RTCORBA

Continuing this folding along all columns and then rows
(order does not matter) gives rise to a composition of fea-
tures that constitutes the overall RTCORBA middleware
and can be represented by Equation 1. Features are com-
posed with each other using the composition operator •.

RTCORBA = MUT EX •T PLane•CLI_PROP•BandConn

•ExtX port •T PReactor •PriMapper

•RT POA•RTORB (1)

Now let us explore how such equations will help us.
Since our case study uses RTCORBA, its middleware stack
is characterized by Equation 1, which means that the soft-
ware components use all the features, many of which are
sources of excess generality. An approach to prune un-
wanted features can follow a similar folding operations of
the Origami matrix that produces an equation of features to
be pruned (e.g., bypassing the request demultiplexing logic)
and customized (e.g., caching requests). This can be at-
tempted by the application developer or middleware devel-
opers who are given the requirements by domain experts.
The algebraic difference between the RTCORBA equation
and the equation describing the excess generality provides
a formal representation of the specialized middleware.

4

The Origami matrix mechanism eliminates any errors in
feature manipulations since that it can realize only valid
compositions of features. Notice that erroneous composi-
tions (e.g. folding along the diagonal) or differences are
impossible due to the constraints imposed by the folding
capability of the Origami matrix. Origami matrices can be
multi-dimensional with folding along any number of dimen-
sions.

4.3 Mapping the Equations to Software

The final step in realizing the specializations is to map
the equations that represent the specializations into mid-
dleware code-level program transformations and configura-
tion management. Our earlier work [10, 8] in this prob-
lem space has developed program transformation capabili-
ties using Perl-based and AOP-based techniques.

For example, in [10], we developed a tool called FOCUS
that requires annotation of source code using special mark-
ers placed within programming language comments. A set
of directives that perform operations such as copy, replace,
comment, etc are provided in a script file, which is then
piped to the FOCUS tool. Using these directives FOCUS
transforms the source code. The equation 1 translates to the
following type of FOCUS specializations:
(1) Memoization for request creation: The equation al-
ready described the type of request to be created because of
which request headers could be cached instead of being cre-
ated and determined repeatedly for each request handshake.
(2) Layer Folding for request dispatch resolution: Since
it was already determined that the way requests are to be
handled at client priority using thread pool lanes and mu-
texes, request dispatch resolution could be easily bypassed
thereby bypassing/folding middleware layers.
(3) Aspect Weaving for framework generalities such as
POA and ORB: The equation specifies to use the ORB and
POA specialized already for real time which are incorpo-
rated into the code through aspect weaving FOCUS direc-
tives that replace the generalized CORBA framework com-
ponents which specialized ones i.e., RTORB and RTPOA.

5 Concluding Remarks and Open Research
Issues

Current trends and market economies require that
general-purpose middleware be used to develop Cyber-
Physical Systems. However, the lack of fine granularity of
modularization in their design make general-purpose mid-
dleware heavyweight solutions for CPS and are detrimental
to their performance. This paper presents preliminary ideas
on a systematic approach to specializing general-purpose
middleware wherein middleware can be seamlessly manip-
ulated by (a) addition of custom features, (b) pruning of

unwanted features, and (c) optimizing the required infras-
tructure.

Our approach is based on the principles of feature-
oriented software development (FOSD), which required us
to deduce an algebraic structure for contemporary middle-
ware based on a higher level of abstraction for features com-
pared to traditional approaches that treat classes as features.
We showed how Origami matrices and generative program-
ming can play a key role in realizing the specializations.

A number of open research issues remain unresolved
shown below:
(1) How are features manipulated across different stages
of application lifecycle? Achieving the goals of specializa-
tion is challenging since the process must account for the
design-, deployment- and run-time requirements imposed
by a domain. For example, in our conveyor belt system
case study, specializations must account for variations in
domain-specific requirements, such as the number of com-
ponents in a failover unit – a design-time issue that deter-
mines how many components will need the specialization;
the topology of the failover unit – a deployment-time issue
which requires that middleware be specialized in a similar
manner across the failover unit; and the fault masking and
failover strategy for the client components that lie outside
the unit – a run-time issue that requires client-side middle-
ware specialization to deal with faults.
(2) How do we handle feature interactions? Features are
often known to interact [11] with each other. For example,
when performance and resource constraints are also to be
addressed across the lifecycle, it is conceivable that special-
izations that satisfy one requirement may interact in unfore-
seen ways with other kinds of specializations. Naturally,
any ad hoc process will not produce the correct results nor
will it work across different domains.
(3) Can we formalize the theory as a software engineer-
ing process? Theoretical underpinnings are a necessary but
not sufficient condition to realize the benefits of research.
Concrete mechanisms, such as tools and processes, that re-
alize the theory are required. In our case, without the right
tools and processes, specializations will continue to be car-
ried out manually, which is detrimental towards verifying
the correctness of CPS.
(4) How should next-generation midddleware be de-
signed? Despite the object-oriented designs of contempo-
rary middleware solutions, these are deemed too coarse-
grained when fine-grained specializations are necessary,
particularly for CPS. For our current approach, we were re-
quired to impose an approximate algebraic structure to con-
temporary middleware. New research directions are needed
to explore how next generation middleware be designed
such that they inherently maintain an algebraic structure
that are seamlessly amenable to feature manipulations.
(4) How to efficiently annotate middleware source code

5

for feature identification and management? There is not
only a need to systematically design middleware ground-
up but also a need to refactor contemporary middleware for
feature pruning/augmentation. This can only be achieved
by devising efficient advanced annotations that identify
middleware features, their dependencies and interactions.
Moreover, semi-automated tools need to be developed that
can leverage these feature annotations based on which the
unnecessary features can be pruned in order to aid the con-
struction of specialized middleware.

