Scalable and Adaptive Software Defined Network Management
for Cloud-hosted Group Communication Applications

Prithviraj Patil*

The MathWorks Inc
Natick, Massachusetts, USA
prithviraj6116@gmail.com

ABSTRACT

Group communications form the primary communication pattern
for many cloud-hosted applications and cloud infrastructure ma-
nagement services, such as system health monitoring, multimedia
distribution, collaborative applications and distributed databases.
Although IP multicast has been used to support group communica-
tion semantics in diverse Internet-based distributed applications, its
deployment in cloud Data Center Networks (DCNs) has been limi-
ted due to its higher resource consumption, scalability, and stability
issues, which in turn degrades the utility of the cloud. Software
Defined Networking (SDN) has enabled the re-engineering of mul-
ticast capabilities to overcome these limitations. To that end, this
paper presents an autonomous, dynamic and flexible middleware
solution called SDN-based Multicast (SDMC), which provides both
network load-aware and switch memory-efficient group communi-
cation semantics in DCNs. Thus, SDMC improves DCN resource
utilization while allowing applications to remain agnostic to the
underlying group communication semantics by efficiently toggling
between unicast and multicast in accordance with changing net-
work bandwidth and switch memory usage. Empirical studies com-
paring SDMC with traditional IP multicast shows up to 60% better
latency performance for different DCNs topologies, and up to 50%
better performance in the switch memory utilization for multicast
groups exceeding size 30.

CCS CONCEPTS

» Networks — Network resources allocation; Cloud compu-
ting; Data center networks; « Computer systems organiza-
tion — Cloud computing; Fault-tolerant network topologies;

KEYWORDS

Cloud Computing; Adaptive Multicast; Software Defined Network;
OpenFlow; Data Center Networks.

“Work conducted as part of doctoral studies at Vanderbilt University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

UCC °17: 10th International Conference on Utility and Cloud Computing, December 5-8,
2017, Austin, TX, USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5149-2/17/12...$15.00
https://doi.org/10.1145/3147213.3147220

Akram Hakiri
Univ de Carthage, ISSAT
Mateur, Bizerte, Tunisia
akram.hakiri@gmail.com

Shashank Shekhar and

Aniruddha Gokhale
Dept of EECS, Vanderbilt University
Nashville, Tennessee, USA
{shashank.shekhar,a.gokhale}@
vanderbilt.edu

1 INTRODUCTION

Many cloud infrastructure management tasks as well as cloud-
hosted applications require group communication semantics in
cloud Data Center Networks (DCNs) [3]. For example, DCNs must
offer diverse elasticity techniques to provide commodity and tenant-
based services for scaling up or down of computing, storage and net-
work resources, e.g., Amazon Elastic Compute Cloud (Amazon EC2)
and services like Twitter and Facebook, which use multicast-centric
architectures. Additionally, several fault management strategies,
such as passive and active replication, failover, state synchroniza-
tion of cluster servers and quorum management in active replication
require group communications to tolerate and mitigate faults [37].

Group communication is also used to enforce security solutions
in DCN, such as prevention, detection and removal of malware
and viruses, as well as in performing bulk software installment,
update, and upgrade [28]. For example, software management tools
for cloud infrastructure like Chef send the same commands to mul-
tiple (i.e., 100s of) virtual machines during software installation
and update. Likewise, access control policies in DCNs use group
communication to manage users, groups, passwords, and user pri-
vileges [30].

Two key considerations dictate the performance of group com-
munications in DCNs. First, the router/switch’s available network
capacity (i.e., available bandwidth) is required to estimate the band-
width available for data traffic and control messages that can be
forwarded along their multiple ports concurrently [32]. Hence, the
ability to instrument the router’s (or switch’s) network capacity
is crucial to estimating the network load in terms of the overall
bandwidth that a router/switch is able to support. Second, since
the memory of the routers/switches (including their queuing buf-
fers) holds packets and connection state information of the traffic
transiting across the network devices, it is important to maintain
the router/switch memory utilization under a given threshold to
avoid buffer overflows [12].

Group communication semantics for contemporary DCN-hosted
applications are often realized using multicast, e.g., IP multicast
(IPMC), which is a commonly used group communication protocol
in the Internet to support multi-point communication requirements
so as to conserve bandwidth and reduce the load on servers [23].
IPMC, however, incurs substantial security, performance and sca-
lability degradation in DCNS, e.g., IPMC can be exploited for dis-
tributed Denial-of-Service attack [1]. Moreover, existing multicast
routing algorithms, such as Protocol-Independent Multicast (PIM)
(e.g., PIM Sparse Mode (PIM-SM) and PIM Dense Mode (PIM-DM))
and Multicast Open Shortest Path First (MOSPF), require substantial

https://doi.org/10.1145/3147213.3147220

manual deployment and management efforts by the cloud opera-
tors [19]. Furthermore, the Internet Group Management Protocol
(IGMP) [7], which is used by IPMC for dynamic membership re-
gistration, sends multiple messages to all the routers to notify the
occurrence of group events, which requires significant CPU resour-
ces, and substantial memory resources to hold the table size for IP
multicast [26].

A further downside with IPMC concerns its limited state space in
commodity routers which impedes router functionality since they
must maintain routing states and perform a costly and wasteful per-
group translation [31]. Hence, packet filtering becomes ineffective
in large multicast groups and in turn the overwhelmed receivers
will begin dropping packets. Although several improvements, such
as Hierarchy-Aware multicast [25], multi-path routing [18], and
Bloom filter-based group management [15], address these issues,
they cannot be readily adopted in DCNs due to their complexity,
security issues, and the manual efforts required in managing them.

Being cognizant of the switch memory utilization as well as the
network load to avoid drastic problems is a critical requirement for
any group-based communication semantics in DCNs. Complicating
this requirement is the fact that DCNs often comprise a very large
number of distributed network equipment, which makes it harder
to instrument, coordinate and maintain a consistent and global view
of the system without developing additional and complex solutions.
It is in this context that emerging approaches in the form of Net-
work Function Virtualization (NFV) or network softwarization and
Software-Defined Networking (SDN) [13] hold promise [27]. NFV,
for instance, aims to virtualize a set of network functions by moving
network function into software packages, meaning that building
a service chain no longer requires acquiring hardware. Comple-
menting NFV is SDN which separates the control plane from the
data or forwarding plane. NFV can enable multicast routing on SDN
by constructing a traffic forwarding topology, deploying the requi-
red multicast functions and steering traffic through the constructed
multicast trees [35]. Recent efforts [5, 9] have used SDN for efficient
bandwidth management during the creation of multicast trees by
using topology information in DCNs. Despite this promise, current
approaches cannot autonomously adapt to the network load and
router (or SDN switch) memory utilization, which is critical to the
scalability of group communications, and also for monitoring and
evaluating network performance in DCNs.

