CHARIOT: Goal-driven Orchestration
Middleware for Resilient loT Systems

Subhav Pradhant, Abhishek Dubeyt, Shweta Kharet!, Saideep Nannapaneni~,
Aniruddha Gokhalef, Sankaran Mahadevan+, Douglas C Schmidtt, Martin Lehofer*

"Dept of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
*Dept of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, USA
‘Siemens Corporate Technology, Princeton, NJ, USA

ABSTRACT

An emerging trend in Internet of Things (IoT) applications
is to move the computation (cyber) closer to the source of the
data (physical). This paradigm is often referred to as edge
computing. If edge resources are pooled together they can
be used as decentralized shared resources for IoT applica-
tions, providing increased capacity to scale up computations
and minimize end-to-end latency. Managing applications on
these edge resources is hard, however, due to their remote,
distributed, and (possibly) dynamic nature, which necessi-
tates autonomous management mechanisms that facilitate
application deployment, failure avoidance, failure manage-
ment, and incremental updates. To address these needs, we
present CHARIOT, which is orchestration middleware ca-
pable of autonomously managing IoT systems consisting of
edge resources and applications.

CHARIOT implements a three-layer architecture. The
topmost layer comprises a system description language, the
middle layer comprises a persistent data storage layer and
the corresponding schema to store system information, and
the bottom layer comprises a management engine that uses
information stored persistently to formulate constraints that
encode system properties and requirements, thereby enabling
the use of Satisfiability Modulo Theories (SMT) solvers to
compute optimal system (re)configurations dynamically at
runtime. This paper describes the structure and function-
ality of CHARIOT and evaluates its efficacy as the basis
for a smart parking system case study that uses sensors to
manage parking spaces.

1. INTRODUCTION

Emerging trends and challenges. Popular IoT ecosystem
platforms, such as Beaglebone Blacks, Raspberry Pi, Intel
Edison, and other related technologies like SCALE [5] and
Paradrop[33], provide new capabilities for data collection,
analysis, and processing at the edge [32] (also referred to as

Fog Computing [6]). When pooled together, edge resources
can be used as decentralized shared resources that host the
data collection, analysis, and actuation loops of IoT appli-
cations.

Examples of IoT applications include air quality moni-
toring, parking space detection, and smart emergency re-
sponse. In this paper, we refer to the combination of remote
edge resources and applications deployed on them as loT
systems. 1oT systems provide the capacity to scale up com-
putations, as well as minimize end-to-end latency, thereby
making them well-suited to support novel use cases for smart
and connected communities.

While the promise of the IoT paradigm is significant, sev-
eral challenges must be resolved before they become ubig-
uitous and effective. Conventional enterprise architectures
use centralized servers or clouds with static network layouts
and a fixed number of devices without sensors and actu-
ators to interact with their physical environment. In con-
trast, edge deployment use cases must address key challenges
not encountered in cloud computing, including (1) handling
the high degree of dynamism arising from computation and
communication resource uncertainty and (2) managing re-
source constraints imposed due to the cyber-physical nature
of applications and system hardware/software components.

Computation resource uncertainty in IoT systems stems
from several factors, including increased likelihood of fail-
ures, which are in turn caused by increased exposure to
natural and human-caused effects, as well as dynamic en-
vironments where devices can join and leave a system at
any time. Communication resource uncertainty is caused by
network equipment failure, interference, or due to the mobile
nature of some systems (e.g., swarms of drones or fraction-
ated satellites). Unlike traditional enterprise architectures
(whose resource constraints narrowly focus on only CPU,
memory, storage and network), IoT systems must be able to
express and satisfy more stringent resource constraints due
to their cyber-physical nature, such as their deployment on
resource-limited sensors and actuators.

Even under the uncertainties and constraints outlined above,
ToT systems must be capable of managing their applications
to ensure maximum availability, especially since these appli-
cations are often mission-critical. Each application deployed
for a mission has specific goal(s) that must be satisfied at
all times. IoT systems should therefore be equipped with
mechanisms that ensure all critical goals are satisfied for
as long as possible, i.e., they must be resilient by facilitat-
ing failure avoidance, failure management, and operations

management to support incremental hardware and software
changes over time. Moreover, since IoT systems compris-
ing edge resources are often deployed remotely, resilience
mechanism should be autonomous to ensure availability and
cost-effective management.

Solution approach — Autonomous resilience manage-
ment mechanisms. To address the challenges described
above, IoT systems need autonomous mechanisms that en-
able the analysis and management of (1) the overall system
goals describing the required applications, (2) the compo-
sition and requirements of applications, and (3) the con-
straints governing the deployment and (re)configuration of
applications. This paper describes a holistic solution called
Cyber-pHysical Application aRchltecture with Objective-based
reconfiguraTion (CHARIOT), which is orchestration mid-
dleware that supports the autonomous management of re-
motely deployed IoT systems.

CHARIOT uses the analysis and management capabilities
outlined above to provide services for initial application de-
ployment, failure avoidance, failure management, and opera-
tions management. CHARIOT’s three-layered architecture
stack consists of a design layer, a data layer, and a man-
agement layer, as shown in Figure 1 and described in the
summary of its four primary research contributions below.

Design
layer

‘ ’ Design-time
system description

Replicated data store Data schema

Data Store Data Store <:|

v e
Runtime system
representation

Monitoring
Infrastructure

Data
layer

Deployment
Infrastructure

Management
Engine

Management
layer

Figure 1: The Layered Architecture of CHARIOT.

Contribution 1: A generic system description language. At
the top of CHARIOT’s stack is a design layer implemented
via a generic system description language. This layer cap-
tures system specifications in terms of different types of
available hardware resources, software applications, and the
resource provided/required relationship between them. CHAR-
IOT implements this layer using a domain-specific modeling
language (DSML) called CHARIOT-ML whose goal-based
system description approach yields a generic means of de-
scribing complex IoT systems. This approach extends our
prior work [26, 27] by (1) using the concept of component
types (instead of specific implementations) to enhance flexi-
bility and (2) supporting a suite of redundancy patterns. It
is further described in Section 3.1.

Contribution 2: A schema for persistent storage of system
information. In the middle of CHARIOT’s stack is a data

layer implemented using a persistent data store and the
corresponding schema to characterize system information,
which includes a design-time system description and a run-
time representation of the system. This layer canonicalizes
the format in which information about an IoT system is
represented. We describe this contribution further in Sec-
tion 3.2.

Contribution 3: A management engine to facilitate autono-
mous resilience. The bottom of CHARIOT’s stack is a
management layer the supports monitoring and deployment
mechanisms, as well as a novel management engine that fa-
cilitates application (re)configuration as a means of support-
ing autonomous resilience. This management engine uses
IoT system information stored in CHARIOT’s data layer to
formulate Satisfiability Modulo Theories (SMT) constraints
that encode system properties and requirements, enabling
the use of SMT solvers (such as Z3 [8]) to dynamically com-
pute optimal system (re)configuration at runtime. We de-
scribe this contribution further in Section 3.3.

Contribution 4: Distributed implementation and evaluation
of CHARIOT. CHARIOT uses MongoDB [23] as a persis-
tent storage service, ZooKeeper [1] as a coordination service
to facilitate group-membership and failure detection, and
ZeroMQ [13] as a high-performance communication middle-
ware. We describe this contribution further in Section 4,
which also describes a smart-parking application that serves
as a case study to present experimental evaluation that shows
how CHARIOT’s orchestration middleware capabilities are
suitable to manage edge computing for IoT systems.
Paper organization. The remainder of this paper is orga-
nized as follows: Section 2 describes the research problem
addressed by our work on CHARIOT; Section 3 explains
our first three contributions by describing the CHARIOT
solution in detail; Section 4 explains our fourth contribution
by describing an implementation of CHARIOT and evalu-
ating this implementation; Section 5 compares our work on
CHARIOT with related work; and Section 6 presents con-
cluding remarks and future work.

2. PROBLEM DESCRIPTION

This section describes the research problem addressed by
our work on CHARIOT presented in this paper. We focus on
IoT systems comprising clusters of heterogeneous nodes that
provide computation and communication resources, as well
as a variety of sensors and actuators. Cluster membership
can change over time due to failures, or addition and removal
of resources.

This distributed platform supports the needs of IoT ap-
plications, which may span multiple nodes due to the avail-
ability of resources, e.g., some nodes may have sensors, some
may have actuators, some may have the computing or stor-
age resources, and some need more than the processing power
available on one node. These IoT applications are composed
of loosely connected, interacting components [11], running
on different processes, as shown in Figure 2.

A component provides a certain functionality and may re-
quire one or more functionalities' via its input and output
ports. The same functionality can be provided by different
components. These provided and required relations between
components and functionalities establish dependencies be-

In this context, functionalities are synonymous to services
or capabilities associated with a component.

Node 1 Node 2
I I
Application 1 Application 1
£ o Process Process Process £ o
5L s <
s e Comp Comp Comp Eg
z & A T2 \ B 7121 ¢ z &
Middleware [Communication Middleware

}
Operating System J
i

—

Hardware

Operating System (Includes device drivers)]

[Hardware (Includes sensors and actuators)

Figure 2: A Component-based IoT Application Model.

tween components. IoT applications can thus be assembled
from components that provide specific services. Likewise,
components may be used (or reused) by many active appli-
cations. Moreover, the cluster of computing nodes can host
multiple applications concurrently.

An IoT system running in a CHARIOT-based distributed
platform must manage the resources and applications to en-
sure that functionalities provided by application components
are always available. This capability is important since IoT
applications are often mission-critical, so functionalities re-
quired to satisfy mission goals must be available as long as
possible. This notion of functionality requirement can also
be hierarchical, i.e., high-level functionality may be further
divided into sub-functionalities.

The possibility of having hierarchical functionalities re-
sults in a functionality tree, which distinguishes between
functionalities that can be divided into sub-functionalities
and functionalities that cannot be decomposed further. The
latter represents a leaf of the tree and should always map to
one or more application components. Although each compo-
nent provides a single functionality, the same functionality
can be provided by multiple components.

The requirement relationship between each parent and its
children at every level of this functionality tree can be ex-
pressed using a boolean expression [24, 15] that yields an
and-or tree. Additional resource and implicit dependency
constraints between components may arise due to system
constraints. Examples of these system constraints include
(1) availability of memory and storage capacity for compo-
nents to use, (2) availability of devices and software artifacts
(libraries) for components to use, and (3) network links be-
tween nodes of a system, which restricts deployment of com-
ponent instances with inter-dependencies.

2.1 A Representative IoT System Case Study

Consider an indoor parking management system installed
in a garage. This case study focuses on the vacancy detec-
tion and notification functionality. This system is designed
to simplify clients’ use of parking facilities by tracking the
availability of spaces in a parking lot and servicing client
parking requests by determining available parking spaces
and assigning a specific parking space to a client. We use
this system as a running example throughout the rest of this
paper to explain various aspects of CHARIOT.

Figure 3 visually depicts this IoT system, which consists
of a number of pairs of camera nodes (wireless camera) and
processing nodes (Intel Edison module mounted on Arduino

board)2 placed on the ceiling to provide coverage for mul-
tiple parking spaces. Each pair comprising a camera and

Image

Occupancy Parking
Image Load Occupancy status Parking request
Capture Detector Balancer Detector Manager .
discovery Y N T Parking
. \ \ / response
Runs on Runs on Runs on Runs on
camera node node Processing node node

Client

Runs on the
entry terminal

Edge nodes with a camera
node and a processing node,
both mounted on the ceiling

providing coverage for multiple
parking spaces
\\\, //‘

Figure 3: The Parking Management System Case Study.

a processing node is connected via a wired connection. In
addition, the parking lot has an entry terminal node that
drivers interact with as they enter the parking lot.

In addition to the hardware devices that comprise the sys-
tem, Figure 3 also shows a distributed application consisting
of five different types of components deployed on the hard-
ware outlined above and described below:

e ImageCapture component, which runs on a camera
node and periodically captures an image and sends it
to an OccupancyDetector component that runs on a
processing node.

e OccupancyDetector component, which detects vehicles
in an image and determines occupancy status of park-
ing spaces captured in the image.

e LoadBalancer component, which keeps track of the dif-
ferent OccupancyDetector components available. Be-
fore an ImageCapture component can send images to
an OccupancyDetector component, it must first find
the OccupancyDetector by using the LoadBalancer com-
ponent, which also runs on a processing node.

e ParkingManager component, which keeps track of oc-
cupancy status of the entire parking lot. After an Oc-
cupancyDetector component analyses an image for oc-
cupancy status of different parking spaces, it sends the
result to the ParkingManager component, which also
runs on a processing node.

e (lient component, which runs on the entry terminal
and interacts with users to allow them to use the smart
parking application.

2.2 Problem Statement

As mentioned before, IoT systems are dynamic; the degree
of dynamism can vary from one system to another. For ex-
ample, the smart parking example presented in Section 2.1
is an example of a less dynamic system since the physical
resources are spatially static and any dynamism is related
to system update associated with addition or removal of re-
sources. A cluster of drones or fractionated satellites, how-
ever, is an example of highly dynamic systems. Regardless of
the degree of dynamism, support for autonomous resilience
is of high importance to every IoT system. For example, it

https://www.arduino.cc/en/ArduinoCertified /IntelEdison

https://www.arduino.cc/en/ArduinoCertified/IntelEdison

is essential to ensure that the ParkingManager component
is not a single point of failure, i.e., the smart parking system
should not fail if the ParkingManager component fails.

