
Model-based Automation for Hardware Provisioning
in IT Infrastructure

Takayuki Kuroda∗
NEC Corporation

1753 Shimonumabe Nakahara-ku, Kawasaki, Kanagawa, Japan
Email: t-kuroda@ax.jp.nec.com

Aniruddha Gokhale
ISIS, Vanderbilt University
Nashville, TN 37235, USA

Email: a.gokhale@vanderbilt.edu

Abstract—An IT infrastructure comprises both hardware and
software resources. While much progress has been made on
automating the provisioning of software resources, provisioning
hardware resources continues to use labor-intensive manual
processes. For example, hardware provisioning tasks including
most of the peripheral tasks, such as designing the system
architecture, planning the tasks to deploy on it, describing the
operational procedures, and managing the progress of hardware
deployment, remain a manual process despite being amenable
to automation. To address these problems, this paper presents
a model-based approach to automating hardware provisioning.
First, we describe a specification to define a hardware system in
the form of a desired state model. Second, we propose a scheme
to generate operational procedures to deploy the system detailing
how we handle dependencies and address issues of practical
importance useful to improve worker productivity. Third, through
a case study involving hardware provisioning for a private cloud
platform, we show the benefits accrued through our scheme,
which not only addresses the issues with peripheral administrative
tasks but also the practical operations by supporting improved
operational procedures. Our system is implemented in Java. We
qualitatively evaluate our solution alluding to how reusability
can be enhanced, and also elicit its current limitations providing
insights into ongoing work to address these limitations.

I. INTRODUCTION

Two recent innovations making significant impacts on
the field of enterprise system provisioning are virtualization
and model-based provisioning. Model-based provisioning as
described in this paper implies a series of techniques to deploy
system components effectively using a model-based approach.
A number of products [1], [2], [3] and standardized specifica-
tions [4] supporting model-based provisioning are increasingly
being used in the enterprise world.

At the same time, virtualization has shifted the context
of provisioning computational resources from hardware to
software by focusing on provisioning virtual machines instead
of actual hardware. Consequently, the actions to be undertaken
to deploy most of the enterprise applications can now be
written as a computational workflow or a collection of scripts
that can be executed without involving human labor. However,
the cost now shifts to creating these workflows and scripts. It is
here that model-based provisioning makes the most impact. It
enhances the efficiency in preparing the provisioning workflow
in terms of ease, quality and the speed at which the workflows
can be prepared.

∗ Work done by the author as a visiting researcher at Vanderbilt University

The key contributions of model-based provisioning include
(a) increasing the reusability of workflows due to the well-
organized semantics to define components containing small
pieces of workflow and their composites, and (b) supporting
an intuitive approach to express a system that is to be deployed
as a “desired state” model which does not require knowledge
of the resource model to develop the operation logic in the
form of scripts or workflows [5].

Virtualization and model-based provisioning are in some
sense symbiotic thereby helping each other advance their
individual state-of-the-art. For example, as model-based provi-
sioning techniques mature, more varieties of system resources,
which have hitherto not been virtualized, are being virtualized.
Software-defined data center is an example of such a trend [6].
In turn, this will require improvements to model-based tech-
niques.

However, there still exist many types of equipment used
in the enterprise IT world that are not yet virtualized and
hence continue to use labor-intensive processes. Note that
virtualization does not preclude the need for physical machines
and networks, such as the computational resources in a data
center and in a private cloud, or personal IT environments in an
office, for example. Moreover, many emerging services beyond
traditional web services involve specialized equipment, such
as client terminals, cameras, sensors, and alarms. A system
which consists of such resources is still dealt in conventional
ways. System vendors or in-house administrators who manage
these IT resources continue to suffer from the tedious and
error-prone work of provisioning these resources. In fact, their
responsibilities include not only the practical operations to
deploy the systems but also many peripheral works, such as
designing the architecture, planning the tasks to deploy, de-
scribing operational procedural documents, assigning workers
and managing the progress of practical operations. In par-
ticular, planning deployment tasks and describing operational
procedures are time consuming activities for administrators.
Moreover, the complex documents written by hand are hard
to understand for workers and may be subject to multiple
interpretations due to ambiguities in the natural language
description.

