
Enhancing Enterprise User Productivity with Embedded Context-Aware
Voice Applications

Amogh Kavimandan‡, Reinhard Klemm†, Aniruddha Gokhale‡, Dorée Seligmann†

‡ Department of EECS Vanderbilt University, Nashville, TN 37235
† Avaya Labs Research, 233 Mount Airy Road, Basking Ridge, NJ 07920

Abstract

The increasing amount of software and

computational capabilities in voice endpoints,
switches, and networks creates an opportunity for
embedding advanced applications in voice
communication paths. Particularly in an enterprise
environment, such applications can alter the
traditional behavior of voice communications from
simply connecting two or more people to software-
assisted connection establishment and enhanced on-
call features. In this paper, we claim that embedding
context-aware applications in communication paths
can greatly increase the efficiency, effectiveness, and
convenience of enterprise communications and thus
the productivity of enterprise users. We identify the
challenges associated with embedding context-aware
applications in communication paths and exemplify
our central claim by presenting a context-aware voice
communications application CallerID++. CallerID++
aims at improving the aged concept of caller ID as the
basis for a callee’s decision to accept or reject an
incoming call. Through a call acceptance negotiation
between caller and callee prior to call establishment,
CallerID++ allows the callee to assess the importance
of an incoming call relative to the callee’s current
activity. CallerID++ thus helps minimizing unwanted
interruptions without rejecting important calls.

1. Introduction
Telecommunication between people is experiencing

a fundamental transformation due to a variety of
factors including the proliferation of communication
devices and media, the increasing mobility and
computational power of communication endpoints, and
new network-level technologies such as Voice Over
IP. However, in the realm of telephony, this
technological revolution has so far not resulted in an
equally revolutionary change in the processes that
people employ to connect with each other. In other
words, voice communication processes have not kept
pace with the technological improvements in telephony
endpoints and devices, networks, and switches. For

example, while presence-enhanced softphone features
are state-of-the-art in enterprise voice communications,
it has not eliminated the phenomena of phone tag,
unwanted interruptions of busy users through
incoming calls, or busy users rejecting incoming calls
that later turn out to be important [4]. Such incidents
hamper the efficiency, effectiveness, and convenience
of enterprise voice communication processes as we
will show in two scenarios below. Due to their impact
on user productivity and thus enterprise
competitiveness, resolving these impedances in
communication processes in general is extremely
important. Improvements to voice communication
processes gain particular importance because of the
pervasive nature of mobile and stationary telephony in
modern enterprises.

Scenario 1. Consider a scenario where a group of
employees is on a conference call about an important
technical issue in a new software release. During the
call, one of the participants, Alice, receives a phone
call from her supervisor Bob. Assuming that this is an
important call, Alice interrupts her participation in the
conference call and switches to the incoming call from
Bob, only to realize that Bob wants to simply talk
about her availability for their next monthly project
meeting. Alice finishes her conversation with Bob as
quickly as she can and rejoins the conference call.
Note that Alice based her decision to take Bob’s call
on Bob’s caller ID and by inferring the importance of
the call from Bob’s position as Alice’s supervisor.
However, considering that Bob only wanted to talk
about a regularly scheduled event, whose importance is
much lower than that of the ongoing conference call,
Alice might have preferred to let Bob’s call go to voice
mail and deal with it later instead of temporarily
leaving the conference call. We may safely consider
the above scenario an unwanted interruption of work,
which may affect the efficiency, efficacy, and
convenience of the entire team on the conference call.

Scenario 2. Now consider a different scenario
where Alice and Bob are in a lengthy discussion about
the previous night’s football game in Alice’s office. At
this time, Cynthia, a software developer working on a

project managed by Alice, suspects that she may have
discovered a new security flaw in the software. She
calls Alice to find out whether Alice is aware of this
flaw. Assuming that a call from Cynthia at this time is
not overly important and because Alice does not want
to appear rude to her supervisor, Alice chooses to let
Cynthia’s call go to voice mail and continues talking to
Bob. After a prolonged chat, Bob leaves Alice’s office.
Alice attempts to call Cynthia back but by that time
Cynthia has already left her office for her lunch break.
Alice only manages to reconnect with Cynthia much
later. Clearly, there are two problems with this
scenario. One is that Alice decides not to take
Cynthia’s call under the erroneous assumption that the
call is not of higher importance than her interaction
with Bob. Secondly, Alice and Cynthia enter a phase
of phone tag. Both Alice’s and Cynthia’s response
time in this scenario, speed of decision-making,
convenience, and productivity are negatively affected.