Addressing the problems described above requires orches-
tration middleware that holistically addresses both (1) the
design-time challenges of capturing the system description
and (2) the runtime challenges of designing and implement-
ing a solution that facilitates failure avoidance, failure man-
agement, and operations management.

1. Fuailure avoidance is necessary for scenarios where fail-
ures must be tolerated as long as possible without hav-
ing to manage them. This capability is important for
systems that cannot withstand reconfiguration down-
time. Although failures cannot be avoided altogether,
we require mechanisms to avoid failure management.

2. Fuailure management is needed to minimize downtime
due to failures that cannot be avoided, including fail-
ures caused by unanticipated changes. The desired so-
lution should ensure all application goals are satisfied
for as long as possible, even after failures.

3. Operations management is needed to minimize the chal-
lenges faced when intentionally changing or evolving
an existing IoT system, i.e., these are anticipated changes.
A solution for this should consider changes in hardware
components, as well as software applications and mid-
dleware components.

3. CHARIOT: ORCHESTRATION MIDDLE-
WARE FOR 10T SYSTEMS

This section presents detailed description of CHARIOT,
which is orchestration middleware we developed to address
the challenges and requirements identified in Section 1. As
shown in Figure 4 the design-time aspect of CHARIOT
includes a modeling language and associated interpreters.
The runtime aspect includes entities that comprise a self-
reconfiguration loop, which implements a sense-plan-act closed-
loop to (1) detect and diagnose failures, (2) compute recon-
figuration plan(s), and (3) reconfigure the system. With
respect to the different layers of CHARIOT (see Section 1),
the design layer is part of the design-time aspect, the man-
agement layer is part of the runtime aspect, and the data
layer cross cuts across both aspects.

CHARIOT handles failure avoidance via functionality re-
dundancy and optimal distribution of redundant function-
alities. It tolerate failures by strategically deploying redun-
dant copies of components that provide critical functionali-
ties, so more failures are avoided/tolerated without having
to reconfigure the system. CHARIOT’s failure avoidance
mechanisms are described further in Section 3.1.2.

CHARIOT handles failure management via the sense-plan-
act loop outlined above. Its Monitoring Infrastructure is re-
sponsible for detecting failures, which is the sensing phase.
We use capabilities supported by ZooKeeper [14] to imple-
ment a monitoring infrastructure (see Section 4.2). After
failure detection and diagnosis, the Management Engine de-
termines the actions needed to reconfigure the system so
that failures are mitigated, which is the planning phase and
is based on the Z3 [8] open-source Satisfiability Modulo The-
ories (SMT) solver (see Section 3.3). Once reconfiguration
actions are computed, the Deployment Infrastructure uses
them to reconfigure the system, which is the acting phase.

- Data layer \

b Interpreter +
@ | system System model Design-time
$ architect analysis tools
£ @ Generated
= & =—> >| artifacts
& Le- ,,,,,
5 -
»
m .
0O \ Design layer
--------------------------------- Distributed -

f Management Iaﬁ Ratobes

N A
a3 Managed | Monitoring
O
8 system De.teCt Infrastructure
) . failure
© Execute Initiate
g reconfiguration reconfiguration
= actions
5
o Deployment Management
Infrastructure [€ Engine
Send
k reconfiguration plan

Figure 4: Overview of the CHARIOT Orchestration Mid-
dleware.

CHARIOT handles anticipated changes (i.e., planned up-
date or evolution) via operations management. These changes
include both hardware changes (e.g., addition of new nodes
and removal of existing nodes) and software changes (e.g.,
addition of new applications, and modification or removal of
existing applications) performed at runtime.

ﬁ Managed
Failure system (-\
detection
Hardware update Reconflguratlon
detection
Monitoring <« Management
Infrastructure 3 Engine
Failure and hardware
update trigger T

@ @Software update

trigger (manual)

=8

Software update —)

Figure 5: Reconfiguration Triggers Associated with Failure
Management and Operations Management.

Figure 5 depicts detection and reconfiguration trigger mech-
anisms associated with failure management and operations
management. As shown in this figure, reconfiguration for
failure management and hardware update (operations man-
agement) is triggered by the monitoring infrastructure. Con-
versely, reconfiguration for software update (operations man-
agement) is triggered manually after the system model is
updated.

3.1 Design Layer

This section describes the CHARIOT design layer, which
addresses the requirements of a design-time entity to cap-
ture system descriptions. CHARIOT’s design layer allows
implicit and flexible system description prior to runtime.
An IoT system can be described in terms of required com-

ponents or it can be described in terms of functionalities
provided by components. The former approach is inflexible
since it tightly couples specific components with the system.
CHARIOT therefore supports the latter approach, which
is more generic and flexible since it describes the system
in terms of required functionalities, where different compo-
nents can be used to satisfy system requirements, depending
on their availability.

A key challenge faced when creating CHARIOT was to
devise a design-time environment whose system description
mechanism can capture system information (e.g., properties,
provisions, requirements, and constraints) without explicit
management directives (e.g., if node A fails, move all com-
ponents to node B). This mechanism enables CHARIOT to
manage failures by efficiently searching for alternative so-
lutions at runtime. Another challenge faced when creating
CHARIOT was how to devise abstractions that ensure both
correctness and flexibility so it can easily support operations
management.

To meet the challenges described above, CHARIOT’s de-
sign layer allows application developers to model IoT sys-
tems using a generic system description mechanism. This
mechanism is implemented using a goal-based system de-
scription approach. The key entities modeled as part of a
system’s description are (1) resource categories and tem-
plates, (2) different types of components that provide vari-
ous functionalities, and (3) goal descriptions corresponding
to different applications that must be hosted on available
resources. CHARIOT defines a goal as a collection of objec-
tives, where each objective is a collection of functionalities
that can have inter-dependencies.

CHARIOT’s design layer concretizes the functionality tree
described in Section 2. It enforces a two-layer functionality
hierarchy, where objectives are high-level functionalities that
satisfy goals and functionalities are leaf nodes associated
with component types. When these component types are
instantiated, each component instance provides associated
functionalities. To maximize composability and reusability,
a component type can only be associated with a single func-
tionality, though multiple component types can provide the
same functionality.

To further explain CHARIOT’s design layer the remainder
of this section presents the system description of the smart
parking system summarized in Section 2.1. Figure 6 shows
the corresponding functionality tree, which is used below to
describe the different entities comprising the IoT system’s
description using snippets of models built using CHARIOT-
ML, which is our design-time modeling environment. A de-
tailed description of the modeling language appears in [27].

3.1.1 Node Categories and Templates

Since physical nodes are part of an IoT system, CHARIOT-
ML models them using categories and templates. The nodes
are not explicitly modeled since the group of nodes compris-
ing a system can change dynamically at runtime. CHAR-
IOT thus only models node categories and node templates.
A node category is a logical concept used to establish groups
of nodes; every node that is part of a IoT system belongs to
a certain node category.

Since CHARIOT does not explicitly model nodes at design-
time, it uses the concept of node template to represent the
types of nodes that can belong to a category. A node cat-

System Goal

Client
Interaction

Smart Parking

Occupancy
Checking

Objectives

-
Per node S
. o i o
image_ |, _ oad_ occupancy_ | _ parking_ |, _ dlient |3
capture balancer detector manager D
g l’ : ________ i _______ T l l’ l g
o
2
€ Image Load Occupancy Parking .
[} Client
c Capture Balancer Detector Manager
o Comp
g Comp Comp Comp Comp
Q
o o
3
Image Load Occupancy Parking Client 8
Capture Balancer Detector Manager el 2
=}
@

Figure 6: Parking System Description for the Example
Shown in Figure 3.

limport edu.vanderbilt.isis.chariot.smartparkingiotpaper.*
2 package edu.vanderbilt.isis.chariot.smartparkingiotpaper {
3 nodeCategory CameraNode {
4 // Template for Wi-Fi enabled (wireless IP)
5 // camera nodes.

6 nodeTemplate wifi_cam {

7 memory 32 MB

8

storage 1024 MB // 1 GB external

9 }

10 }

11

12 nodeCategory ProcessingNode {

13 // Template for Edison nodes.
14 nodeTemplate edison {

15 memory 1024 MB // 1 GB
16 storage 4096 MB // 4 GB
17 }

18 }

19

20 nodeCategory TerminalNode {

21 // Template for entry termial nodes.
22 nodeTemplate entry terminal {
23 memory 1024 MB // 1 GB
24 storage 8192 MB // 8 GB
25 }

26

27}

Figure 7: Snippet of Node Categories and Node Templates
Declarations.

egory® is thus a collection of node templates, where a node
template is a collection of generic information, such as spec-
ifications of memory, storage, devices, available software ar-
tifacts, supported operating system, and available communi-
cation middleware. A node template can be associated with
any node that is an instance of the node template. When
a node joins a cluster at runtime the only information it
needs to provide (beyond node-specific network information)
is which node template it is an instance of.

Figure 7 presents the node categories and templates for
the smart parking system.There are three categories of nodes
shown in this figure: CameraNode (line 3-10), ProcessingN-
ode (line 12-18), and TerminalNode (line 20-26). Each cat-
egory contains one template each. The CameraNode cat-

3The concept of node categories becomes important when
assigning a per-node replication constraint (discussed in Sec-
tion 3.1.2), which requires that a functionality be deployed
on each node of the given category.

egory contains a wifi_cam template that represents a Wi-
Fi enabled wireless IP camera. The ProcessingNode cate-
gory contains an FEdison template that represents an Edi-
son board. The TerminalNode category contains an en-
try_terminal template that represents a parking control sta-
tion placed at an entrance of a parking space. This scenario
is consistent with the smart parking system described in Sec-
tion 2.1. For simplicity, we only model memory and storage
specifications for each node template.

3.1.2 Functionalities, Compositions and Goals

Functionalities in CHARIOT-ML are modeled as entities
with one or more input and output ports, whereas composi-
tions are modeled as a collection of functionalities and their
inter-dependencies. Figure 8 presents four different func-
tionalities (parking-manager, image_capture, load_balancer,
and occupancy_detector) and the corresponding composition
(occupancy-checking) that is associated with the Occupancy-
Checking objective (see line 6 in Figure 9). This figure also
shows that composition is a collection of functionalities and
their inter-dependencies, which are captured as connections
between input and output ports of different functionalities.

1 package edu.vanderbilt.isis.chariot.smartparkingiotpaper {
2 // Parking manager functionality with an input and an
3 // output port to interact with client functionality.
4 // Also, another input port to interact with occupancy
5 // detector.

6 functionality parking manager {

7 input parking request, occupancy status

8 output parking_response

9

10 // Image capture functionality with an input and an output
11 // port to interact with load balancer functionality. Also,
12 // another output port to interact with occupancy detector.
13 functionality image capture {

14 input detector response

15 output detector_request, image

16 }

17 // Load balancer functionality with an input and an output
18 // port to interact with image capture functionality.

19 functionality load_balancer {

20 input detector request

21 output detector response

22

23 // Occupancy detector with an input port to interact with
24 // image capture functionality and an output port to

25 // interact with parking manager functionality.

26 functionality occupancy_detector {

27 input image

28 output occupancy status

29

30 // A composition that captures interaction between image
31 // capture, load balancer, occupancy detector, and parking
32 // manager functionalities.

33 composition occupancy_checking {

34 image capture.detector request to

35 load balancer.detector_request

36 load_balancer.detector_response to

37 image capture.detector response

38

39 image_capture.Image to occupancy_detector.limage

40 occupancy_detector.occupancy_status to

41 parking manager.occupancy status

42

43}

Figure 8: Snippet of Functionalities and Corresponding
Composition Declaration.

The goal description for the smart parking application is
shown in Figure 9. The goal itself is declared as Smart-
Parking (line 3). Following the goal declaration is a list of
the objectives required to satisfy the goal (line 5-6). Two
objectives are defined in this example: the ClientInterac-
tion objective and the OccupancyChecking objective. The
ClientInteraction objective is related to the task of handling

limport edu.vanderbilt.isis.chariot.smartparkingiotpaper.*
2 package edu.vanderbilt.isis.chariot.smartparkingiotpaper {
3 goalDescription SmartParking {

4 // Objectives.

5 client interaction as objective ClientInteraction
6 occupancy checking as objective OccupancyChecking
7

8 // Replication constraints.

9 replicate image_capture asPerNode

10 for category CameraNode

11 replicate parking client asPerNode

12 for category TerminalNode

13 replicate occupancy detector asCluster

14 with [2,4] instances

15

16}

Figure 9: Snippet of Smart Parking Goal Description Com-
prising Objectives and Replication Constraints.

client parking requests, whereas the OccupancyChecking ob-
jective is related to the task of determining the occupancy
status of different parking spaces.

In CHARIOT-ML, objectives are instantiations of com-
positions. The ClientInteraction objective is an instantia-
tion of the client_ineraction composition (line 5) and the
OccupancyChecking objective is an instantiation of the oc-
cupancy_checking composition (line 6).

