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Abstract—As distributed systems become more complex, understanding the underlying algorithms that make these systems work
becomes even harder. Traditional learning modalities based on didactic teaching and theoretical proofs alone are no longer sufficient
for a holistic understanding of these algorithms. Instead, an environment that promotes an immersive, hands-on learning of distributed
systems algorithms is needed to complement existing teaching modalities. Such an environment must be flexible to support the
learning of a variety of algorithms. The environment should also support extensibility and reuse since many of these algorithms share
several common traits with each other while differing only in some aspects. Finally, it must also allow students to experiment with
large-scale deployments in a variety of operating environments. To address these concerns, we use the principles of software product
lines and model-driven engineering, and adopt the cloud platform to design an immersive learning environment called the Playground
of Algorithms for Distributed Systems (PADS). A prototype implementation of PADS is described to showcase use cases involving
BitTorrent Peer-to-Peer file sharing, ZooKeeper-based coordination, and Paxos-based consensus, which show the benefits of rapid
deployment of the distributed systems algorithms. Results from a preliminary user study are also presented.
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1 INTRODUCTION

1.1 Complexities in Learning and Teaching Distributed
Systems Algorithms

THE design of large-scale networked and distributed sys-
tems must handle many complex issues, such as time

synchronization, fault management, replication and replica
synchronization, consensus among peers, concurrency con-
trol and race conditions, leader-election among nodes, dead-
lock avoidance, etc. Addressing these complex problems
is further excarbated by the heterogeneity in distributed
systems in terms of network topology (ring, star, mesh, etc.),
node types (fixed vs mobile nodes, static vs dynamic nodes,
physical vs virtual nodes), communication styles (client-
server, peer-to-peer, publish-subscribe, etc.), and network
types (Ethernet, WiFi, Satellite). The complexity of these
design considerations and various accidental complexities
make both the teaching and the learning of algorithms
for distributed systems a daunting task for instructors and
students, respectively.

From our experience both as students taking a course
on Distributed Systems and as an instructor teaching such a
course, we observed that existing teaching modalities, tools
and techniques for understanding algorithms for distributed
systems often rely on traditional approaches, such as didac-
tic lecturing, simple proof sketches on the whiteboard, using
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theorem provers, and basic simulations or toy assignments
in some programming language.

We believe that this approach incurs several difficulties
for students including (1) often having to program the
algorithms in programming languages they are not experts
in, (2) analyzing these algorithms in simulators/emulators
they are unfamiliar with, and (3) needing to deal with
accidental complexities in order to deploy them on real
hardware to realistically validate them or propose improve-
ments and extensions to them. Due to a piecemeal approach
in learning and implementing these algorithms (i.e., pro-
gramming/learning algorithms individually), students (1)
cannot analyze multiple algorithms at the same time to
compare and contrast them, (2) cannot seamlessly switch
between simulation, emulation and real deployment on
hardware, and (3) consequently do not obtain a holistic view
of distributed systems and how different algorithms work
together in real world distributed systems.

The instructor faces a different set of challenges. For
instance, the inherent asynchrony and scale of distributed
systems makes it hard for an instructor to show students the
multiple different execution traces that a distributed system
can illustrate in its life time. By no means do we imply that
existing teaching modalities are not needed; rather what we
propose is that instructors require some way in which they
can keep the students engaged after which proof sketches
and theorem provers can be utilized. We believe that hands-
on, immersive learning [1] where students are allowed to
conduct different kinds of “what-if” analyses (e.g., tweaking
certain parameters of the distributed algorithm or tweaking
some steps in an algorithm) and letting the students observe
the impact of their slight modifications may provide a signif-
icantly more engaging and rewarding learning experience
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for the student, who may then feel obliged to utilize theorem
provers and associated tools to prove the correctness of the
original and/or the modified algorithms. Unfortunately, we
have not come across any readily available capabilities that
fulfill these critical needs for distributed systems learning
and instruction.

1.2 Solution Approach and Organization of Paper
To address these challenges we need a learning and
technology-based approach that will alleviate the need for
students to learn an unfamiliar programming language or
a simulation tool to experiment with distributed systems.
Secondly, such an approach should provide the student with
intuitive and higher-levels of abstractions that are closer
to the domain and semantics of distributed systems rather
than having the student deal with low-level and mundane
syntactic details of programming languages and simulation
tools. Moreover, the approach should be extensible and
enable the student to seamlessly move between simulation,
emulation and real-world experimentation. Finally, the ap-
proach should promote maximal reuse so that students can
build larger distributed systems by composing smaller but
intuitive building blocks.