In general, although it is agreed that enterprise users
may benefit from knowing the purpose of a call in
addition to caller ID and cues about recipient’s
availability and interruptibility [8, 9], very little work
has been done to incorporate a corresponding
mechanism into the communications infrastructure. In
this article, we claim that embedding context-aware
applications in call paths can significantly increase the
efficiency, effectiveness, and convenience of
enterprise voice communication processes. We identify
the challenges associated with, and requirements for
embedding context-aware applications in call paths.
We exemplify our claim in the voice communication
domain by presenting CallerID++, an embedded
context-aware application. Its goal is to improve
enterprise user productivity by minimizing the number
of unwanted user interruptions and the number of
important calls that callees let go to voice mail because
of misjudging the call importance. Moreover,
CallerID++ helps reducing the frequency of phone tag.

The remainder of this paper is organized as follows.
Section 2 elaborates on the challenges in realizing the
goals of the CallerID++ application; Section 3 shows
the behavior of CallerID++ and how its operation
meets the requirements and challenges listed in Section
2; Section 4 outlines the CallerID++ architecture and
implementation; Section 5 describes related work. We
provide concluding remarks in Section 6.

2. Challenges and Requirements for the
CallerID++ Application

Traditional caller ID can be considered a simple
application that is embedded in the communication
path between a caller and a callee. A callee can use

caller ID to decide whether to accept an incoming call.
As we saw in the two scenarios in Section 1, however,
caller ID may be a poor indicator of the importance of
an incoming call relative to the importance of the
callee’s current activity. In other words, caller ID
provides little useful decision support for call
acceptance to the callee. On the other hand, the caller
has no indication of the callee’s current availability for
the intended call and therefore the most expedient way
to find out whether the callee is available for a
conversation with the caller at this point in time is to
actually place the call. In other words, traditional
telephony provides no decision support for call
placement to the caller either. Even state of the art
presence-enhanced telephony tools [4, 7] fare only
marginally better than caller ID. For example, in the
two scenarios in Section 1, Alice was present in both
scenarios but available only for the incoming call in
the second scenario. Some presence-enhanced
telephony tools [6] include current call activity in the
user’s presence status, for example on call. While this
may have prevented Alice’s unwanted interruption in
Scenario 1, a change in that scenario demonstrates the
limits of this approach. Suppose Alice receives a call
from Bob not about the next monthly project meeting
but about an outage of a company product at a
company’s customer. We can assume that Alice would
want to interrupt her participation in the conference
call and take Bob’s call to consult with him on the
product outage because the outage may be of higher
importance than the current conference call. Alice is on
a call at this time and yet she is available for Bob in
this modified scenario. As Wiberg and Whittaker [8]
note, caller ID does not convey the purpose of a call
and there is little direct support for availability
management in telephony, resulting in unwanted
interruptions and tardy responses to important calls
that the callee lets go to voice mail.

Based on the above observations, we set out to
design an application that improves upon the
shortcomings of caller ID on the one hand and
presence-enhanced telephony tools on the other hand.
The following is the list of challenges and
requirements that we intended CallerID++ to meet.
1. Reducing the number of unwanted interruptions and
missed important calls. As our scenarios demonstrate,
the drawback of caller ID is its inability to convey
anything about the call itself. CallerID++ therefore has
to be able to collect a call context from the caller, i.e.
call parameters including perceived importance, topic,
and desired response time window, and convey it to
the callee. The call context should be detailed enough
to provide the callee with a real sense of the call intent
and urgency. In addition, the call parameters to be

collected should themselves be configurable, so that
context collection policies could be defined depending
on specific enterprise and group needs, and chosen
dynamically at the time of call establishment.
However, as Item 3 below implies, gathering the call
context should take as little time and effort as possible.

2. Phone tag reduction. If the callee does not accept an
incoming call immediately, CallerID++ should help the
callee with reconnecting with the caller at a later time
if so desired. Note that “later” can be any time between
a few seconds to a few days from now or more. This
goal may require the determination of the caller’s and
the callee’s user contexts at a later time. The context of
a user contains a description of currently observed
activities of the user including communication
activities (phone calls, Instant Messaging (IM) chats,
email activity, etc.) and transcends mere user presence.
Evaluating the caller’s and callee’s contexts helps
finding a time at which both users are likely to be
available for re-establishing the call.