Support for Redundant Deployment Patterns: CH-
ARIOT-ML also supports redundant deployment patterns
as a result of which functionalities can be associated with
replication constraints. For example, Figure 9 shows the as-
sociation of the image_capture functionality with a per-node
replication constraint (line 9-10), which means this function-
ality should be present on each node that is an instantiation
of any node template belonging to CameraNode category.
Similarly, the parking_client functionality is also associated
with a per-node replication constraint (line 11-12) for Termi-
nalNode category. Finally, the occupancy_detector function-
ality is associated with a cluster replication constraint (line
13-14), which means this functionality should be deployed
as a cluster of at-least 2 and at-most 4 instances.

CHARIOT-ML supports functionality replication using
four different redundancy patterns: the (1) voter pattern,
(2) consensus pattern, (3) cluster pattern, and (4) per-node
pattern, as shown in Figure 10. The per-node pattern (as de-
scribed above for the image_capture functionality) requires
that the associated functionality be replicated on a per-
node basis. Replication of functionalities associated with
the other three redundancy patterns is based on their redun-
dancy factor, which can be expressed by either (1) explicitly
stating the number of redundant functionalities required or
(2) providing a range. The latter (as previously described
for the occupancy_detector functionality) requires the asso-
ciated functionality to have a minimum number for redun-
dancy and a maximum number for redundancy, i.e., if the
number of functionalities present at any given time is within
the range, the system is still valid and no reconfiguration is
required.

Figure 10 presents a graphical representation of voter,
consensus, and cluster redundancy patterns (the case of the
consensus pattern, C'S represents consensus services). Dif-
ferent redundancy factors are used for each. As shown in
the figure, the voter pattern involves a voter in addition
to the functionality replicas, the consensus pattern involves
a consensus service each for the functionality replicas and
these consensus services implement a consensus ring, and

Consensus with
4 instances

Voter with
3 instances

()=

9

[
1

&

Consensus ! Simple cluster With

>

o
@

i
<Leade

(a) Voter pattern with factor = 3.

(b) Consensus pattern with factor = 4.

(c) Cluster pattern with factor = 2.

Figure 10: Example Redundancy Patterns for Functionality F;. The CS,_, Entities Represent Consensus Service Providers.

the cluster pattern only involves the functionality replicas.
Implementing the consensus service is beyond the scope of
this paper. In practice, CHARIOT uses existing consensus
protocols, such as Raft [25], for this purpose.

3.1.3 Component Types

CHARIOT-ML does not model component instances, but
instead models component types. Each component type is
associated with a functionality. When a component type is
instantiated, the component instance provides the function-
ality associated with its type. A component instance there-
fore only provides a single functionality, whereas a function-
ality can be provided by component instances of different
types. Two advantages of modeling component types in-
stead of component instances include the flexibility it pro-
vides with respect to (1) the number of possible runtime in-
stances of a component type and (2) the number of possible
component types that can provide the same functionality.

1import edu.vanderbilt.isis.chariot.smartparkingiotpaper.*
2 package edu.vanderbilt.isis.chariot.smartparkingiotpaper {

3 component ParkingManager {

4 provides parking manager // Provided functionality.
?z requires 128 MB memory // Minimum memory required.

é startScript "sh ParkingManager.sh" // Launch script.
13} ’

Figure 11: Snippet of Component Type Declaration.

Figure 11 shows how the ParkingManager component type
is modeled in CHARIOT-ML. As part of the component
type declaration, we first model the functionality that is
provided by the component (line 4). After the functionality
of a component type is modeled, we model various resource
requirements (Figure 11 only shows memory requirements
in line 6) and the launch script (line 8), which can be used
to instantiate an instance of the component by spawning an
application process.

CHARIOT supports two different types of component ty-
pes: hardware components and software components. The
component type presented in Figure 11 is an example of
a software component. Hardware components are modeled
in a similar fashion, though we just model the function-
ality provided by a hardware component and nothing else
since a hardware component is a specific type of component
whose lifecycle is tightly coupled to the node with which
it is associated. A hardware component is therefore never
actively managed (reconfigured) by the CHARIOT orches-
tration middleware. The only thing that affects the state of

a hardware node is the state of its hosting node, i.e., if the
node is on and functioning well, the component is active and
if it is not, then the component is inactive.

In context of the smart parking system case study, the
ImageCapture component is a hardware component that is
associated with camera nodes. As a result, an instance of the
ImageCapture component runs on each active camera node.
We model this requirement using the per-node redundancy
pattern (see line 32-33 in Figure 9). Likewise, the failure of
a camera node implies failure of the hosted ImageCapture
component instance, so this failure cannot be mitigated.

3.1.4 Summary of the Design Layer

CHARIOT-ML is a Domain Specific Modeling Language
(DSML) built using the Xtext framework [2] that comprises
CHARIOT’s design layer. This DSML is a textual modeling
language designed using the Xtext framework [2]. Currently,
CHARIOT-ML allows modeling of resources such as soft-
ware artifacts, devices, memory, storage, operating system,
and communication middleware. Although this is an exten-
sive list of resource types for most IoT systems, it might
not be sufficient for all possible IoT systems. Therefore,
it might require modifications and extensions depending on
the domain in which it is being used. For example, in order
to model self-degrading systems that rely on monitoring of
QoS parameters, CHARIOT-ML must facilitate modeling of
QoS thresholds at different levels of abstractions.

Furthermore, the language currently only facilitates repli-
cation constraints, which are a type of deployment con-
straint that specifies the number of certain functionality
that must be deployed. There are other scenarios, however,
where replication constraints are not sufficient and more spe-
cific deployment constraints are required, such as deploy-on-
same-node, deploy-on-different-node, and deploy-only-on-a-
specific-resource-category.

Due to the modular nature of the Xtext framework, in-
troducing these changes will not be difficult. However, we
must ensure that the new concepts do not violate any ex-
isting rules already implemented. Furthermore, the data
schema defined in Section 3.2 ensures that the extensions
introduced at design layer can be supported by the underly-
ing management layer, assuming that the functionalities are
only being added in and not modifying existing concepts.

3.2 Data Description Layer

This section presents the CHARIOT data layer, which de-
fines a schema that forms the basis for persistently storing
system information, such as design-time system description
and runtime system information. This layer codifies the for-

NodeTemplate

| 1 name : string

: 0S5 : string
|— availableMemory ——«@#
! ¥ middleware : string

memoary : int
unit : ResourceUnit

Memory 1.
F— nodeTemplates ——— name : string |

NodeCategory ReplicationConstraint

kind : ReplicationKind
functionality : string
maxinstances : int
mininstances : int
numinstances : int

b serviceComponentType : string
0.1 | <<gnumeration>> nodeCategories : string [0..*]
ReplicationKind i
requirechlemory availableStorage artifacts P i
1 | 0. | VOTER, N
CONSENSUS, constraints
<<gnumeration=>> Storage Artifact CLUSTER,
ResourceUnit | | PER_NODE
storage : int name : string |
KB, ME, GB unit : ResourcelUnit location : string GoalDescription
| | | devices |
0. | name : string
ComponentType 0.1 | 0.* | Device
| requiredStorage artifacts o
name : string name : string
providedFunctionality : string status : string .
requiredOs : string | objectives
requiredMiddleware : string 1.
requiredArtifacts : string [0..%] Functionality
reguiredDevices : string [0..*] | Objective
startScript : string name : string |
stopScript : string dependsCn : string [0..7] i. name : string
| F— functionalities L 2 |
(a) Schema to Store Design-time System Descriptions.
<<enumeration>> Node Process Componentinstance
Status | | |
name : string 0.* | name : string 0.* | name : string

TO_BE_DEPLOYED,
ACTIVE,
INACTIVE,

nodeTemplate : string
status : Status

l@p—— processes —{ pid : int
status : Status

lp—— componentinstances —{ type : string
status : Status
functionalitylnstanceName: string

FAULTY

alwaysDeployOnNode : string

LookAhead

failedEntity : string

ReconfigurationEvent

kind : EventKind
detectionTime : date

K >———— recoveryActions —{ action : Action

mustDeploy : boolean

DeploymentAction
0.*

Functionalitylnstance
completed : boolean
process : string
node : string
startScript : string
stopScript : string

name : string
objectiveName : string
functionalityName : string
isVoter : boolean

solutionFoundTime : date

| isConsensusProvider : boolean

reconfiguredTime : date <<enumeration>> <<enumeration>> componentType : string

completed : boolean EventKind Action alwaysDeployOnNode : string

actionCount : int mustDeploy : boolean
FAILURE, UPDATE START, STOP

(b) Schema to Store Runtime System Representations.

Figure 12: UML Class Diagrams for Schemas Used to Store System Information.

mat in which system information should be represented. A
key advantage of this codification is its decoupling of CHAR-
I0T’s design layer (top layer) from its management layer
(bottom layer), which yields a flexible architecture that can
accommodate varying implementations of the design layer,
as long as those implementations adhere to the data layer
schema described in this section.

Figure 12 presents UML class diagrams as schemas used
to store design-time system description and runtime system
information. These schemas are designed for document-
oriented databases. An instance of a class that is not a
child in a composition relationship therefore represents a
root document. Below we describe CHARIOT’s design-time
and runtime schemas in detail.

3.2.1 Design-time System Description Schema

The schema for design-time system description comprises
entities to store node categories, component types, and goal

descriptions, as shown in Figure 12a. These concepts have
been previously described in Section 3.1. Neither node cat-
egories nor component types are application-specific since
multiple applications can be simultaneously hosted on nodes
of an IoT system and a component type can be used by
multiple applications. In addition to other attributes, the
ComponentType class also captures scripts that can be used
to start and stop an instance of a component type; this in-
formation is used at runtime to instantiate components.

As shown in Figure 12a, a goal description comprises ob-
jectives, which are composed of functionalities, and repli-
cation constraints. The ReplicationConstraint class repre-
sents replication constraints and consists of mazInstances,
minInstance, and numlinstances attributes that are related
to the degree of replication. The latter attribute is used if a
specific number of replicas are required, whereas the former
two attributes are used to describe a range-based replication.
The nodeCategories attribute is used for per-node replica-

tion constraints. The serviceComponentType attribute is re-
lated to specific component types that provide special repli-
cation services, such as a component type that provides a
voter service or a consensus service.

3.2.2 Runtime Information Schema

The schema for runtime system information comprises en-
tities to store functionality instances, nodes, deployment ac-
tions, reconfiguration events, and look-ahead information,
as shown in Figure 12b. Since functionalities can be repli-
cated, the FunctionalityInstance class is used to store infor-
mation about functionality instances. The ComponentType
attribute is only relevant for voter and consensus service
providing functionality instances as they are not associated
with functionalities that are part of a goal description. Fur-
thermore, the alwaysDeployOnNode attribute ties a func-
tionality instance to a specific node and is only relevant
for functionality instances related to per-node replication
groups. Finally, the mustDeploy boolean attribute indicates
whether a functionality instance should always be deployed.

The Node class represents compute nodes, the Process
class represents processes running on nodes, and the Com-
ponentInstance class represents component instances hosted
on processes. As shown in Figure 12b, these three classes
have containment relationship. The functionalityInstance-
Name attribute in ComponentInstance class represents the
name of the corresponding functionality instance as a com-
ponent instance is always associated with a functionality
instance (see Section 3.3.3).

The DeploymentAction class represents runtime deploy-
ment actions that are computed by the CHARIOT manage-
ment engine to (re)configure a system. The DeploymentAc-
tion class consists of an action, a completed boolean flag to
indicate if an action has been taken, process affected by the
action, node on which the action should be performed, and
scripts to perform the action. CHARIOT supports two kinds
of actions: start actions and stop actions. The LookAhead
class represents precomputed solutions (see Section 3.3.6).
It consists of attributes that represent a failed entity, and
a set of recovery actions (deployment actions) that must be
performed to recover from the failure.

The ReconfigurationEvent class represents runtime recon-
figuration events. It is used to keep track of failure and up-
date events that trigger system reconfiguration. It consists
of detectionTime, solutionFoundTime, and reconfigured Time
to keep track of when a failure or update was detected, when
a solution was computed, and when the computed solution
was deployed. It also consists of a completed attribute to
indicate whether a reconfiguration event is complete or not
and an actionCount attribute to keep track of number of
actions required to complete a reconfiguration event.

3.2.3 Summary of the Data Description Layer

Although not a novel contribution by itself, the data layer
described in this section is critical to the overall CHARIOT
ecosystem. This layer addresses the challenge of providing a
generic and uniform system state that can be queried by the
rest of the system at runtime. Having a well-defined model
for system information not only helps the CHARIOT ecosys-
tem remain flexible by decoupling the design and manage-
ment layers, it also aids in future extensions when required.

For example, as previously discussed in Section 3.1.4, let
us assume that a set of deployment constraints needs to

be added. This requires us to extend the current design-
time system description (shown in Figure 12a) in such a
way that the deployment constraints modeled at design-time
can be easily stored in the data layer and retrieved by the
management layer without affecting any existing code. This
could be achieved by adding a DeploymentConstraint class
similar to the ReplicationConstraint class and have it be part
of the GoalDescription class.