We surmise that these critical needs can be met us-
ing Software Product Lines (SPLs) [2] and model-driven
engineering (MDE) [3] in the context of cloud platforms
that will help improve teaching and learning of distributed
systems algorithms. The key intuition behind applying SPL
principles stems from the observation that these algorithms
tend to share several common traits (e.g., communication
paradigm, such as client-server versus publish/subscribe, or
the model of computation, such as synchronous data flow or
reactive asynchronous) while differing only in some aspects
(e.g., the actual publish/subscribe technology used or the
protocol encoding for messages).

Consequently, a collection of distributed systems algo-
rithms can be viewed as variants of a product line. The
challenge then lies in understanding and capturing the com-
monality and variability across these algorithms, and devel-
oping techniques needed to automate the synthesis of these
variants so that the different dimensions of accidental com-
plexities faced by the student can be substantially alleviated.
MDE is used to realize these capabilities because it provides
the user with intuitive, higher-level abstractions compared
to programming languages to model the distributed systems
algorithms and use generative techniques to almost com-
pletely automate the entire experimental setup including
deployment and orchestration.

In the context of using MDE-based approaches, we
have focused on visual modeling for imparting learning
objectives to the students. Visual approaches for teaching
have been found very effective in research projects, such
as Betty’s Brain [4], Code.org [5], NetsBlox [6, 7] and in
our prior work on C3STEM [8, 9, 10, 11]. Both NetsBlox
and C3STEM particularly make use of model-driven engi-
neering techniques. To that end, our solution is a learning
framework for distributed systems called the Playground of
Algorithms for Distributed Systems (PADS), that reifies SPL
principles by building on MDE with generative capabilities,
feature modeling and teaching/learning tools and technolo-
gies.

For this paper we complement and build upon our
previous work [12] and make the following contributions:

• Concrete details on the design and implementation
of the PADS framework beyond that provided in [12]
including description of the underlying web-based
modeling environment that provides new features
such as web-based and collaborative modeling and
the learning outcomes addressed by PADS (Sec-
tion 3).

• Deeper insights into the runtime experimentation
and deployment using the PADS framework (Sec-
tion 4).

• Providing early results from a user study of the PADS
framework in a classroom setting (Section 5).

The rest of the paper is organized as follows: Section 2
surveys related research and compares and contrasts them
with PADS; Section 3 delves into the design details of PADS
focusing the MDE and SPL aspects; Section 4 focuses on the
deployment and runtime infrastructure that accompanies
PADS; Section 5 provides a validation of PADS including
results from an initial user study; and finally Section 6
provides concluding remarks alluding to lessons learned
and future work.

2 RELATED WORK

In this section we compare PADS with related efforts along
three key dimensions: existing work in teaching specific
software for distributed systems algorithms, use of model
driven engineering in the design of large-scale software
systems in the context of educational learning systems, and
visual learning aids.

Learning systems for distributed algorithms teaching:
Authors in [13] present a comprehensive survey providing
an overview of different tools, simulators and learning plat-
forms available for teaching distributed systems. It outlines
tools available for managing deployment, execution, discov-
ery, monitoring and configuration of distributed systems.
It also presents a list of algorithms that can be used for
teaching and demonstrating intricate details of distributed
algorithms.

ViSiDiA [14] is a framework for designing, simulating
and visualizing distributed algorithms. It is developed using
Java language frameworks. It provides implementations
of different distributed systems like sensor networks and
mobile agents. A user can specify their custom distributed
algorithms by making use of framework specific Java API.
Distal [15] is another framework that is specifically aimed
at a certain class within the distributed systems algorithm,
namely fault-tolerant systems. It is developed on top of
the Scala programming framework. One can write pseudo
code for the algorithm using its DSML to translate into
an executable code. The executable can then be deployed
on clusters for testing. However, it lacks integration with
simulators that would facilitate quick testing and debugging
of algorithms.

Another teaching and learning framework called FADA
(Framework Animations of Distributed Algorithms) is pre-
sented in [16]. In FADA, the simulations are written using
Java programming language using the visualization APIs
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provided by the framework. It also provides a set of pre-
assembled simulations for different algorithms which can be
used as examples for demonstrating distributed algorithms
to students.

The frameworks presented above have the following
shortcomings compared to our approach. First, the dis-
tributed algorithms need to be written in a language which
the framework supports. Secondly, the tools presented
above do not support seamless translation of programming
artifacts from simulation to real world deployment.

MDE in learning systems: Previous work has shown
MDE, specifically, domain-specific modeling languages
(DSMLs) have being effective tools [17] in developing teach-
ing software systems. Students have also seen the benefits
of rapid code generation based on MDE techniques. In [18],
students were able to rapidly synthesize code artifacts us-
ing MDE to rapidly generate code, when changes where
required to be made in platform configuration of robotics
control code and mobile device.

