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Abstract—Existing massive deployments of IoT devices in
support of smart computing applications across a range of
domains must leverage critical features of 5G, such as network
slicing, to receive differentiated and reliable services. However,
the voluminous, dynamic, and heterogeneous nature of IoT traffic
imposes complexities on the problems of network flow classifica-
tion, network traffic analysis, and accurate quantification of the
network requirements, thereby making the provisioning of 5G
network slices across the application mix a challenging problem.
To address these needs, we propose a novel network traffic
classification approach that consists of a pipeline that combines
Principal Component Analysis (PCA), with KMeans clustering
and Hellinger distance. PCA is applied as the first step to
efficiently reduce the dimensionality of features while preserving
as much of the original information as possible. This significantly
reduces the runtime of KMeans, which is applied as the second
step. KMeans, being an unsupervised approach, eliminates the
need to label data which can be cumbersome, error-prone, and
time-consuming. In the third step, a Hellinger distance-based
recursive KMeans algorithm is applied to merge similar clusters
toward identifying the optimal number of clusters. This makes
the final clustering results compact and intuitively interpretable
within the context of the problem, while addressing the limi-
tations of traditional KMeans algorithm, such as sensitivity to
initialization and the requirement of manual specification of
the number of clusters. Evaluation of our approach on a real-
world IoT dataset demonstrates that the pipeline can compactly
represent the dataset as three clusters. The service properties
of these clusters can be easily inferred and directly mapped to
different types of slices in the 5G network.

Index Terms—Network traffic classification, Unsupervised Ma-
chine Learning, Clustering, 5G, Dynamic network slicing, Traffic
analysis, Machine Learning.

I. INTRODUCTION

Our lives are increasingly dependent on various Internet of
Things (IoT) devices, such as home voice controllers, doorbell
cameras, smart light switches, etc. According to the State of
IoT report [1], the number of global IoT connections grew
by 8% from 2021 to 12.2 billion active endpoints by the end
of May 2022. Moreover, the introduction of the 5G network
enables the mobility, reliability, and scalability of IoT devices.
Compared to 4G and wireless LoRaWAN, the 5G network

is an ideal solution for a wide range of IoT applications,
offering a balance between high-speed connectivity and cost-
effectiveness, while promoting faster mobility of the connected
devices and improving the bandwidth of the wireless network
through the introduction of powerful base stations and the
application of mmWave and Multiple-Input Multiple-Output
(MIMO) technologies. The 5G network slicing technology,
which enables virtual network services on top of shared
physical infrastructures, helps network providers to increase
flexibility by allowing customized network service. It improves
resource utilization by sharing the physical infrastructure, as
well as Quality of Service (QoS) by allowing the network
providers to prioritize various traffic flows and allocate re-
sources more effectively. Overall, enabling 5G in IoT offers a
number of benefits for both the network service providers and
IoT applications.

The heterogeneous network traffic from the 5G-enabled
IoT devices, however, creates a number of challenges for the
network providers in traffic classification and analysis, which
must be addressed to improve the network performance and
resource management, and enhance network planning, design,
and security. A number of challenges are associated with
classifying and analyzing heterogeneous network traffic in IoT,
which include:

Device characteristics and network requirements: A
number of end devices play different roles in IoT networks;
thus, they could be using different protocols at the multiple
layers of the network stack, and have different network re-
quirements.

Unavailability of labeled data: The huge volumes of data
and information gathered by IoT devices continuously is not
only a challenge to the storage costs but also makes manual
labeling of data infeasible.

Dynamic and mobility-influenced traffic patterns: 5G-
enabled IoT environments often experience variations in net-
work traffic patterns due to the movement and mobility of
connected devices. This makes it challenging to accurately
classify different types of network flows under such dynamic
conditions.979-8-3503-9730-7/22/$31.00 ©2022 IEEE



Interpretability of classification results: A network flow
record contains a number of features, such as source IP, desti-
nation IP, port number, etc. Automatically identifying the most
influential features that can impact the classification results is
necessary. Furthermore, the interpretability of the classification
results is crucial as the network slices are constructed using
this traffic classification.