3.3 Runtime Management Layer

The CHARIOT runtime management layer comprises a
monitoring and deployment infrastructure, as well as a man-
agement engine, as previously outlined in Figure 4. The
monitoring and deployment of distributed applications is
covered in prior work [26]; CHARIOT implements these ca-
pabilities using existing technologies described in Section 4.
This section focuses on CHARIOT’s management engine
that facilitates self-reconfiguration of IoT systems by (1)
adding the capability to compute exact component instances
from available component types, (2) encoding redundancy
patterns using SMT constraints, and (3) using a finite hori-
zon look-ahead strategy that pre-computes solutions to sig-
nificantly improve the performance of CHARIOT’s manage-
ment engine.

3.3.1 Configuration Space and Points

The general idea behind CHARIOT’s self-reconfiguration
approach relies on the concepts of configuration space and
configuration points. If a system’s state is represented by
a configuration point in a configuration space, then recon-
figuration of that system entails moving from one configu-
ration point to another in the same configuration space. A
configuration space includes (1) goal descriptions of differ-
ent applications, (2) replication constraints corresponding to
redundancy patterns associated with different applications,
(3) component types that can be used to instantiate dif-
ferent component instances and therefore applications, and
(4) available resources, which includes different nodes and
their corresponding resources, such as memory, storage, and
computing elements.

O —~ O ‘ |:| Configuration space i
O 7) O O ; OO © Configuration points ;
Initial configuration point !

O i) Fault disabled part |

O ‘ () New configuration point i

O i —> Reconfiguration i

O OO """"""""""""""""""

Figure 13: A Configuration Space with different Configura-
tion Points. This figure depicts two faults that disable parts
of the system resulting in two reconfigurations.

At any given time a configuration space of an IoT sys-
tem can represent multiple applications associated with the
system. A configuration space can therefore contain mul-
tiple configuration points, as shown in Figure 13. These
configuration points represent valid configurations of all ap-
plications that are part of the IoT system represented by the
configuration space.

A valid configuration point represents component-instance-
to-node mappings (i.e., a deployment) for all component in-

stances needed to realize different functionalities essential
for the objectives required to satisfy goals of one or more
applications. The initial configuration point represents the
initial (baseline) deployment, whereas, current configuration
point represents the current deployment.

3.3.2 Computing the Configuration Point

Given above definition of configuration space and points,
a valid reconfiguration mechanism entails moving from one
configuration point to another in the same configuration
space (see Figure 13). When a failure occurs, the current
configuration point is rendered faulty. Moreover, parts of the
configuration space may also be rendered faulty, depending
on the failure. For example, consider a scenario where mul-
tiple configuration points map one or more components to a
node. If this node fails then all aforementioned configuration
points are rendered faulty. In addition to failure, hardware
and software updates can also result in reconfiguration, as
discussed earlier.

Specifically, reconfiguration in CHARIOT happens by iden-
tifying a new valid configuration point and determining the
set of actions required to transition from current (faulty)
configuration point to the new (desired) configuration point.
Configuration points and their transitions thus form the core
of CHARIOT’s reconfiguration mechanism. For any recon-
figuration, several valid configuration points might be avail-
able. From the available configuration points, an optimal
configuration point that satisfies the system requirements
can be obtained based on several criteria, such as transi-
tion cost, reliability, operation cost, and/or utility. The
Configuration Point Computation (CPC) algorithm serves
this purpose and thus defines the core of CHARIOT’s self-
reconfiguration mechanism. The CPC algorithm can be de-
composed into three phases: the (1) instance computation
phase, (2) constraint encoding phase, and (3) solution com-
putation phase, as described next.

3.3.3 Phase 1: Instance Computation

The first phase of a CPC computes required instances of
different functionalities and subsequently components, based
on the system description provided at design-time. Each
functionality can have multiple instances if it is associated
with a replication constraint. Each functionality instance
should have a corresponding component instance that pro-
vides the functionality associated with the functionality in-
stance. Depending upon the number of component types
that provide a given functionality, a functionality instance
can have multiple component instances. Only one of the
component instances will be deployed at runtime, however,
so there is always a one-to-one mapping between a function-
ality instance and a deployed component instance.

The CPC algorithm first computes different functional-
ity instances using Algorithm 1, which is invoked for each
objective. Every functionality is initially checked for repli-
cation constraints (line 3). If a functionality does not have a
replication constraint, a single functionality instance is cre-
ated (line 32). For every functionality that has one or more
replication constraints associated with it, each constraint is
handled depending on the type of the constraint. A per-node
replication constraint is handled by generating a function-
ality instance and an assign constraint each for applicable
nodes (line 6-11). An application node is a node that is
alive and belongs to the node category associated with the

per-node replication constraint.

Unlike a per-node replication constraint, the voter, con-
sensus, and cluster replication constraints depend on an ex-
act replication value or a replication range to determine the
number of replicas (line 13-19). In the case of a range-
based replication, CHARIOT tries to maximize the number
of replicas by using maximum of the range, which ensures
that maximum number of failures is tolerated without hav-
ing to reconfigure the system. After the number of replicas is
determined, CHARIOT computes the replica functionality
instances (line 21), as well as special functionality instances
that support different types of replication constraint.

For example, for each replica functionality instance in
a consensus replication constraint, CHARIOT generates a
consensus service functionality instance (line 23) (a consen-
sus service functionality is provided by a component that im-
plements consensus logic using existing algorithms, such as
Paxos [16] and Raft [25]). For a voter replication constraint,
in contrast, CHARIOT generates a single voter functional-
ity instance for the entire replication group (line 27). In the
case of a cluster replication constraint, no special function-
ality instance is generated as a cluster replication comprises
independent functionality instances that do not require any
synchronization (see Section 3.1.2).

In order to ensure proper management of instances related
to functionalities with voter, consensus, or cluster replica-
tion constraints, CHARIOT uses four different constraints:
(1) implies, (2) collocate, (3) atleast, and (4) distribute.
The implies constraint ensures all replica functionality in-
stances associated with a consensus pattern require their
corresponding consensus service functionality instances (line
24). Similarly, the collocate constraint ensures each replica
functionality instance and its corresponding consensus ser-
vice functionality instance are always collocated on the same
node (line 25). The atleast constraint ensures the minimum
number of replicas are always present in scenarios where
a replication range is provided (line 28-29). Finally, the
distribute constraint ensures that the replica functionalities
are distributed across different nodes (line 30). CHARIOT’s
ability to support multiple instances of functionalities and
distribute them across different nodes is the basis of the fail-
ure avoidance mechanism.

After functionality instances are created, CHARIOT next
creates the component instances corresponding to each func-
tionality instance. In general, it identifies a component type
that provides the functionality associated with each func-
tionality instance and instantiates that component type. As
explained in Section 3.1.3, component types are modeled as
part of the system description. Different component types
can provide the same functionality, in which case multiple
component types are instantiated, but a constraint is added
to ensure only one of those instances is deployed and running
at any given time. In addition, all constraints previously
created in terms of functionality instances are ultimately
applied in terms of corresponding component instances. We
describe the constraints next.

3.3.4 Phase 2: Constraint Encoding

The second phase of the CPC algorithm is responsible for
constraint encoding and optimization. These constraints are
summarized below:

1. Since reconfiguration involves transitioning from one
configuration point to another, constraints that repre-

Algorithm 1 Functionality Instances Computation.

Input: objective (obj), nodes (nodes_list), computed functionalities (computed_functionalities)
Output: functionality instances for obj (ret_list)

1: for func in obj.functionalities do

2: if func not in computed_functionalities then > Make sure a functionality is processed only once.
3: if func has associated replication constraints then
4: constraints = all replication constraints associated with func
5: for c in constraints do
6: if c.kind == PER_NODE then > Handle per node replication.
T for node_category in c.nodeCategories do
8: nodes = nodes in nodes_list that are alive and belong to category node_category
9: for n in nodes do
10: create functionality instance and add it to ret_list
11: add assign (functionality instance, n) constraint
12: else
13: replica_num = 0 > Initial number of replicas, which will be set to max value if range given.
14: range_based = False > Flag to indicate if a replication constraints is range based.
15: if c.numlInstances # 0 then
16: replica_num = c.numlInstances
17: else
18: range_based = T'rue
19: replica_num = c.maxInstances
20: for ¢ = 0 to replica_num do > Create replica functionality instances.
21: create replica functionality instance and add it to ret_list
22: if c.kind == CONSENSUS then > Handle consensus replication.
23: create consensus service functionality instance and add it to ret_list
24: add implies (replica functionality instance, consensus service functionality instance) constraint
25: add collocate (replica functionality instance, consensus service functionality instance) constraint
26: if c.kind == VOTER then > Handle voter replication.
27: create voter functionality instance and add it to ret_list
28: if range_based == True then > If replication range is given, add atleast constraints.
29: add atleast (c.rangeMinValue, replica functionality instances) constraint
30: add distribute (replica functionality instances) constraint
31: else
32: create functionality instance and add it to ret_list
33: add func to computed_functionalities

sent a configuration point are of utmost importance.

2. Constraints to ensure component instances that must
be deployed are always deployed.

3. Constraints to ensure component instances that com-
municate with each other are either deployed on the
same node or on nodes that have network links be-
tween them.

4. Constraints to ensure the resources’ provided-required
relationships are valid.

5. Constraints encoded in the first phase of the CPC algo-
rithm for proper management of component instances
associated with replication constraints.

6. Constraints to represent failures, such as node failure
or device failures.

The remainder of this section describes how CHARIOT
implements the constraints listed above as SMT constraints.

Representing the configuration points: A configu-
ration point in CHARIOT is therefore presented using a
component-instance-to-node (C2N) matrix, as shown below.
A C2N matrix comprises rows that represent component in-
stances and columns that represent nodes; the size of this
matrix is « X 3, where « is the number of component in-
stances and § is the number of available nodes (Equation 1).

Each element of the matrix is encoded as a Z3 integer vari-
able whose value can either be 0 or 1 (Equation 2). A value
of 0 for an element means that the corresponding compo-
nent instance (row) is not deployed on the corresponding
node (column). Conversely, a value of 1 for an element indi-
cates deployment of the corresponding component instance
on the corresponding node. For a valid C2N matrix, a com-
ponent instance must not be deployed more than once, as
shown in Equation 3.

c2ngo c2no1 c2npz2 ... Cc2nog

02n10 0277,11 02n12 e 027113

C2N = |2n2 2n21 2n22 ... 2ngg

C2Nao C2NMa1 C2Na2 Cc2nap
2nen ic€{0...a},ne€{0...6},(a,B) €Z" (1)
Ve2ne, € C2N : 2ne, € {0,1} (2)

B

Ve : Zchcn <1 (3)

n=0

Now that we have constraints defined to represent a con-
figuration point (i.e., a valid component-instance-to-node
mapping). A constraint is needed to ensure component in-
stances that should be deployed are always deployed. At
this point it is important to recall range-based replication
described in Section 3.1.2. This approach results in a set of
instances where a certain number (at least the minimum)
should always be deployed, but the remaining (difference
between maximum and minimum) are not always required,
even though all of them are deployed initially. At any given
time, therefore, a configuration point can comprise some
component instances that must be deployed and others that
are not always required be deployed. In CHARIOT we en-
code the "must deploy assignment” constraint as follows:

Capturing the Must Deploy Constraint: The “must
deploy assignment” constraint is used to ensure all compo-
nent instances that should be deployed are in fact deployed.
This constraint therefore uses the C2N matrix (Equation 1)
and a set of component instances that must be deployed, as
shown in Equation 4.

Let M be a set of all component instances that must be
deployed.

B
VmEM:ZCQTLmn ==1

n=0

(4)

The third set of constraints ensure that component in-
stances with inter-dependencies (i.e., that communicate with
each other) are either deployed on the same node or on nodes
that have network links between them. CHARIOT encodes
this constraint as follows:

Capturing the dependencies between components:
This constraint ensures that interacting component instances
are always deployed on resources with appropriate network
links to support communication. This constraint is encoded
in terms of a node-to-node (N2N) matrix, which is a square
matrix that represents existence of network links between
nodes. This N2N matrix thus comprises rows and columns
that represents different nodes (Equation 5). Each element
of the N2N matrix is either 0 or 1, where 0 means there does
not exist a link between the two corresponding nodes and
1 means there exists a link between the two corresponding
nodes. The constraint is presented in Equation 6.

n2noo N2no1 nN2no2 n2nog
NON — n2nig n2ni1 nN2nis n2nig
n2ngo n2ngi n2ngs n2ngg

N2NMnyin, : (n1,n2) €{0...8},8 € z* (5)

Let ¢s and ¢4 be two component instances that are depen-
dent on each other.