Thus, there is a compelling need to adopt model-based
automation for hardware provisioning. Our focus for this paper
is to address this key requirement and provide an approach
to automate most of the administrative tasks in hardware
provisioning and support practical operations in preparing
quality and advanced operational procedures. We present the

concept of model-based hardware provisioning and propose a
scheme to realize the concept and specification to define the
models.

The rest of this paper is organized as follows: In Section II
we provide a motivating example to elicit the challenges in
model-based provisioning; we present the concept of model-
based hardware provisioning, architecture overview, model
specification and implementation of a system to realize the
concept in Section III; We evaluate our approach in the context
of a case study in Section IV; We discuss additional topics
and future work in this field in Section V; Related research
is compared with our approach in Section VI; and finally we
offer concluding remarks in Section VII.

II. BACKGROUND AND CHALLENGES

This section provides some background on how hardware
provisioning is done and describes the challenges in realizing a
model-based hardware provisioning capability. To better elicit
the challenges, we use a motivating example.

A. Terminology

As mentioned before, prior to the advent of virtualization
technology, the provisioning of system components such as
servers, and even middleware was done manually. There are
two typical roles for this kind of work: an integrator and a
worker. The integrator represents an administrative role whose
responsibilities are recognizing the customer’s requirements,
designing the system architecture, planning the tasks to deploy,
describing the operational procedural documents, assigning
workers, ordering all the component parts, and managing the
overall progress of the deployment. The worker role repre-
sents the human asset that actually performs the deployment
tasks according to the procedural documents prepared by the
integrator.

B. Motivating Example

Consider the need for provisioning hardware to create
a private cloud platform. At a minimum, the provisioning
consists of installing one or more server racks, multiple servers
on that rack, network switches, and network cables. The
servers and the switches are inserted into the rack and every
server and switch are connected with cables in the final state
that is desired. We assume that every component is shipped
from a vendor as a product so that every item is individually
packaged to begin with, which we call as the initial state. The
workers are responsible for transforming the system from the
initial state (i.e., all individual components in their packages)
to the final state (i.e., a functional private cloud).

C. Challenges

There are multiple challenges in provisioning the hardware
in our motivating example. For instance, the tasks should
be performed in a proper order to complete them efficiently
without failure. Proper order is important because otherwise
some steps may have to be rolled back in order to address
a step that was expected to be done before some others.
In this example, this means unpacking and setting up each
component individually in isolation before combining them.

The cables should be connected after both servers and switches
are inserted into the rack. Furthermore, there can be many
conditional tasks even in such a simple example. The actual
products used for each component and the number of servers
should be selectable and configurable.

With this variability, it is possible that each product can
have slightly different setup tasks. Beyond this, it is possible
that for specific configurations, additional components may be
needed. For example, in our motivating example, one server
may need to have an extra network port to connect with an
external network in order for it to work as a gateway. If a
selected server product for the gateway does not have enough
network ports, then an extra network interface card should be
added before the server is inserted into the rack. Satisfying
these interdependencies is critical for successful provisioning.

From the perspective of the operational procedure, an inte-
grator must be able to unambiguously capture this information.
However, documents expressed in natural language are often
prone to multiple interpretations. Moreover, the workers have
to read and understand an operational procedure.

The next issue is that of reuse. Note that the task to
setup the same component will not vary significantly from
configuration to configuration but reusing and automating this
capability has been hard thus far since the actual products
adopted and their configurations can have slight variations in
each case. To improve reuse, manually produced operational
procedures may be kept in separate individual documents with
one document referring to another as part of the operational
procedure or may include many conditional sections to cover
slight variations.

Such document structures, however, reduce maintainability
and readability of the documents. Consequently, it diminishes
the productivity of workers who must interpret these doc-
uments to take the concrete action. Moreover, workers are
required to have enough knowledge about the provisioning of
each system domain making the individual an irreplaceable
asset of the organization, which may become problematic if
the individual leaves the organization.

The above-mentioned problems, such as complexity, non-
structural characteristics and slight differences between cases,
have also been discussed in the software provisioning do-
main, and have been resolved using model-based provisioning
based on standardized and well-organized semantics. Given the
success of applying model-based techniques for provisioning
software assets, we surmise that model-based hardware provi-
sioning may be equally effective. Investigating the validity of
this hypothesis is thus the focus of this paper.

