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Abstract—Despite the widespread use of server virtualization technologies in cloud data centers, system administrators experience
multiple challenges in configuring the hypervisor’s scheduler parameters to optimize its performance. Manually tuning the scheduler’s
parameters is a common practice, however, this approach is not effective particularly when dealing with dynamically changing workload
and resource utilizations on the host machines. This problem becomes even harder if cloud resources are overbooked while hosting
both latency-sensitive and batched applications. To address these issues, this paper presents iTune, which is a framework for
engineering the performance of a hypervisor via intelligent and autonomous scheduler configurations. Concretely, iTune optimizes the
Xen hypervisor’s scheduler configuration parameters autonomously through a three phase process comprising: (1) Discoverer, which
monitors and saves the resource usage history of the host machines and groups set of related host machine workload, (2) Optimizer,
where optimum Xen scheduler configuration parameters for each workload cluster are explored by employing a simulated annealing
machine learning algorithm, and (3) Observer, where iTune monitors the resource usage of host machines online, classifies them into
one of the categories found in the Discoverer phase, and loads the optimum scheduler parameters determined in the Optimizer phase.
Experimental results validate our claims.
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1 INTRODUCTION

S ERVER virtualization is an important technology that
makes it feasible to support the notion of cloud comput-

ing, where multiple virtual machines (VMs) can be hosted
on a single physical server. Virtualization enables Cloud Ser-
vice Providers (CSPs) to increase the server utilization, and
reduce energy consumption, hardware, and maintenance
costs in their cloud data centers. Moreover, CSPs achieve
additional resource utilization with server consolidation [1],
[2] and resource overbooking [3], [4], [5] by packing more
VMs on the host machines.

Virtualized systems often comprise a scheduling mech-
anism to share the physical CPU resources among the VMs
running on the same host machine. VMs cannot directly
access the physical resources; rather a virtual CPU (vCPU)
of a VM can only access one of the physical CPU (pCPU)
cores when it is scheduled from the run queue of the sched-
uler by the enforced scheduling policy. Effective scheduling
policies are crucial for effective and efficient scheduling of
the physical server resources, which ultimately dictates the
application performance running in a VM.

The resulting performance of an application running
in a VM is directly impacted by the chosen scheduler
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configuration for the hypervisor [6], [7]. If the scheduler
does not operate efficiently and effectively, it yields to: (1)
vCPUs not being able to access pCPUs when they need to,
(2) a pCPU that is assigned to a vCPU being preempted
before it completes its task, or (3) improper and numerous
context switches. These in turn lead to performance degra-
dation of the applications running in the VMs. Moreover,
orchestrating scheduler configuration becomes even more
chaotic when both latency-sensitive and batch applications
are collocated on the same host machine. Therefore, it is
important to choose the optimal scheduling configurations
when dealing with dynamically changing workloads on
the host machines, varying utilizations, and resource over-
booking ratios adopted by CSPs to overbook the physical
resources.

A survey of prior research suggests that whenever per-
formance issues arise, it is common practice among admin-
istrators to manually tune the scheduler parameters and
adopt a trial-and-error approach [8], [9], [10]. Unfortunately,
such approaches tend to address the performance issues
under the unrealistic assumption that the overall system
dynamics will not change over time thereby resulting in
point solutions that yield only a temporary remedy and
may not resolve the actual issue. The changing dynamics
of workloads on the host machines and resource utilizations
preclude any offline decision making of scheduler configu-
ration parameters and manual tuning. These considerations
call for an online, autonomous, and self-tuning system for
the hypervisor scheduler .

To address these problems, in this paper we propose
iTune, which is an intelligent and autonomous self-tuning
middleware to optimize the scheduler parameters of the
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virtualization mechanism. Specifically, we focus on Xen [11],
which is a widely used virtualization technology adopted
by several prominent CSPs. Xen’s hypervisor, which is the
control program that manages guest VMs, allows multiple
VMs to execute on the same host machine using the most
appropriate virtualization mechanism that is available on
the given hardware and host operating system. The default
scheduler in the Xen hypervisor is a credit-based CPU
scheduler, which promotes fair share scheduling among
the VMs managed by the hypervisor. The Xen scheduler
supports a number of configuration parameters, such as
weight, CPU cap, and scheduling time slice for each VM.
These are the parameters that affect how, when, and how
long a VM gains access to shared physical resources.

iTune configures the parameters of Xen’s credit sched-
uler by dealing with changing workload on the host ma-
chine and employing machine learning techniques. iTune
comprises a three phase architecture: (1) Discoverer, (2)
Optimizer, and (3) Observer. Discoverer and Optimizer
are offline phases whereas the Observer phase is online.
In the Discoverer phase, iTune is trained to cluster host
machines based on the workload where workload clusters
are determined. The Optimizer phase deals with finding the
optimum scheduler parameters. Furthermore, performance
requirements of latency-sensitive applications are catego-
rized and taken into account in the Optimizer phase when
numerous application types are collocated on the same host
machine in a multi-tenant cloud environment. Finally, in
the Observer phase, host machines are dynamically profiled
and classified into one of the pre-determined categories
based on which the credit scheduler parameters are loaded
autonomously. In short, the ultimate goal of iTune is to
autonomously optimize all of the scheduler parameters and
dynamically reconfigure the scheduling system based on the
latency sensitivity requirements of each VM (not individual
applications in the VM) on the host machine as the workload
changes dynamically.

In prior work [12], we have demonstrated a similar
approach, however, that work automatically tuned the con-
figuration parameters and hence the performance of the
Hadoop framework executing inside VMs. In contrast, in
this work we focus on the performance issues that appear
in the mechanisms that schedule the VMs themselves. Thus,
although the approach is similar in spirit, the problem
domain is different which encounters a different set of
challenges than our work in [12]. For example, the systemic
issues related to performance at the Xen hypervisor-level
are entirely different from those that exist at the level of the
Hadoop framework.

This paper makes the following contributions:

• We provide key insights into how the Xen’s internal
scheduler parameters and performance are corre-
lated with each other (See Section 3.3).

• We provide options to mark the VMs into one of
the following categories: (1) latency-sensitive level-1
(LS-1), (2) latency-sensitive level-2 (LS-2), (3) latency-
sensitive level-3 (LS-3), and (4) non-latency sensitive
(NLS). iTune ensures delivering the performance re-
quirements of applications in these categories (See
Section 3.4).

• We present an intelligent, autonomous and self-
tuning middleware called iTune to optimize the Xen
scheduler configuration (See Section 3.5).

• We show how, by employing machine learning algo-
rithms, iTune can find the optimum1 configuration
parameters for Xen credit scheduler and self tune
it based on varying workload at run-time (See Sec-
tion 4).