An educational game design software framework is
presented in [19]. It utilizes a model driven approach to
describe educational game concepts. It presents an educa-
tional game metamodel that defines platform-independent
educational game concepts. The framework aims to design
educational games to motivate the students to get involved
in the learning process thereby effectively conveying educa-
tional material.

SPL techniques were applied for design, development
and support of a family of elearning systems [20] called
TALES. It also highlighted some of the challenges involved
in the development of large-scale educational system and
how SPL helped it to gain 10-fold productivity boost in the
developmental efforts. The educational systems were built
as a part of Adult Literacy Programme (ALP) for teaching
illiterates in India in 22 Indian languages. Unlike the work
presented above our area of study is focused on a special
topic within computer science which is the distributed
systems algorithms. Our work leverages the MDE and the
SPL techniques in the design of a learning framework for
distributed algorithms.

Visual Programming based learning frameworks: Com-
putational thinking (CT) in the recent times, has become
focus of many researchers including our prior work in the
field of educational computing [9, 21, 22]. CT can be broadly
summarized as a problem solving process involving abstrac-
tion of problem into smaller separation of concern entities,
designing algorithm to solve the problem, simulating the
solution approach and verification of the effectiveness of the
solution to build a better solution strategy [23]. CT based
framework such as the C3STEM [9] engages K-12 students
to solve complex real world problem like the traffic flow
modelling using a visual programming interface to design,
simulate and analyze the solution strategy. Yet another
MDE/visual programming tool for learning is called Nets-
Blox [6, 7] which aims to provide a gentle introduction to
distributed computing to K-12 students. PADS also uses the
same MDE development environment as NetsBlox and in
contrast to NetsBlox is focused on more rigorous distributed
systems algorithms.

In [24], authors developed a visual programming toolkit
called Alice, to teach object oriented programming to stu-

dents. Their observation from the student subject study
revealed that students learned new concepts in computer
science effectively and also developed higher-order think-
ing skills using the tool. Another useful observation was
that the drag-and-drop ability of designing new programs
helped students from preventing making syntax errors in
their program due to the auto-code generation. Another
visual programming platform called code.org [5] has been
very popular and serving millions of users worldwide in
introducing basics of computer programming. The study
in [5] also notes that students developed positive behavior
towards programming and also improved their reflective
thinking skills towards problem solving. Visual program-
ming based teaching methodology has been found useful to
expose students to new teaching concepts.

3 DESIGN AND IMPLEMENTATION OF PADS
This section delves into the details of the design and
implementation of the PADS framework. We first outline
the key learning outcomes we intend to address via the
framework. Next, we delve into the details of its model-
based design including feature model representation and
web based modeling environment. Lastly, we describe the
roles and responsibilities of PADS’s actors which includes
students and instructors.

3.1 Underlying Philosophy Behind PADS
In the educational teaching domain, learning objects have
been an extremely useful resource in imparting education
to the subjects [25, 26, 27, 28, 29]. In the literature, learning
objects have been defined as “Learning Objects (LOs) are
digital resources that can be used (and reused) to support the
learning process” [30]. The learning objects have the property
of re-usability, and sharing of learning material. As an
instructional artifact, the learning objects should be able to
easily incorporate in the design of larger educational teach-
ing context. Generative learning objects (GLO) are a class
of Learning Objects (LO) from which LO-specific functional
implementation properties can be generated [30]. Learning
objects are appealing in the space of learning computer
science concepts.

Use of learning objects is still not that popular in the
area of educational tools for computer science due to dif-
ficulties in designing learning objects as reusable software
artifacts [25]. In a recent study [31], the authors have in-
corporated GLO in the teaching of robot programming.
Authors have incorporated different robot control programs
which are treated as LOs and the code generated for the
robot target platform is treated as GLO. Model-driven engi-
neering (MDE) has been shown to be an effective software
engineering technique for reusing and sharing of software
artifacts. MDE combined with code generation facility al-
lows us to bring the learning paradigms of LO and GLOs
in the practical use for our distributed algorithms learning
toolkit. In the case of distributed algorithms teaching toolkit,
different algorithms models will form the LO, and their
target execution environment specific program code will be
GLO.

From the viewpoint of learning outcomes, we have
focused on a subset of key learning outcomes outlines
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Fig. 1. Feature Model Diagram of Playground of Algorithms for Distributed Systems (PADS) Framework

by the Accredition Board for Engineering and Technology
(ABET) engineering criteria [32]. Specifically, for an effective
instructional method for educating students, addressing
the learning outcomes becomes key in achieving student
learning objectives in an institutional course. PADS tries to
address the following General Criteria 3, student learning
outcomes from the ABET engineering program.

• (a) an ability to apply knowledge of mathematics, science,
and engineering. PADS is designed to enable students
to apply the concepts they learn in Distributed Sys-
tems and model the algorithm to learn its behavior.