To address these challenges and satisfy the dynamic net-
work requirements of 5G-enabled IoT devices, we propose a
new network traffic classification approach for effective 5G
network slicing. Considering the lack of labeled data and the
complex nature of the IoT traffic data, we use unsupervised
machine learning to discover underlying patterns and rela-
tionships. We term our classification approach as recursive
KMeans, which while relying on the conventional KMeans
algorithm, addresses the limitations of traditional KMeans
clustering, such as assuming spherical clusters, sensitivity to
initialization, and requiring manual specification of the number
of clusters. In summary, we define our research problem as
finding solutions to cluster heterogeneous IoT traffic without
labels in a simple and interpretable manner to target 5G
network slicing. To that end, this paper makes the following
contributions:

• Design and implement an unsupervised and recursive
clustering approach that applies to standard network
traffic data sets.

• Analyze and explain the results of clustering towards 5G
network slicing in simple and understandable terms.

• Visualize high-dimensional clusters in a clear and pre-
sentable manner.

The rest of this paper is organized as follows: Section II
briefly summarizes related work; Section III presents our
SDN-based 5G & IoT network architecture; Section IV in-
troduces our approach; Section V presents and analyzes the
results; and finally, Section VI provides concluding remarks
and discusses potential future work.

II. RELATED WORK

This section provides a sampling of related work on IoT
network traffic classification and compares it with ours. We
discuss both traditional classification approaches as well as
behavior-based classification methods.

Traditional network traffic classification aims at categorizing
network traffic into different classes based on the network flow
characteristics such as source/destination IP, source/destination
port and payload, etc. A number of port-based and payload-
based classification techniques are applied in traditional net-
work traffic classification. However, traditional techniques
have several limitations as discussed below.

Port-based Classification: A number of recent applications
use dynamic or random port policy, such as peer-to-peer (P2P)
applications. A previous study [2] indicates that port-based
analysis is not able to identify 30%-70% of Internet traffic.

Payload-based Classification: Here, the classifier uses the
packet content’s syntax to classify the network traffic. This
technique is not useful, however, for some encrypted data.

Therefore, recent studies have been focusing on behavior-
based network traffic classification, which aims at identifying
and analyzing the pattern of traffic by monitoring all the
network traffic that is received by endpoints [3]. Due to the
huge size of the datasets, the large variety of traffic patterns
and the lack of labels, machine learning methods, especially
unsupervised classification methods, such as KMeans, are
widely used in a variety of scenarios.

A number of traffic clustering methods have been proposed,
but the representative and scale of the dataset used in previous
research may limit their generalizability. For example, Singh et
al. [4] used the KMeans clustering algorithm to create clusters
of sub-slices for similar application services while Sani et
al. [5] divided the traffic into two clusters to reduce traffic
and improve the QoS of the 5G network. However, due to the
lack of description of the dataset used in their experiments,
the generalizability of their approach cannot be determined.
Aouedi et al. [6] used the KMeans algorithm to better un-
derstand and distinguish behaviors of traffic. Although they
showed a good correlation among the network flows in the
same resulting cluster, the dataset they used consists of only
6 days of data collected from a university in the morning and
afternoon period, which is not representative of the general
traffic pattern in an IoT network.

Another common limitation of previous studies is the
method used to select features. Feature selection will directly
influence the performance of the traffic clustering model.
Although general IoT network traffic usually consists of nu-
merous pieces of information that can be extracted as features,
the clustering process will be difficult and less accurate if
too much irrelevant information is included. Therefore, input
features must accurately represent the traffic behaviors. Le et
al. demonstrated that the KMeans clustering algorithm helps to
implement the self-organizing network (SON) architecture [7],
[8]. They manually selected the basis of average (in MB) and
percentage values of the amount of different traffic in different
time slots as their features. They showed that users had a
better experience playing videos after applying the clustering
algorithm to the network slicing deployment.

However, we surmise that the performance of the approach
may be further improved by taking into account other valuable
and useful information in the traffic, such as the protocol type
and the flow duration. Moreover, such manually-engineered
features cannot be extracted directly via standard network
analyzers like Tcpdump or Wireshark and thus need extra
effort to be prepared. Singh et al. [4] used the Support
Vector Machine (SVM) for feature selection before running
the KMeans. However, SVM is a supervised algorithm, which
means that the quality of the model heavily relies on the
number and quality of labels. Our work does not assume
labeled datasets.