The rest of this paper is organized as follows: Section 2
deals with relevant related work comparing it with our con-
tributions; Section 3 presents the 3-phase systems architec-
ture of iTune in detail; Section 4 validates the effectiveness
of iTune; and finally Section 5 presents concluding remarks
alluding to its limitations and future work.

2 RELATED WORK

This section describes related work that optimizes the Xen
hypervisor performance, and compares it with iTune.

vSlicer [13] defines two types of virtual machines: CPU-
intensive as non-latency sensitive virtual machine (NLSVM)
and I/O-intensive as latency sensitive virtual machine
(LSVM), and attempts to be fair to both by providing equal
total time slot duration with LSVM getting shorter CPU
cycles and NLSVM getting longer CPU cycles. However,
the approach applies a one-size-fits-all technique for as-
signing the scheduling parameters. In contrast, we provide
finer granularity for latency-sensitive VMs and modify the
scheduling parameters dynamically by profiling the virtual
machines and making the decisions accordingly.

Xu et al. [14] address three sources of latency overhead
in data centers: VM scheduling delay, host network queuing
delay and switch queuing delay by applying an enhanced
shortest remaining time first policy. For the VM scheduling
delay, they overcome the limitation of the Xen credit sched-
uler’s BOOST mechanism (i.e. one of the queues of earlier
version of credit scheduler and has the highest priority) for
latency-bound VMs. In contrast, iTune dynamically applies
optimized Xen credit scheduler parameters to provide en-
hanced performance.

Zeng et al. [15] propose some improvements for the first
version of Xen’s credit scheduler for I/O bound latency-
sensitive applications. Three improvements are presented:
(1) load balancing of BOOST domains, (2) prevention of prema-
ture preemption, and (3) dynamic time slice. Some of the issues
such as premature preemption were addressed in the latter
version of the Xen credit scheduler, and may be prevented
through rate_limit Xen configuration and the new run
queue logic. iTune shares some similarities with this work
such as dynamic time slicing, however, the optimization
technique employed by iTune considers all possible solu-
tions whereas the prior work considers only two timeslice
values. iTune also optimizes those scheduler parameters
that will help different types of applications including the
latency-sensitive ones running on physical machines.

Blagodurov et al. [16] propose a method to manage the
collocated applications which were classified as critical and
non-critical in the virtualized environment. An increase in

1. The optimum word refers to the optimal solution found by simu-
lated annealing algorithm
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server utilization and SLA is assured by prioritizing the
access to CPU cycles for VMs through utilizing the linux
control groups (cgroups) weights. Both static and dynamic
weight assignment to the critical and non-critical applica-
tions were studied in the paper. The way that classifying ap-
plications into two different groups is similar to how iTune
classifies the VMs. iTune classifies the critical applications
(i.e. VMs) to even further criticality levels.

Padala et al. [17] propose AutoControl, which is a control
theory-based, fine-grained resource control system. Auto-
Control automatically captures the relationship between
application performance and the resource allocations. As the
demand changes dynamically in virtualized environment, it
scales the resource allocations of applications up/down to
assure their SLOs. AutoControl does not consider resource-
overbooked systems. Rather, AutoControl endeavors to sat-
isfy that total requested resources of all applications are
less than or equal to the node capacity. In contrast, iTune
configures all the parameters of the scheduler whereas
AutoControl only utilizes the cap parameter of the hyper-
visor’s scheduler to throttle the resource allocations to ap-
plications. Additionally, iTune targets resource-overbooked
environments where latency-sensitive and batch-oriented
applications are all hosted together.

Xentune [7] proposes a monitoring tool for the Xen vir-
tual machine monitor (i.e., the hypervisor in this case). Xen-
tune allows monitoring the effects of Xen’s credit scheduler
parameters on the performance of multimedia applications.
Even though this work comes close to what iTune is trying
to accomplish, it differs in that iTune allows classifying VMs
based on their latency sensitivity levels.

RT-Xen 2.0 [18] is a real-time scheduling framework
for multicore servers using Xen. RT-Xen 2.0 provides two
schedulers: (1) global and (2) partitioned. Both schedulers
support dynamic and static priorities. RT-Xen itself is a
scheduler and targets only the CPU-intensive applications
whereas iTune strives to optimize Xen’s credit scheduler for
different types of applications and does not consider strict
real-time requirements in its current form.

3 ITUNE SYSTEM ARCHITECTURE AND DESIGN

This section describes the design and implementation de-
tails of iTune. To better understand our design, we first
provide an overview of Xen and its credit scheduler along
with its configuration options. We then present an intuition
behind the iTune approach that is based on the impact
of run queue waiting time on performance and resource
utilization. Finally we provide details of its design and
implementation.

3.1 System Model and Overview of Xen and its Credit
Scheduler

In this paper, we assume a virtualized cloud data center
where physical servers employ server virtualization mech-
anisms. Specifically, in this paper, we utilize the Xen hy-
pervisor [11] to virtualize the physical server resources and
manage the virtual machines that host applications.

The Xen hypervisor architecture supports the concept of
domains, where the domain number zero called Dom0 is a

special domain that contains the drivers for the underlying
hardware and the necessary toolstack to control the lifecycle
of the VMs. A new unprivileged domain (called DomU) is
created to instantiate and host a new VM for the guest.

The Xen ecosystem comprises a number of tools and ca-
pabilities. For this paper, we leverage XenMon [6], which is
a tool to monitor the performance of the domains managed
by Xen, and libvirt, which is a common, portable, and secure
API to manage the lifecycle of domains maintained by the
Xen hypervisor.

Xen’s hypervisor schedules the physical CPU resource
among the contending VMs hosted in their individual do-
mains (including Dom0) using a credit scheduler, which is
a proportional fair share and work conserving scheduler
built to operate on symmetric multiprocessors. The credit
scheduler has recently been made the default scheduler
for Xen. It supports a number of configuration parameters
whose values can be tweaked to tune the performance and
behavior of Xen scheduler and consequently the perfor-
mance delivered to the VMs. The following are the tunable
parameters of Xen’s credit scheduler.

• Weight: The weight parameter indicates the relative
CPU allocation for a domain, which in turn can be
translated into credit for each vCPU.

• Cap: The cap parameter indicates the maximum
amount of a physical CPU (pCPU) that a domain will
be able to consume even if other pCPUs are in the
idle mode.

• Rate Limit: The rate limit parameter specified in mi-
croseconds indicates the minimum amount of CPU
time that a VM is allowed to consume before being
preempted.

• Timeslice: The timeslice value is the scheduling in-
terval of the credit scheduler specified in millisec-
onds. It indicates the interval over which the credit
of each domain is recomputed.