Vni,Vng 1 ((€2neyn, X C2Ncyny 7 0) A (N1 # n2)) =

(n2nn1 ng —— 1)

(6)

Capturing the Resource Constraints: The fourth set
of constraints ensure the validity of the resources’ provided-
required relationships, such that essential component in-
stances of one or more applications can be provisioned. In
CHARIOT these constraints are encoded in terms of re-

12

sources provided by nodes and required by component in-
stances. Moreover, resources are classified into two cat-
egories: (1) cumulative resources and (2) comparative re-
sources. Cumulative resources have a numerical value that
increases or decreases depending on whether a resource is
used or freed. Examples of cumulative resources include
primary memory and secondary storage. Comparative re-
sources have a boolean value, i.e., they are either available
or not available and their value does not change depending
on whether a resource is used or freed. Examples of compar-
ative resources include devices and software artifacts. These
two constraints can be encoded as follows:

The “cumulative resource” constraint is encoded using a
provided resource-to-node (CuR2N) matrix and a required
resource-to-component-instance (CuR2C) matrix. The ma-
trix CuR2N comprises rows that represent different cumu-
lative resources and columns that represent nodes; the size
of this matrix is v x 8, where =y is the number of cumulative
resources and (3 is the number of available nodes (Equa-
tion 7). The CuR2C matrix comprises rows that represent
different cumulative resources and columns that represent
component instances; the size of this matrix is v X «, where
~ is the number of cumulative resources and « is number of
component instances (Equation 8). Each element of these
matrices are integers. The constraint itself ensures that for
each available cumulative resource and node, the sum of the
amount of the resource required by the component instances
deployed on the node is less than or equal to the amount of
the resource available on the node, as shown in Equation 9.

r2n00 T2n01 7T2No02 r2n08

r2n r2n r2n r2n
CuR2N 10 11 12 18

T2ny0 T2N41 T2N42 2n48

r2nm 7 €{0...4},n€{0...8},(7,B8) € Z*

r2co0 T2c01 T2C02 1r2C00

r2cig r2c11 r2C19 r2ci
CuR2C = *

r2Cy0 T2Cy1 T2CH2 r2Cya

r2¢rc:7 €{0...79},c€{0...a},(y,a) € Z*

(8)

Vr,Vn : (Zdnm X r20r6> < r2Npn 9)

c=0

The “comparative resource” constraint is encoded using a
provided resource-to-node (CoR2N) matrix and a required
resource-to-component-instance (CoR2C) matrix. The ma-
trix CoR2N comprises rows that represent different com-
parative resources and columns that represents nodes; the
size of this matrix is ¢ x 3, where ¢ is the number of com-
parative resources and [is the number of available nodes
(Equation 10). Similarly, the CoR2C matrix comprises rows
that represent different comparative resources and columns
that represent component instances; the size of this matrix
is ¢ X a, where ¢ is the number of comparative resources and
« is number of component instances (Equation 11). Each el-
ement of these matrices is either 0 or 1, where 0 means the

corresponding resource is not provided by the corresponding
node (for CoR2N matrix) or not required by the correspond-
ing component instance (for CoR2C matrix) and 1 means the
opposite. The constraint itself (Equation 12) ensures that
for each available comparative resource, node, and compo-
nent instance, if the component instance is deployed on the
node and requires the resource, then the resource must also
be provided by the node.

r2n00 T2n01 T2n02 r2n03

2 2 2 2
CoRON = rZanio TNl TZNi2 r2Nn18

T2ng0 T2Ng1 T2Ng2 r2n¢p

21 i €{0...0},n€{0...8},(¢,8) € Z* (10)
r2co0 T2c01 T2C02 72C00
CoR2C — r2ciog 12c11 T12C12 r2Cia
r2Ch0 T2C41 T2Ce2 r2Cha

r2¢c:r €40...6},c€{0...a},(¢,a) € ZF (11)

Vr,¥n,Ve : Assigned(c,n) = (r2n,, == r2c¢.) (12)

Assigned (¢, n) function returns true if component c is
deployed on node n, i.e., it returns true if c2n., == 1.

Handling the replication constraints: The fifth set of
constraints ensures management of component instances as-
sociated with replication constraints. As mentioned in Sec-
tion 3.3.3, assign, implies, collocate, atleast, and distribute
are the five different kinds of constraints that must be en-
coded. Each of these constraints is encoded as follows:

The “assign constraint” is used for component instances
corresponding to functionalities associated with per-node
replication constraint. It ensures that a component instance
is only ever deployed on a given node. In CHARIOT, an
assign constraint is encoded, as shown in Equation 13.

Let ¢ be a component instance that should be assigned to
a node n.

Enabled(c) = (2nen == 1) (13)

Enabled(c) function returns true if component instance c¢
is assigned to any node, i.e, it checks if Zi:o 2nen == 1.

The “implies” constraint is used to ensure that if a compo-
nent depends upon other components then its dependencies
are satisfied. It is encoded using the implies construct pro-
vided by an SMT solver like Z3.

A “collocate” constraint is used to ensure that two collo-
cated component instances are always deployed on the same
node. In CHARIOT this constraint is encoded by ensuring
the assignment of the two component instances is same for
all nodes, as shown in Equation 14.

Let ¢1 and c2 be two component instances that need to be
collocated.

(Enabled(c1) A Enabled(c2)) =

14
(Vn 2 2Neyn == 2Ncyn) (14)

13

An “atleast” constraint is used to encode a M out of N
semantics to ensure that given a set of components (i.e. N),
a specified number of those components (i.e. M) is always
deployed. CHARIOT uses this constraint for range-based
replication constraints only and its implementation is two
fold. First, during the initial deployment CHARIOT tries
to maximize M and deploy as many component instances as
possible. The current implementation of CHARIOT uses the
maximum value associated with a range and initially deploys
N component instances, as shown in Equation 15. This of
course assumes availability of enough resources. A better
solution to this would be to use the maximize optimization,
as shown in Equationl6. However, in Z3 solver, which is
the SMT solver used by CHARIOT, this optimization is
experimental and does not scale well. Second, for subsequent
non-initial deployment CHARIOT relies on the fact that
maximum possible deployment was achieved during initial
deployment, so it ensures the minimum number required is
always met, as shown in Equation 17.

Let S = {c1,c2...co} be a set of replica component in-
stances associated with an atleast constraint; N is the size
of this set. Also, let min_value be the minimum number of
component instances required; this is synonymous to M.

B
Z Z 2Nen == maz_value (15)
ceS n=0
B
maximize(z Z 2Nen) (16)
ceS n=0
B
Z Z C2Nen > min_value 1
ceS n=0

A “distribute” constraint is used to ensure that a set of
components is deployed on different nodes. In CHARIOT
this constraint is encoded by ensuring at most only one com-
ponent instance out of the set is deployed on a single node,
as shown in Equation 18.

Let S = {c1,c2...cq } be a set of components that needs
to be distributed.

Vn : Zchcn <1 (18)

ceS

Capturing failures as constraints: The final step (step
8) of the second phase of the CPC algorithm encodes and
adds failure constraints. Depending on the type of failure,
there can be different types of failure constraints. This sixth
set of constraints handles failure representation, which are
encoded in CHARIOT as shown below:

A “node failure” constraint is used to ensure that no com-
ponents are deployed on a failed node. CHARIOT encodes
this constraint as shown in Equation 19.

Let ns be a failed node.

(e
Z 2nen, ==0 (19)
c=0
Since components can fail for various reasons, there are
different ways to resolve a component failure. One approach
is to ensure that a component is redeployed on any node

other than the node on which it failed (Equation 20). If
a component keeps failing in multiple different nodes, then
CHARIOT may need to consider another constraint to en-
sure the component is not redeployed on any node (Equa-
tion 21).

Let us assume component c; failed on node n;.

€2N¢ynq==0 (20)
B
> 2neyn == 0 (21)
n=0

3.3.5 Solution Computation Phase

The third and final phase of the CPC algorithm involves
computing a “least distance” configuration point, i.e., a con-
figuration point that is the least distance away from the
current configuration point. This computation ensures that
a system always undergoes the least possible number of
changes during reconfiguration. The distance is computed as
the number of changes required to transition to the new con-
figuration point. Since a configuration point is a component-
instance-to-node mapping represented as C2N matrix (see
Equation 1), the distance between two configuration points
is the distance between their corresponding C2N matrices.
In CHARIOT, the least distance constraint is encoded as
shown below:

Least Distance Constraint The “least distance” con-
straint is used to ensure that we find a valid configuration
point that is closest to the current configuration point. The
distance between two configuration points is the distance
between their corresponding C2N matrices. This distance is
computed as shown in Equation 22. The distance between
two valid configuration points A and B is the sum of the ab-
solute difference between each element of the C2N matrices
corresponding to the two configuration points.

To ensure we obtain least distance configuration point, an
ideal solution would be to use minimize optimization (Equa-
tion 23), which is supported by SMT solvers like Z3. Like
the Z3 maximize optimization, however, the Z3 minimize
optimization implementation is experimental and does not
scale well. In CHARIOT we therefore implement this con-
straint using an iterative logic, which upon every successful
solution computation adds the distance constraint (Equa-
tion 22) before invoking the solver again to find a solution
that is at a lesser distance compared to the previous solu-
tion. This iteration stops when no solution can be found,
in which case the previous solution is used as the optimum
(least distance away) solution.

B
config_distance = Z |c2n_Acn — ¢2n_Bey| (22)
n=0
minimize(con fig_distance) (23)

At this point in the CPC algorithm, CHARIOT invokes
the Z3 solver to check for a solution. If all constraints are sat-
isfied and a solution is found, the CPC algorithm computes
a set of deployment actions. CHARIOT computes deploy-
ment actions by comparing each element of the C2N matrix
that represents the current configuration point with the cor-

14

responding element of the C2N matrix associated with com-
puted solution, i.e., the target configuration point. If the
value of an element in the former is 0 and later is 1, CHAR-
IOT adds a START action for the corresponding component
instance on the corresponding node. Conversely, if the value
of an element in the former is 1 and the latter is 0, CHAR-
IOT adds a STOP action. Applying this operation to each
element of the matrix results in a complete set of deployment
actions required for successful system transition.

3.3.6 The Look-ahead Reconfiguration

The CPC algorithm presented above yields a reactive self-
reconfiguration approach since the algorithm executes after
a failure is detected. As such, runtime reconfiguration in-
curs the time taken to compute a new configuration point
and determine deployment actions required to transition to
a new configuration. This approach may be acceptable for
IoT systems consisting of non-real-time applications that
can incur considerable downtime. For IoT systems involving
real-time mission-critical applications, however, predictable
and timely reconfiguration is essential. Since all dynamic
reconfiguration mechanisms rely on runtime computation to
calculate a reconfiguration solution, the time to compute a
solution increases with the scale of the IoT system. The
CPC algorithm is no different, as shown by experimental
results in our prior work [26].

To address this issue, we therefore extend the CPC al-
gorithm by adding a configurable capability to use a finite
horizon look-ahead strategy that pre-computes solution and
thus significantly improves the performance of the manage-
ment engine. We call this capability the Look-ahead Re-
Configuration (LaRC). The general goal of the LaRC ap-
proach is to pre-compute and store solutions, so it just finds
the appropriate solution and applies it when required. When
the CPC algorithm is configured to execute in the “look-
ahead” mode, solutions are pre-computed every time the
system state (i.e., the current configuration point) changes.

The first pre-computation happens once the system is ini-
tially deployed using the default CPC algorithm. After a
system is initially deployed, CHARIOT pre-computes solu-
tions to handle failure events. These pre-computed solutions
cannot be used for update events since these types of events
change the system in such a way that the previously pre-
computed solutions are rendered invalid. Once CHARIOT
has a set of pre-computed solutions, therefore, failures are
handled by finding the appropriate pre-computed solution,
applying the found solution, and pre-computing solutions
to handle future failure events. For update events, in con-
trast, the default CPC algorithm is invoked again (same as
during initial deployment) to compute a solution. After a
solution for an update event is computed, CHARIOT again
pre-compute solutions to handle failure events.

To pre-compute solutions, CHARIOT currently uses Al-
gorithm 2. Since this paper focuses on node failures, Algo-
rithm 2 only pre-computes solutions for node failures. As-
suming that a system is in a stable state, this algorithm first
removes any existing look-ahead solutions (line 1) since it is
either invalid (update event) or already used (failure event).
After this the algorithm iterates through each available node
(line 2-3) and for each node, the algorithm creates a tempo-
rary copy of the configuration space (line 4), which includes
the current (stable) configuration point. All subsequent ac-
tions are taken with respect to the temporary configuration

Algorithm 2 Solution Pre-computation.

Input: nodes (nodes_list)

1: remove existing look-ahead information from the config-
uration space

2: for node in node_list do

3 if node is alive then

4: tmp_con fig_space = get configuration space
5: mark node as failed in tmp_con fig_space

6: actions = CPC algorithm on tmp_con fig_space
7 if actions ! = null then

8: l_ahead = new LookAhead instance

9: l_ahead. failed Entity = node.name

10: l_ahead. failureKind = NODE

11: l_ahead.deploymentActions = actions
12: store [_ahead in the configuration space

space copy, so the original copy is not corrupted during the
pre-computation computation process.

After a copy of the configuration space is made, the partic-
ular node is marked as failed (line 5) and the CPC algorithm
is invoked (line 6). This pre-computation algorithm thus es-
sentially injects a failure and asks the CPC algorithm for
a solution. If a solution is found, the injected failure in-
formation and the solution is stored as an instance of the
LookAhead class presented in Section 3.2.2 (line 7-12).

3.3.7 Summary of management layer
The description of the LaRC approach in Section 3.3.6

system behavior. Further investigating and implementing
such a solution is part of our future work.