The predefined number of clusters for the KMeans algo-
rithm is also a key factor that affects the performance and
accuracy of clustering results. To achieve good clustering re-
sults, previous works either manually choose a specific number
or use the cluster number corresponding to the elbow point



of the cost plot. The number of clusters usually corresponds
to the number of slices used for the applications in the 5G
network. Therefore, the cluster number used in prior work may
far exceed the upper bound of the slice number in real life.
Further, due to a lack of a metric to identify the best setting for
the number of clusters, a decision needs to be made regarding
the trade-off between network performance with more slices
and efficiency with fewer slices assuming perfect clustering.

Overall, the limitations of previous Kmeans-based clustering
algorithms include a) the representative nature and scale of
the dataset, which limits the generalizability of the findings;
b) the features of the network flow are limited, and the feature
selection relies either on manual engineering or manual labels;
c) requires the number of clusters to be specified ahead of
time; d) a lack of systemic analysis of classification results in
applying them to 5G network slicing. Therefore, to address
the above limitations all at once, we propose a recursive
KMeans algorithm, which 1) is applicable to the network
flows generated by standard network analyzing tools; 2) is
able to extract useful features automatically; and 3) decides the
number of clusters appropriately without human intervention.

III. SDN-BASED 5G & IOT NETWORK ARCHITECTURE

Our work assumes a flexible SDN-based 5G and IoT net-
work architecture that is compatible with multiple slice types
and customized slice configurations, comprising five main
components: User Equipment(UE), Radio Access Network
(RAN), Multi-access Edge Computing (MEC), Core Network
(CN), and SDN Controller as shown in Figure 1. This archi-
tecture is capable of efficiently allocating network resources
to customized and prioritized network slices by leveraging the
results from clustering traffic.

Fig. 1. SDN Based 5G&IoT System Architecture

User Equipment (UE): In a 5G network, the devices
or equipment used by end users are called UEs. UEs can
be smartphones, tablets, laptops, smart home devices, etc.
Each UE can access the Internet first via the radio access
network (RAN) and then via the network services provided
by MEC, CN, and SDN Controllers. Each UE is identified by
a unique identifier called the International Mobile Subscriber
Identity (IMSI), which is authenticated by a mobile network
operator and stored in the UE’s Subscriber Identity Module
(SIM) card. Moreover, a UE can generate multiple network

flows simultaneously and each of them can be independently
classified, managed, and scheduled.

Radio Access Network (RAN): The RAN in 5G is respon-
sible for handling wireless communication between UE and
CN. A RAN consists of a) base stations, such as gNodeB,
which transmit and receive signals to and from the UE, b)
radio network controllers (RNC), which are responsible for
managing the base stations, and c) transport networks, which
move the network data between base stations and CN.

Multi-access Edge Computing (MEC): The MEC server
is widely adopted and integrated into 5G network for the
deployment of computing and storage resources at the edge,
which is closer to the UE. Therefore, the MEC server is able
to support low-latency and high-bandwidth services. Recently,
MEC technology has been integrated into many industrial
applications such as manufacturing, healthcare, transportation,
and smart cities.

Core Network (CN): The architecture in Figure 1 is a
service-based (SB) standalone 5G network, which applies the
new 5G RAN and CN technology instead of the legacy 4G
network to manage and control network communications. The
service-based architecture enables scalable, flexible and cost-
effective deployment of network functions as micro-services.
It also improves the programmability of the CN, thereby
enabling automation and orchestration of network functions
and helping the network to be more agile and provide real-time
services. Several key functions in service-based 5G network
are: a) Access and Mobility Function (AMF), which is respon-
sible for managing the mobility of UEs within the network;
b) Session Management Function (SMF), which is responsible
for creating, managing, and terminating sessions between
the UE and the network; c) User Plane Function (UPF),
which is the data plane function responsible for forwarding
and processing the network traffic between the UE and the
network; d) Network Slice Selection Function (NSSF), which
is responsible for selecting, provisioning, and managing the
appropriate number of network slices for the UE based on
their network requirements and other QoS needs.

Software-defined Networking (SDN) Controller: Com-
pared to the traditional network, SDN separates the control
plane, which is responsible for managing and controlling the
network flows, from the data plane, which is responsible for
forwarding and processing the network flows. This separation
improves the flexibility and enables programmability of the
network. In 5G networks, the SDN controller provides a
centralized view of control and management for the different
network functions and components. Specifically, the SDN con-
troller can monitor the network traffic in real-time. It can also
collect data from the 5G network and utilize machine learning
techniques to make intelligent decisions for network traffic
classification, prediction, and management. Additionally, the
SDN controller can also adapt to varying network conditions,
requirements, and user demands, making real-time decisions to
improve network performance and deliver fine-grained Quality
of Service (QoS). Our previous work [9], [10] deployed the
SDN controller in both wired and 5G networks to improve



network performance by minimizing the queuing latency and
service time.