• (b) an ability to design and conduct experiments, as well as
to analyze and interpret data. PADS is design to enable
a student to setup one or more experiments to evalu-
ate a distributed systems algorithm scalably without
incurring mundane and error-prone activities stem-
ming from setting up one or more experiments.

• (c) an ability to design a system, component, or process to
meet desired needs. PADS enables a student to tweak
different parameters and modify existing algorithms
to understand the impact on the resulting behaviors.

• (k) an ability to use the techniques, skills, and modern en-
gineering tools necessary for engineering practice. PADS
enables students to use modern tools including MDE
tools, emulation environments such as Mininet, vir-
tualization techniques such as virtual machines and
containers, and study a variety of networking issues
among others as they study distributed systems.

We now present the design and implementation of the
Playground of Algorithms for Distributed Systems (PADS),
which is an extensible framework that manages a software
product line of distributed algorithms used as an instruc-
tional and learning aid for distributed systems. It uses
MDE and SPL techniques to integrate various distributed
systems algorithms for teaching, and cloud platforms for
deployment of experiments.

3.2 Feature Model Representation

For a successful SPL for PADS, we need to manage the
commonalities and variabilities that are exhibited for realiz-
ing the development, implementation and demonstration of
distributed algorithms. One of the well-known approaches
for representing and managing these commonalities and

variabilities is by the means of feature models [33]. Feature
models provide proven techniques for improving reusabil-
ity by specifying reuse rules. The feature model for PADS
must capture the commonalities and different dimensions
of variabilities incurred in the learning process [12]. To that
end we have defined a conceptual feature model for PADS
as shown in Figure 1 and described in [12].

3.3 Realizing the PADS Feature Model using Model-
driven Engineering
The SPLs can be built using modular software. Changes in
the feature configurations can be mapped to the changes in
the software modules [34]. The design and development of
modular software framework is a challenging task. We use
model-driven engineering (MDE) techniques to codify the
feature model by mapping it to metamodel(s) of a domain-
specific modeling language (DSML) and use generative
technologies, which are key artifacts of MDE, to automate
the synthesis of product variants of our PADS product line.
MDE helps to codify the necessary properties of problem
domain which is decoupled from specific solution domain
(e.g., simulator specific programming language, target hard-
ware specific). MDE helps to integrate domain knowledge
into the metamodels and model interpreters [35]. The MDE
design approach helps to map different configuration pos-
sibilities for a specific instance of SPL based on where it
is deployed. This is useful when one needs to deploy a
distributed algorithm software product family onto different
platforms/simulators, MDE can bring all software com-
ponents and their configuration mapped to the platform
specific source codes and scripts.

Our PADS framework can be hosted on virtual machines
or containers deployed on the Openstack cloud, which is
an open source cloud computing infrastructure [36]. In our
current prototype, we use containers. Cloud computing
provides on-demand access to large pool of shared resources
for compute intensive simulations and network experimen-
tation. Students and instructors access these virtual machi-
nes/containers using remote access client which could be
either a web browser client or a desktop client.

3.4 Web Based Modeling Environment
In our previous work [37], we used the Generic Modeling
Environment (GME) [38] as an environment to build and
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develop meta-models and models, and model interpreters.
Despite the widespread use of GME in designing the DSML
as evident by the works presented in [39, 40], it falls short in
meeting our requirement of online and collaborative design
and development of PADS artifacts. As such we decided to
look into the next generation of GME being developed at
Vanderbilt University called the WebGME [41].

WebGME is an online browser-based modeling envi-
ronment. It supports features of GME like creating of
meta-models, models, model visualization and model in-
terpreters. Apart from this, it supports the collaborative
modeling, version controlling of models, user management,
cloud-based infrastructure, and model executors that can
run either on the client side web-browser or run in the
resourceful cloud infrastructure depending on the user con-
figuration.

WebGME1 provides an environment to define the syntax
and semantics of a DSML through metamodeling. Model
interpreters can be defined associated with the metamodels
that can provide additional semantics to the language which
are not captured in a visual form as well as provide the gen-
erative capabilities needed for automation. The WebGME
environment can be used to build model instances of a
DSML. Thus, in our PADS framework, an instructor can ex-
tend existing metamodels for the collection of algorithms by
providing a metamodel for a new algorithm. The students
use the PADS framework to develop model instances and
configure them for their experimental scenarios.