3. Call reception feedback. CallerID++ has to provide
the callee with the option of signaling the receipt of a
call attempt back to the caller. Otherwise, the caller has
no indication of whether the callee actually became
aware of the call attempt. Without such feedback from
the callee, the caller may unnecessarily try to reach the
callee on alternate endpoints. This phenomenon is
somewhat similar to phone tag and equally
undesirable.

4. Call encouragement. Many presence-enhanced tools
graphically display the presence or availability status
of a user to a communication initiator, for example a
caller. Such tools put the burden of determining the
recipient’s interruptibility for the initiator’s contact
attempt on the initiator [3, 10, 11] and often discourage
the initiator unnecessarily from contacting the recipient
at this point in time. Moreover, disseminating a user’s
detailed presence and availability status to other users,
which would be necessary so that an initiator can
properly judge the recipient’s availability, may
constitute an undesirable disclosure of very sensitive
data. In contrast, we strongly prefer for the callee to
determine whether she is available for the caller for the
given purpose of the communication attempt.

5. Effective call context rendering: When CallerID++
renders the call context on a callee endpoint the choice
of an endpoint and call context presentation may be
made dependent on the callee’s user context. If the
callee is already on a phone call and is known to be
present but not actively engaged on another endpoint
that can render the call context, for example an IM
client or a Web browser [16], it is preferable to route

the call context to that endpoint. Otherwise, the
callee’s ongoing phone conversation would be
disturbed. If the evaluation of the callee’s user context
does not turn up an alternative endpoint, the call
context is best rendered through the callee’s phone.
Depending on the capabilities of the callee’s phone and
the current phone status of the callee (being on a call
or not), the call context can either be rendered on a
textual display on the phone or as an audio overlay
(whisper) on an ongoing phone call.

6. Pervasive deployment. Just as traditional caller ID is
part of the telephony fabric and thus available to users
most of the time, without the need for explicit
activation or execution, CallerID++ needs to be
embedded in a voice communications system and
activated simply through call placement. We are
primarily interested in improving the user voice
communication experience in an enterprise
environment, but the same idea could be applied to a
public telephony network.

7. User convenience. The primary goal of CallerID++
is to increase user productivity. Hence, CallerID++
must be easy to learn and use for both callers and
callees. The extra effort that CallerID++ requires from
either the caller or callee must be minimized.

One aspect of the call establishment process that we
have not dealt with yet is the potential misuse of the
CallerID++ capabilities. For example, it is easy for the
caller to deliberately underreport the expected call
duration or to assign the highest possible importance
rating to the call during call context collection and thus
trick the callee into accepting the call. Such a
challenge would have to be addressed by a practical
context-aware call establishment application, but we
assume, for our proof of concept, that enterprise users
are trustworthy and use this application prudently.

3. Operational Description of CallerID++
Rather than providing a complete description of the

operation of CallerID++, we demonstrate how
CallerID++ would change the two scenarios outlined
in Section 1 of this paper.

Scenario 1: When Bob calls Alice while she is on
the conference call, CallerID++ detects that Alice is
already on a phone call. Instead of establishing the call
with Alice immediately, CallerID++ prompts Bob
through his phone to answer a short series of
questions, for example:
1. “State very briefly the purpose of your call”; Bob

answers “Availability for our next project meeting.”

2. “What is the urgency of your call on a scale from 1-
5 (5 being the highest)?” Bob answers “2”.

3. “What is the desired response time window if the
callee cannot take your call (15 minutes, 1 hour, 1
day, 1 week)?” Bob answers “1 day”.
Depending on the context collection policy,