3.2 Problem Statement
Resource schedulers, such as the Xen credit scheduler, are
critical components of systems software that manage the
resources on cloud platforms. Their design and how they
manage the resources dictate the performance delivered
to applications hosted in the platforms. Specifically, the
Xen scheduler’s resource management behavior depends
on how it is configured in terms of its parameters, which
is the responsibility of the cloud operator. The operator is
responsible for selecting the right values for the parameters
to suit the expected loads on the cloud platform.

This is a hard problem to address because the number
of configuration parameters and their available ranges give
rise to a total of roughly 65535 × 1200 × 499900 × 1000 =
3.9× 1016 different configuration settings for a 12 CPU host
machine. Relying on the default values of each parameter
may not always work well for every application type and
workload on a host machine. While a rate limit value
less than 1,000 microseconds could work well for latency-
sensitive applications, it might not work well for CPU-
intensive applications. Thus, application developers inter-
ested in deploying their applications in the virtualized cloud
platforms must determine the best configuration settings for
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their applications. Moreover, they need to determine how
these parameters must be changed at runtime as the system
dynamics change due to workload and resource availability
changes. Addressing these challenges in an automated way
so that the system administrator is relieved of these respon-
sibilities is the focus of this paper.

3.3 Intuition Behind the iTune Approach

The key insight behind our solution approach is as follows.
When a number of entities compete for a common resource,
that particular resource must be scheduled among these
competing entities (Dom0 and DomUs in our case). Since the
Xen credit scheduler is of the preemptive kind that works
on the notion of credit-based proportional fair share, every
competing domain for the pCPUs must experience some
waiting time in the scheduler’s run queue. The amount of
time attributed to waiting in the run queue has a direct
impact on the response time, i.e., performance, experienced
by the applications in the VMs of the domains.

We now show this correlation in the context of a Xen-
based system by presenting an empirical analysis of how
the scheduler waiting time impacts both application perfor-
mance as well as VM-level resource utilization.

3.3.1 Relationship to Application Performance
The first set of experiments were conducted to identify the
relationship between scheduler waiting time for VMs and
application performance. For these experiments, an over-
booked scenario was considered with 24 VMs collocated
with our target VM (i.e., the VM that we profiled) on the
host machine we used in our study. A system which is
overbooked tends to incur higher waiting time and hence
this case was chosen. Each VM was allocated one vCPU
and 512 MB memory. The workload was generated on each
VM using lookbusy [19] with five percent increment every
minute in CPU usage from 0 to 100 percent. The five percent
increment was chosen to reduce the number of experiments
we had to conduct; yet this value is good enough to capture
changes in the system dynamics.

The common methodology for evaluating server perfor-
mance is to measure the number of requests it serves per
unit of time or the average amount of time spent in pro-
cessing a request. Based on insights from the literature [13],
[20], we chose ping as the micro benchmarking tool and
one of the widely used web server, Apache HTTP server as
the macro benchmarking application for our experiments
and used their response times as the indicator of the VM
performance. We installed Apache web server 2.2.20 on the
target VM and ab - Apache HTTP server benchmarking tool [21]
on another test host residing on the same rack and network
switch as the experimental host. ab is a popular and easy to
use benchmarking tool that we used for measuring average
Apache web server response time. The test host was also
used as the ping client.

From the test host, ping requests were sent to the target
VM at an interval of 100 ms and their response time was
recorded for the duration of workload as explained earlier.
Similarly, using ab tool on test host, client requests were
generated for one second durations over 100 connections
sending 10,000 requests for a small file of size 2KB and the

response times were logged. This configuration allows us
to measure the number of requests processed per second,
and hence compute the average response time per second.
The small size files were chosen as their transfer leads to
CPU-bound workload generation [22], which is a good fit
for our experiments. We then compared the response times
for the two experiments with their waiting time. Comparison
between web server response time and VM waiting time is
depicted in Figure 1.

The correlation values for the VM waiting time and ping
response time is 0.46 and for Apache web server is 0.66.
These values show that there is a strong degree of correla-
tion between the two. Hence, our hypothesis to minimize
waiting time to improve VM performance is valid.

3.3.2 Relationship to Resource Utilization
The next set of experiments were performed to validate
the relationship between the scheduler imposed waiting
time and VM resource utilization under different workload
conditions. To that end we conducted six different tests.
The tests numbered 1, 2, 3, 4, 5 & 6 in the following sub
sections were conducted to analyze the relationship of CPU
utilization, network utilization, number of VMs and CPU
overbooking ratio with waiting time for various scenarios.
Of these, test 3 was conducted to ensure memory utilization
does not play a significant role in determining the waiting
time.

3.3.2.1 Test 1: Non-overbooked Case: The first ex-
periment emulates a non-overbooked environment (CPU
overbooking ratio 1). In this experiment, 12 VMs were
created each having one CPU core and 512 MB memory
on the 12 core host. The CPU utilization was incremented
gradually from 0 to 100 percent as explained earlier for
the application performance experiments. The purpose of
the experiment was to measure the waiting time in non-
overbooked scenario and later use it to compare with over-
booked scenario. We also wanted to verify the analogous
relationship between CPU usage and waiting time.

Figure 2 shows the experimental results where the
waiting time percentage is proportional to host machine’s
CPU utilization till 9̃5%. We observe that average waiting
time is less than 5% for all the CPU utilization levels in
this test. This shows that the impact of CPU utilization on
waiting time under non-overbooked scenario is low. This
also corresponds to the results of application performance
experiments shown in Figure 1. We also noticed that waiting
time starts dropping after 9̃5% of CPU utilization. After an-
alyzing the trace log, we observed that the average context
switch among the CPU cores within the measurement inter-
val before and after this utilization level is 48% and 22%,
respectively. This means that the CPU pinning is performed
by the credit scheduler at 9̃5% CPU utilization level on a
non-overbooked host and the results after this break-even
point can be discarded from our consideration.

3.3.2.2 Test 2: Overbooked Case: The second exper-
iment is similar to test 1 but with overbooking ratio of 2, i.e.
24 VMs each having a single vCPU were created on the 12
core host. Figure 3 shows the result where the waiting time
is significantly higher than the non-overbooked test scenario
and it exceeds 100% at close to 100% CPU utilization. The
results are consistent with our premise that overbooking
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(a) Waiting Time (b) Apache Web Server Response Time

Fig. 1: Comparison of Web Server Response Time and VM Waiting Time Showing Similar Trend

Fig. 2: Waiting time vs CPU Utilization for Non-Overbooked
Scenario

increases the scheduler waiting time thereby degrading the
application performance. The waiting time also increases
near linearly with CPU utilization depicting higher degree
of correlation and substantiates the application of CPU
utilization percentage as an input parameter to iTune.