The network slicing technology enables a single 5G net-
work to be divided into multiple virtual network slices. Each
network slice can have its own virtualized infrastructure (such
as computing power and storage), network functions (such as
SMF, UPF as shown in Figure 1), and security mechanisms
(such as firewalls and intrusion detection). A UE can be
associated with one or more network slices at the same time.
Moreover, we can also deploy management and orchestration
tools among the network slices for traffic monitoring, trou-
bleshooting, and scaling the slice. Overall, network slicing in
a 5G network provides flexibility, efficient resource allocation,
improved network scalability, orchestration, QoS, increased
security, and reduced costs.

Network slicing is a technique used in 5G networks to
allocate resources to different services based on their specific
requirements. However, determining the optimal number of
network slices is a challenge. Having too many slices might
lead to underutilization, while having too few could cause
overcrowding and degrade the QoS. Therefore, it is crucial to
find a balance that allows for efficient allocation of resources
and maintains the desired QoS for each application. In this
work, we build a novel framework for network data classifica-
tion to determine the right number and type of network slices.
In this way, our classification approach can contribute to effi-
cient resource allocation and improved network performance.

The classification of network traffic plays a crucial role
in effectively mapping different types of services to network
slices based on their unique QoS requirements. The 3rd
Generation Partnership Project (3GPP) has defined several
types of services for 5G and IoT network slicing:

Massive Machine Type Communications (mMTC): In-
troduced in 3GPP Release 13 [11], mMTC is designed to
support a large number of low-power, low-cost, and low-data-
rate devices, such as industrial sensors and smart building de-
vices. The main QoS requirements for mMTC are maximizing
coverage and device density, with less stringent demands than
other service types.

Ultra-Reliable and Low-Latency Communications(
URLLC): Introduced in 3GPP Release 14 [12], URLLC
provides extremely low-latency and high-reliability commu-
nications for devices with high data rate requirements, such
as industrial robots, drones, autonomous vehicles, and virtual
and augmented reality headsets. URLLC has more stringent
QoS requirements than mMTC, focusing on high-reliability
and low-latency network services.

Enhanced Mobile Broadband (eMBB): Introduced in
3GPP Release 15 [13], eMBB supports high-bandwidth, high-
performance devices with data rates of up to several Gbps,
such as smartphones, tablets, and cameras. The QoS require-
ments for eMBB include high bandwidth and throughput,
among other metrics.

By accurately classifying network traffic, it becomes possi-
ble to map each type of service to an appropriate network slice,
ensuring that the QoS requirements of each service are met.

Classification results are also valuable for network function
configuration, network slice management, orchestration, and
troubleshooting. For effective decision-making and resource
allocation, classification results must be easily interpretable
and rationalized, allowing network administrators to allocate
resources efficiently based on the specific requirements and
priorities of different traffic classes.

IV. NETWORK TRAFFIC CLASSIFICATION APPROACH

This section describes our network traffic classification
approach to determine the most appropriate number of 5G
network slices for IoT applications. We chose the unsuper-
vised machine learning approach as the backbone of our
classification framework for the following reasons. From the
perspective of the data set, unsupervised methods do not
require labeled data for training, which makes them more
applicable for network traffic classification where data volume
is large, and the labeling process is intensive and time-
consuming. Thus, unsupervised learning helps to save the cost
of manual labeling. Because of its ability to discover hidden
patterns, unsupervised learning can also adapt to dynamic
changes in traffic patterns. This is particularly useful in the
5G&IoT network, where it becomes possible to add new
UEs or applications without retraining the model. Finally,
unsupervised learning shows better performance in unbalanced
data sets where the number of examples for each class is not
equal. This property is relevant in a heterogeneous 5G&IoT
network which is characterized by varying data rates, diverse
QoS requirements, heterogeneous traffic patterns, and uneven
distribution of devices. Additional benefits from the above
characteristics can be leveraged even from a system perspec-
tive. Unsupervised learning can accommodate a large volume
of data, which makes it easy and efficient to deploy while
the IoT system is scaling up/down. Finally, it can be applied
in a real-time manner, which satisfies the IoT communication
requirements.