CallerID++ may ask more, fewer, or different
questions. The questions are presented as text-to-
speech. The answers are collected either as an audio
recording (question 1) or using a phone key-to-
response mapping (questions 2, 3). CallerID++ now
determines that the only endpoint that Alice is
currently known to be present on is her desk phone and
that her desk phone has no sophisticated text display
capabilities beyond a simple LCD display. As a result,
CallerID++ renders a signal tone in Alice’s leg of the
conference call, followed by a header and a whispered
message that includes Bob’s answers to the three
questions above. Then, CallerID++ presents a
whispered range of possible responses to Bob’s call
request to Alice. Each response option maps to a key
on her phone keypad. Based on the call context
collected from Bob, Alice decides that it is sufficient to
return Bob’s call some time during the day. By
pressing (for example) “6” on her phone keypad, she
selects reject and auto-reconnect later. Alice then
turns her attention back to the voice conference.
Finally, CallerID++ informs Bob that Alice has
acknowledged his call attempt but is currently busy
and that CallerID++ will later attempt to re-establish
the call. Thus, both Alice and Bob offload the task of
reconnecting later to CallerID++. Notice that
embedding CallerID++ in the enterprise voice
communication system in this scenario addresses
Requirements 1-7 presented in Section 2. However, it
is also clear that CallerID++ requires extra effort from
Bob during the call context collection, which means
that meeting Requirement 8 remains somewhat of a
challenge. On the other hand, by keeping the number
and complexity of questions to Bob low, we can
improve the usability of CallerID++.

Scenario 2: At the time of Cynthia’s call to Alice,
Alice has been chatting with Bob for a while. We may
assume that there are no sensors in Alice’s office that
monitor her activities away from her computer and
communication devices and that CallerID++ has access
to. Thus, Alice’s user context does not show any
current or very recent known activity. In particular,
Alice is currently not on the phone and is not known to
be engaged in a very important activity. In such a
situation, CallerID++ establishes a call right away
without prior call context collection. Note that this is in
congruence with Requirement 8 in section 2, i.e. it
minimizes user effort during the call establishment

process. However, CallerID++ does affect this
scenario because it presents Alice with the entire
spectrum of response options. Cynthia does not notice
that CallerID++ is active but Alice does because she
may choose a response option that is different from
simply accepting or rejecting the call as in traditional
telephony. She decides to press (for example) “3” on
her phone for the hold response option. Her intention
is to quickly wrap up her chat with Bob and then take
Cynthia’s call. Cynthia hears a spoken message at her
end of the call asking her to hold until Alice can speak
to her. Then, Cynthia hears music on hold. Cynthia’s
experience is very similar to that of calling into a call
center and being placed on hold until the next available
agent is found. Eventually, Alice politely finishes her
chat with Bob and takes Cynthia’s call by pushing
another button on her phone keypad. Notice that
CallerID++ obviated the effort for Cynthia to leave a
voice mail for Alice.

In both scenarios, CallerID++ increases the callee’s
and the caller’s productivity, benefiting both the users
and the enterprise. We feel that the overall advantages
of CallerID++ are worth the extra effort that
CallerID++ causes for the caller in Scenario 1.
Moreover, while the caller may have spent more effort
in Scenario 1 with the CallerID++ mechanism in the
call path, there will be other scenarios where the caller
would not have to leave voice mails for the callee or
engage in phone tag. Thus the caller’s amortized extra
effort with CallerID++ may well be negative, i.e.
CallerID++ may save not only callees but also callers
time and effort in the long run.

4. Architecture and Implementation of
CallerID++

In this section we present a prototypical
implementation of CallerID++. Although CallerID++
could be implemented without an enterprise
communications middleware, our CallerID++
prototype uses the services of the Hermes [15] context-
aware communications middleware at Avaya Labs
Research.

We implemented our CallerID++ prototype around
the Asterisk PBX [14]. Our choice of Asterisk as the
PBX for this work is motivated by two reasons. First,
as a PBX entirely implemented in software (for Voice
over IP), it is easy to distribute, install, configure, and
administer. Secondly, and for our purposes more
importantly, a developer can easily extend and
customize the Asterisk functionality with additional
software modules that may be written in programming
language of the developer’s choice.

Figure 1 shows the CallerID++ architecture.
CallerID++ contains three major components, a
Context Reader, Context Evaluation and Presentation,
and Context Collection. From a high-level point of
view, the responsibilities of these three modules are as
follows. Depending on the callee’s current user context
and the caller’s profile (see below), the call context
may have to be collected from the caller. Gathering the
call context translates into presenting the caller with a
set of brief queries about the ensuing call, and, if
he/she chooses to respond, collecting the user response
to these queries. The Context Reader component
dynamically populates the context queries required for
call context collection, based on the callee’s profile.
Context Collection, on the other hand, sends these
queries to the caller and constructs the call context
based on the caller’s responses. Subsequently, Context
Evaluation and Presentation injects the call context
into the existing call leg of the callee, to inform
him/her of the specifics of the ensuing call, and
presents the callee with several response alternatives.
Depending on the callee’s response, the new call is
either established or not. The remainder of this section
explains each of the modules, the design decisions, and
the overall process in greater detail.