III. MODEL-BASED HARDWARE PROVISIONING

This section delves into the details of the model-based
hardware provisioning approach we have developed.

A. Solution Overview

The concept of model-based hardware provisioning is to
generate a set of tasks to deploy a hardware system from
the model that describes the operational procedure. The model
expresses the desired state model that is editable by integrators,
and the generated tasks are in natural language so as to be

readable by workers. We define well-organized semantics to
describe a hardware system that allow composing components.
Each component includes its internal structure comprising
parts, their states and tasks to deploy the component in the
system. The structure enables the component to be combined
with other components, the states allow an integrator to define
its desired state, and tasks generate the overall operational
procedure in natural language according to the assembled
system definition.

Defining the system in the form of a desired state model
is an important notion in model-based provisioning in order
to generate proper workflows regardless of the states of the
deployment configuration. For example, let us assume that a
file named “sample.txt” should be placed in a path. When
this requirement is expressed as a workflow, it might be “cp
template.txt sample.txt” (where “cp” is the copy
command). This workflow can fail when it is executed more
than once and the file is placed in advance. Rather, every
workflow or task should result in the same end outcome regard-
less of the state of the system. This characteristic is called as
“input insensitive” [5] or “idempotent” [1]. By expressing the
provisioning requirement as a desired state model, an integrator
can delegate the responsibility of the provisioning process to
be “input insensitive” to the models.

Our scheme to realize this concept consists of three main
functions:

• Modeling function: is to create models of system
components which will be used to define systems
by an integrator. The modeler is a role to develop
the model using this function. The models created
by modelers are stored in a repository. An integra-
tor refers to the repository in order to look up the
necessary models.

• Designing function: enables an integrator to design a
system to be deployed. The integrator can customize
and assemble predefined models of system compo-
nents to define the system.

• Task generation function: generates tasks to deploy
a system defined by an integrator. Each generated task
has a short sentence about what should be done. The
task can have a detailed description as well. Both are
written in a natural language to be easily readable by
workers. The tasks are presented in the proper order
as part of the entire generated operational procedure.

In the rest of this section, we describe the detailed specifi-
cation of the model and how tasks are generated from a system
definition. We also show our current implementation of these
functions.

B. Component Model

The Component is the primary unit to compose a system.
There are two types of components: primitive and composite. A
Primitive component (or Primitive for short) is a fundamental
modeling unit which shows an actual system component oper-
ated by workers. A Composite component (or Composite for
short) is a model of a conceptual component which is used to
define a pattern of component compositions. Figures 1 and 2

Fig. 1: An example of primitive models.

Fig. 2: An example of a composite model.

illustrate an example of models of primitive and composite
components, respectively. The details are provided below.

• Part and State: The Primitive in our modeling
paradigm comprises Parts shown as rectangles. For
example, the “rack” primitive will have parts, such
as its “legs” and its packaging “box”, as shown in
Figure 1. The State shows the details of the internal
conditions of the primitive in the context of that part.
For instance, a switch primitive may be either “in”
its packaging box or taken “out” of its package. In
general, a primitive can have any number of states
associated with its part. PossibleStates is a list of valid
states that the part can be in. Each part will have
an initial state and a final state, and is capable of
keeping track of its current state during the system
provisioning. When a primitive is installed, all of its
parts should be in their final state. StateShift is another
notion which shows a shift of a particular state from
the set of possibleStates to another. In Figure 1, the
lower half of each primitive shows its parts and their
states. The name of a part is shown in the left box,
and possibleStates are shown in the right box as ovals.
A white (i.e., unfilled) oval shows an initial state, a
black (i.e., filled) oval shows the final state, and a

stateShift is shown as a dashed lined arrow between
possibleStates.