4. IMPLEMENTATION AND EVALUATION

OF CHARIOT

This section describes and empirically evaluates the CHAR-
IOT runtime implementation using the Smart Parking Sys-
tem use-case scenario presented in Section 2.1. Figure 14
depicts CHARIOT’s runtime implementation architecture,
which consists of compute nodes comprising the layered stack
shown in figure 2.

[Tty
I ————— !
Heartbeat ! H
Compute node Monitoring || |
Platform services i Server 1N
= i i . R
_g H H Config spacei iy
g : Node Deployment ‘ : update Database 5
g Monitor Manager ‘ Server g
< H | =
N % ES
0, e, Query/ S
/776,737@/7/ Update 5
- . VP
[Communication Middleware s — '
M 1
[Operating System (Includes device drivers)] anag_ement }‘.
Engine :
[Hardware (Includes sensors and actuators)] | :
: Server nodes

Figure 14: The CHARIOT Runtime Implementation Archi-
tecture.

Each CHARIOT-enabled compute node hosts two plat-

yields interesting observations with regards to the pre-computationform services: a Node Monitor and a Deployment Manager.

algorithm. First, the current version of the pre-computation
algorithm only considers node failures. We will alleviate this
limitation in future work by adding system-wide capabilities
to monitor, detect, and handle failures involving application
processes, components, and network elements.

Second, the pre-computation algorithm specifically pre-
computes solutions only for the next step, i.e., the algo-
rithm only looks one step ahead. We believe that the num-
ber of steps to look-ahead should be a configurable parame-
ter as different classes of system might benefit from differ-
ent setting of this parameter. For example, consider highly
dynamic IoT systems that are subject to frequent failures
resulting in bursts of failure events. For such systems, it
is important to look-ahead more than one step at a time,
otherwise multiple failures that happen in short timespan
cannot be handled. However, for IoT systems that are com-
paratively more static, such as the smart parking system
presented in Section 2.1, a higher Mean Time To Failure
(MTTF) is expected, so pre-computed solutions need not
look ahead more than one step at a time.

There is clearly a trade-off between time, space, and num-
ber of failures tolerated when considering the number of pre-
computation steps. Multi-step pre-computation takes more
time and space to store large number of solutions based on
various permutation and combination of possible failures,
but can handle bursts of failures. Conversely, a single-step
pre-computation will be much faster and occupy less space,
but it will be harder to handle bursts of failures.

An ideal solution would involve a dynamic solution pre-
computation algorithm. The dynamism is with respect to
the configuration of the pre-computation steps parameter.
For any given system, however, we assume that there is an
initial value that can change at runtime depending on the

15

The Node Manager assesses the liveliness of its specific node,
whereas the Deployment Manager manages the lifecycle of
applications deployed on a node. In addition to compute
nodes, CHARIOT’s runtime also comprises one or more in-
stances of three different types of server nodes: (1) Database
Servers that store system information, (2) Management En-
gines that facilitate failure avoidance, failure management,
and operation management, and (3) Monitoring Servers that
monitor for failures.*

CHARIOT’s Node Manager is implemented as a ZooKeep-
er [14] client that registers itself with a Monitoring Server. In
turn, the Monitoring Server is implemented as a ZooKeeper
server and uses ZooKeeper’s group membership functional-
ity to detect member (node) additions and removals (i.e.,
failure detection). This design supports dynamic resources,
i.e., nodes that can join or leave a cluster at any time. A
group of Node Monitors (each residing on a node of a clus-
ter) and one or more instances of Monitoring Servers define
the monitoring infrastructure described in Section 3.

The Deployment Manager is implemented as a ZeroMQ
[13] subscriber that receives management commands from
a Management Engine, which is in turn implemented as
a ZeroMQ publisher. The Management Engine computes
the initial configuration point for application deployment,
as well as subsequent configuration points for the system to
recover from failures. After a Deployment Manager receives
management commands from the Management Engine, it
executes those commands locally to control the lifecycle of

4Since failure detection and diagnosis is not the primary
focus of this paper, our current implementation focuses on
resolving node failures, though CHARIOT can be easily ex-
tended to support mechanism to detect component, process,
and network failures.

application components. Application components managed
by CHARIOT can be in one of two states: active or inac-
tive. A group of Deployment Managers, each residing on a
node of a cluster, represents the deployment infrastructure
described in Section 3.

A Database Server is an instance of a MongoDB server.
For the experiments presented in Section 4.4, we only con-
sider compute node failures, so deploying single instances
of Monitoring Servers, Database Servers, and Management
Engines fulfills our need. To avoid single points of fail-
ure, however, CHARIOT can deploy each of these servers
in a replicated scenario. In the case of Monitoring Servers
and Database Servers, replication is supported by existing
ZooKeeper and MongoDB mechanisms. Likewise, replica-
tion is trivial for Management Engines since they are state-
less. A Management Engine executes the CPC algorithm
(see Section 3.3.2), with or without the LaRC configura-
tion (see Section 3.3.6), using relevant information from a
Database Server. CHARIOT can therefore have multiple
replicas of Management Engines running, but only one per-
forms reconfiguration algorithms. This constraint is achieved
by implementing a rank-based leader election among differ-
ent Management Engines. Since a Management Engine im-
plements a ZeroMQ server and since ZeroMQ does not pro-
vide a service discovery capability by default, CHARIOT
needs some mechanism to handle publisher discovery when
a Management Engine fails. This capability is achieved by
using ZooKeeper as a coordination service for ZeroMQ pub-
lishers and subscribers.

4.1 Application Deployment Mechanism

For initial application deployment, CHARIOT ML (see
Section 3.1) is used to model the corresponding system that
comprises the application, as well as resources on which
the application will be deployed. This design-time model is
then interpreted to generate a configuration space (see Sec-
tion 3.3.1) and store it in the Database Server, after which
point a Management Engine is invoked to initiate the deploy-
ment. When the Management Engine is requested to per-
form initial deployment, it retrieves the configuration space
from the Database Server and computes a set of deploy-
ment commands. These commands are then stored in the
Database Server and sent to relevant Deployment Managers,
which take local actions to achieve a distributed application
deployment. After a Deployment Manager executes an ac-
tion, it updates the configuration space accordingly.

4.2 Failure and Update Detection Mechanism

CHARIOT leverages capabilities provided by ZooKeeper
to implement a node failure detection mechanism, which
performs the following steps: (1) each computing node runs
a Node Manager after it boots up to ensure that each node
registers itself with a Monitoring Server, (2) when a node
registers with a Monitoring Server, the latter creates a cor-
responding ephemeral node,” and (3) since node membership
information is stored as ephemeral nodes in the Monitoring
Server, it can detect failures of these nodes.

4.3 Reconfiguration Mechanism

After a failure is detected a Monitoring Server notifies
the Management Engine, as shown in Figure 14. This fig-

®ZooKeeper stores information in a tree like structure com-
prising simple nodes, sequential nodes, or ephemeral nodes.

16

ure also shows that the Management Engine then queries
the Database Server to obtain the configuration space and
reconfigure the system using relevant information from the
configuration space and the detected failure.

4.4 Experimental Evaluation

Although we have previously used CHARIOT to deploy
and manage applications on an embedded system comprising
Intel Edison nodes (see chariot.isis.vanderbilt.edu/tutorial.
html), this paper uses a cloud-based setup to evaluate CHAR-
IOT at a larger scale. Below we first describe our experiment
test-bed and then describe the application and set of events
used for our evaluation. We next present an evaluation of
the default CPC algorithm and evaluate the CPC algorithm
with the LaRC algorithm. Finally, we present CHARIOT
resource consumption metrics.

4.4.1 Hardware and Software Testbed

Our testbed comprises 45 virtual machines (VMs) each
with 1GB RAM, 1VCPU, and 10GB disk in our private
OpenStack cloud. We treat these 45 VMs as embedded com-
pute nodes. In addition to these 45 VMs, 3 additional VMs
with 2 VCPUs, 4 GB memory, and 40GB disk is used as
server nodes to host Monitoring Server, Database Server,
and Management Engine (see Figure 14). All these VMs
ran Ubuntu 14.04 and were placed in the same virtual LAN.

4.4.2 Application and Event Sequence

To evaluate CHARIOT, we use the smart parking system
described in Section 2.1. We divide the 45 compute nodes
into 21 processing nodes (corresponding to the edison node
template in Figure 7), 21 camera nodes (corresponding to
the wifi_cam node template in Figure 7), and 3 terminal
nodes (corresponding to the entry_terminal node template
in Figure 7). The goal description we used is the same shown
in Figure 9, except we increase the replication range of the
occupancy_detector functionality to minimum 7 and maxi-
mum 10.

To evaluate the default CPC algorithm we use 34 different
events presented in Table 1. As shown in the table, the first
event is the initial deployment of the smart parking system
over 21 nodes (10 processing nodes, 10 camera nodes, and
1 terminal node). This initial deployment results in a total
of 23 component instances. After initial deployment, we in-
troduce 6 different node failure events, one at a time. We
then update the system by adding 2 terminal nodes, 11 pro-
cessing nodes, and 11 camera nodes. These nodes are added
one at a time, resulting in a total of 45 nodes (including
the 6 failed nodes). These updates are examples of intended
updates and show CHARIOT’s operations management ca-
pabilities. After updating the system, we introduce three
more node failures.

4.4.3 Evaluation of the Default CPC Algorithm

Figure 15 presents evaluation of the default CPC algo-
rithm using application and event sequence described above.
To evaluate the default CPC algorithm we use the total so-
lution computation time, which is measured in seconds. The
total solution computation time can be decomposed into two
parts: (1) problem setup time and (2) Z3 solver time. The
problem setup time corresponds to the first two phases of
the CPC algorithm (see Section 3.3.3 and Section 3.3.4),
whereas the Z3 solver time corresponds to the third phase

chariot.isis.vanderbilt.edu/tutorial.html
chariot.isis.vanderbilt.edu/tutorial.html

Table 1: Sequence of Events Used for Evaluation of the CPC Algorithm.

Events | Description

1 Initial deployment over 21 nodes (10 processing nodes, 10 camera nodes, and 1 terminal node) resulting in 23
component instances; 10 different component instances related to the occupancy_detector functionality due to
its corresponding cluster replication constraint, 10 different component instances related to the image_capture
functionality due to its corresponding per-node replication constraint associated with camera nodes (we have
10 camera nodes), a component instance related to the client functionality due to its corresponding per-node
replication constraint associated with terminal nodes (we have 1 terminal node), and a component instance each
related to the load_balancer, and parking_manager functionalities.

2 Failure of a camera node. No reconfiguration is required for this failure as a camera node hosts only a node-specific
component that provides the image_capture functionality.
3 Failure of the processing node that hosts a component instance each related to the load balancer and park-

ing-manager functionalities. This results in reconfiguration of the aforementioned two component instances.
Furthermore, since the processing node hosts an instance of the occupancy_detection functionality, the number
of component instances related to this functionality decreases from 10 to 9. Since 9 is still within the provided
redundancy range (min = 7, max = 10), however, this component instance does not get reconfigured.

4 Failure of the processing node on which the component instance related to the parking_ manager functionality was
reconfigured to as the result of the previous event. This event results in the parking manager functionality related
component instance to again be reconfigured to a different node. Moreover, the number of component instances
related to the occupancy_detector functionality decreases to 8, which is still within the provided redundancy range;
as such, reconfiguration of that component instance is not required.

5 Failure of the processing node on which the component instance related to the load_balancer functionality was
reconfigured to as result of event 3. This event results in the component instance being reconfigured again to a
different node. Also, the number of component instances related to the occupancy_detector functionality decreases
to 7, which is still within the provided redundancy range so no reconfiguration is required.

6 Failure of another processing node. This node only hosts a component instance related to the occupancy_detector
functionality. As a result of this failure event, therefore, the provided redundancy range associated with the
occupancy_detector functionality is violated since the number of corresponding component instances decreases
to 6. This component instance is then reconfigured to a different node to maintain at least 7 instances of the
occupancy_detector functionality.

7 Failure of the single available terminal node on which the component instance related to the client functionality
was deployed as part of the initial deployment (event 1). This event results in an invalid system state since there
are no other terminal nodes and thus no instances of client functionality are available.

8-31 Hardware updates associated with addition of 2 terminal nodes, 11 processing nodes, and 11 camera nodes. Due
to associated per-node replication constraints, addition of a terminal node results in deployment of a component
instance associated with the client functionality. Similarly, adding a camera node results in deployment of a
component instance associated with the image_capture functionality. Adding processing node does not result in
any new deployment, however, since it is not associated with a per-node replication constraint.

32 Failure of a processing node that hosts a component instance related to the occupancy_detector functionality. This
results in reconfiguration of the component instance to a different node.

33 Failure of another processing node, which hosts no applications. Therefore, no reconfiguration is required.

34 Failure of a camera node. Again, no reconfiguration is required (see event 2 above).

W Problem Setup Time \ Z3 Solver Time

1100 -
=
2 1000 .
S . .
o §§ \
& 900 - -
S 700 §§§\§§
e " EEERER
S 500 - FEEEEEEREEE
Ezoo« §§§§§§§§§§\
100 | §§§\\§\

_
V)

N
D) B

A\ A\ A\ A\ A\

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Deployment, Failure, or Update Events

Figure 15: Default CPC Algorithm Performance. (Please refer to Table 1 for details about each event shown in this graph.)