4.1. Choosing the appropriate query set
To reduce the effort and cognitive load on the caller

during the call context collection stage, context queries
are deliberately kept succinct and require only brief
answers. The queries may contain, for example, (1)
perceived importance, (2) the call topic, (3) desired
response time window, and (4) expected duration of
the ensuing call. Questions 1, 3, and 4 simply require a
choice from a given set of possible responses.
Additionally, rather than using static queries, we

choose the context queries that are most suitable for
the current call. For example, a set of queries based on
the caller’s enterprise profile and role is more
appropriate for context collection than, say, using the
same questionnaire for users across the entire
enterprise. The role is a function of the caller and
callee’s positions in the organization and the topic of
the call. The positions of caller and callee can be easily
retrieved from the Hermes enterprise middleware,
while CallerID++ has complete information of the
topic of the call. In addition, the context queries can be
changed easily to suit a specific enterprise or group
need.

Negotiation
Framework

Context
Collection

Hermes Enterprise Middleware

Asterisk PBX

Context
Evaluation

Presentation

Initiator
Entity Recipient

Entity

<Response to Context Queries>

<Request Negotiation
Setup>

Context Reader

<Read Context Queries>

Caller ID++

<Response and Presentation>

Negotiation
Framework

Context
Collection

Hermes Enterprise Middleware

Asterisk PBX

Context
Evaluation

Presentation

Initiator
Entity Recipient

Entity

<Response to Context Queries>

<Request Negotiation
Setup>

Context Reader

<Read Context Queries>

Caller ID++

<Response and Presentation>

Figure 1: CallerID++ Architecture

Selection of a query set can be considered as a
policy defined by the enterprise or individual groups.
The policy, maintained at CallerID++, denotes the
most suitable query set for a specific type of calls and
additionally for specific caller/callee combinations.

4.2. Triggering call context collection
During the call establishment, we could trigger call

context collection in the following two ways: (1)
during the establishment of every new call or (2) when
the callee is busy with another call. While the first
option may be able to provide useful information to the
callee for each call he/she receives, providing context
information for every call may be too cumbersome for
the caller. Therefore, in our prototype, we activate the
call context collection mechanism only if the callee is
busy on another call. To determine whether the callee
is busy on a call, we maintain a list of all active
channels in the PBX and execute a simple search of the
list when the caller places a new call. If the search
concludes that the callee is on an existing call, the call
is intercepted and the call leg to the callee is not
established immediately. At this point in time, the
callee continues with the ongoing phone call without
any indication of a new call at her endpoint.

Next, we initiate the call context collection. Figure
2 shows the participating entities during call context
collection. The Context Collection module runs as an
Asterisk Gateway Interface (AGI) script, which
facilitates interaction with the Asterisk PBX using
standard interfaces. After intercepting a call, the
TextToSpeech module converts the textual query set to
audio files if the enterprise policy that defines context
collection queries has changed. If not, the
ContextCollection module retrieves stored audio files
that correspond to the selected query set. Finally, the
UserInteraction module uses standard interface
operations to set up a dialog with the caller. The dialog
contains the defined series of queries and collects the
caller responses. Caller responses are stored on the
Asterisk server as the call context. The UserInteraction

module also provides error-checking during the dialog
with the user by providing the user with an option to
re-enter his response.

Extending this idea further, we want to query the
context-aware communications middleware Hermes,
for the full callee user context to determine whether the

callee is engaged in other activities that make him/her
potentially unavailable for this phone call. Interfacing
with Hermes will also allow us to implement advanced
functionality that depends on the caller’s and callee’s
full user contexts. The reader is referred to [15, 16] for
further details on the Hermes middleware platform,
and its context collection mechanisms.