To leverage the benefits of NFV/SDN while addressing unre-
solved challenges and limitations in recent SDN-based multicast
efforts, we propose an autonomic Cloud resource management ar-
chitecture called SDN-based Multicast (SDMC) to achieve utility in
clouds by supporting dynamic and flexible, network load-aware and
switch memory-efficient group communications in DCNs. SDMC is
not a new multicast protocol; rather it is a SDN-enabled distributed
middleware framework for improving utility in DCNs that provides
dynamic resource management by intelligently and dynamically
switching different group communications flows between unicast
and multicast thereby balancing between network bandwidth and
switch memory utilization. SDMC is fully decoupled from any spe-
cific multicast protocol, such as IPMC. Moreover, the middleware
aspect enables a large number of DCN-based group communica-
tion applications and services to avail of our adaptive resource
management solution.

The key contributions of these paper are:

e We describe the architectural innovations and algorithms
in SDMC that provide an autonomous, adaptive and flexi-
ble network link and switch memory load-aware multicast
approach for data center networks.

e We present details of our distributed SDMC middleware,
which is manifested in the form of (i) a suite of SDN net-
work applications hosted on a SDN controller and OpenFlow-
enabled switches [24], and (ii) a SDN middleware layer on
the network hosts where applications reside.

o We evaluate the effectiveness of our approach in different
data center network topologies along a number of metrics,
such as load variations and switch-memory utilization.

The rest of the paper is organized as follows: Section 2 describes
the design and implementation details of SDMC. Section 3 provides
an empirical evaluation of SDMC. Section 4 discusses related work
and compares them to SDMC. Finally, Section 5 presents concluding
remarks alluding to lessons learned and future work.

2 DESIGN AND IMPLEMENTATION OF SDMC

This section delves into the details of SDMC. We first present three
key contributions in SDMC required to support application-agnostic
dynamic and adaptive resource management, and then present the
architectural details that enable us to realize utility in the cloud.
Subsequently we present the algorithms that use the framework to
perform an adaptive, network link and switch memory load-aware
multicast for data center networks.

2.1 Contribution 1: Two-level SDMC-ID
Structure

A key requirement for SDMC is to support application-agnostic
adaptive behavior and promote the reuse of multicast routing trees.
To that end, SDMC defines a new multicast identifier space cal-
led SDMC-ID.! The SDMC-ID space is divided into two regions:
application-level (or external, i.e., ID.) and network-level (or in-
ternal, i.e., ID;). Applications using SDMC interact using only the
external SDMC-IDs while the network data path deals only with
internal SDMC-IDs. To keep applications agnostic of internal IDs,
SDMC supports a translation layer in the form of a middleware
on each host (see Section 2.4). This two-level SDMC-ID structure
allows SDMC to use the same multicast routing tree (with the same
internal SDMC-ID) with overlapping receivers belonging to two
different external SDMC IDs.

SDMC maintains the mapping between the two types of IDs by
encoding the participants’ external multicast channel IDs and the
node-specific internal IDs, and storing it in each immediate SDN
router/switch without requiring packet header modification. As
shown in Figure 1, traditional multicast uses the same multicast
ID for all the communication needs. In contrast, SDMC uses the
external SDMC multicast ID for communication between applica-
tion endpoints (i.e., sender and receiver) and network endpoints
(i.e., switches or controller). For the communication between the
controller and switches, SDMC uses the corresponding internal

!We use SDMC-ID to denote both the identifier space for SDN-enabled multicast as
well as the actual external or internal IDs assigned to a flow. Its semantics should be
evident from the context.

multicast ID. Hence, the communication over lines 1, 2 and 3 uses
external (or application-level) multicast ID while the communica-
tion over lines 4 and 5 uses internal (or network-level) multicast ID.

Receiver ——— > . P . Sender
4——— Switch <«———— Switch ——
Host 4 3 Host

[5

(a) Traditional Multicast Topology

Sender Switch
Host

T—Z Controller 44T

3
_ 1 5 !
Receiver Switch
Host

(b) Architecture of the SDN-enabled Multicast Approach

Figure 1: Comparison between the SDN-enabled Multicast
and Traditional IP Multicast

2.2 Contribution 2: Lazy Initialization Strategy

Our second contribution lies in the initialization process for the
SDMC senders/receivers and the SDMC routing tree creation, which
uses a lazy approach to reduce the initial latency that is otherwise
incurred by the receivers in traditional multicast and also to allow
flexibility in adapting dynamically to the network load and switch
memory. SDMC exhibits this lazy approach in its operation while
switching to multicast communication from the default unicast.
Specifically, the immediate SDN router/switch does not rely on
multicast routing information right away; rather it can be stateless
for forwarding since it uses existing unicast routing information.

This lazy approach manifests itself in three different situations.
First, when a new receiver requests to listen on an external SDMC-
ID, it is not immediately added to the SDMC-ID as a multicast
receiver but rather as a unicast destination for all the existing sen-
ders of that SDMC-ID, if any. Second, the SDMC multicast routing
tree for a new receiver is created in the controller but is not installed
(e.g., in the form of OpenFlow rules [4]) in the switches right away.
Third, when a receiver (or sender) leaves the SDMC-ID group, the
multicast tree is not updated immediately. All these decisions (i.e.,
when to add a receiver as a multicast destination; when to install
the multicast routing tree in switches; and when to update the
multicast routing tree after a receiver leaves) are taken by SDMC
holistically based on all other SDMC sender/receiver statuses and
depending on the network load and switch-memory utilizations
(see the algorithms in Section 2.5).

Figure 2 shows the lazy initialization of a sender. It shows the
setup when two receivers subscribe to this sender. Even though the

Sender Sender Sender

SDMC-IDe SDMC-IDe SDMC-IDe
v — E— —
~ SDMC-IDi [SBNEIDI Unicast ID | [SBMEIDI Unicast ID 1 Unicast ID 2
2 v h J 2 2 v
Blocked Blocked Allowed Blocked Allowed Allowed
In In In In In In
Switch Switch Switch Switch Switch Switch

No Receivers After one receiver After two receivers

Figure 2: Initial SDMC Sender Setup showing External and
Internal SDMC-IDs

sender has a multicast ID attached to it, receivers are added as a
unicast destination to reduce the start-up latency. This enables the
receiver to receive packets immediately since there is no need to
create any multicast routing tree in the switches. The corresponding
behavior on the receiver side appears in Figure 3. As seen from
these figures, both the sender and receiver use only the external
SDMC-ID, i.e., ID, in Figures 2 and 3, which is mapped either to
an internal SDMC-ID (multicast), i.e. ID; in Figures 2 and 3 or a
unicast, transparently to the application layer.

Receiver 1 Receiver 2
Y)
SDMC-IDe SDMC-IDe

- Unicast ID 1 - Unicast ID 2

A A A A
Blocked Allowed Blocked Allowed
In In In In
Switch Switch Switch Switch

Figure 3: Initial SDMC Receiver Setup

2.3 Contribution 3: Network Link and Switch
Memory Monitoring

To make dynamic resource management decisions, SDMC must
periodically keep track of the utilizations of network links and
switches. SDN switches use counters for tracking the number of
packets that are sent through a given link and record link forwar-
ding success and failure. This is used to track the bandwidth utili-
zation and detect if certain packets are consuming more bandwidth
than anticipated. Using these counters, the controller can make a
decision about the link utilization. To that end, SDMC provides a
special capability in the SDN controller via a network management
application (see Section 2.4). SDMC then populates the network
link utilization information against the SDMC-IDs which are using
that link for unicast for a given receiver. The network topology
corresponding to this scenario is shown in Figure 4.