3.5 Roles and Responsibilities of PADS’s Actors

Fig. 2. Model-based Process for Distributed Algorithm Demonstration
and Deployment

1. https://webgme.org/

Figure 2 shows the different phases that comprises the
use of the PADS framework for teaching distributed systems
algorithms. An instructor who is a domain expert with
a knowledge of model driven engineering concepts, lays
down the foundation aspects as to which different feature
model entities are involved in the design and deployment
runtime of the algorithms. Based on the specific distributed
algorithm concepts, using the PADS builtin meta-model
library, the instructor creates a specific meta-model. Now,
the software artifacts associated with the meta-model and
the necessary model interpreter logic is also written by
the instructor. Though we believe this would involve some
learning curve for the instructor to get familiar with the
PADS meta-modelling and model interpreter programming,
the potential benefits of the PADS to the student learning
outweighs this limitation. Moreover, we believe that a repos-
itory of such individual algorithm-specific metamodels can
be envisioned and reused on a large scale.

Based on the type of the deployment (e.g., simulator
specific), the associated deployment logic generators are
also required to be a part of the model interpreters. Once,
this initial design activity is complete, the tool is now ready
to be used by the students. Students can now start modelling
the distributed algorithm, such as different actors in the
distributed systems, their attribute properties, characteriz-
ing the communication medium properties used during the
simulation, network topology of the distributed systems,
runtime platform for distributed systems deployment. Once
the student has modelled the distributed systems algorithm,
code generation facility can be utilized to generate the
boilerplate code for the algorithm. The boilerplate code
consists of the information specified during the modelling of
the experiment and deployment runtime specific gluecode.
Based on the learning activity, the instructor can then ask
the students to write the application logic code for a func-
tional distributed systems algorithm using the generated
boilercode. If the writing of the distributed algorithms is
a too complex activity for the students’ level of learning,
the instructor may decide to provide the application logic
code to the students. This phase helps the students in
understanding the different programming constructs and
the internals of the algorithm. Once the application code
is ready for testing and deployment, the student can then
invoke deployment specific set of model interpreters, which
can then upload this application logic codes to the runtime
execution platform for algorithm execution.

4 RUNTIME ARCHITECTURE OF PADS

The PADS framework utilizes cloud computing infrastruc-
ture to deploy distributed systems experiments. The cloud
computing provides elastic infrastructure facility which en-
ables on-demand access to the computing resources. Fig-
ure 3 gives an overview of the layered architecture con-
sisting of distributed systems experimentation, user inter-
actions, cloud deployment and experimentations, and user
analysis visualizations interface components of the PADS
framework. Next we describe this layered architecture and
the functionalities it provides to provide a scalable PADS
framework.
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Fig. 3. Cloud based architecture of PADS framework

4.1 User Interaction Layer

The user interactions layer in the PADS framework pro-
vides following features: user/students/instructor access
management and security, web front end to model and
design the distributed algorithms, interaction and runtime
visualization of the experiment deployed on the target
simulator/emulator running on the cloud infrastructure,
and performance monitoring logs of the completed experi-
ment. User interactions primarily occur through the Internet
enabled web browser. Next we will discuss each of the
components of the user interaction layer.

1. User Management Portal: User management portal fa-
cilitates management of the user access privileges and login
credentials to the PADS framework. User management por-
tal lets an instructor manage login access for the students.
Access rights to who can create, edit, and run experiments
can be set as per the requirements of the distributed algo-
rithm experiment for the students. If the instructor wants to
give a ’read-only’ access to the experiment scenario and pre-
vent students from making any changes to the experiments,
’read-only’ access can be set to the experiment project.
Depending on the resource management and execution cost,
the instructor may also want to set when and who can have
access to the runtime infrastructure for deploying the dis-
tributed algorithms experiments. This gives the instructor
a fine grain control over the PADS framework and various
runtime components of the system.

2. Experiment Design Environment: This component pro-
vides a user with a web interface to design and orchestrate
the distributed algorithm construction and specification. It
provides various prebuilt artifacts to get quickly started
with teaching and learning of the distributed systems con-
cepts and algorithms. Some of the predefined algorithms
include Client-Server model, BitTorrent, Paxos, Zookeeper,
Chord, Pub-Sub. It also provides distributed systems spe-
cific actors like Server, Client, Leader, Tracker, Router, Wired
and wireless interfaces, hub, switch. Users can build their
own distributed systems algorithms representation using
the prebuilt artifacts. Apart from designing the distributed
algorithm experiment, the user can also specify the target
simulation or emulation platform the user would like to de-
ploy the experiment on. The current prebuilt target support
is included for Omnet++, Mininet, ns-2. Due to the MDE
approach as discussed earlier, new target platform support

can be easily extended.
3. Runtime Experiment Webviewer: The runtime experi-

ment webviewer provides a web enabled view of the sim-
ulator/emulation runtime software. The distributed algo-
rithm that is ready to be executed is deployed on the target
platform in the cloud infrastructure. The user may need to
see different runtime properties offered by the simulator. To
enable remote access to the runtime view of the simulator
in the web browser, we use Virtual Network Computing
(VNC) technology. noVNC is an HTML5-compliant VNC
client that enables remote desktop control and viewer via a
web browser interface. Figure 4 shows the Runtime Exper-
iment Webviewer running an Omnet++ based distributed
algorithm experiment displayed in the web browser.