• Wiring: Wiring shows a connection between two com-
ponents and a combining task between them. Wiring
has a wiringInterface which shows the type of the
wiring. For example, when the server component is
inserted into the rack component, this connection can
be modeled as a wiring which has a “RackSpace”
wiringInterface. Every component has any number
of wiringPorts which are connector ports of wirings.
A wiringPort has a wiringInterface as well. There
are two types of wiringPorts: consume and accept.
A wiring connects a consume port with an accept
port of a different component only when they share
the same wiringInterface. In Figures 1 and 2, the
shapes of chevron placed on the left and right of
components show wiringPorts. Consumes are always
placed on the right and accepts are on the left. In
these figures, “R”, “NW” and “PCI” in wiringPorts
mean “RackSpace”, “NetworkPort” and “PCIExpress”
wiringInterfaces, respectively. Note that wiring is de-
fined only in composites. In Figure 2, a dashed line
drawn from “nic” to “server” shows an example of
wiring.

• Task: A Task is the action to be performed when
transitioning from one state to another, i.e., during a
stateShift. A task comprises templates of descriptions
about what should be done by workers. Blanks in the
templates will be filled with information of related
primitives or wirings. Basically, tasks are defined in a
stateShift or a wiring so that every execution of a task
makes a change in the state of a part or the wiring.
For example, when “Open the top of the server” task
is done by a worker, the “top” part of the “server”
primitive will be changed from “closed” to “open”.
Alternately, when the “Insert the server into space1 of
the rack” task is performed, the “rackspace” wiring
will be marked as connected. Table I shows examples
of task template definitions. An element type such
as “Rack.Leg (free to fix)” shows a stateShift from
“free” to “fix” in “Leg” part of “rack” primitive in
this case. Double braces in the task template example
show blanks to fill actual information.

TABLE I: Examples of task template definitions.

Element Type Task Template Example

RackSpace wiring Insert {{consume.id}} into {{accept.id}}
PCIExpress wiring Insert {{consume.id}} into {{accept.id}}
NetworkPort wiring Connect {{consume.id}} with {{accept.id}}
Rack.Leg(free to fix) Fix the leg of {{id}} on the floor
Rack.Leg(fix to free) Release the leg of {{id}}
Rack.Box(in to out) Take {{id}} from its package
Server.Top(close to open) Open the top of {{id}}
Server.Top(open to close) Close the top of {{id}}

• Dependency: Dependency is a directional link which
suggests a proper order of task executions. A de-
pendency from an element “x” to another element
“y” means that a task related to “y” has to be done
before a task related to “x” is executed. In a primi-
tive, dependencies between wiringPorts and primitive

itself will be defined. Additionally, dependencies from
wiringPorts to possibleStates and from stateShifts to
possibleStates will also be defined. A dependency
on wiringPort requires its combining tasks, and a
dependency on primitive itself requires its installation
tasks which include all stateShifts to satisfy their final
states. When a wiringPort depends on a possibleState,
the dependency requires a stateShift to the possi-
bleState before the wiringPort is combined. When a
stateShift depends on a possibleState, the dependency
requires a stateShift to the possibleState before the
depending stateShift is invoked. For example, the
stateShifts “Server.top(open to closed)” depend on the
“box” part being in the “out” state because the top
of the server cannot open or close without unboxing
the server from its package. A dependency from a
“PCIExpress” wiringPort to “open” of the “top” part
is another example. In Figures 1 and 2, dependencies
are illustrated as solid lined arrows. A black circle
shows the primitive itself. When an arrow is depicted
from a wiringPort to the black circle, it means that
the wiring connecting to the wiringPort should be
connected after the primitive itself has been setup
into its final state. Naturally, such wiringPorts are
not allowed to have a dependency to other state of
the parts. One can also define dependencies between
wiringPorts in the composite; an example is illustrated
in Figure 2, however, dependencies should be defined
in a primitive as far as possible because they can be
reused with the primitive.

• Property: Each component has a property which is
a set of key-value pairs. It is used to feed some
configuration to a component. Property is omitted in
the figures to keep them simple.

Composite components define a pattern of component
compositions which are connected with wirings. A composite
will be used as a component again to define a system in the
same manner as primitives. All composites are extracted into
primitives when the tasks are generated from the system defini-
tion. To do this, the wiringPorts on a composite are associated
with its inner components. We call this definition of association
as promote, which is similar to how the SCA standard [7] uses
it. In Figure 2, “RackSpace” and “NetworkPort” are promoted
from “serverWithNIC” to “server” and another “NetworkPort”
of “serverWithNIC” is promoted to “nic”, for example.