SDMC also keeps track of the memory utilization of the net-
work switches with the help of the controller. Since the controller
installs rules in the switches, it knows exactly how many Open-
Flow rules exist on each of the switches. Each switch comes with
a maximum number of OpenFlow rules that it can accommodate.
So we measure the switch-memory utilization as the number of

Network Link Monitoring for L1

#Link Utilization = 17%

#Unicast Receivers:
1. Receiver-1 on SDMC-ID-A Unicast Receiver
2. . (Receiver-1 on

Sender Link-L1 SDMC-ID-A)
Host W Switch-S1 === Switch-S2 Host

Multicast Receiver

Sender (Receiver-2 on
Host Switch-S3 M SDMC-ID-B)
Host

Switch Memory Monitoring for Switch-S3
#Memory Used/Available =10000/ 20000
#Multicast Receivers:

1. Receiver-2 on SDMC-ID-B

5

Figure 4: Network Link and Switch Memory Monitoring

actual OpenFlow rules installed in the switch against the maximum
number of OpenFlow rules allowed.

2.4 Putting it Together: SDMC Architecture
and Middleware Design

To support the key capabilities of SDMC outlined above, SDMC is
realized as a distributed SDN-based middleware framework shown
in Figure 5, which comprises the following: the core intelligence
of SDMC is made available as a suite of SDN applications (called
SDN NetApps in SDN parlance) that execute inside a (logically)
centralized controller as shown in the figure; and as a SDN middle-
ware layer available on each host where the senders and receivers
use the APIs provided by SDMC. SDMC uses the traditional Open-
Flow channel for communication between the controller and SDN
routers, where these routers are connected to host machines (phy-
sical or virtual). The use of SDN principles allows SDMC to be
flexible and dynamic. The remainder of this section explains each
component.

SDMC SDN controller: The DCN is managed by a (logically)
centralized SDN controller, which is placed on a dedicated ma-
chine(s) with dedicated out-of-band connections to all the OpenFlow-
enabled routers. The SDMC-specific SDN NetApps hosted on the
controller provide the core intelligence of SDMC as follows:

o Topology Discovery: This NetApp provides autonomous dis-
covery of joining and leaving routers and hosts. It uses the
link layer discovery protocol (LLDP) to assist the controller
in identifying the joining or leaving multicast group partici-
pants.

o Topology Management: This NetApp creates a graph topology
of all nodes connected to the controller. By manipulating the
connected graph, the controller can activate or de-activate
the connected routers, hosts and the links connecting them.

o Monitoring: This NetApp provides real-time reports on va-
rious network parameters, such as bandwidth utilization,
latency, packet error rates, resource utilization, etc to the
controller.

e Routing: This NetApp implements the multicast intelligence
(explained in Section 2.5.3) to build the dynamic multicast
routing tree at run-time.

Monitoring Routing Topology Management

SDMC Resource Manager Topology Discovery

SDN Controller

——A—
OpenFlow
Switch

OpenFlow

OpenFlow
Switch Switch

Sender Receiver L OpenFlow /

Switch Sender Receiver
SDN Middleware I_|
SDN Middleware

SDN Middleware

Yellow is SDMC contributions

Figure 5: SDMC Architecture

® Resource Manager: This NetApp manages the SDMC ID space
and the mapping between the external and internal IDs
(explained in Sections 2.5.1 and 2.5.2), and determines and
enforces the resource management decisions (explained in
Section 2.5.4).

OpenFlow-enabled switches: In a typical DCN, a number of
OpenFlow-enabled switches are connected to form a network with
topologies like mesh, tree or jellyfish. Each switch contains an
OpenFlow client to connect to the SDN controller. The OpenFlow
client conforms to the OpenFlow protocol by providing capabilities
to add, remove, update, and delete packets inside the network devi-
ces. The OpenFlow logic is designed in terms of flow processing
controlled by a group of flow tables. Flow tables are composed of
a set of entries to process packets whose headers match predefi-
ned patterns in the header field. The OpenFlow protocol specifies
the formats of the messages exchanged between controllers and
remote switches through a secure channel so that commands and
packets can be exchanged securely. The mapping of the data plane
into forwarding tables provides a simple abstraction to describe
the common requirements of network equipment to store, process,
and forward packets hop-by-hop. Thus, the abstraction provided
by the OpenFlow protocol enables the use of open and standardi-
zed interfaces that can be used to program network devices in a
vendor-agnostic manner.

Host machines and SDMC middleware: Multicast functiona-
lities, which deal with overlay multicast, are implemented using
SDMC’s SDN middleware that runs in each of the host machines.
The SDN middleware controls the communication using a host
manager service to translate endpoints listening on multicast IDs
into multiple unicast IDs, and switch endpoints from unicast to
multicast and vice-versa transparently to the applications. Those
endpoints can decide whether senders or receivers are able to send
or listen only on SDMC IDs or not.

Host manager: The host manager NetApp (not shown) keeps
track of all machines connected to the network. This application
is used by SDMC to communicate with the SDMC middleware on

the host machines. This application is required since we build a
hybrid multicast protocol by combining application-level multicast
(or overlay multicast) and native network-level-multicast.

SDMC participants: The SDMC participants (senders and re-
ceivers) run on top of the SDMC middleware on the hosts.

2.5 SDMC Behavior and its Dynamic Resource
Management Algorithms

We now describe the runtime operation of SDMC and explain its
dynamic resource management algorithms. We illustrate these ope-
rations in the form of sequence of activities executed by SDMC in
response to various events like sender and receiver join, and sender
and receiver leave.

2.5.1 Algorithm for Sender Join. When a participant (sender)
wants to send data on an application-level SDMC-ID, M€, the follo-
wing sequence of steps described in lines 4-10 of Algorithm 1 are
carried out.

Algorithm 1: Joining Multicast Group

Data: M€, M, Uyq, Uyp
Result: sender or receiver joined SDMC
senderJoinRequest(M €);
receiverJoinRequest(M €, Uy1);
while Listening do
if sender then
if firstsender then
create new M? for M€; installOFTransRule(M € — Mi) in this sender
and in all the existing receivers;

PN

7 else

8 ‘ retrieve M’ for M€ installOFTransRule(M¢ — M) in this sender;
9 end

1o installOFTransRule(M¢ — Uy-1, Upy, ...) in all the senders;

11 else

12 addUnicastDestToSenders(Uy1);

13 nonBlocking_AddToMulticastTree(Uy1);

14 waitForTriggerToToggleToMulticast(Uy1);

15 end

o The sender uses its SDN middleware to forward the request
to the SDMC Routing NetApp. The latter assigns an appro-
priate internal SDMC-ID M to correspond to the requested
application-level SDMC ID, M€. The SDMC Routing NetApp
at the controller side installs an OpenFlow rule in the edge
switch of the sender to block all the traffic with destination
ID M.

o Thereafter, if this sender is the first sender for M€, then the
SDN middleware on the sender node (and for all the existing
receivers) installs a translation rule for M¢ < M! in the
host middleware so that (1) when sender sends packets on
external SDMC-ID M¢, it gets translated to internal SDMC
ID M and also (2) when any receiver receives the packet
with SDMC-ID M/, it gets translated to application-level
external SDMC-ID M°.

e Additionally, the SDN middleware of the joining sender in-
stalls the translation rule M¢ — (M?, U1, Uyp), to convert
M?¢ into destinations of the existing unicast receivers, i.e. Ur;
and Uy2. This step is performed only if at least one receiver
is listening on M¢ as a unicast destination. This allows the
sender to start sending packets using unicast immediately
instead of incurring the delay in traditional multicast.