Fig. 3: Waiting time vs CPU Utilization for Overbooked
Scenario

3.3.2.3 Test 3: Memory Utilization Case: This test
has the same configuration as test 2 but instead of incre-
menting CPU utilization, the lookbusy task was used to
increment the memory utilization of each VM from 0 to
1,200 MB with step size of 60MB every minute. Ballooning
technique employed by the virtual machine managers al-

lows to overbook physical memory by dynamically adjust-
ing the portion used by a guest VM. Therefore, to be able to
observe the impact of memory utilization realistically, the
ballooning technique was enabled on the host machines.
The experiment was performed to determine the impact
of memory utilization on waiting time. Figure 4 illustrates
that the waiting time due to memory utilization is very low,
less than 0.03% in this case, even though the trend shows
an increase (though much slowly) with memory utilization.
Based on these results, for all practical purposes, we do not
use memory utilization as an input parameter in iTune as
long as the memory utilization does not exceed the host
capacity.

Fig. 4: Waiting time vs Memory Utilization for Overbooked
Scenario

3.3.2.4 Test 4: Network Utilization Case: This test
has the same configuration as tests 2 and 3 but instead of
incrementing CPU utilization in test 2 or memory utilization
as in test 3, the ping tool was used to increment the network
utilization of each VM from 17 KBps to 256 KBps with step
size of about 5KBps increment every minute. The experi-
ment was performed to determine the impact of network
utilization on waiting time.

Figure 5 illustrates that the waiting time due to network
utilization is very high, reaches up to 200% at the host level.
Initially, waiting time was not that high and less than 25%.
Since the system was overbooked and as the network IO
usage of each VM was increased and VMs started to require
more CPU time to handle network packets ultimately caus-
ing waiting time to increase dramatically after some point.
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Fig. 5: Waiting time vs Network Utilization for Overbooked
Scenario

Based on these results, for all practical purposes, we will use
network utilization as an input parameter in iTune.

3.3.2.5 Test 5 & 6: Heterogeneous VMs: These tests
were conducted to verify that the trends of tests 1 and 2
hold even for host configurations having heterogeneous set
of VMs and to show that the number of VMs on a host has
high impact on waiting time. Test 5 had 6 VMs, two each
with one, two and three vCPUs, respectively, for a total of
12 vCPUs similar to the non-overbooked test 1. Test 6 had 12
VMs, four each with one, two and three vCPUs, respectively,
for a total of 24 vCPUs as in overbooked test 2.

Fig. 6: Waiting time vs CPU Utilization for Non-Overbooked
Heterogeneous VMs Scenario

Figure 6 represents the result for test 5 that has an
analogous trend to test 1. Similarly, Figure 7 shows the
result for test 6, comparable to trend of test 2. However,
the waiting time is nearly ten times less for test 5 than test 1
having half the number of VMs in non-overbooked scenario
and twice less for test 6 than test 2 in overbooked scenario.
This supports our hypothesis of using number of VMs and
CPU overbooking ratio as the input parameters to iTune.

The empirical insights and proof shown in this section
guided us to utilize the waiting time metric for online tuning
of scheduler parameters. Moreover, it became the main goal
of this paper to optimize overall waiting time of host machine
which will ultimately satisfy the QoS requirements of the
applications running in the VMs.

Fig. 7: Waiting time vs CPU Utilization for Overbooked
Heterogeneous VMs Scenario

3.4 iTune Solution Approach

In this work, we are concerned with providing the per-
formance assurance to applications running in the VMs
marked as LS-1, LS-2, LS-3, and NLS which may be trans-
lated into best, better, good, and best effort, respectively.
Furthermore, we also focus on improving the overall sys-
tem performance compliant with these performance-level
descriptors of their respective VMs. Consequently, a key
objective for us is to assure the performance delivered to
the VMs associated with their performance-level descriptor,
and minimize the overall waiting time of the system, which
will improve performance. Since we do not intend to replace
or redesign the Xen scheduler, the only control variables that
we could tweak were the existing scheduler’s configuration
parameters. Thus, we focus on minimizing the waiting time
of the system by tuning the credit scheduler’s configuration
parameters.

Since workloads and utilizations in a cloud data center
can vary over time, a one-size-fits-all set of configuration
parameters is not going to suffice nor is an offline one time
setting of the configuration parameters. Thus, there is a
need to identify distinct regions of operation of the system,
such that each region of operation varies significantly from
the other along one or more dimensions of performance
characteristics, implying that the set of configuration param-
eters for each region will be distinct. Identifying the right
number of distinct regions is an important challenge that
needs resolution: too little a number will not make much
difference to the delivered performance – in some cases even
degrading it – when system dynamics change, while too
many will complicate the system management and impose
unwanted control overhead.

We solve this problem using a three phase approach
described in Section 3.5. The first two phases are offline
phases that use a combination of machine learning (specifi-
cally, k-means clustering [23] and silhouette [24] methods) and
optimization (specifically, simulated annealing) to identify the
number of regions of operation and the optimal scheduler
configurations per region. The third phase is an online
phase that periodically detects what region of operation the
system currently is executing in, and dynamically updates
the scheduler parameters based on the identified region of
operation.
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3.5 iTune System Architecture and Implementation

We now present the details of iTune. Figure 8 illustrates the
system architecture of iTune, which is our intelligent, ma-
chine learning-based, autonomous, self-tuning middleware
for Xen scheduler configuration. The system architecture of
iTune enables a host machine to tune Xen’s credit scheduler
parameters online and autonomously. iTune is also applica-
ble in situations involving varying workloads.

As can be seen from Figure 8, iTune is deployed in the
privileged domain (Dom0) to observe the guest domains
(DomUs), and monitor their behavior. The resource usage
information and internal scheduler metrics are collected
through a modified XenMon and libvirt library, respectively.
These information are stored in a MySQL database for
workload clustering and optimum configuration searching.
The Encog library [25], which is an open-source machine
learning framework, was integrated within iTune to lever-
age algorithms, such as simulated annealing. To alter the
Xen scheduler parameters, the XL toolstack of Xen is uti-
lized. Matlab was also used for various purposes such as
classification, correlation analysis, etc.

Fig. 8: iTune System Architecture

In our solution, we employ the machine learning al-
gorithms to find the optimum configuration for the credit
scheduler with respect to changing workloads. The follow-
ing phases are followed to tune and load the optimum
scheduler configuration.

• Phase 1 (Offline): Resource usage information is logged
by our monitoring module and k-means clustering algo-
rithm is utilized to cluster the virtual machines by their
resource utilizations.

• Phase 2 (Offline): By running a simulated annealing
algorithm, optimum configuration parameters are found for
each cluster.