C. Task Generation Algorithm

The task generation algorithm walks through the compo-
nent model and produces the operational procedure comprising
the tasks. This process eliminates the need for manual creation
of the operational procedures. The process is as follows:
First, all composites in a system definition are extracted into
primitives and wirings connecting the primitives. The wirings
connected with wiringPorts of a composite will be promoted to
a corresponding wiringPort of an inner component according to
the promote definition. Values in a property of a composite will
be propagated if they are referred from an inner component.
The dependencies defined in a composite are also delegated
into corresponding inner elements.

The extracted primitives and wirings are sorted by their
dependencies. The sorting is done using topological sort [8],
which is applied to vertices in a directed graph. We need such
a capability because in our case we have tasks that must be
captured in the sorted order that preserve dependencies. The
elements which have no dependency to others come first. Then
all dependencies to the selected elements will be addressed and
these dependencies are removed, and finally all those elements
whose dependencies were resolved come next. Later, we repeat
this operation until all elements are selected. Note that cycles
in the graph will cause the sorting to fail. The selected element,
namely primitive or wiring, generates tasks to be done at the
turn. Which element should come first when more than one
element can be selected is another problem. There should be
any strategy to select proper element in terms of efficiency in
practical operation. We discuss this problem in Section V.

Tasks are generated from the elements in the sorted order.
A primitive generates tasks to shift all of its states to the final
state. If necessary stateShift depends on other states, tasks to
satisfy the depended states are also extracted as prior tasks. For
example, if the “top” state of “server” primitive is required
to be “open” when it is “closed” and “box” state is “in”,
then stateShift “Server.box(in to out)” and “Server.top(closed
to open)” are extracted in this order, and tasks “Take server
from its package” and “open the top of server” are generated
at the end. Wiring generates tasks to connect primitives at
both end of the wiring. If the wiringPorts which the wiring is
connecting depend on other elements, the tasks to satisfy the
dependency are extracted as prior tasks. For example, when a
“PCIExpress” wiring is connected to a wiringPort of “server”
and the wiringPort depends on the “open” state of “top” part,
then a task to satisfy the state is extracted before the task to
combine the wiring.

D. Implementation

We implemented the designing and task generation func-
tions (See Section III-A for their definitions) in Java to
demonstrate our scheme. The designing function includes
Java classes to express the elements in our model. Figure 3
illustrates a simplified pseudo class diagram of our imple-
mentation. Each of the component: primitive or composite,
the part, the state, property and task has Java classes of their
type and instance. The primitive has PrimitiveType class and
PrimitiveInstance class, for example. The type and instance
classes of primitive and composite extend ComponentType and
ComponentInstance classes, respectively. The ComponentType
object expresses a model specification, such as “server” or
“serverWithNIC”. Each instance object has an id, a type
object and customized data as an instance of the type object.
CompositeType object can include definitions of inner com-
ponents as ComponentType objects with data of their default
instances. A list of possibleState is defined on a StateType
object. StateInstance object has a StateType object and keeps
its current state. Task templates are defined on TaskType
objects. TaskInstance renders them with filling data of its
related instance objects.

Each model definition is defined in Java as a Component-
Type object in the current implementation. The task generation
function generates ComponentInstance objects from Compo-
nentType objects, extracts them into PrimitiveInsance objects,

Fig. 3: A pseudo class diagram of our implementation.

and renders all tasks by calculating the shifting of the states.

IV. CASE STUDY

In this section we show a case study of generating opera-
tional procedures utilizing our scheme based on the example
of the private cloud platform. We show two cases. The model
for Case1 is illustrated in Figure 4.

Fig. 4: A model of a private cloud platform in case1.

The “PrivateCloud” composite in Case1 consists of seven
primitives: “rack”, “switch”, “server”, “gatewayServer” and
three “cables”. The definitions of these primitives, other than
“gatewayServer”, are illustrated in Figure 1 and Table I.
The “GatewayServer” is a primitive which has the same
definition as “server” primitive but has the second “Network-
Port” accept instead of “PCIExpress” accept. The “switch”,
“server” and “gatewayServer” are connected with “rack”
through “RackSpace” wiring. The “server” and “gateway-
Server” are connected to the “switch” by “cable” primitives
through “NetworkPort” wiring. The second “NetworkPort” of
“gatewayServer” is connected with a “cable” whose another
end is promoted to a “NetworkPort” consume of “Private-
Cloud”. It will be connected to a “NetworkPort” of an “external
resource” in the customer’s site.