4.3. Rendering call context
The collected call context has to be presented to the

callee who is currently active on another call. We use
the MeetMe conferencing feature provided in Asterisk
to render the call context. Figure 3 shows a sample call
flow that illustrates the rendering process. In the call
flow in Figure 3, we assume that users A and B are
participating in an active call, and C originates a call to
user A. Since A is busy on a call, CallerID++ collects
the call context from C. Then, CallerID++ moves users
A and B into a temporary MeetMe conferencing
bridge. This call transfer is done transparently to users
with no change in voice quality or user experience.
Finally, the call context collected from C is conveyed
to A as a low decibel “whisper” message in her voice
channel. Thus, CallerID++ ensures the continuity of
the current call i.e., it does not interfere with the
callee’s ongoing call. For the call context whisper,
CallerID++ reuses the callee’s currently active PBX
channel and injects the context as a set of audio files.

In order to render the context information to other
types of endpoints (cf. Requirement 5 in Section 2), for
example an IM client or a Web browser, we have to
first determine that the user is both present and
available on such an endpoint, and then modify the
context format for that endpoint. CallerID++ can query
the Hermes middleware for other types of endpoints
that the user is present and available on. However, the
current prototype does not fully support context format
transformation for rendering call contexts on non-voice
endpoints.

Context Collection

Options

Text To Speech

Initiator Entity

<Response to Context Queries>

<Generate WAV queries>

Context Reader

<Read Context Queries>

User Interaction

<Originate>

<Read CLI options>

Context Collection

Context Collection

Options

Text To Speech

Initiator Entity

<Response to Context Queries>

<Generate WAV queries>

Context Reader

<Read Context Queries>

User Interaction

<Originate>

<Read CLI options>

Context Collection

Figure 2: Call Context Collection

4.4. Callee response
Once the call context has been rendered to A in

Figure 3, CallerID++ asks A for a decision on how to
respond to C’s call attempt and provides a mechanism
to collect A’s response to this question. The response
(whether the callee accepted the call or not) is
conveyed to the caller implicitly, i.e. either the call is
established (which conveys a yes from the callee) or
call is terminated with a message indicating the reason
(which conveys a no from the callee). Our existing
callee response mechanism provides contact
negotiation [13] in enterprise communications, which
so far has been largely unaddressed. Moving ahead, we
are interested in providing a broader range of response
options to the callee, some of which are discussed in
section 6.

4.5. User Experience
Since one of the most important goals for

CallerID++ is to increase user productivity it should
place the smallest possible cognitive load on its users.

During the execution of CallerID++, it interacts with
two types of users, callers and callees. CallerID++

<Meet Me>

A B
C

CallerID++

<Call A-B>

<Can Call A?>

<Call A-B (Meet Me)>

<Call A-B>

<Whisper (context) to A>

<Call C-CallerID++>

<Meet Me>

A B
C

CallerID++

<Call A-B>

<Can Call A?>

<Call A-B (Meet Me)>

<Call A-B>

<Whisper (context) to A>

<Call C-CallerID++>

Figure 3: Call Context Presentation

interacts with a caller initially for gathering call
context and later to convey the callee’s response to the
caller’s call request. For the callee, on the other hand,
the only CallerID++ interaction is the whisper that gets
injected into the ongoing call informing the callee of
the ensuing call and the response options. Thus, during
a single call establishment process, the total overhead
CallerID++ places is proportional to the query set for
the caller.

5. Related Work
Existing concepts that attempt to minimize or avoid

unwanted interruptions of communication recipients
and meet some or all of the other challenges for
CallerID++ can be divided into two classes: some
techniques provide the communication recipient with
filtering methods that provide cues about the
communications initiator and allow the recipient to
decide whether to accept an incoming communication
request [17]. Other techniques convey the recipient’s
context information to a communications initiator and
allow the initiator to decide whether to make a
communication attempt [12, 3, 1]. Neither class of
techniques establishes a recipient’s availability relative
to the specifics of the communication attempt, which is
the goal of CallerID++.

Lilsys [12] proposes the use of an array of physical
sensors to gather context details of an enterprise user
and then presents an inferred abstraction of the user’s
availability to a prospective caller. In addition, Lilsys
provides mechanisms similar to Instant Messaging [5]
for users to change their perceived availability status.
The Awarenex [3] and Live Addressbook [1] systems
on mobile devices provide communications initiators
with location and availability status information about
recipients. In contrast to these out-of-band user
activity and context collection mechanisms,
CallerID++ is essentially a transparent in-band context
collection mechanism that gets triggered automatically
only when the prospective recipient is busy (on a call).
Work discussed in [10, 11] exposes user context
details to potential initiators at a much more fine
grained level than Lilsys. However, a model that
exposes detailed user information to an initiator may
raise privacy concerns. Furthermore, it burdens the
initiator with the task of interpreting the recipient’s
context details prior to every communications attempt,
even if the recipient is currently available for every
communication request. Forcing the initiator to make a
communications decision may also have the
undesirable side effect of unnecessarily deterring
initiators from some communication attempts.