• Phase 3 (Online): At run-time, the optimum configura-
tion parameters corresponding to the workload on the host
are loaded based on identified cluster.

Figure 9 depicts the three distinct phases of iTune which
are encoded in the following components: (1) Discoverer, (2)
Optimizer, and (3) Observer.

3.5.1 Phase 1: Discoverer Phase (Offline)
The Discoverer phase is responsible for clustering host
machines based on their workload. This phase comprises
three steps described below:

Step 1.1: Training Set Generation – In this step, by
running a synthetic workload generator we developed (see
Section 4.2), the workload trace on a host machines is logged

Discoverer
(I)

Optimizer
(II)

Observer
(III)

Find Cluster 
Center Points

Optimum 
Configuration

Tune Credit 
Scheduler 

Configuration

Resource 
Monitoring

Adapt Workload 
on Host Machine 
to Cluster Center 

Point

Optimum 
Searching

Training Set 
Generation

Host Machine 
Workload 
Clustering

Host Machine 
Workload 

Classification

Phases of the iTune Middleware

Fig. 9: Three distinct phases of iTune

for use in our clustering step. The workload trace of host
machine comprises a variety of resource information such
as host name, CPU model, CPU frequency, number of cores,
number of VMs, CPU and network utilization, CPU over-
booking ratio, memory overbooking ratio, etc. The synthetic
workload generator endeavors to mimic real world events
and resource usage patterns of an actual data center server.

To that end we used real-world traces available in the
Google cluster trace [26] and focused on a certain server
(e.g., host id 2596362793 from the trace) and emulated the
workload in our private data center for the training step.
The Google data center cluster trace was collected during
a period of 29 days in May 2011 and a document called
Google cluster-usage traces: format+schema, which describes
the semantics, format, and schema of the trace in detail [26].
This workload consists of substantial data for more than
12,000 heterogeneous physical host machines running 4,000
different types of applications and about 1.2 billion rows of
resource-usage data.

Based on insights gained from the literature [6], [7], our
prior work [12], and our analysis results in Section 3.3, we
decided on the following clustering idea: workload on the host
machines in the cloud can be classified into a set of distinct classes
by using metrics, such as CPU utilization, network utilization,
CPU overbooking ratio, and VM count of a host machine. These
are the primary features that affect a hypervisor’s schedul-
ing performance. The more the requested CPU cores and
deployed VMs on a host, the more is the scheduling latency
due to the size of the scheduling run-queue. Critical insights
on the effects of these features and how these features may
effect the application performance are detailed in Section 4.

To define the performance model of the host machine, we
considered the waiting time metric provided by XenMon
(which is provided as a percentage). The waiting time metric
indicates how much time a vCPU spends waiting to run
when it needs to access a pCPU. We used the total waiting
time percentage of the host machine as the performance
indicator. For example, if the waiting time percentage re-
ported is 30, it indicates that the VM waited 30% of the
measurement interval of XenMon (which is a configurable
parameter). The total waiting time percentage is the sum
of average waiting time percentages of each VM on the
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host. The higher the waiting time, the lower the application
performance running in the VMs.

In our performance model, we modified the existing
XenMon implementation to log the sum of the metrics it pro-
vides. XenMon provides internal scheduler metrics for each
VM. This way, we can observe the waiting time percentage
at host level and not only the VM level. XenMon is able to
report a variety of information about the domains and hence
the host machine, such as CPU usage, core number, waiting
time, blocked time, execution count, etc.

The performance model of a host machine for a specified
measurement time interval for XenMon can be described
by Equation (1). The performance and waiting time are
inversely proportional and the goal is to minimize the
cumulative waiting time of host machine in Equation (1)
in Section 3.5.2.

P =
n∑

i=1

WaitingT imei (1)

where
P : Host machine’s performance
n : Total number of the VMs

on the host machine
WaitingT ime : Average waiting time

percentage of the VM

Step 1.2: Host Machine Workload Clustering – The goal
of iTune is to provide an optimum configuration for Xen-
enabled hosts in the data center. The configuration of the
host machines in the data center is determined based on
their cluster numbers that is found in this step. To achieve
this goal, the resource usage information of host machines
generated by our synthetic workload generator is analyzed
and grouped into similar set of objects by utilizing machine
learning techniques. This is also called as clustering or
classification in machine learning terminology.

To cluster host machines into a set of classes, there exists
a number of algorithms in the literature such as artificial
neural networks, self-organizing map (SOM), and k-means
in the literature. The K-means [23] algorithm is simple
and computationally faster compared to other clustering
techniques and provides tighter clusters. Thus, we chose to
apply it in our approach.

In the k-means algorithm, one of the key input is the
number of clusters to the algorithm. However, providing a
fixed number of clusters with no knowledge about the data
would yield an inefficient solution. Hence, the Silhouette
method [24] is utilized to determine the right number of
clusters in the training set and measure the quality of the
clusters. In this method, the Silhouette coefficient, which is
a measure of how well an observation fits into the assigned
cluster, is calculated for different number of clusters. An
average value of the coefficients for all the observations
within a cluster gives the overall closeness of the points
in the cluster to the centroid. We determined the optimum
number of clusters by looking into the mean silhouette
values for 3,4,5,6,7,8,9, and 10 clusters. The higher the mean
silhouette value is, the better the clustering quality. The best
number of clusters which will be provided to the k-means

is defined as 5 with maximum mean silhouette value of
roughly 0.84.

Step 1.3: Find Cluster Center Points – In this step,
the k-means algorithm is employed for the 5 clusters we
determined in the previous step, and the center points found
for each cluster are saved. The center points are used in
the Observer phase to determine the corresponding cluster
number at run-time. These points are illustrated in Table 1.

TABLE 1: Rounded Center Points of Each Cluster

Cluster
CPU
Utiliza-
tion

CPU
Over-
booking
Ratio

VM
Count

Network
Utiliza-
tion
(MBps)

1 91.8 5.71 15.60 24.28
2 19.5 1.30 10.17 0.54
3 21.12 2.28 10.96 109.90
4 59.06 4.82 12.73 22.18
5 31.43 4.26 12.57 1.39

3.5.2 Phase 2: Optimizer Phase (Offline)

In the Optimizer phase, iTune searches for the optimum
configuration settings for each workload cluster by running
the simulated annealing algorithm. The simulated annealing
algorithm is one of the prominent machine learning tech-
nique for optimization problems. Genetic algorithms and
hill climbing are also some of the techniques utilized to
solve optimization problems by the research community. We
decided to use simulated annealing because of its ability to
not get stuck at a local minima and an assurance to find
a statistically global optimum solution comparing to the
other optimization techniques. The Optimizer phase com-
prises three steps, which are: (Step 2.1) Adapt Workload on
Host Machine to Cluster Center Point, (Step 2.2) Optimum
Searching, and (Step 2.3) Optimum Configuration.