2.5.2 Algorithm for Receiver Join. Similar to the joining of a
sender, when a joining receiver wants to listen on an application-
level SDMC-ID M, it requests its SDN middleware to retrieve the
internal network-level SOMC-ID M’ from the SDMC SDN NetApp.
Then, the SDN middleware installs two translation rules M€ < M!
and M€ < U, (where U, is the unicast ID of this receiver), while
giving preference to the M® < U, rule over M® < M’ so that
the first rule gets matched. This forces the receiver to listen on the
unicast ID instead of multicast ID to begin with. This is part of the
lazy initialization of SDMC receivers.

Lines 11-15 of Algorithm 1 illustrate the joining operation for a
SDMC receiver. The following sequence of steps are followed:

e When a new receiver (rl) sends a request to listen on M€,
the receiver is not immediately added to M¢ as a multicast
destination. Instead it is added as a unicast destination (as
Uy1) for all the existing senders of M.

e Next, SDMC concurrently creates a multicast routing tree
for a new receiver as explained in Section 2.5.3. Even though
every existing sender of M has a multicast ID (in the form
of M i) attached to it, new receivers are added as unicast
destinations for reducing the startup latency. This allows the
joining receiver to receive packets immediately.

o The receiver is transparently switched to multicast only if
the network link utilization crosses a threshold limit, as
explained in Section 2.5.4.

As part of these steps, the SDMC SDN NetApp searches for all the
senders of M! and adds the unicast destination of U, in their SDN
middleware translation rules. Then, it requests the unicast routing
paths for this receiver to every sender of M’ from the Routing
module at the SDN controller. Based on these routing paths, it then
updates the controller’s routing table by adding a sender-receiver
pair against each appropriate network link and switch.

2.5.3 Multicast Tree Calculation. In the current IP multicast, the
number of multicast forwarding states is proportional to the number
of multicast groups where the number of multicast groups grow
proportionally to the number of forwarding states. Additionally, the
number of control messages required to maintain the forwarding
states will grow in the same manner. This scalability issue has to
be solved before multicast can be deployed over the Internet. To
address this issue, SDMC allows optimally aggregating multicast
groups so that the controller can aggregate local groups into virtual
meta-groups to perform routing tree aggregation and addressing.

To that end, the SDMC Routing NetApp in the SDN controller
implements Algorithm 2 to compute the multicast tree. Based on
inputs from the topology discovery NetApp, it keeps track of all
links in the network and adds them to the link list (L), and creates
a list of nodes (N) joining those links as shown in lines 1 to 6. Mo-
reover, since there could be multiple multicast groups in the DCN,
SDMC finds the address of the group from the list of all available
multicast groups and returns a list of routers in the same group, i.e.,
the multicast tree (lines 7-9). Subsequently, SDMC calculates the
shortest path in the multicast tree and installs the OpenFlow rules
for that multicast tree (lines 10 and 11).

Since the DCN environment can carry multiple concurrent multi-
cast sessions, SDMC allows accommodating all the multicast groups
while allowing the optimization of the network resource among

Algorithm 2: Minimum Steiner Multicast Tree and Route
Calculation

Data: M€, N
Result: Minimum Steiner Multicast Tree
1 foreach M€ in N do
if M€ ! visited then
visited.add(M€);
tree.append(M€);
end
end
for i « tree[0] to len(tree) do
‘ multicastTree= Steiner(tree,Mi, ME);
end
installMulticastRules(multicastTree, M i, ME);
return multicastTree;

O Y0NS U W

multiple co-existing multicast trees. As shown in line 8 in Algo-
rithm 2, SDMC allows multicast tree packing based on the least
cost tree (Steiner tree) to perform adaptive resource management.
In random graphs, such as distributed routers in the Internet, the
Steiner tree is known to be NP-Complete. Nonetheless, the routers
and switches in DCNSs are organized as structured graphs so that it
is possible to build optimal or near-optimal routing trees using a
Steiner tree.

Furthermore, as SDMC can dynamically perform the multicast-
to-unicast translation, a source group can send an aggregation
packet to the edge switch using the unicast ID, typically IP unicast
address, so that the controller installs the required OpenFlow rule
to perform multicast group registration. This strategy offers band-
width efficiency for a large number of OpenFlow rules because the
translation happens likely close to the receiver. This way, SDMC
drastically reduces the required network states and concentrates
them in a single switch at the network edge close to the receiver.
Furthermore, the application remains agnostic to the rest of the
network topology changes because transparent to the application,
SDMC makes trade-offs to retain the benefits of group communica-
tion by dynamically switching between unicast and multicast, and
effectively limiting the explosion of the network states during the
communication.

2.5.4 Adaptive Resource Management. SDMC keeps track of
network links and their utilization with the help of the SDMC
Monitoring NetApp. Then, it populates the link utilization infor-
mation against the SDMC-IDs which are using that link for the
unicast for a receiver. Additionally, SDMC also keeps track of the
memory utilization of the network switches with the help of the
controller. SDMC reduces switch memory utilization by dynami-
cally switching some multicast receivers to unicast destinations.
This is due to the removal from the switch of OpenFlow rules used
for multicast routing of those toggled receivers. Similarly, SDMC
also reduces link utilization by switching some unicast receivers to
multicast destinations, which reduces packet duplication and hence
decreases network link utilization. In this way, SDMC trades off
link and switch memory utilization keeping both of them below the
threshold limits. In current work we do not consider both metrics
at once. Moreover, SDMC also does not handle the case when both
metrics are high, nor does it handle oscillations in adaptations.

Based on insights from [2], we maintain the threshold limits
under 70% of the resource utilization to avoid possible SLA violation
while decreasing the energy consumption as soon as possible. To

trigger the dynamic adaptations, SDMC registers listener events
in the SDMC Monitoring NetApp to get notifications about link
and switch memory threshold violations. Algorithm 3 describes the
procedure for this dynamic and adaptive resource management.