Fig. 4. Runtime Experiment Webviewer illustrating Omnet++ simulator
accessed through noVNC client

4. Analysis and Results: Analysis of the experiment can
give various insights into performance and effectiveness
of the distributed algorithm that is constructed. One can
tweak different algorithm-specific parameters to meet the
user objectives for the distributed algorithms (such as opti-
mization, best fit). After the experiments finish executing,
there is a need to have a good performance and result
aggregation and presentation component which the user can
use to identify potential benefits or bottlenecks of the target
distributed systems algorithm. The Analysis and Results
components collects and makes available various experi-
mental metrics, results and logs generated by the target
execution component.

4.2 Backend Infrastructure Layer
This layer manages the deployment and runtime of the
distributed algorithm experiments which are ready to be
tested and run. The backend infrastructure deal mainly with
providing elastic and extensible infrastructure to run the
target simulators/emulators as configured by the user. To
support running a large number of experiments which may
consist of different simulation and emulation targets, one
needs a large number of computing resources to provide sat-
isfiable Quality of User Experience (QoE). Cloud computing
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addresses these requirements and provides on-demand ac-
cess to the pool of resources to carry out experiments. More-
over, the simulators/emulators that need to be run should
be able to start instantaneously without considerably long
startup times. We are currently using the Linux container
technology to provide fast startup of simulators/emulators.
Also, to manage a large pool or cluster of physical and
virtual machines on which the experiments will be running,
we will need resource management capability to deploy and
manage this PADS infrastructure. Next we discuss each of
the components of the backend infrastructure in detail.

1. Simulation/Emulation Target Toolkits: The experiments
that the user orchestrates need to be executed on one of
the simulators or emulators that it is designed for. The
simulators are hosted in the cloud infrastructure. As such
the users do not need to have any preinstalled applica-
tions (simulators/emulators) on their local development
machines. Some of these targets need very high resources to
execute. Running these target toolkits on the cloud relieves
users from the need of owning resourceful machines to
test and play with the distributed systems experiments.
Simulator/emulators can be accessed through the Runtime
Experiment Webviewer. Another benefit of running these
tools in the cloud environment is the lower entry to barrier
to play with the distributed systems algorithms as all the
tools needed to run the experiment is already preinstalled
and configured, and the user does not have to deal with
complexities of the application installation process. OM-
NET++, Mininet, ns-2, ns-3 are some of the tools that are
configured and ready for the users to experiment with.

2. Linux Containers: Linux containers provide a process-
based virtualization that enables wrapping all the applica-
tion dependencies in an isolated sandboxed environment.
Linux containers provides many attractive features which
are particularly suited for the PADS framework simula-
tor/emulation deployment in the cloud environment. We
are using Docker implementation to leverage Linux con-
tainer technology. Some of the features provided by the
Docker technology includes lightweight deployment, in-
stant bootup time, and sandboxed environment. The simula-
tion/emulation targets are wrapped into a Docker container
that can be deployed when the experiment is ready to be
executed. Docker container also contains a running VNC
server which is used by the runtime experiment webviewer
to control and view the simulator/emulator execution. As
shown in the figure we have an Omnet++ experiment run-
ning which is accessed via the runtime experiment web-
viewer powered by noVNC HTML5 client software.

3. Cloud Deployment Infrastructure: The PADS framework
leverages cloud computing infrastructure to execute and run
the distributed systems algorithm experiments and evalua-
tion. The simulation/emulation targets which are wrapped
into Docker containers become the deployment artifacts that
can be executed on the cloud computing infrastructure. To
enable efficient resource utilization of the available infras-
tructure (physical and virtual machines) we are using a
cluster management engine called Apache Mesos. Mesos
provides easy abstraction of available computing environ-
ments such as physical machine hosts, virtual machine
hosts into a unified resource pool. It allows fine grained
resource procurement and scheduling required for the exe-

cution of simulation/emulation runtime targets. Based on
the requirement of the individual targets such as CPU,
RAM, number of cores and storage, the target is deployed
on the computing host that can provide these resources.
Mesos provides REST application protocol interfaces (API)
to enable simulation/emulation runtime to be executed,
deployed and managed from the user interaction layer.

5 FRAMEWORK VALIDATION

In this section we show using a preliminary user study
the accrued benefits and effectiveness of PADS in terms
of increasing user productivity, ease of use, usefulness in
learning distributed systems algorithms, and users’ interest
in continuing to use modern tools for distributed systems
algorithm study. In [12], we have also demonstrated how
PADS can be extended to include a new algorithm and
showed PADS’ effectiveness in terms of the effort saved on
the part of the instructor and learner in using the frame-
work.