The model for Case2 is almost the same as that of Case1
except it contains “serverWithNIC” composite, shown in Fig-
ure 2, instead of “gatewayServer”. We assume Case2 supports

a requirement of the customer to adopt a particular kind of
server for the gateway as well.

Tables II and III show the result for Case1 and Case2,
respectively. As seen, every task is generated properly from
the templates with filling id of its related component in-
stances. Their order is workable because it satisfies all the
dependencies defined in the containing components. In Case2,
“nic” is inserted into “server2” before the “server” is inserted
into “rack”. The task to open the top of “server2” (#12 in
Table III) is derived from the dependency which is defined
from “PCIExpress” consume to “open” of “top” state in the
“server” primitive. Moreover, the task to close the top (#14
in Table III) is derived from the final state definition of the
“server” primitive.

TABLE II: The Result of Case1.

Task

1 Take “rack” from its package
2 Fix the leg of “rack” on the floor
3 Take “switch” from its package
4 Take “server1” from its package
5 Take “server2” from its package
6 Take “cable1” from its package
7 Take “cable2” from its package
8 Take “cable3” from its package
9 Insert “switch” into “rack”
10 Insert “server1” into “rack”
11 Insert “server2” into “rack”
12 Connect “cable1” with “switch”
13 Connect “cable1” with “server1”
14 Connect “cable2” with “server2”
15 Connect “cable2” with “switch”
16 Connect “cable3” with “resource”
17 Connect “cable3” with “server2”

TABLE III: The Result of Case2.

Task

1-5 (Same with 1-5 of case1)
6 Take “nic” from its package
7-11 (Same with 6-10 of case1)
12 Open the top of “server2”
13 Insert “nic” into “server2”
14 Close the top of “server2”
15-20 (Same with 11-16 of case1)
21 Connect “cable3” with “nic”

Once the model for Case1 is ready, the only effort the
integrator has to put in to change the operational procedures
from Case1 to Case2 is shifting a type of a component
from “gatewayServer” to “serverWithNIC”. Everything else
is reusable. Obviously, it is easier to plan the modification
of these tasks and describe the operational procedures (in
natural language) again by hand. The generated tasks including
all instructions are defined in its components. Every task is
generated only when it is needed in the particular circumstance
of the states; no conditional section is included. The workers
are not required to refer to the other documents or evaluate
the situation.

V. DISCUSSION

This section discusses current limitations in our work and
planned efforts to overcome these limitations.

As mentioned in Section III-C, we need to consider the
task order in addition to dependencies to generate an efficient
task order in a practical operation. Otherwise, tasks in two
somewhat unrelated task groups, for example “setting up server
with nic” and “setting up rack”, can come alternately. The
following criteria to select the next target will help to solve this
problem: 1) element which is depended from more number of
other elements, 2) element which is followed by longer steps
of dependencies and 3) element which is closer to previous
element selected in terms of relation with wiring connections.
We need experimental validation to obtain actual solutions in
terms of time taken for these tasks.

Currently we do not have a “progress tracking” capability.
We will be able to provide a simple progress management
function by letting an integrator and workers share synchro-
nized data of the task list, and letting workers mark tasks as
completed through a client terminal every time a task has been
completed. By adding information on the estimated time spent
on each task, both an integrator and workers will be able to
know the total estimated time to complete all tasks.

We present some additional ideas to improve the views of
our functions. For integrators, presenting a quotation of the
entire cost and estimated time to deploy the system will be
of significant importance to design a model that will generate
efficient workflows. From the system definition, all products
and tasks can be extracted. For example, we assume that for
a primitive, when the product is shipped from a vendor, that
primitive can have information about the product including its
price as well as the time to perform the task. Thus, the total
price and total time to deploy it can be extracted from the
system definition. For workers, a serving task tree and Gantt
chart will be of help to grasp entire tasks and get a better
understanding on the order of task executions. They will be
constructed from definitions of a hierarchy of components built
by composites and dependencies.