Step 2.1: Adapt Workload on Host Machine to Cluster
Center Point – The center points found in Step 1.3 are
utilized in this step. Recall that each center point consists
of CPU utilization, CPU overbooking ratio, VM count, and
network utilization for each clusters. Each center point
is representative of all the workload that belongs to that
center point (and hence its cluster). Therefore, the optimized
configuration for the cluster center point applies to all
workloads in that cluster.

To find the optimum configuration for each center
points, the workload on the host machine is accommodated
to reflect each center point in the clusters found in the
Discoverer phase, i.e., the host is configured such that its
CPU utilization, VM count, CPU overbooking ratio, and
network utilization matches that of the center point. The
accommodated workload is retained on the host machine
until the simulated annealing algorithm finishes its task
and finds the optimum configuration of this accommodated
workload which is the representative of a cluster center
point to find its optimum configuration.

Step 2.2: Optimum Searching – Simulated annealing
is run to pinpoint the optimum solution for each cluster
centroids found in the Discoverer phase. As discussed in
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Section 3.1, the solution space for the Xen configuration
parameters is very large, which makes it unrealistic to keep
all possible parameter options in the solution space. Hence,
we preferred to pick a range of values within the limits of
each parameter (i.e. 100 different values within the range).

Recall that the total waiting time percentage in Equa-
tion (1) is used as the performance indicator, where waiting
time and the application performance are inversely pro-
portional. A simulated annealing algorithm is proposed
for finding the configuration with the minimum waiting
time percentage. To that end, first, iTune monitors all the
VMs on the host machine and collects the resource usage
information. Then, it starts the XenMon to log the internal
scheduler metrics for a period of four seconds. This period
is long enough to collect the total waiting time of the host
machine.

Lastly, iTune executes the simulated annealing algorithm
from the Encog framework to find the optimum config-
uration settings for the centroid being optimized. If the
point found by the simulated annealing is not the optimum
one, iTune continues the annealing process by modifying
the scheduler parameters and retrieving additional resource
usage information as described next.

For each annealing process, iTune uses four seconds
worth of data sampled every 100 ms time interval. The
simulated annealing algorithm checks whether the sum of
the average waiting time for each VM during this period
is improving. Recall that VMs marked as LS-1, LS-2, LS-
3, and NLS must acquire best, better, good, and best effort
performance, respectively. Therefore, the following rules are
also assured during the annealing process.

• Rule 1: Assure that weight values of each la-
tency sensitivity levels complies with LS-1>LS-
2>LS-3>NLS

• Rule 2: Set Cap value of the highest available latency
sensitivity level VM to 0 and rest of the latency
sensitivity levels to their vCPU values.

This process continues until the configuration parame-
ters converge to optimum values.

Step 2.3: Optimum Configuration – Optimum configu-
ration for each center point is ultimately found in Step 2.2
and saved in the iTune’s configuration library to be used by
the Observer phase. A total of five configuration files are
saved in the same folder of iTune, which correspond to the
right clusters.

3.5.3 Phase 3: Observer Phase (Online)
The final phase of iTune is the Observer phase, which
comprises three steps: (1) Resource Monitoring, (2) Host Ma-
chine Workload Classification, (3) Tuning the Credit Sched-
uler Configuration. The observer phase is employed online
by iTune, which continuously monitors the resource usage
of the host machine, classifies the host machine into one of
the classes based on its profile, and loads the configuration
file corresponding to its equivalent class.

Step 3.1: Resource Monitoring – In this step, iTune
monitors the resource usage of the host machine along with
the VMs on it. This step aims to profile a host machine. This
profile data includes CPU utilization, network utilization,
CPU overbooking ratio, VM count, VM state, vCPU count

of each VM, memory size, CPU model, etc. These metrics
are retrieved through the libvirt library and saved into the
database.

As mentioned before, we collect multiple resource usage
information of VMs and the host but only four of these are
used in the Observer phase because we are interested in
finding which nearest cluster number is closest to the actual
workload of the host. These resource usage information
are CPU utilization, CPU overbooking ratio, VM count,
and network utilization. iTune’s default profiling interval is
configured to run every 15 seconds. This profiling interval
(i.e. heartbeat rate) parameter helps iTune to adjust the
heartbeat rate for resource monitoring in the Discoverer and
Observer phases. Lower profiling intervals may fail to catch
the fluctuations at the workload and may cause frequent re-
configurations. Therefore, 15 seconds was preferred for this
configuration parameter. This parameter along with many
other parameters such as the paths, XenMon arguments,
simulated annealing start temperature, database connection
string, etc. are all configurable and retained in the iTune’s
application configuration file.

Step 3.2: Host Machine Workload Classification – The
methodology followed in this step is classifying the host
machine into one of the clusters found in Discoverer phase.
The classification is basically performed by computing the
Euclidean distance from actual CPU utilization, CPU over-
booking ratio, VM count, and network utilization to each
cluster center points found in the Discoverer phase. The
classification decision of a host machine is based on the
nearest center of a cluster point.

Step 3.3: Tune Credit Scheduler Configuration – Af-
ter resource monitoring and classifying the host machine’s
workload, iTune loads the corresponding configuration set-
tings of Xen credit scheduler from the configuration settings
library. After loading the configuration file, iTune retains
the cluster number of the host machine and does not reload
the configuration file as long as the cluster number remains
same. When the cluster number changes, iTune loads the
new cluster settings if that new cluster number persists
for at least after five consecutive executions of Step 3.2.
The resource monitoring time interval at Step 3.1 (i.e. 15
secs) and the number of consecutive executions monitored
for persistence are trade-off values between application
overhead and resource usage consistency (i.e. mechanism
to eliminate sudden resource usage spikes).

4 VALIDATING THE ITUNE APPROACH

This section presents empirical validation of the iTune ap-
proach in the context of a dynamically changing real-world
data center workload that was obtained by emulating the
Google cluster usage trace data [26] in our private data
center. Our goal is to validate our hypothesis that the iTune
approach of finding the right values for the configuration
parameters for the Xen credit scheduler assures perfor-
mance differences between VMs with different latency-
sensitivity levels and improves overall performance for VM-
hosted applications compared to that due to the default
configurations of the Xen scheduler. Recall that our iTune
approach emphasizes minimizing the overall waiting time
for VMs, and when combined with CPU utilization and
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resource overbooking ratio as the clustering parameters, we
claim to improve performance for applications running in
the VMs.

Thus, the validation of iTune requires showing that
indeed iTune is able to provide differentiated performance
gains between four different latency sensitivity levels and
improve performance for applications by dynamically tun-
ing the Xen scheduler parameter while imposing negligible
overhead in the control path.