5.1 Preliminary User Study
To understand the effectiveness of the PADS tool in teaching
distributed systems algorithms, a preliminary user study
was conducted as a part of the Distributed Systems Prin-
ciples (CS-6381) graduate level course offered at Vanderbilt
University, USA.2 The study was conducted in the Spring
2017 semester. The class comprised graduate-level students
in Computer Science. A total of 17 students participated
in the study. In the study, students were asked to work
on tasks which consisted of creating networking topologies
for a publish/subscribe distributed systems scenario. The
Publish/Subscribe paradigm is a key part in information
dissemination in distributed systems.

5.1.1 Task Assignment And Survey Questions
As part of the CS-6381 course, students are required to
complete their assignments inside a Mininet network emu-
lator and demonstrate scalable publish/subscribe using the
ZeroMQ communication middleware. They are expected to
showcase topic filtering, ownership strength of the publish-
ers and history of topic samples in their assignment. Prior
to our user study, students had completed this assignment
wherein they were required to create application logic for a
pub/sub system in Mininet environment. Thus, an assump-
tion is made in this study that students have an understand-
ing and hands-on experience in writing programs using the
Mininet emulator and other associated technologies.

For the PADS formulation of this problem, we provide
students with actors such as publisher, subscriber and bro-
ker. So the PADS framework contained these network actors
in the distributed systems scenario to construct publish/-
subscribe distributed systems study. Prior to using PADS,
for the assignment students were required to manually cre-
ate Python language code to generate the network topology
and the deployment logic to place the different publishers,
subscribers and brokers on the different nodes of the topol-
ogy. These steps must be repeated for every new topology

2. An exemption was approved by the Institutional Review Board for
this study.



PADS TEACHING FRAMEWORK 8

under which they want to evaluate their algorithms, which
are separately coded in Python per actor.

For our preliminary study, we have focused on relieving
the student from the mundane, repetitive and error-prone
tasks of writing code for generating the network topologies
and deploying the actors. Instead, they are provided the
PADS framework and asked to visually create the topologies
while allowing the tool to generate the underlying code and
deployment logic. Students are given two network topolo-
gies as shown in the Figures 5 and 6. An example of the
code snippet generated from the PADS framework for one
of the topologies is shown in Figure 7. Note that with more
complex topologies, the logic for the topology generator
becomes more complex and can be a cause of substantial
effort spent in getting the topology right instead of spending
time on learning and understanding the behavior of the
algorithm being evaluated.

Fig. 5. Network Topology One for user studies

Fig. 6. Network Topology Two for user studies

To test the usefulness of the PADS tool in improving
user productivity, students were first asked to manually
create the network topology generator program required
by Mininet. As a second step, the students were asked to

Fig. 7. Source code generated for user study network topology

use the PADS tool to create the same network topology.
Students were asked to measure and report the approximate
time required to complete the above tasks. At the end of the
study, the users were asked to complete a survey form to
report their experience in using the PADS framework.

The following questionnaire was created for the survey:
Q1: Compare the time to complete tasks for Topology 1 and
Topology 2 by completing Manually and then using PADS
Framework.

Q2: Did PADS help you to avoid syntax errors in the topol-
ogy generation process compared to writing of the topology
file manually? YES/NO

Q3: How easy was it to use PADS?: scale (1-10), where 1 is
lowest, 10 is highest.

Q4: How likely are you to use PADS in future assign-
ments/experimentation?: scale (1-10), where 1 is lowest, 10
is highest.

Q5: Is PADS useful in learning distributed systems algo-
rithms? YES/NO

The above questionnaire was carefully crafted to assess
approximately how the PADS framework meets the ABET’s
learning outcomes as discussed in Section 3.1. Q1 tries to ad-
dress the learning outcome 3.k, which assesses whether stu-
dent is able to use the PADS system to create network topol-
ogy experiments efficiently and effectively. Q2 addresses the
learning outcome 3.b, as to how students where able to use
the PADS framework to design the system correctly thereby
avoiding manual mistakes during the design and setting
up of the experiments. Q3 and Q4 assesses the student’s
learning outcome 3.k, as to how likely they are to use the
PADS framework in future for solving distributed systems
problems. Q5 to tries to assess the learning outcomes 3.a and
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3.b, which demonstrate students’ eagerness to use PADS
framework in creating distributed systems algorithms and
finding solutions to the associated problems.

5.1.2 Survey Results and Discussion

Based on the user study, the survey data was gathered and
analyzed. Our findings are reported below.