Algorithm 3: Adapting to network link and switch me-
mory utilization

Data: switch(s1), Link(11), receiver(rl, Uy1), SDMC(Mi)
Result: Receiver toggled between multicast and unicast & resource utilization kept
under threshold

1 if ThresholdViolationDetect(switch s1) then
2 addUnicastDestToSender(Uy1);

3 discardDuplicates(r1);

4 listenOnUnicast(r1);

5 removeFromMulticast(U,1 ,Mi);

6 stopListenOnMulticast(r1, M i);

7 end

8 if ThresholdViolationDetect(link 11) then

9 addToMulticast(U,1 M)
10 discardDuplicates(r1);
11 listenOnMulticast(rl,Mi);
12 RemoveUnicastDestFromSender(U,1);
13 stopListenOnUnicast(r1);

4 end

SDMC continually monitors link and switch memory utilization.
As shown in Lines 1-6 of Algorithm 3, when a switch memory
reaches the threshold limit, first, SDMC updates the translation rule
in the SDN middleware of all the senders by adding in its mapping
the unicast address of r1, i.e, M¢ < (M!,Uy,) would become
M¢ & (M}, Uy, Uys). Then, SDMC instructs the receiver to listen
on its own unicast ID (Uy1) along with multicast ID M I At this
point the SDN middleware of r1 starts receiving duplicate packets:
one each from unicast and multicast destinations. SDMC, however,
instructs the SDN middleware of r1 to discard any duplicate packets.
Hence, the application-level receiver (r1) receives only a single copy
of each packet. Now, since r1 does not need multicast destination
support, SDMC can safely remove OpenFlow entries in the router
that were installed before to reach r1. This step reduces the switch
memory utilization. At this point, r1’s SDN middleware again starts
to receive only a single copy of each packet but through unicast
destination. Now, SDMC instructs r1 to stop listening on multicast
ID M; altogether. In this way, r1 is toggled from multicast to unicast
to reduce the switch memory utilization.

In the same way, when a link utilization crosses threshold limit,
SDMC reduces link utilization (Lines 8-13 in Algorithm 3) as fol-
lows. First, SDMC updates the multicast routing tree for multicast
ID of r1 (M?) inside the SDN routers by adding flow entries that al-
low r1 to be reached by all the senders of M i Then, SDMC instructs
the receiver to listen on multicast ID M* along with its own unicast
ID (Ur1). At this point, the SDN middleware of r1 starts receiving
duplicate packets: one each from unicast and multicast destination.
SDMC, however, instructs the middleware of r1 to discard the dupli-
cate packets. Hence, the application level receiver (r1) receives only
a single copy of each packet. Then, SDMC updates the translation
rule in the SDN middleware of all the senders by removing in its
mapping the unicast address of the r1, e.g., M® & (ME, Uy, Upg)
would become M¢ < (M*, Uy5). This step reduces the network link
utilization as each sender now sends one less copy of each packet.
At this point, r1’s SDN middleware again starts to receive only a

single copy of each packet but through the multicast destination.
Now, SDMC instructs r1 to stop listening on unicast ID Uy altoget-
her. In this way, r1 is switched from unicast to multicast to reduce
the network link utilization.

3 EXPERIMENTAL EVALUATION

We evaluated SDMC using an emulated DCN testbed comprising
Mininet [14] as the network emulator with OpenFlow virtual swit-
ches used for creating different DCN topologies. We implemented
SDMC using the Python-based POX SDN controller. For senders
and receivers, we developed a representative publish-subscribe ap-
plication which runs as a SDMC participant (sender or receiver)
and is hosted on 200 virtual hosts. We also created up to 500 multi-
cast groups for these participants. We arranged these 200 virtual
hosts in four different topologies, viz., Jelly-fish, Tree, Fat-tree and
Random, which are the most used network topologies in DCNs. We
argue that these topologies have diverse dissemination paths that
highlight the advantages of SDMC. We evaluate SDMC in terms of
initial setup latency, network overhead, switch-memory utilization,
and packet loss and compare it against traditional IP multicast.?

3.1 Average Initialization Setup Time

Multicast service mode needs an initialization setup time to enable
receivers to join the group and perform their membership. The
initial setup time is measured as the time for processing a recei-
ver’s joining-request by the controller. It does not concern actually
sending or receiving packets. So the time between some receiver
A contacting the controller that it wants to join and the controller
replying back with a message of “membership successful” is the
initial setup time. In IPMC this time involves updating all sender-
to-receiver mcast trees but in SDMC it only involves updating the
sender switches. Thus, SDMC’s receiver-initiated group members-
hip allows better management of the leaf nodes.

7000
6000

II II |I || ||
1 5 10 15 20

Sender Size

ESDMC mEIPMC

(%)
o
(=}
o

N W b
© O O
© © O
o O O

Latency (ms)

o

Figure 6: Setup Latency Induced by Increasing Multicast Sen-
ders

Figure 6 shows the receiver-initiated setup time in terms of num-
ber of senders in the group. For this experiment, the sender would
send packets with max UDP size (65K) at some constant rate. The

2SDMC is decoupled from IPMC. Moreover, comparing SDMC performance with other
multicast protocols is part of future work.

transmission rate was same for all the senders (1 Mbps), which
was set by the mininet virtual switches and communication was
through UDP channel. The figure shows that SDMC incurs less
setup latency than IPMC. In particular, in all cases the average initi-
alization latency incurred is at least 50% less than IP multicast. This
is due to the fact that SDMC defers creating the routing tree in the
controller to a later time. Since the controller has global knowledge
of all the joining/leaving nodes, it programs the switches by in-
jecting OpenFlow rules, which allows receivers to join the multicast
tree at a later time. This approach is different from traditional IP
multicast, which involves IGMP snooping to filter the unwanted
multicast packets. These results validate our claims about better
latency performance compared to traditional IP multicast.

4000 S
=g je|lyfish-sdmc

'g 3500 === jellyfish-multicast

— 3000 === fattree-sdmc

>

2500 —=@=—fattree-multicast

o

=

3

% 2000

-

& 1500 M
2

g 1000

(]

o

500
0
50 100 150 200 250 300 350 400 450 500
Multicast Group Size
(a) JellyFish and FatTree Topologies
7000
. e=@==tree-sdmc
«» 6000 ;
£ tree-multicast
; 5000 =gy random-sdmc
o .
§4000 === random-multicast
©
< 3000
$
‘3 2000
o
& 1000
0

50 100 150 200 250 300 350 400 450 500
Multicast Group Size
(b) Tree and Random Topologies

Figure 7: Initial Receiver Latency for SDMC and IP Multicast

Additionally, we measured the initialization setup time for diffe-
rent network topologies in DCNs. Figure 7 shows the setup delay
for the most common data center network topologies, viz. jellyfish,
tree, flat-tree, and random topologies. It shows that SDMC incurs
less setup time compared to traditional multicast in all the four DCN
topologies. Again, the evaluation results confirm the efficiency of
our SDN-enabled multicast compared to traditional IP multicast.

3.2 Adaptiveness to Network Load

To evaluate the awareness and adaptation capabilities of SDMC
to router capacity, we performed network load measurements in
four of the data center network topologies, i.e., jellyfish, mesh,

tree, and random topologies. Figure 8 shows the network load for
SDMC and IP multicast. SDMC efficiently switches between unicast

and multicast based on network load as described in Algorithm 3.