Simple filtering techniques, on the other hand, are
often designed as rule-based, non-proactive systems.
For example, such systems typically expect the user to
define and change the location information i.e., the
endpoint that user is currently associated with [1].
Furthermore, these techniques give little choice to the
initiator during the communication establishment such
as specifying the perceived urgency and the topic of
the communication attempt.
Work in [8] proposes a talk time model based on a
simple timer that allows enterprise users to agree on an
appropriate time to talk. A graphical interface called
Negotiator is deployed on a handheld device or a
laptop computer so that users can exchange and
possibly agree on the time of communication.
CallerID++ and Negotiator both provide negotiation
frameworks. However, the negotiation in CallerID++
is embedded into the communication path, while in
Negotiator it is out-of-band. CallerID++ initiates
negotiation on a communication attempt when the
recipient is considered busy. Negotiator, on the other
hand, begins negotiation prior to a communication
attempt, regardless of the recipient’s context. The basis
for negotiation in CallerID++ is the call intent while in
Negotiator it is the communication time. It would be
interesting to combine the two technologies and
measure the effectiveness of such a synergy.

SenSay [6] is a context-aware mobile phone that
modifies its behavior based on its user’s state and
surroundings. Physical sensors placed on the user’s
body gather relevant data to determine the user’s
context. If a recipient is considered uninterruptible,
any call attempt to the recipient’s phone results in an
SMS message that informs the caller of the
unavailability of the callee. If the initiator chooses to
try again after a certain configurable time period, the
call goes through. CallerID++ is similar to SenSay in
terms of collecting context data transparently.
However, CallerID++ differs from SenSay in the
following ways: It provides a call context collection
mechanism that gathers call details such as the
initiator’s call intent and perceived call importance, it
conveys the collected context to the recipient if the
latter is busy (e.g., in another call), and it supports
contact negotiation by allowing the recipient to choose
from various responses to the call attempt.

6. Concluding Remarks and Future Work
In this paper, we showed that embedding context-

aware applications in the communication paths
between users in an enterprise environment leads to an
increase in user productivity. Due to the pervasive
nature of stationary and mobile enterprise telephony,

we focused on voice communications and developed
CallerID++, a context-aware application that improves
upon the shortcomings of traditional caller ID. Unlike
caller ID, CallerID++ collects the call context
including the call purpose from the caller and makes it
available to the callee to arrive at a better decision
about call acceptance or rejection. CallerID++ also
supports a variety of callee responses beyond call
acceptance and rejection. We discussed the design and
implementation of a CallerID++ prototype in
conjunction with the Asterisk PBX.

We are currently implementing a variety of
advanced response options available to a callee. Such
options include accept, reject, hold, reject and
acknowledge, reject and auto-reconnect later, reject
and request callback later, reject and offer callback
later. The hold option allows the callee to quickly
wrap up an ongoing activity such as completing an
email and to then take the call. While the caller waits
for the callee, the caller might hear music on hold. The
reject and request callback later option asks the caller
to try calling again at a later time, whereas the reject
and offer callback option would indicate to the caller
that the callee will later try to establish the call. Reject
and auto-reconnect later is an instruction to
CallerID++ to reconnect the two parties at a time when
both are likely to be available for the call.

Additionally, we intend to carry out usability
studies of the CallerID++ application in an enterprise.
For example, we are interested in determining the
willingness of callers to answer the call context
questionnaire. We also want to find the smallest size of
the call context questionnaire that still conveys the
salient points of the call context. Most importantly, we
intend to measure the effective productivity increase
through the use of CallerID++.