In Section IV, we presented case studies that all tasks
are generated assuming everything would be conducted as
expected. In practical cases, however, states of a system being
deployed in the task generation function can be different
from its actual states due to various factors such as incorrect
modeling or failure of an operation. When any situational
difference were to occur, the worker should be able to feedback
the actual states and the tasks should be recalculated. To do
this, the entire graph, composed of primitive and wiring as
nodes, and dependency as edge, should be kept with the status
of each element until all tasks are completed. Moreover, a
client interface for a worker to feedback actual states and
modified task generation algorithm to recalculate tasks based
on the modified states will be needed.

We considered only the simplest cases about assignment
of workers in this paper, which assumed all the tasks can be
conducted by single and that too any worker. However, in many
cases, more than one worker will have to cooperate to do the
tasks, and a task may need more than one workers or have
certain conditions to hold such as the worker knowing the
technique, their qualifications or permission on its workers’
assignment. We need to modify the task generation algorithm
by taking these possibilities and constraints into consideration
in order to utilize workers’ productivity maximally.

Showing a picture in task description for workers would
be good practice, however, preparing the picture for tasks in
wirings may be difficult because more than two components
should be shown in the picture and the size or shape of the
image of each component is unpredictable. We will need to
prepare another specification to standardize such images.

In this paper, we defined a primitive as a notion corre-
sponding to a product and its initial states are the same as
when it is shipped from a vendor. Here, there can be a request
to extract a primitive into finer granularity in order to change its
inner parts. For example, changing a “CPU” of a “server” may
be required in addition to adding equipment like “nic”. This
requirement includes two separate problems. The first problem
is that a product should be modeled as a composite whose inner
primitives are setup and combined preliminarily. To do this, a
wiring should be able to have “combined” state as not only
its final state but also as its initial state. The second problem
is that it needs to extend our specification in order for models
to express their transformation from existing components to
others. The task generation function also needs to be improved
to calculate tasks to take old components away and combine
new products. Such a function will be needed to manage a
life cycle of a system. Prior work about this topic exists [9]
in software provisioning domain.

We also need to improve our component model in terms of
convenience to define a system model. The multiplicity support
of component and wiringPort, e.g. “RackSpace” wiringPort
of “rack” in this paper will be needed to efficiently define a
large scale system. The inheritance and interface support for a
component will also be helpful for abstraction of a component
and improving reusability of the composite. We will also need
more number of and also more sophisticated models to ensure
that our modeling capability is sufficient to capture a range of
provisioning requirements.

VI. RELATED RESEARCH

Our component model specification is influenced by ex-
isting specifications. We borrowed many notions such as
component, composite, property, wiring, wiringInterface and
promotion from SCA (Service Component Architecture) [7],
[10]. Our two types of wiringPorts, accept and consume, are
also inspired by the notions of service and reference in SCA.
However, they have distinct semantics; for example the latter
implies a kind of dependency from a reference to service while
in our case it means simply a physical form of connectors. In
our model, something can be needed to be wired with an accept
of a primitive in order for the primitive to work correctly, while
service in SCA never requires such a connection.

Our work is also greatly influenced by many existing
products [2], [1], [11], [3], specifications [4], [12] and research
efforts [5], [9] related to model-based software provisioning.
The distinction between these works and ours is that these
works are primarily in the design of task definition. They write
a logic to generate small workflow to deploy each component
as program code. The logic need not be understandable to
the human workers. In contrast, human workers are involved
in our case. The workers need to get the overall view of
the systems and the tasks to perform. Therefore, we defined
tasks on stateShift and wiringInterface. In our scheme, the

situational judgment to pick up necessary tasks is done by the
task generation function because it involves tedious work. But
we believe the parts, their states and judgment logic should
not be hidden from workers but rather opened up for better
understanding of the tasks. So, we explicitly define the states
of primitives and simply standardized the logic to pick up tasks
with stateShift concept. To explain the reason why the tasks
on wiringInterface are needed to combine two components,
we explain why it is not needed in software provisioning. We
think so because file system takes the same kind of role and
the way to combine things in deployment phase is already
standardized. For example when a “WAR file” is deployed to
an “application server”, we just put it on the file system. In
most cases, the only thing needed to know is a path to save
this file to.