4.1 Experimental Setup
The experiments were conducted in our private data center
which is managed by the OpenNebula [27] cloud manage-
ment software version 4.6.2. For the iTune approach we have
assumed a homogeneous data center, where each host of the
data center has the hardware and software configuration as
described in Table 2.

TABLE 2: Hardware and Software Specification of the Ex-
periment Host

Processor 2.1 GHz Opteron
Number of CPU cores 12

Memory 32 GB
Hard disk 512 GB

Operating System Ubuntu 12.04 64-bit
Hypervisor Xen 4.2.4

Guest virtualization mode PV (i.e., para virtualized)
Guest Operating System Ubuntu 11.10 64-bit

The iTune engine runs inside Dom0 of the host machine
and logs various parameters it needs for analysis and deci-
sion making. A python script named as synthetic workload
generator executes on our cloud management server and
invokes OpenNebula APIs to instantiate VMs with different
configurations on the experimental host machine.

4.2 Generating the Training Set
Prior to presenting the actual results, we first describe how
the training phase of iTune was conducted. For our experi-
ments, the training data set was generated and utilized in
the Discoverer phase of iTune (Step 1.1 of Section 3.5.1).
To keep the data set as realistic as possible, we modeled
the training session based on the resource and utilization
data of one specific host with id 2596362793 chosen from
the Google cluster trace logs [26]. This host was chosen
since it illustrated interesting variations in resource usage
and overbooking ratios.

We picked a 12 hour time duration for data generation
in which the number of VMs on that host varied from 1
to 25, average CPU utilization of host machine varied from
0 to 100%, average network IO usage between 0MBps to
14MBps, and overbooking ratio varied from 0.25 to 9.17.

The synthetic workload generator running in the Dom0
spawns: (1) the applications in the phoronix test suite [28]
open-source testing and benchmarking framework, (2) look-
busy synthetic load generator processes, (3) netperf [29], (4)
sysbench [30], and (5) httperf [31] in the VMs to generate
the desired workload on the selected host in our private

data center. These benchmark applications comprises CPU-
bound, network-bound, memory-bound, and disk-bound
type applications to represent workload realistically. We
think that the diversity of the applications used from all
of these benchmarking frameworks is enough to represent
real-world workloads. However, to make the training set
more and more realistic various other type of applications
such as tightly-coupled parallel applications [32], multime-
dia applications [33], etc. can also be utilized.

For this specific scenario, the optimum number of clus-
ters identified by our training data was 5 with the highest
mean silhouette value of 0.84.

4.3 Application Performance Improvement using iTune
The experiments in this section were conducted to validate
the effectiveness of the iTune framework where we compare
the performance differences between VMs with different
latency sensitivity levels as well as the improvement of
applying our approach over the default one.

In this set up, we created a random workload having
19 VMs, each using CPU varying between 10% and 60%
on a host machine in our private data center. To illustrate
a host machine in a real data center, VMs were created
with varying workloads and applications randomly selected
from benchmark suites. The validation of iTune was con-
ducted through sending concurrent web requests from four
clients to Apache web server and Netperf application in two
seperate test cases. In Figure 10, the set up to validate the
iTune is illustrated. There are four VMs marked as LS-1,
LS-2, LS-3, and NLS. These VMs host Apache web server
having the identical configuration and requests are sent
from the clients marked as User 1, User 2, User 3, and User 4
in Figure 10. Initial experiments showed us that originating
all four requests from a single server, single VM, or four
separate VMs on the same server produce inconsistent and
unfair test results between different test cases. Therefore, for
fair testing practices and consistent results, each client/user
sending requests are originated from four different non-
virtualized bare metal servers as illustrated in Figure 10.

HOST 1

VM1
<LS-1>

VM2
<LS-2>

VM3
<LS-3>

VM4
<NLS>

VM5
<NLS>

VM6
<NLS>

VM19
<NLS>

.

.

.  

User 2

User 1

User 4

User 3

Fig. 10: Illustration of iTune’s Validation Environment

The next step of the iTune was host machine classifi-
cation that resulted in classifying the host to one of the
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clusters. Subsequently, the corresponding Credit Scheduler
configuration was loaded and results were obtained. We
validated iTune with the performance evaluation of two
different applications: (1) Apache web server (Use Case 1)
and (2) Netperf (Use Case 2).

For the Apache web server case, we ran the experiments
for two minutes resulting in about 41K data points which
was sufficient enough to make decisions. For the Netperf
case, we ran the experiments for five times, each test for a
duration of two minutes and averaged the results out for
both default and iTune optimized parameters.

Observer phase of iTune detected actual load on host
machine was close to Cluster 3 in Table 1 at Use Case
1 and Use Case 2. Therefore, the optimum configuration
for Cluster 3 was loaded autonomously. Table 3 shows
the default and iTune optimized configuration values. Cap
values in this Table for the VMs marked as LS-2, LS-3, and
NLS is 100 times their vCPU count which means that these
VMs cannot utilize more vCPU than the one assigned to
them even if there is idle pCPUs available. The overhead of
using iTune in the runtime phase is negligible.

TABLE 3: Default and iTune Optimized Configuration Pa-
rameter Values

Configuration Name Default iTune
Timeslice (ms) 30 34
Ratelimit (µs) 1000 1600
Dom0 Weight 256 62208
Dom0 Cap 0 0
VM<LS-1>Weight 256 43008
VM<LS-1>Cap 0 0
VM<LS-2>Weight 256 18176
VM<LS-2>Cap 0 100*vCPU
VM<LS-3>Weight 256 2560
VM<LS-3>Cap 0 100*vCPU
VM<NLS>Weight 256 256
VM<NLS>Cap 0 100*vCPU

4.3.1 Use Case 1: Apache Web Server
The evaluation results with the Apache web server is pre-
sented in this section. Figure 11 shows the comparison
of Apache web server’s throughput in four different VMs
(Shown as VM1, VM2, VM3, VM4 in Figure 10) with differ-
ent latency sensitivity levels under 250 and 500 concurrent
users load. Throughputs in Figure 11 were measured under
Credit Scheduler’s default configuration and when iTune
loaded optimum scheduler configuration.

As can be seen in Figure 11a and Figure 11b, since there
is no latency differentiation between VMs in the default
Credit Scheduler configuration, VMs marked as LS-1, LS-
2, LS-3, or NLS latency sensitivity levels does not guarantee
the same level of throughput between different experiments.
At each experiments a different VM may receive the best
performance. There is no assurance for a VM to get the best
performance.