17

of the CPC algorithm (see Section 3.3.5).

Figure 15 shows that for initial deployment and the first 5
failure events, the total solution computation time is similar
(average = 48 seconds) because the size of the C2N matrix
and associated constraints created during the problem setup
time are roughly the same. The 6th failure (7th event in
Figure 15), is associated with the one and only terminal node
in the system. The Z3 solver therefore quickly determines
there is no solution, so the Z3 solver time for the 7th event
is the minimal 1.74 seconds.

Events 8 through 31 are associated with a system update
via the addition of a single node per event. These events
show that for most cases the total solution computation
time increases with each addition of node. The problem
setup time increases consistently with increase in the num-
ber of nodes because the size of the C2N matrix, as well as
the number of constraints, increases with an increase in the
number of nodes. The Z3 solver time also increases with
increase in number of nodes in the system, however, it does
not increase as consistently as the problem setup time due
to the least distance configuration computation presented in
Section 3.3.5. The number of iterations, and therefore the
total time, taken by the Z3 solver to find a solution with
least distance is non-deterministic. If a good solution (with
respect to distance) is found in the first iteration, it takes
less number of iterations to find the optimal solution. We
demonstrate this non-deterministic behavior using experi-
mental results in Section 4.4.6.

Finally, events 32 through 34 are associated with more
node failures. The total solution computation time there-
fore decreases due to the decrease in number of nodes and
component instances, which results in a smaller C2N matrix
and a fewer number of constraints.

i Solution Pre-computation Time “@ Pre-computed Solution Storage

1600 - r 1750

1400 | T 1700

1200 r 1650
1000 I 1600

r 1550

(bytes)

T 1500

r 1450

Solution Pre-computation Time
(seconds)

I 1400

Pre-computed Solution Storage Space

- 1350

Deployment and Failure Events

Figure 16: Solution Pre-computation Time for CPC with
LaRC.

4.4.4 Evaluation of the CPC algorithm with LaRC

For the purpose of this evaluation we use the first 5 events
since this is enough to showcase the trade-off between the
default CPC algorithm and the CPC algorithm with LaRC.
In this approach, the total solution computation time (apart
from the initial deployment) is the time taken to query the
database for pre-computed solution. This time is signifi-
cantly lower (average = 0.0085 seconds) than that for the
default CPC algorithm (average = 48 seconds).

To demonstrate the trade-off between the two versions of

the CPC algorithm, Figure 16 presents the time taken for
solution pre-computation and the space required to store
pre-computed solution in (the solution for failure event i+1
is computed when the reconfiguration action for the fail-
ure event i is being applied). As shown in this figure, the
time taken to pre-compute solution after initial deployment
is 1,400 seconds, which is the time needed to pre-compute
solution for 21 node failures (initial configuration). To store
this pre-computed solution 1,715 bytes of storage space is
used. Events 2 through 5 represent node failures and the
solution pre-computation time and storage used to store the
pre-computed solution decreases with each failure because
failures result in less number of scenarios for which we need
to pre-compute a solution.

4.4.5 Resource Consumption

30

PLEE Hatht DR G BN BN NN M D

Average Memory Consumed by
CHARIOT Entities (MB)

20 -
A B C D E F G H J K L M

Compute Nodes

Figure 17: Average Memory Consumption.

To demonstrate the usability of CHARIOT in IoT sys-
tems, we present various resource consumption of CHAR-
IOT entities (Deployment Manager and Node Monitor, as
shown in Figure 14) that run on each compute node. The
resource consumption numbers only consider the CHARIOT
management entities and not the actual application being
managed. Moreover, for the purpose of this evaluation we
categorize the compute nodes based on their lifetime (short,
medium, long) and randomly pick 4-5 nodes form each cate-
gory. Nodes A, B, C, D, and F are nodes with short lifetime
(less than 15 minutes); nodes F, G, H, and I are nodes with
medium lifetime (between 110 and 154 minutes); nodes J,
K, L, and M are nodes with long lifetime (between 200 and
235 minutes).

-o-Bytes Sent/Sec -#-Bytes Recv/Sec

180 1
160
140
120 -
100 -
80
60
QO
20

Average Bandwidth Used by
CHARIOT Entities (Bytes/Second)
o

Compute Nodes

Figure 18: Average Network Bandwidth Consumption.

& Problem Setup Time

350

300

250 7

200 -

150 -

100 -

Total Solution Computation Time (Seconds)

w N

50 - SRR N B
N

T s N R I I l I

NIEEEEENEEEEEEERD

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16

17

73 Solver Time

i
VY
I
7
L
A

A
7

U
7

7

7
T

7]
7

7
7

8 19 20 21 22 24 25 26 27 28 29 30 31 32 33 34

Deployment, Failure, and Update Events

Figure 19: Default CPC Algorithm Performance in Simulated Environment. (Table 1 presents details about each event shown

in this graph.)

===Total Solution Computation Time (Simulation)

1100
1000
900
800
700
600
500
400
300
200
100

Total Solution Computation Time (Seconds)

===Total Solution Computation Time (Non-simulation)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Deployment, Failure, or Update Events

Figure 20: Default CPC Algorithm Performance Comparison between Non-simulated and Simulated Environments. (Please
refer to Table 1 for details about each event shown in this graph.)

Figure 17 presents the average memory consumed by CH-
ARIOT entities running on 13 nodes mentioned above throu-
ghout their lifetime. This figure shows that the average
memory consumption is close to slightly above or below 25
MB in each node. Similarly, Figure 18 presents the average
network bandwidth consumed by CHARIOT entities run-
ning on the aforementioned 13 nodes throughout their life-
time. This figure shows that the network bandwidth used
to send and receive information is minimal and predictable.
We do not show the CPU utilization since it was between 0
- 0.5%.

The results presented above show that the CHARIOT in-
frastructure is not resource intensive and thus can be used

19

for resource-constrained IoT devices. CHARIOT is cur-
rently written using Python,® though we intend to convert
our code to C++/Golang to further improve performance.

4.4.6 Analyzing the Performance of the CPC algo-
rithm

To further analyze the CPC algorithm’s performance, the
experiment presented in Section 4.4.3 was replicated in a
single machine simulation environment. This new analysis
was run on a 64 bit Windows 7 machine with 8 GB mem-
ory and 8 cores resulting in 4 GB of additional memory and
6 additional cores compared to the distributed testbed used

Sgithub.com /visor-vu/chariot

github.com/visor-vu/chariot

===Phase 3 (Z3 Solver Time)

140

120

100

80

60

40

Z3 Solver Time (Seconds)

20

==Complexity

- 12000000
o
=
=
£
- 10000000 E:
g~
| goococe & 5
£%
a2
- 6000000 E g
i3
- 4000000 ©
EQ
Q —
(")
E
- 2000000 o
£
[«
m
N
-0

1 2 3 45 6 7 8 9 1011121314151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Deployment, Failure, or Update Events

Figure 21: The Z3 Solver Time Jitter versus the corresponding Problem Complexity. (Please refer to Table 1 for details about

each event shown in this graph.)

for experiment presented in Section 4.4.3. Figure 19 presents
the overall performance of the CPC algorithm using applica-
tion and event sequence described in Section 4.4.2. Figure 20
compares the performance of CPC algorithms in simulated
and non-simulated environment. The results in this figure
show the performance improvement facilitated by the more
resourceful hardware used in the simulated environment.

Phase 1 (Avg) EPhase 2 (Avg) %Phase 3 (Avg) Solver Assertions

280 2500000

R
RN
720 2000000

640

Time

560 1500000

NN ¢
SR

1000000

Number of Solver Assertions

240

S

500000

w B N N
3 4

5 6

160

Total
o
3

o -+ T

Deployment Scenarios

Figure 22: Solution Computation Time for Different Initial
Deployment Scenarios.

Figure 21 analyzes the Z3 solver time jitter by compar-
ing the Z3 solver time with the corresponding Z3 problem
complexity. Here, the Z3 problem complexity is a metric de-
fined as the product of (1) total number of solver assertions,
which indicates the size of the problem being solved by the
Z3 solver, and (2) total number of least-distance iterations,
which indicates the number of times a problem is solved by

20

the Z3 solver. As shown in the figure, barring few anomalies,
the Z3 solver time depends on the Z3 problem complexity.

5 Dependency Constraint (Avg)
*-Dependency Constraint %

EROther Constraints (Avg)

g o00 . . . 100
c .
g £
5". 800 . 8 g
E 700 % 5
- o
= <E
= c E
600 94 £E
3 2 38
500
s ‘ w0 £3
£ 400 55
H 88 28
£ 300 5 &
v 86
£ %3
g 200 -
5 g
S 100 02 &
m
3 o 20

1 2 3 4 5 6
Deployment Scenarios

Figure 23: Breakdown of Total Constraint Encoding Time
into Different Constraints.

Finally, to determine possible performance bottlenecks,
the default CPC algorithm was further analyzed using dif-
ferent initial deployment scenarios (based on varying scale)
of the application presented in Section 4.4.2. Figure 22
presents the total solution computation time, divided into
three different phases of the CPC algorithm, for six different
initial deployment scenarios. The first deployment scenario
comprises 11 nodes and 10 components; the second deploy-
ment scenario comprises 22 nodes and 18 components; the
third deployment scenario comprises 33 nodes and 26 com-
ponents; the fourth deployment scenario comprises 44 nodes

and 34 components; the fifth deployment scenario comprises
55 nodes and 42 components; and the sixth deployment sce-
nario comprises 66 nodes and 50 components.

Figure 22 shows that the second phase of the CPC algo-
rithm, which corresponds to the constraint encoding phase,
contributes to majority of the total solution computation
time. Further analysis of the constraint encoding phase of
the CPC algorithm (shown in Figure 23) shows that the de-
pendency constraint encoding (see Equation 6) is the main
bottleneck as it accounts for more than 90% of the constraint
encoding time. This result occurs because for every depen-
dency, the current encoding mechanism incurs O(n?) time
complexity. Any improvement to the way in which this con-
straint is encoded will result in significant reduction of the
total solution computation time.

S. RELATED WORK

This section summarizes related work and distinguishes it
from our research on CHARIOT presented in this paper.

5.1 Redundancy-based Strategies

Fault tolerance in computing has a long history, but re-
silience [17] is beyond the capabilities of conventional fault-
tolerant approaches since resilience means providing the ser-
vices even if any part of the system fails, which requires
adaptation. Conventional fault tolerance techniques are based
on redundancy together with comparison (e.g., a voter) or
acceptance checking schemes to decide if a component is
functioning correctly. Redundancy-based techniques mask
certain classes of persistent and transient faults that may
develop in one or more (but not in all) redundant compo-
nents at the same time, thereby ensuring that faults do not
lead to eventual system or subsystem failures. These tech-
niques rely on the assumption that failure of a component is
an independent event. Hence, the failure probability of the
overall system or subsystem is lower since it is a product of
the failure probabilities of the individual components. Other
well-known redundancy techniques include recovery blocks
and self-check programming [30]. None of these methods are
sufficient, however, for IoT systems where both software and
hardware topologies can change dynamically.

5.2 Reconfiguration-based Strategies

Reconfiguration-based techniques provide an alternative
to the redundancy-based strategies described above. The
goal of reconfiguration is to detect anomalous behavior, per-
form diagnosis to identify the fault cause(s) responsible for
the detected anomalies, and apply remedies to restore the
functionalities affected by anomalies. These techniques can
be configured to account for anomalous behavior and their
cascading effects due to faults identified at design time, as
well as latent bugs, common mode failures, or other unfore-
seen events or attacks that disrupt the nominal operation.
Moreover, these approaches can be applied to augment sys-
tem resilience when redundancy-based fault tolerance strate-
gies are already in place.

Anomaly detectors can be based on observing different
system aspects, such as heartbeats of nodes and applica-
tions, resource utilization of the hosted applications, or un-
expected perturbations of application data. These obser-
vations are periodically compared against preset values or
thresholds, model outputs, or expected behaviors. Diag-
nosis schemes can use the status of these anomaly moni-

21

tors to localize and isolate the fault source(s). Anomaly
detectors can also employ a hierarchical approach, as well
as consensus-based schemes between multiple independent
observers. Our prior work [19, 22] on anomaly detection
and diagnosis forms the basis for the diagnosis system we
use. However, we should point out that diagnosis is not the
focus of this paper and therefore is not discussed further.

There are two types of reconfiguration-based techniques:
offline strategies using pre-specified reconfiguration rules and
online strategies using dynamic reconfiguration where solu-
tions are computed/searched for at runtime.

5.2.1 Offline Reconfiguration Strategies

In [21, 10] the authors present two solutions for synthesiz-
ing an optimal assembly for component-based systems, given
a set of constraints. Both solutions perform automatic static
assembly at design-time. The key difference between these
solutions is that [21] does not consider timing constraints,
whereas the solution in [10] targets scheduling constraints in
cyber-physical systems. Neither of these solutions meet the
needs of IoT systems, however, since they do not consider
dynamic reconfiguration and focus solely on automatically
synthesizing optimal system assemblies at design-time.