References

[1] Anne-Francoise Le Meur, Julia L. Lawall and Charles Con-
sel. Specialization Scenarios: A Pragmatic Approach to
Declaring Specialization Scenarios. Higher-Order and Sym-
bolic Computation, 17(1), March 2004.

[2] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-
Wise Refinement. IEEE Transactions on Software Engineer-
ing, 30(6):355–371, 2004.

[3] G. S. Blair, G. Coulson, P. Robin, and M. Papathomas. An
Architecture for Next Generation Middleware. In Proceed-
ings of the IFIP International Conference on Distributed
Systems Platforms and Open Distributed Processing, pages
191–206, London, 1998. Springer-Verlag.

[4] V. Chakravarthy, J. Regehr, and E. Eide. Edicts: Implement-
ing Features with Flexible Binding Times. In AOSD ’08:
Proceedings of the 7th International Conference on Aspect-
oriented Software Development, pages 108–119, New York,
NY, USA, 2008. ACM.

[5] J. Hatcliff. An Introduction to Online and Offline Partial
Evaluation using a Simple Flowchart Language. Partial
Evaluation – Practice and Theory DIKU 1998 International
Summer School, Springer Verlag, 1706:20–82, June 1998.

[6] F. Hunleth and R. K. Cytron. Footprint and Feature Man-
agement Using Aspect-oriented Programming Techniques.
In Proceedings of the Joint Conference on Languages, Com-
pilers and Tools for Embedded Systems (LCTES 02), pages
38–45. ACM Press, 2002.

[7] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in Soft-
ware Product Lines. In Proceedings of the 30th international
conference on Software engineering, ICSE ’08, pages 311–
320, New York, NY, USA, 2008. ACM.

[8] D. Kaul and A. Gokhale. Automating Middleware Con-
figurations and Specializations: A Modeling Language Ap-
proach. VDM Verlag Dr. Muller, Jan. 2008.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented Pro-
gramming. In Proceedings of the 11th European Con-
ference on Object-Oriented Programming, pages 220–242,
June 1997.

[10] A. Krishna, A. Gokhale, D. C. Schmidt, J. Hatcliff, and
V. Ranganath. Context-Specific Middleware Specialization
Techniques for Optimizing Software Product-line Architec-
tures. In Proceedings of EuroSys 2006, pages 205–218, Leu-
ven, Belgium, Apr. 2006.

[11] J. Liu, D. Batory, and C. Lengauer. Feature Oriented Refac-
toring of Legacy Applications. In Proceedings of the Inter-
national Conference on Software Engineering, pages 112–
121. ACM Press New York, NY, USA, 2006.

[12] D. Lohmann, O. Spinczyk, and W. Schröder-Preikschat.
Lean and Efficient System Software Product Lines: Where
Aspects Beat Objects. Transactions on AOSD II, 4242:227–
255, 2006.

[13] Object Management Group. Real-time CORBA Specifica-
tion, 1.2 edition, Jan. 2005.

[14] Ömer Erdem Demir, P. Dévanbu, E. Wohlstadter, and S. Tai.
An Aspect-oriented Approach to Bypassing Middleware
Layers. In AOSD ’07: Proceedings of the 6th international
conference on Aspect-oriented software development, pages
25–35, New York, NY, USA, 2007. ACM Press.

[15] T. Pearson. Save time and money with COTS middle-
ware for network equipment. www.commsdesign.com/
printableArticle/?articleID=174402378 , Nov. 2005.

[16] C. Prehofer. Feature-Oriented Programming: A Fresh
Look at Objects. In M. Aksit and S. Matsuoka, editors,
ECOOP’97—Object-Oriented Programming, 11th Euro-
pean Conference, volume 1241, pages 419–443, Jyväskylä,
Finland, 9–13 1997. Springer.

[17] D. C. Schmidt, B. Natarajan, A. Gokhale, N. Wang, and
C. Gill. TAO: A Pattern-Oriented Object Request Broker for
Distributed Real-time and Embedded Systems. IEEE Dis-
tributed Systems Online, 3(2), Feb. 2002.

[18] J. A. Stankovic, P. Nagaraddi, Z. Yu, Z. He, and B. Ellis. Ex-
ploiting Prescriptive Aspects: A Design time Capability. In
EMSOFT ’04: Proceedings of the 4th ACM International
Conference on Embedded Software, pages 165–174, New
York, NY, USA, 2004. ACM Press.

[19] C. Zhang, D. Gao, and H.-A. Jacobsen. Generic Middleware
Substrate Through Modelware. In Proceedings of the 6th
International ACM/IFIP/USENIX Middleware Conference,
pages 314–333, Grenoble, France, 2005.

[20] C. Zhang, D. Gao, and H.-A. Jacobsen. Towards Just-in-
time Middleware Architectures. In AOSD ’05: Proceed-
ings of the 4th international conference on Aspect-oriented
software development, pages 63–74, New York, NY, USA,
2005. ACM Press.

[21] R. Zhang, C. Lu, T. F. Abdelzaher, and J. A. Stankovic. Con-
trolWare: A Middleware Architecture for Feedback Con-
trol of Software Performance. In Proceedings of the In-
ternational Conference on Distributed Computing Systems
(ICDCS), Vienna, Austria, July 2002.

6