Another field which is related to this research is
Human-Task, which appears in some specifications such as
BPMN [13], BPEL4People [14] and WS-HumanTask [15], and
many research works [16], [17]. The point of difference of
our research from these works is what the task is on. The
task which is generated from a workflow engine in their work
requires replying something to the workflow engine, such as
clicking an approval button or inputing personal information.
They never affect physical objects of the world. In our work,
the task affects something out of the task generation function.

VII. CONCLUSIONS

In this paper an approach to model-based hardware provi-
sioning was presented. To realize the concept, a specification
of models and task generation function are shown. Through
a simple case study based on provisioning of a private cloud
platform, its feasibility and capability to generate a quality
operational procedure with an intuitive and simple modeling
work are demonstrated. We discuss additional topics to en-
hance the utility of this scheme including our planned future
work to address some of the limitations, such as the need for
advanced functionalities and the need to validate our scheme
with more case studies and through practical experiments.

REFERENCES

[1] “Chef,” 2013, http://www.opscode.com/chef/.

[2] “Puppet,” 2013, http://puppetlabs.com/.

[3] I. Redbooks, Virtualization With IBM Workload Deployer: Designing
and Deploying Virtual Systems. Vervante, 2011.

[4] T. Binz, G. Breiter, F. Leyman, and T. Spatzier, “Portable cloud services
using tosca,” Internet Computing, IEEE, vol. 16, no. 3, pp. 80–85, 2012.

[5] T. Eilam, M. Elder, A. Konstantinou, and E. Snible, “Pattern-based
composite application deployment,” in Integrated Network Management
(IM), 2011 IFIP/IEEE International Symposium on, 2011, pp. 217–224.

[6] E. W. D. Rozier, P. Zhou, and D. Divine, “Building intelligence for
software defined data centers: modeling usage patterns,” in Proceedings
of the 6th International Systems and Storage Conference, ser. SYSTOR
’13. New York, NY, USA: ACM, 2013, pp. 20:1–20:10. [Online].
Available: http://doi.acm.org/10.1145/2485732.2485752

[7] “Service component architecture (sca), sca assembly model v1.00
specifications,” 2007.

[8] A. B. Kahn, “Topological sorting of large networks,” Commun.
ACM, vol. 5, no. 11, pp. 558–562, Nov. 1962. [Online]. Available:
http://doi.acm.org/10.1145/368996.369025

[9] U. Breitenbücher, T. Binz, O. Kopp, and F. Leymann, “Pattern-based
Runtime Management of Composite Cloud Applications,” in Proceed-
ings of the 3rd International Conference on Cloud Computing and
Service Science, CLOSER 2013. SciTePress Digital Library, May 2013,
Conference Paper.

[10] J. Marino and M. Rowley, Understanding SCA (Service Component
Architecture), 1st ed. Addison-Wesley Professional, 2009.

[11] P. Goldsack, J. Guijarro, S. Loughran, A. Coles, A. Farrell, A. Lain,
P. Murray, and P. Toft, “The smartfrog configuration management
framework,” SIGOPS Oper. Syst. Rev., vol. 43, no. 1, pp. 16–25, Jan.
2009. [Online]. Available: http://doi.acm.org/10.1145/1496909.1496915

[12] P. Derek and S. Thomas, “Topology and orchestration specification for
cloud applications version 1.0,” 2013.

[13] “Business process model and notation (bpmn) version 2.0,” 2011.
[14] C. Luc, K. Dieter, M. Vinkesh, M. Ralf, R. Ravi, R. Michael, and

T. Ivana, “Ws-bpel extension for people (bpel4people) specification
version 1.1,” 2010.

[15] ——, “Web services - human task (ws-humantask) version 1.1,” 2010.
[16] A. Sasa, M. Juric, and M. Krisper, “Service-oriented framework for

human task support and automation,” Industrial Informatics, IEEE
Transactions on, vol. 4, no. 4, pp. 292–302, 2008.

[17] S. Link, P. Hoyer, T. Schuster, and S. Abeck, “Model-driven develop-
ment of human tasks for workflows,” in Software Engineering Advances,
2008. ICSEA ’08. The Third International Conference on, 2008, pp.
329–335.