Response to Q1→ Time to Complete: As can be seen
in the box chart shown in Figure 8, comparison of time to
completion for creating the topology files for the two test
topologies using the manual approach and using the PADS
tool is illustrated. The median value for time to completion
using the manual approach is 7 and 9.5 minutes for the
topologies 1 and 2, respectively. The 75th percentile value
of the sample for time to completion using the manual
approach resulted in 10.5 and 16.75 minutes for the topolo-
gies 1 and 2, respectively. Using the PADS approach, the
median time required for completion for topologies 1 and 2
was 2 and 2 minutes, respectively. While the 75th percentile
value of the sample for time to completion using the PADS
approach is seen as 3.75 and 3.75, minutes respectively.
Using these results, we can deduce that there is a substantial
productivity gained using the PADS framework for con-
structing and creating the topology file for the distributed
algorithms study.

Fig. 8. Survey response to Question 1: Compare time to complete tasks
for Topology 1 and Topology 2 by completing Manually and then using
PADS Framework

Response to Q2→ Avoiding Manual Syntax Mistakes
using PADS: As seen in Figure 9, 88 percent of the par-
ticipants felt that the PADS helped them to avoid manual
syntax mistakes in writing the topology description file.
12 percent of the participants did not answer the survey
question. It can be seen that the PADS framework looks very
appealing to the users in avoiding manual mistakes they
might make while writing the topology file manually. The
PADS autogenerates the topology file and takes care of mak-
ing sure the right parameters are passed to the connections
creation function calls supported by the underlying target
platform based on the topology specification described by
the user.

Response to Q3→ Ease of use: As seen in Figure 10,
most of the respondents gave a very high rating for the
ease of use criteria of the PADS framework. 35.71 percent
of users rated 7 and 8 on the scale of 10 for ease of use.

Fig. 9. Survey response to Question 2: Did PADS help you to avoid
manual syntax errors compared to writing of the topology file manually?

While 21.43 percent and 7.14 percent rated it at 9 and 10
respectively on the scale of 10 for ease of use. This shows
that our PADS framework is very easy to use for users to
learn and play with distributed systems algorithms. The
intuitive visual drag and drop environment helps the users
to easily model different scenarios of the distributed systems
for evaluation and study. Moreover, the support for the tar-
get emulator/simulator environment in PADS helps users
to study distributed systems concepts in an environment
which they are familiar with, which in this user study is
Mininet.

Fig. 10. Survey response to Question 3: How easy was it to use PADS?

Response to Q4→ Likely to continue using PADS
tool: As seen in Figure 11, most of the respondents were
excited to continue using the tool for future assignments
and experimentations for learning distributed systems al-
gorithms. 33.33 percent, 6.66 percent, 26.67 percent, 26.67
percent of the respondents rated 10, 9, 8 and 7 scores out
of 10 rating respectively for likelihood in using PADS for
future study purpose. While 6.67 percent of the participants
rated 2 out of 10 score for using PADS in future for learning
distributed systems algorithms. Overall, the trends show
that students were able to experience the benefits offered
by the PADS framework in the learning of the distributed
systems algorithms. Due to this, the students developed
great interest in working with the PADS tool for their future
assignments and experiments.
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Fig. 11. Survey response to Question 4: How likely are you to use PADS
in future assignments/experimentation?

Response to Q5→ Useful in Learning Distributed
Systems Algorithms: As seen in Figure 12, 12 percent of
the participants did not reply and 6 percent of the partic-
ipants were not certain to the question if the PADS tool
will be useful in the learning of the distributed systems
algorithms. While, 82 percent of the participants were of
the opinion that PADS tool is useful in learning distributed
systems algorithms. This strengthens our belief that the
PADS framework designed for learning distributed systems
algorithms will be a very resourceful tool for the learners
of distributed systems algorithms. More studies on more
complicated scenarios are necessary in future to corroborate
our claims.

Fig. 12. Survey response to Question 5: Is PADS useful in learning
distributed systems algorithms?

6 CONCLUDING REMARKS

This paper motivated the need for an integrated teach-
ing framework used for experimenting with distributed
systems algorithms. To that end, this paper describes the
design, implementation and preliminary user evaluation of
the Playground of Algorithms for Distributed Systems (PADS)
framework, which provides intuitive, domain-specific mod-
eling abstractions to capture various distributed systems
algorithms, their components and requirements. Our pre-
liminary user evaluation focused on understanding to what
extent does PADS address the subset of learning outcomes

we used from the ABET criteria. Our evaluation indicates
that PADS prevents designers from making errors in the dis-
tributed systems algorithms test-bed setup and significantly
simplifies system deployment by automating the generation
of platform-specific metadata that faithfully implements the
necessary execution dependency.

Ongoing and future work on PADS is focusing on
framework extensibility so as to include more algorithms,
reuse, building a repository of user models, conducting
more user studies, and applying the framework beyond
just distributed systems. PADS is available for download
from:https://github.com/doc-vu/pads
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