7. References
[1] A. E. Milewski, and T. M. Smith, “Providing presence
cues to telephone users”, In Proceedings of the ACM
Conference on Computer Supported Cooperative Work
(CSCW2000), NY, ACM Press, 2000.
[2] B. Nardi, S. Whittaker, and E. Bradner, “Interaction and
Outeraction: Instant Messaging in Action. In Procedings of
the Conference on Computer-Supported Cooperative Work
(CSCW) 2000. NY: ACM Press, p. 79-88. 2000.
[3] J.C. Tang, N. Yankelovich, J. Begole, M. Van Kleek, F.
Li, and J. Bhalodia, “ConNexus to Awarenex: Extending
awareness to mobile users”, In Proceedings of the
Conference on Computer Human Interaction (CHI), New
York, 2001.
 [4] J.J. Cadiz, A. Narin, G. Jancke, A. Gupta, and M. Boyle,
“Exploring PC-telephone convergence with the enhanced
telephony prototype”, In Proceedings of the Conference on
Computer Human Interaction (CHI), New York, USA, 2004.

[5] M. Day, J. Rosenberg, and H. Sugano, “A Model for
Presence and Instant Messaging”, RFC 2778, February 2000.
[6] D. Siewiorek, A. Smailagic, J. Furukawa, A. Krause, N.
Moraveji, K. Reiger, J. Shaffer, and F. Lung Wong, "SenSay:
a context-aware mobile phone", In The Proceedings of
International Symposium on Wearable Computers (ISWC
2003) 2003, White Plains, NY.
[7] Microsoft Office Live Communications Server,
<http://office.microsoft.com/en-
us/communicationsserver/default.aspx>, on 02-15-2007.
[8] M. Wiberg, and S. Whittaker, “Managing Availability:
Supporting Lightweight Negotiations to Handle
Interruptions”, ACM Transactions on Computer-Human
Interaction, Vol. 12, No. 4, December 2005.
[9] J. M. Hudson, J. Christensen, W. A. Kellogg, and T.
Erickson, “I’d Be Overwhelmed, But It’s Just One More
Thing to Do: Availability and Interruption in Research
Management”, In Proceedings of ACM Conference on
Human Factors in Computing Systems (CHI2002), New
York: ACM 2002.
[10] M. Danninger, T. Kluge, and R. Stiefelhagen,
"MyConnector – Analysis of Context Cues to Predict Human
Availability for Communication", In The Proceedings of the
International Conference on Multimodal Interfaces (ICMI
2006), Alberta, Canada November 2-4, 2006.
[11] M. Raento, A. Oulasvirta, R. Petit, and H. Toivonen,
"ContextPhone - A prototyping platform for context-aware
mobile applications", IEEE Pervasive Computing, 4 (2): 51-
59, 2005.
[12] J. Begole, N. E. Matsakis, and J. C. Tang, "Lilsys:
Sensing Unavailability", In the Proceedings of the ACM
Conference on Computer Supported Cooperative Work
(CSCW 2004), Chicago, Illinois, November 6-10, 2004.
[13] J. C. Tang, “Approaching and leave-taking: Negotiating
contact in computer-mediated communication”, ACM
Transactions on Computer-Human Interactions (ToCHI),
2001.
[14] Asterisk open-source PBX and telephony toolkit,
<http://www.asterisk.org/>, on 02-15-2007.
[15] A. John, R. Klemm, A. Mani, and D. Seligmann,
“Hermes: A Platform for Context-Aware Enterprise
Communication”, Third International Workshop on Context
Modeling and Reasoning (CoMoRea 2006), March 13-17,
2006, Pisa, Italy.
[16] A. Kavimandan, R. Klemm, A. John, D. Seligmann, and
A. Gokhale, "A Client-Side Architecture for Supporting
Pervasive Enterprise Communications”, Proceedings of The
IEEE International Conference on Pervasive Services (ICPS
2006), Lyon, France, June 26-29, 2006.
[17] E. Horvitz, A. Jacobs, and D. Hovel, “Attention-
sensitive Alerting”, In Proceedings of Conference on
Uncertainty and Articial Intelligence (UAI 1999). 1999.
Stockholm, Sweden: Morgan Kaufmann. p. 305-313.

http://www.asterisk.org/

	1. Introduction
	2. Challenges and Requirements for the CallerID++ Application
	3. Operational Description of CallerID++
	4. Architecture and Implementation of CallerID++
	4.1. Choosing the appropriate query set
	4.2. Triggering call context collection
	4.3. Rendering call context
	4.4. Callee response
	4.5. User Experience

	5. Related Work
	6. Concluding Remarks and Future Work
	7. References