When network load is less, SDMC uses unicast while it switches to
multicast when network load increases.
100

20 ESDMC mIPMC

0|| || || I‘ I‘ I‘ I‘ I‘ I‘ I‘

50 100 150 200 250 300 350 400 450 500
Multicast Group Size

6!

o

4

Network
Overhead (%)
o

N
o

Figure 8: Network Overhead for SDMC and IP Multicast

As seen from Figure 8, SDMC adapts to network load by toggling
between unicast and multicast. In particular, SDMC incurs up to 25%
network overhead when increasing the number of multicast groups
up to 500. Conversely, IP multicast incurs up to 80% of network
overhead.

3.3 Adaptiveness to Switch-Memory Utilization

Figure 9 shows the switch memory utilization for IPMC and SDMC
to evaluate the effectiveness of our approach in avoiding the switch
buffer overflow. SDMC requires 50% less memory utilization as
measured in terms of the number of OpenFlow rules that are stored
in switch buffers compared to IPMC once the number of multicast
groups exceeds size 30. This is due mainly to the fact that OpenFlow
rules are injected by the SDN controller only when missing packets
or unrecognized packets transit through the switch. Thereafter, the
switch will send a request to the controller to install new rules.

600
ESDMC mIPMC

10 20 30 40 50 60 70 80 90
Multicast Group Size

W
S
S

N
S
[w]

\®}
S
S

Switch-Memory utilization
(Number of OF Rules)
= =
(e S

S

Figure 9: Switch-Memory Utilization for SDMC and IP Mul-
ticast

Moreover, as described in Algorithm 3, when the switch memory
utilization crosses a threshold limit, i.e. 70% of the available resour-
ces as described in Section 2.5.4, SDMC toggles to unicast. This

helps to reduce load on switch memory buffers resulting in less
switch buffer overflows. This approach is different from traditional
multicast, which performs stateful packet forwarding, because it
needs to maintain the same state across all the transit switches.
Our results, show that our approach succeeds in improving switch
memory utilization compared to IP multicast.

3.4 Evaluating the Packet Loss

We evaluated the packet loss and studied its impact in affecting the
network’s application behavior. Packet loss can occur when the
traffic transmitted to the receivers across a particular link exceeds
the capacity of that link. Additionally, another source of packet loss
is that short-lived bursts of traffic may occur and deteriorate the
network performance for a short time. By characterizing the link
utilization through the packet loss we can better investigate the
bottlenecks, if any, of our SDN-enabled multicast approach. Note
that SDMC ensures that the sender does not send duplicate packets.
Hence, during dynamic adaptation, the receiver will not receive
any duplicates but can received packets out of order, which we
assume will be handled by the application layer since the underlying
protocol we use is UDP.

ESDMC ®[PMC

, |‘||IMI|I‘I|II

10 20 30 40 50 60 70 80 90
Multicast Group Size

@)}

[\

Packet Loss (%)
N

Figure 10: Packet Loss for SDMC and IP Multicast

Figure 10 illustrates the packet loss for the IP multicast and
compare it to our approach in SDMC. This figure shows that our
approach presents a less than 2% of packet loss, which is better than
the traditional multicast that experiences more than 6% of packet
loss, when the number of multicast groups exceeds size 70. These
results demonstrate that our SDN-enabled multicast performs better
data transmission compared to IP multicast.

4 RELATED WORK

This section describes related work on resource management so-
lutions for group communications in data center networks and
compares it to the SDMC solution.

4.1 Scalable Multicast Routing in DCNs

Due to the many different challenges incurred in deploying group
communications in DCNs, scalable multicast routing has been an
important topic of research. In [16], Bloom filter-based group ma-
nagement was introduced to compress multicast routing entries by

removing computations of distributed routes from multicast routers.
Similarly, BUFFALO [33] distributes IP forwarding tables on each
router interface and requires one Bloom filter on each router inter-
face. A similar idea was discussed in [6] to encode the multicast
tree information into in-packet Bloom filters. Despite the advanta-
ges of Bloom filter-based multicast in reducing flow entries, such
approaches require installing Bloom filters in each switch port to
perform the compression actions. Moreover, in typical high-density
Ethernet port routers installed in DCN, it is difficult to maintain
efficient memory utilization since dealing with false positives in
the lookup incur additional router overhead.

The Hierarchy-Aware multicast framework [25] relies on Dis-
tributed Hash Tables (DHTs) to create multicast forwarding trees
for dynamic membership management in overlay DCNs. Nonet-
heless, DHT-like tree creation pays less attention to the links at
the bottom of the tree, which results in suboptimal routing when
top-down data forwarding is performed. Dual-structure Multicast
(DuSM) [5] classifies multicast groups based on their flow granula-
rity. First, large (i.e., elephant) flows are detected and classified in
the same multicast trees to which higher bandwidth is allocated.
Then, multicast-to-unicast translation rules are performed for all
the other short (i.e., mice) flows. Although such an approach allows
control over traffic congestion in DCNS, it is difficult to adopt it in
latency-sensitive applications associated with bursty mice traffic,
which represent most of the traffic transiting the DCNs.

Recent efforts [17, 18] introduced Reliable Data Center Multi-
cast (RDCM) by exploiting the multi-path diversity available in
highly connected DCNs. RDCM creates backup overlays for every
multicast routing tree, and switches among them as per network
load fluctuations. Similarly, a unified unicast-multicast framework
was introduced in the Code-Oriented eXplicit multicast (COXcast)
project [10], where a unicast path is created to the underlying rou-
ters and then multicast trees are created by encoding the output
port bitmap of nodes on the path between the source and destina-
tion. Our approach is similar to RDCM and DuSM in that SDMC
achieves fault tolerant and network-efficient communication by
bypassing initial multicast tree creation and switching to unicast
instead. Similar to COXcast that uses both a common identifier and
a node-specific key to route packets to multiple receivers, SDMC
introduces two-level identifiers to interact with multiple end hosts
and routers, respectively.

Unlike these approaches, SDMC moves the multicast manage-
ment logic from routers to a centralized SDN controller, which
holds all the intelligence required to manage multicast groups. The
SDN controller leverages high-density links in DCNs to provide a
global view of the entire network and installs multicast flow entries
in the routers.

4.2 SDN-enabled Multicast in DCNs

Prior research on multicast issues in SDN-enabled group communi-
cations exist. For instance, [26] extends IP multicast using Open-
Flow for dynamic group management rather than employing the
traditional IGMP protocol [7]. The authors introduce a VXLAN [21]
controller to perform Ethernet-over-IP encapsulation over a logical
“tunnel” Similarly, in [8], the authors introduce IP-over-Labeled
Optical Burst Switching (LOBS) network to encapsulate multicast

messages over a Layer 2 tunneling protocol. OpenFlow is used to
build and delete multicast trees using a unified SDN control plane.