The work appearing in [4, 28, 3] presents different policy-
based approaches. In [4], the authors present a policy-
based framework that requires mission specification, which
describes how specific roles are assigned to different nodes
based on their credentials and capabilities, as well as how
these roles should be reassigned in response to changes or
failures. This mission specification explicitly encodes recon-
figuration actions, e.g., role reassignments, at design-time.
In [28], the authors apply a similar approach using declar-
ative policies to specify adaptation. In [3], the authors
present a policy-based approach where each adaptation pol-
icy comprises rules, actions, and the rate at which each rule
should be evaluated. These approaches differ from our work
because they are based on static reconfiguration, whereas
CHARIOT is based on dynamic reconfiguration.

Our prior work based on static reconfiguration [20] shows
how system-wide mitigation can be performed based on re-
active, timed-state machines specified at design-time, using
the results of a two-level fault-diagnoser [9]. Statically spec-
ified reconfiguration techniques typically result in faster per-
formance since reconfiguration actions are pre-determined so
no additional computations are required at runtime. These
techniques are generally untenable for IoT systems since
these systems are dynamic and thus all possible runtime
scenarios cannot be pre-determined a priori at design-time.

5.2.2 Online Reconfiguration Strategies

CHARIOT uses an online, dynamically computed strat-
egy for reconfiguration. It requires runtime computation to
search for a solution. Reducing this search time and en-
suring its predictability is essential for IoT systems that
host mission-critical, cyber-physical applications. Our prior
work [18] on dynamic reconfiguration was based on boolean
encoding of a system. This work has some limitations, how-
ever, since it was (1) based on a SAT solver and therefore
could not accommodate complex constraints over integer
variables, (2) not flexible enough to consider runtime modifi-
cation of a system’s encoding, and (3) unable to take timing
requirements into account.

In [31], the authors present middleware that supports timely

reconfiguration in distributed real-time and embedded sys-
tems based on services. At design-time, the schedulabil-
ity and complexity of a system is analyzed and fine-tuned
to bound sources of unpredictability. The resulting Sched-
uled Fxpanded Graph is used at runtime to determine the
Ezecution Graph, which represents the application in execu-
tion. Although this approach is flexible and relies on runtime
search of the execution graph for viable reconfiguration so-
lutions, the predictability and schedulability analysis is con-
ducted at design-time, so system resources cannot be mod-
ified at runtime. In contrast, CHARIOT supports runtime
modification required for systems with dynamic resources.

Dynamic Software Product Lines (DSPLs) have also been
suggested for dynamic reconfiguration. In [7], the authors
present a survey of the state-of-the-art techniques that at-
tempt to address many challenges of runtime variability mech-
anisms in the context of DSPLs. The authors also provide
a potential solution for runtime checking of feature mod-
els for variability management, which motivates the concept
of configuration models. A configuration model acts as a
database that stores a feature model along with all possible
valid states of the feature model. Although this work is con-
ceptually similar to our CHARIOT middleware, it does not
take timing requirements into account.

Ontology-based reconfiguration work has been presented
in [12, 29], where the analytical redundancy of computa-
tional components is made explicit. On the basis of this
ontology, the system can be reconfigured by identifying suit-
able substitutes for the failed services. Unlike CHARIOT,
however, these ontology-based reconfiguration solely rely on
redundancy.

6. CONCLUDING REMARKS

This paper described the structure and functionality of
CHARIOT, which is orchestration middleware we developed
to meet key resilience requirements of IoT systems. The fol-
lowing is a summary of our lessons learned from developing
and applying CHARIOT in practice:

Lesson 1: Design-time system description should be
generic. If the objectives of an application and the func-
tionalities that it requires can be specified in a generic man-
ner, CHARIOT can create an online mechanism that maps
the system objectives to required resources based on func-
tionality decomposition and functionality-component asso-
ciation. It is important, however, to extend this concept to
support the idea of graceful degradation. In future work, we
are modeling quality of service (QoS) functions that provide
mechanisms for evaluating the performance of a component’s
functionality based on available resources. These QoS mech-
anisms can be helpful when CHARIOT needs to arbitrate
between different system objectives.

Lesson 2: Design-time and runtime system informa-
tion can be used to encode constraints at runtime.
Using design-time system description and runtime system
representation, constraints can be dynamically encoded to
represent various system requirements. These constraints
can aid online reconfiguration via the use of state-of-the-art
solvers such as Z3, which is a SMT solver. To minimize
downtime, however, efficient pre-computation of reconfigu-
ration steps is necessary. CHARIOT’s look-ahead approach
described in this paper is a step in this direction.

22

Lesson 3: Dynamic online reconfiguration is time
consuming. Online reconfiguration is time consuming and
is thus not suitable for low latency IoT systems with strin-
gent real-time constraints. For those types of systems, there-
fore, it is important to include redundancy in the deploy-
ment logic. The CHARIOT modeling language and recon-
figuration logic supports these redundancy concepts.

Lesson 4: Failure reconfiguration approach can be
extended to support system updates as well. CHAR-
IOT’s reconfiguration framework can be extended to address
IoT system evolution, which corresponds to the addition of
computational capabilities or new software applications. By
generalizing and automating reconfiguration steps CHAR-
IOT can be adopted by IoT apps in many domains.

Our future work on CHARIOT will analyze the time com-
plexity of the reconfiguration analysis and develop strategies
to minimize downtime to facilitate its use in safety- and
time-critical IoT application domains.

Acknowledgments

This work is sponsored in part by Siemens Corporate Tech-
nology and in part by a NSF grant 1528799. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of Siemens Corporate Technology or NSF.

REFERENCES

Apache Zookeeper. https://zookeeper.apache.org/.
Xtext. https://eclipse.org/Xtext/.

S. S. Andrade and R. J. de Aratdjo Macédo. A
non-intrusive component-based approach for deploying
unanticipated self-management behaviour. In Software
Engineering for Adaptive and Self-Managing Systems,
2009. SEAMS’09. ICSE Workshop on, pages 152—161.
IEEE, 2009.

E. Asmare, A. Gopalan, M. Sloman, N. Dulay, and

E. Lupu. Self-management framework for mobile
autonomous systems. Journal of Network and Systems
Management, 20(2):244-275, 2012.

K. Benson, C. Fracchia, G. Wang, Q. Zhu,

S. Almomen, J. Cohn, L. D’arcy, D. Hoffman,

M. Makai, J. Stamatakis, et al. Scale: Safe community
awareness and alerting leveraging the internet of
things. IEEE Communications Magazine,
53(12):27-34, 2015.

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog
computing and its role in the internet of things. In
Proceedings of the first edition of the MCC workshop
on Mobile cloud computing, pages 13-16. ACM, 2012.
R. Capilla, J. Bosch, P. Trinidad, A. Ruiz-Cortés, and
M. Hinchey. An overview of dynamic software product
line architectures and techniques: Observations from
research and industry. Journal of Systems and
Software, 91:3-23, 2014.

L. M. de Moura and N. Bjgrner. Z3: An efficient smt
solver. In TACAS, pages 337-340, 2008.

A. Dubey, G. Karsai, and N. Mahadevan. Model-based
software health management for real-time systems. In
Aerospace Conference, 2011 IEEE, pages 1-18. IEEE,
2011.

[6]

[7]

https://zookeeper.apache.org/
https://eclipse.org/Xtext/

[10]

[11]

[12]

[19]

[22]

C. Hang, P. Manolios, and V. Papavasileiou.
Synthesizing cyber-physical architectural models with
real-time constraints. In Computer Aided Verification,
pages 441-456. Springer, 2011.

G. T. Heineman and W. T. Councill, editors.
Component-based Software Engineering: Putting the
Pieces Together. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2001.

O. H??ftberger and R. Obermaisser. Runtime
evaluation of ontology-based reconfiguration of
distributed embedded real-time systems. In 2014 12th
IEEE International Conference on Industrial
Informatics (INDIN), 2014.

P. Hintjens. ZeroMQ: Messaging for Many
Applications. 7 O’Reilly Media, Inc.”, 2013.

P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: Wait-free coordination for internet-scale
systems. In USENIX Annual Technical Conference,
volume 8, page 9, 2010.

T. Kurtoglu, I. Y. Tumer, and D. C. Jensen. A
functional failure reasoning methodology for
evaluation of conceptual system architectures.
Research in Engineering Design, 21(4):209-234, 2010.
L. Lamport. Paxos made simple. ACM Sigact News,
32(4):18-25, 2001.

J.-c. Laprie. From dependability to resilience. In In
38th IEEE/IFIP Int. Conf. On Dependable Systems
and Networks. Citeseer, 2008.

N. Mahadevan, A. Dubey, D. Balasubramanian, and
G. Karsai. Deliberative, search-based mitigation
strategies for model-based software health
management. Innovations in Systems and Software
Engineering, 9(4):293-318, 2013.

N. Mahadevan, A. Dubey, and G. Karsai. Application
of software health management techniques. In
Proceedings of the 6th International Symposium on
Software Engineering for Adaptive and Self-Managing
Systems, SEAMS ’11, pages 1-10, New York, NY,
USA, 2011. ACM.

N. Mahadevan, A. Dubey, and G. Karsai. Application
of software health management techniques. In
SEAMS, pages 1-10, 2011.

P. Manolios, D. Vroon, and G. Subramanian.
Automating component-based system assembly. In
Proceedings of the 2007 international symposium on
Software testing and analysis, pages 61-72. ACM,
2007.

R. Mehrotra, A. Dubey, S. Abdelwahed, and R. Krisa.

Rfdmon: A real-time and fault-tolerant distributed
system monitoring approach. In The Eighth

23

23]

24]

(25]

[26]

27]

(28]

29]

(30]

(31]

(32]

33]

International Conference on Autonomic and
Autonomous Systems, pages 57-63, 2012.

MongoDB Incorporated. MongoDB.
http://www.mongodb.org, 2009.

S. Nannapaneni, A. Dubey, S. Abdelwahed,

S. Mahadevan, S. Neema, and T. Bapty.
Mission-based reliability prediction in
component-based systems. International Journal of
Prognostics and Health Management, 7(001), 2016.

D. Ongaro and J. Ousterhout. In search of an
understandable consensus algorithm. In Proc.
USENIX Annual Technical Conference, pages
305-320, 2014.

S. Pradhan, A. Dubey, T. Levendovszky, P. S. Kumar,
W. A. Emfinger, D. Balasubramanian, W. Otte, and
G. Karsai. Achieving resilience in distributed software
systems via self-reconfiguration. Journal of Systems
and Software, 2016.

S. M. Pradhan, A. Dubey, A. Gokhale, and

M. Lehofer. Chariot: a domain specific language for
extensible cyber-physical systems. In Proceedings of
the Workshop on Domain-Specific Modeling, pages
9-16. ACM, 2015.

A. Schaeffer-Filho, E. Lupu, and M. Sloman.
Federating policy-driven autonomous systems:
Interaction specification and management patterns.
Journal of Network and Systems Management, pages
1-41, 2014.

A. Shaukat, G. Burroughes, and Y. Gao.
Self-reconfigurable robotics architecture utilising fuzzy
and deliberative reasoning. In SAI Intelligent Systems
Conference (IntelliSys), 2015, 2015.

W. Torres-Pomales. Software fault tolerance: A
tutorial. 2000.

M. G. Valls, I. R. Lépez, and L. F. Villar. iland: An
enhanced middleware for real-time reconfiguration of
service oriented distributed real-time systems.
Industrial Informatics, IEEE Transactions on,
9(1):228-236, 2013.

L. M. Vaquero and L. Rodero-Merino. Finding your
way in the fog: Towards a comprehensive definition of
fog computing. SIGCOMM Comput. Commun. Reuv.,
44(5):27-32, Oct. 2014.

D. Willis, A. Dasgupta, and S. Banerjee. Paradrop: a
multi-tenant platform to dynamically install third
party services on wireless gateways. In Proceedings of
the 9th ACM workshop on Mobility in the evolving

internet architecture, pages 43-48. ACM, 2014.

http://www.mongodb.org

	Introduction
	Problem Description
	A Representative IoT System Case Study
	Problem Statement

	CHARIOT: Orchestration Middleware for IoT Systems
	Design Layer
	Node Categories and Templates
	Functionalities, Compositions and Goals
	Component Types
	Summary of the Design Layer

	Data Description Layer
	Design-time System Description Schema
	Runtime Information Schema
	Summary of the Data Description Layer

	Runtime Management Layer
	Configuration Space and Points
	Computing the Configuration Point
	Phase 1: Instance Computation
	Phase 2: Constraint Encoding
	Solution Computation Phase
	The Look-ahead Reconfiguration
	Summary of management layer

	Implementation and Evaluation of CHARIOT
	Application Deployment Mechanism
	Failure and Update Detection Mechanism
	Reconfiguration Mechanism
	Experimental Evaluation
	Hardware and Software Testbed
	Application and Event Sequence
	Evaluation of the Default CPC Algorithm
	Evaluation of the CPC algorithm with LaRC
	Resource Consumption
	Analyzing the Performance of the CPC algorithm

	Related Work
	Redundancy-based Strategies
	Reconfiguration-based Strategies
	Offline Reconfiguration Strategies
	Online Reconfiguration Strategies

	Concluding Remarks
	References