However, in the case of iTune, the optimum scheduler
configuration is loaded autonomously and VMs marked as
LS-1, LS-2, LS-3, and NLS gain the best, better, good, and
best effort througputs, respectively. Recall that the experi-
ments were conducted five times and average of throughput

values were taken. iTune configuration provided the same
trend between different latency sensitivity levels whereas
there is no way for default configuration to achieve this.

When throughputs in Figure 11a and Figure 11b are
compared, it is clearly seen that iTune again provides clearer
distinction under 500 concurrent users load. The reason for
better distinction under 500 concurrent users load compar-
ing to the 250 concurrent users load is because of high CPU
demand under 500 concurrent users, so iTune is favoring
LS-1 and LS-2, and is more effective as parallelism increases.

Figure 12a and Figure 12b show the comparison of web
server response time for all four latency sensitivity levels
in median, 90, 95, and 99 percentiles metrics under 250
concurrent users load. Response times along all four metrics
are close to each other and LS-3 gain the best response
time at 99 percentile under default configuration. In all four
metrics, iTune assured best, better, good, and best response
times for LS-1, LS-2, LS-3, and NLS as shown in Figure 12b.
Additionally, iTune also provided better response time val-
ues than default configuration for LS-1, LS-2, and LS-3.

Figure 13a and Figure 13b also show the comparison
of web server response time for all four latency sensitivity
levels in median, 90, 95, and 99 percentiles metrics under 500
concurrent users load. Again, iTune assured the different
performance gains between latency sensitivity levels and
clear response time differences in all four metrics. Addition-
ally, iTune provided better response time values than default
configuration for LS-1 and LS-2.

4.3.2 Use Case 2: Netperf
The evaluation results with the Netperf benchmark is pre-
sented in this section. Same set up is utilized as in use case
1 in Figure 10.

Figure 14 shows the comparison of Netperf throughput
(i.e. complete transactions exchanged per second) under
6 and 12 users load. At each user load, consecutive TCP
request/response tests are sent to the Netperf server known
as Netserver for a period of two minutes synchronously, one
transaction at a time.

The Netperf test results in Figure 14 show the same trend
with the Apache web server test. Figure 14a shows the
comparison of complete transactions per second between
Netperf clients on four bare metal servers and Netserver
applications on four test VMs. As can be seen in Figure 14a,
iTune configuration provided necessary performance dif-
ferences between latency sensitive applications versus no
clear differentiation under default configuration. Netperf
throughput test under 6 and 12 concurrent users load in
Figure 14a and Figure 14b show the similar performance
trend where default configuration does not provide perfor-
mance difference and iTune configuration always assured
best, better, good, and best effort level of throughput for
LS-1, LS-2, LS-3, and NLS latency sensitivity level VMs.

4.3.3 Host-level Performance Improvement
Table 4 shows the sum of average waiting time of each VMs
on the host machine and were obtained while experimenting
Use Case 1 and Use Case 2. Use Case 1 and Use Case
2 validates iTune at VM-level, but do not show whether
there is improvement on the rest of the VMs on the same
host machine. Therefore, we showed the overall waiting
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(a) Under 250 Concurrent Users (b) Under 500 Concurrent Users

Fig. 11: Comparison of Web Server Throughput Under 250 and 500 Concurrent Users Load

(a) Default Configuration (b) iTune Configuration

Fig. 12: Comparison of Web Server Response Time Under 250 Concurrent Users Load

(a) Default Configuration (b) iTune Configuration

Fig. 13: Comparison of Web Server Response Time Under 500 Concurrent Users Load

time improvement to get a holistic view of perfomance
improvement at the host-level.

As seen in Table 4, overall waiting time improvement of
41.51% and 52.45% were gained for the experimental host. In
other words, this means that the waiting time improvement
at the host-level is reflected as application-level performance
improvement residing on the VMs. Hence, the experiments
validate the iTune approach for Xen Credit Scheduler au-
tonomous configuration.

5 CONCLUSIONS

Systems software is often complex. One reason for its com-
plexity stems from its high degree of flexibility that stems
from the need to make it more widely applicable. The sys-
tem flexibility often manifests in the form of configuration
parameters can be used to tweak the system behavior. The
Xen scheduler is an example of systems software, which is
used to schedule CPU resources for the virtual machines it
manages in a cloud data center. Such flexibility offered by
systems software can become overwhelming for operators;
without appropriate tool support, operators often have to
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(a) Under 6 Concurrent Users (b) Under 12 Concurrent Users

Fig. 14: Comparison of Netperf Throughput Under 6 and 12 Users Load

TABLE 4: Host-level Improvement Results

Setup Xen De-
fault iTune Improvement

(%)
Total of Average
Waiting Time of all
VMs (Apache)

20006% 11701% 41.51%

Total of Average
Waiting Time of all
VMs (Netperf)

7493% 3563% 52.45%

resort to default values to get their system to work, which
may not provide the best performance, or resort to trial-and-
error-based approaches, which have no scientific basis.

To address such concerns, this paper presented iTune,
which is an intelligent and autonomous self-tuning middle-
ware to optimize the scheduler parameters of the hypervi-
sor. iTune comprises three phases named Discoverer, Op-
timizer, and Observer. The Discoverer phase is responsible
for generating resource usage history of host machines and
workload clustering. The optimum scheduler configuration
parameters are searched in the Optimizer phase. Unlike
the other two phases, the Observer phase is online and is
the final phase which monitors resource usage, classifies
host machine workload at run-time, and loads the opti-
mum scheduler parameters. iTune employs k-means and
simulated annealing machine learning algorithms for host
machine workload clustering and Xen’s credit scheduler
parameter optimization. iTune also provides four different
latency sensitivity levels to the VMs.

The following observations can be made about iTune:

• Although iTune has currently been demonstrated in
the context of the Xen credit scheduler, the approach
has broader applicability and can be used for other
systems software.

• Although we have identified 5 as the number of
regions of operation (i.e., clusters) for our training
set, this number was derived solely based on a
specific workload pattern in the Google cluster trace.
It is possible that for a different kinds of expected
workload, the number of identified clusters may be
different. Hence we suggest that CSPs first apply
iTune to their expected workloads to overcome this

limitation.
• It is possible that the workload patterns themselves

may differ during different times of the years, and
hence it may be necessary to switch between one
set of clusters to another. This dimension of work is
other limitation of iTune and part of our future work.

• Our recent work has explored the dimensions of
resource overbooking to conserve server-side re-
sources [3], and also power-performance trade-offs
in data centers [34]. It is possible that the objectives of
these efforts and iTune may conflict with each other.
Our future work will explore trade-offs along these
dimensions.

All scripts, source code, and experimental results of
iTune are available for download from www.dre.vanderbilt.
edu/∼caglarf/download/iTune.
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