CastFlow [22] moves IP multicast management to a centrali-
zed SDN controller, and IP multicast trees are calculated using
OpenFlow. The controller implements the IGMP messaging layer
to handle joining/leaving messages when they are received by
the first router. Inspired by CastFlow, Software-Defined Multicast
(SDM) [29] was introduced to manage live streaming traffic in the
ISP’s networks. It combines IP multicast functionality with unicast
data delivery using OpenFlow to achieve efficient traffic delivery.
SMARTFlow [20] uses an OpenFlow controller to calculate multi-
cast trees based on the Spanning Tree algorithm and encapsulates
multicast messages in smart grids over Ethernet MAC addresses.
The authors in [11] present Scalar-pair Vectors Routing and For-
warding (SVRF), which encodes multicast group addresses into
scalar-pair vectors to identify outgoing ports for delivery of unicast
and multicast packets.

Using a remote SDN controller to perform multicast manage-
ment was also introduced in OpenFlow Multicast (OFM) [34]. OFM
maintains a multicast rule database to store all flow entries for all
routers managed by the controller. OFM holds a state database to
store multicast group members and their state information. Ho-
wever, in practice it is hard to forecast all possible flow entries
that can match against future arriving multicast group members.
The Avalanche Routing Algorithm (AvRA) [9] was introduced to
minimize the size of the routing tree. It enables efficient bandwidth
management by using a centralized SDN controller to gather topo-
logy information in DCNs that do not have traditional IP multicast.
Likewise, the authors in [36] propose building multicast trees for
video conferencing by using a SDN controller, where source-based
multicast trees are constructed for end-to-end packet delivery.

Our approach in SDMC allows managing multicast communica-
tions in overlay data center networks using OpenFlow. Compared
to CastFlow, SDMC eliminates periodic join/leave messages genera-
ted by IGMP. Rather, by using the topology discovery module, the
controller keeps track of all joining and leaving nodes in real-time
thereby addressing the hardware resource problem. Furthermore,
compared to Avalanche, which achieves data rates up to 12% better
than IP multicast, in applications deployed in the Portland Fat Tree
topology, SDMC demonstrates a more general framework that can
address different topologies like tree, random, mesh, and jellyfish.
For instance, SDMC’s jellyfish topology, which supports more ser-
vers than an equal-cost Avalanche fat-tree topology, achieves often
up to 60% better average latency. Moreover, Avalanche gets up to
35% reduction, compared to IP multicast, in the number of links
that are less than 5% utilized, once the number of multicast groups
exceeds 1,000. In contrast, the performance of SDMC is up to 50%
better, compared to IP multicast, in the switch memory utilization,
once the number of multicast groups exceeds just 50. Additionally,
SDMC provides a monitoring module for traffic monitoring and
merging trees to detect the switch between unicast and multicast.

5 CONCLUSIONS

This paper presented the design, implementation and evaluation of a
SDN-enabled multicast solution called SDMC for autonomous, adap-
tive and flexible network load-aware and switch memory-efficient

group communications in data center networks. SDMC, which
is provided as a middleware suite, uses a combination of unicast
and software-defined multicast, and dynamically switches between
them while ensuring that end applications remain agnostic to the
adaptation yet provide superior performance over either only uni-
cast or multicast cases, which ultimately improves the utility of the
clouds. Experimental evaluation of our solution shows that SDMC
performs up to 50% better compared to IP multicast alone in terms of
network load-awareness, and switch-memory utilization efficiency,
and up to 60% better for latency performance. SDMC is available in
open source at https://github.com/prithviraj6116/sdmec.
Presently, SDMC makes adaptation decisions considering only
one criteria at a time, i.e., utilization of network link or switch me-
mory, and does not handle potential oscillations in the adaptation.
Our future work will focus on handling them together with weights
assigned to each depending on the needs of the group communi-
cation traffic. We will also support distributed SDMC controllers
using blockchains, which supports novel consensus algorithms to
improve controller coordination, consistency, and reliability for
holding persistent data sharing and enabling selective privacy.

ACKNOWLEDGMENTS

This work was funded partially by the Fulbright Visiting Scholars
Program and NSF CNS US Ignite 1531079. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
NSF, DGA, CNES or the Fulbright program.

REFERENCES

[1] Dmitry Basin, Ken Birman, Idit Keidar, and Ymir Vigfusson. 2010. Sources
of Instability in Data Center Multicast. In Proceedings of the 4th International
Workshop on Large Scale Distributed Systems and Middleware (LADIS °10). 32-37.
Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. 2012. Energy-aware
resource allocation heuristics for efficient management of data centers for Cloud
computing. Future Generation Computer Systems 28, 5 (2012), 755 — 768.

[3] M. Chen, H. Jin, Y. Wen, and V. C. M. Leung. 2013. Enabling technologies for
future data center networking: a primer. IEEE Network 27, 4 (2013), 8-15.

[4] OpenFlow Consortium et al. [n. d.]. OpenFlow Switch specification v1. 0. ([n.
d.).

[5] W. Cui and C. Qian. 2015. Scalable and Load-Balanced Data Center Multicast. In
2015 IEEE Global Communications Conference (GLOBECOM). 1-6.

[6] Z.GuoandY. Yang. 2015. Exploring Server Redundancy in Nonblocking Multicast
Data Center Networks. IEEE Trans. Comput. 64, 7 (2015), 1912-1926.

[7] Hugh Holbrook, Storigen Systems, and Brian Haberman. 2015. Using Internet
Group Management Protocol Version 3 (IGMPv3) and Multicast Listener Disco-
very Protocol Version 2 (MLDv2) for Source-Specific Multicast. RFC 4604. (1 Oct.
2015).

[8] Linfeng Hong, Dongxu Zhang, Hongxiang Guo, Xiaobin Hong, and Jian Wu.
2013. OpenFlow-based multicast in IP-over-LOBS networks: A proof-of-concept
demonstration. In 2012 17th Opto-Electronics and Communications Conference.

[9] A.Iyer, P. Kumar, and V. Mann. 2014. Avalanche: Data center Multicast using

software defined networking. In 2014 Sixth International Conference on Commu-

nication Systems and Networks (COMSNETS). 1-8.

W. K. Jia. 2014. A Scalable Multicast Source Routing Architecture for Data Center

Networks. IEEE Journal on Selected Areas in Communications 32, 1 (January 2014),

116-123.

[11] W.K. Jia and L. C. Wang. 2013. A Unified Unicast and Multicast Routing and
Forwarding Algorithm for Software-Defined Datacenter Networks. IEEE Journal
on Selected Areas in Communications 31, 12 (2013), 2646-2657.

[12] M. A. Khoshkholghi, M. N. Derahman, A. Abdullah, S. Subramaniam, and M.
Othman. 2017. Energy-Efficient Algorithms for Dynamic Virtual Machine Con-
solidation in Cloud Data Centers. IEEE Access 5 (2017), 10709-10722.

[13] D. Kreutz, FM.V. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S. Azodol-
molky, and S. Uhlig. 2015. Software-Defined Networking: A Comprehensive
Survey. Proc. IEEE 103, 1 (2015), 14-76.

[14] Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A network in a laptop:

rapid grototyping for software-defined networks. In Proceedings of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks. ACM, 19.

[2

—

[10

[15]

[16

[17]

(18

=
o)

[20

[21

[22

~
=

[29

[30

[31

(32]

[33

[34

[36

[37

Dan Li, Henggang Cui, Yan Hu, Yong Xia, and Xin Wang. 2011. Scalable data
center multicast using multi-class bloom filter. In Network Protocols (ICNP), 2011
19th IEEE International Conference on. IEEE, 266-275.

D.Li, Y. Li, J. Wu, S. Su, and J. Yu. 2012. ESM: Efficient and Scalable Data Center
Multicast Routing. IEEE/ACM Transactions on Networking 20, 3 (June 2012),
944-955.

D. Li, M. Xu, Y. Liu, X. Xie, Y. Cui,]. Wang, and G. Chen. 2014. Reliable Multicast
in Data Center Networks. IEEE Trans. Comput. 63, 8 (Aug 2014), 2011-2024.
Dan Li, Mingwei Xu, Ming-chen Zhao, Chuanxiong Guo, Yongguang Zhang, and
Min-you Wu. 2011. RDCM: Reliable data center multicast. In INFOCOM, 2011
Proceedings IEEE. IEEE, 56-60.

Xiaozhou Li and Michael J. Freedman. 2013. Scaling IP Multicast on Datacenter
Topologies. In Proceedings of the Ninth ACM Conference on Emerging Networking
Experiments and Technologies (CoONEXT ’13). 61-72.

Yona Lopes, Natalia C. Fernandes, Carlos A. M. Bastos, and Débora C. Muchaluat-
Saade. 2015. SMARTFlow: A Solution for Autonomic Management and Control
of Communication Networks for Smart Grids. In Proceedings of the 30th Annual
ACM Symposium on Applied Computing.

Mallik Mahalingam, T. Sridhar, Mike Bursell, Lawrence Kreeger, Chris Wright,
Kenneth Duda, Puneet Agarwal, and Dinesh Dutt. 2015. Virtual eXtensible
Local Area Network (VXLAN): A Framework for Overlaying Virtualized Layer 2
Networks over Layer 3 Networks. RFC 7348. (14 Oct. 2015).

Cesar AC Marcondes, Tiago PC Santos, Arthur P Godoy, Caio C Viel, and Cesar AC
Teixeira. 2012. CastFlow: Clean-slate multicast approach using in-advance path
processing in programmable networks. In Computers and Communications (ISCC),
2012 IEEE Symposium on. IEEE, 000094-000101.

Mike McBride. 2013. Multicast in the Data Center Overview. Internet-Draft draft-
ietf-mboned-dc-deploy-01. Internet Engineering Task Force. https://datatracker.
ietf.org/doc/html/draft-ietf-mboned-dc-deploy-01 Work in Progress.

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
enabling innovation in campus networks. ACM SIGCOMM Computer Communi-
cation Review 38, 2 (2008), 69-74.

K. Nagaraj, H. Khandelwal, C. Killian, and R. R. Kompella. 2012. Hierarchy-
aware distributed overlays in data centers using DC2. In 2012 Fourth International
Conference on Communication Systems and Networks (COMSNETS 2012). 1-10.
Yukihiro Nakagawa, Kazuki Hyoudou, and Takeshi Shimizu. 2012. A Management
Method of IP Multicast in Overlay Networks Using Openflow. In Proceedings of
the First Workshop on Hot Topics in Software Defined Networks.

P. Pan and T. Nadeau. 2013. Software-Defined Network (SDN) Problem Statement
and Use Cases for Data Center Applications. Technical Report 00.

N.B. Roy and D. Das. 2015. Application of MultiCast Tree concept to cloud
security with optimization algorithm for node search technique. In Electrical,
Electronics, Signals, Communication and Optimization (EESCO), 2015 International
Conference on. 1-6.

Julius Riickert, Jeremias Blendin, and David Hausheer. 2015. Software-Defined
Multicast for Over-the-Top and Overlay-based Live Streaming in ISP Networks.
Journal of Network and Systems Management 23, 2 (2015), 280-308.

K. Sriprasadh, Saicharansrinivasan, O. Pandithurai, and A. Saravanan. 2013. A
novel method to secure cloud computing through multicast key management. In
Information Communication and Embedded Systems (ICICES), 2013 International
Conference on. 305-311.

Ymir Vigfusson, Hussam Abu-Libdeh, Mahesh Balakrishnan, Ken Birman, Robert
Burgess, Gregory Chockler, Haoyuan Li, and Yoav Tock. 2010. Dr. Multicast: Rx
for Data Center Communication Scalability. In Proceedings of the 5th European
Conference on Computer Systems (EuroSys ’10). 349-362.

Han Wang, Ki Suh Lee, Erluo Li, Chiun Lin Lim, Ao Tang, and Hakim Weather-
spoon. 2014. Timing is Everything: Accurate, Minimum Overhead, Available
Bandwidth Estimation in High-speed Wired Networks. In Proceedings of the 2014
Conference on Internet Measurement Conference (IMC ’14). 407-420.

Minlan Yu, Alex Fabrikant, and Jennifer Rexford. 2009. BUFFALO: Bloom Fil-
ter Forwarding Architecture for Large Organizations. In Proceedings of the 5th
International Conference on Emerging Networking Experiments and Technologies
(CoNEXT 09). 313-324.

Yang Yu, Qin Zhen, Li Xin, and Chen Shanzhi. 2012. OFM: A Novel Multicast
Mechanism Based on OpenFlow. Advances in Information Sciences & Service
Sciences 4, 9 (2012).

S. Q. Zhang, Q. Zhang, H. Bannazadeh, and A. Leon-Garcia. 2015. Routing
Algorithms for Network Function Virtualization Enabled Multicast Topology
on SDN. [EEE Transactions on Network and Service Management 12, 4 (2015),
580-594.

M. Zhao, B. Jia, M. Wu, H. Yu, and Y. Xu. 2014. Software defined network-enabled
multicast for multi-party video conferencing systems. In 2014 IEEE International
Conference on Communications (ICC). 1729-1735.

Wenbing Zhao, P.M. Melliar-Smith, and L.E. Moser. 2010. Fault Tolerance Midd-
leware for Cloud Computing. In Cloud Computing (CLOUD), 2010 IEEE 3rd Inter-
national Conference on. 67-74.

https://github.com/prithviraj6116/sdmc
https://datatracker.ietf.org/doc/html/draft-ietf-mboned-dc-deploy-01
https://datatracker.ietf.org/doc/html/draft-ietf-mboned-dc-deploy-01

	Abstract
	1 Introduction
	2 Design and Implementation of SDMC
	2.1 Contribution 1: Two-level SDMC-ID Structure
	2.2 Contribution 2: Lazy Initialization Strategy
	2.3 Contribution 3: Network Link and Switch Memory Monitoring
	2.4 Putting it Together: SDMC Architecture and Middleware Design
	2.5 SDMC Behavior and its Dynamic Resource Management Algorithms

	3 Experimental Evaluation
	3.1 Average Initialization Setup Time
	3.2 Adaptiveness to Network Load
	3.3 Adaptiveness to Switch-Memory Utilization
	3.4 Evaluating the Packet Loss

	4 Related Work
	4.1 Scalable Multicast Routing in DCNs
	4.2 SDN-enabled Multicast in DCNs

	5 Conclusions
	References