We propose a recursive KMeans-based classification ap-
proach, as shown in Figure 2. This classification approach can
also be deployed as a network function placed in the SDN
controller as presented in Figure 1. The steps in the pipeline
are as follows:

Fig. 2. Pipleine of the Classification Approach

In step 1, we prepare the data set, which can be generated by
a standard network analyzer, CICFlowMeter. The data set [14]
we used is generated by Télécom SudParis and composed of
fifteen IoT devices, a Raspberry pi 3, an access point, and a
server. A set of interactions with these devices were performed
to allow the generation of real traffic.



In step 2, we pre-process the data set by converting the
timestamp and IP features, such as Flow ID, Source IP, and
Destination IP, to numerical values. This conversion stream-
lines the data representation and facilitates the clustering pro-
cess. However, it is crucial to recognize that using numerical
values may create a perception of ordering or distance between
IP addresses that might not accurately reflect their actual
relationships. To counteract the potential consequences of
this representation, we meticulously analyzed the dataset and
performed experiments to confirm that the selected represen-
tation does not substantially affect the clustering algorithm’s
performance.

In step 3, we use the Hopkins statistic [15] to assess the
clustering tendency of the data. The Hopkins statistic is used
in cluster analysis to determine the suitability of a data set
for clustering. The value of Hopkins statistics ranges from 0
to 1. If the value is less than 0.5, then it is unlikely that the
data set has statistically significant clusters. If the value is
close to 1, we can conclude that the data set is significantly
clusterable [16] The Hopkins statistic is especially useful when
working with large data sets, as it can quickly determine the
clustering tendency.

After computing the value of the Hopkins statistic, in step
4, we standardize the data and remove the features with zero
variance, such as Bwd PSH Flags1 and Fwd URG Flags2.
These features need to be removed in order to prepare for the
Principal Component Analysis (PCA).

PCA is a dimensionality reduction technique that reduces
the number of features in the data set while maintaining as
much of the original information as possible by finding the
directions of maximum variance in the data and projecting the
data onto a new lower-dimensional space [17]. In this process,
if the variance of a feature is zero, its covariance with other
features will be zero as well, which will affect the accuracy of
PCA. In step 5, we apply PCA to reduce features in the data.
We used the cumulative explained variance ratio to determine
the number of principal components to retain, so that 90%
variance in the data can be explained.

After reducing the data set to its principal components, we
normalize each feature to [0, 1] because the KMeans algorithm
is sensitive to the scale of the features because of its distance-
based nature. If the scale of the features is varying, the distance
between observations and cluster centroids will not accurately
reflect the similarity between the data points. Then in step 6,
we a) run the KMeans algorithm on the normalized data for a
range of values of k, which indicates the number of clusters, b)
calculate the distortion score, which is a clustering index that
reflects the sum of the squared distances between each data
point in a cluster and the cluster centroid, and c) identify the
elbow point on a distortion score curve by applying a kneed
algorithm [18]. The elbow point indicates the optimal number

1Bwd PSH Flags indicate whether the Push flag is set in the TCP header
of the packets in the backward direction of the flow.

2Fwd URG Flags indicate whether the Urgent flag is set in the TCP header
of the packets in the forward direction of the flow.

of clusters in a dataset and determines the initial number of
clusters in our approach, denoted as bestk.

In step 7, we apply PCA again to the corresponding original
features in each cluster. By doing so, we can reveal how much
each feature dominates the clustering result. More specifically,
we let n principal components that can be interpreted as linear
combinations of m traffic features. We use a matrix C to store
the principal components explained by variance. An element
cij in the matrix C indicates the correlation between ith
principal component and jth feature. The sign of cij indicates
the direction of the correlation, and there are m ∗ n elements
in C. Therefore, the contribution of the jth feature in the ith
principal component can be represented by:

sij =
|cij |∑m
j=1|cij |

,∀i ∈ [1, n] (1)

Moreover, we assume the proportion of variance explained by
each principal component is stored in a matrix R. An element
ri in the R matrix represents the proportion of the ith principal
component. We use matrix P to store the contribution of
each feature across all principal components, and any element
pj ,∀j ∈ [1,m] can be calculated with:

pj = sijri,∀i ∈ [1, n],∀j ∈ [1,m] (2)

In step 8, we use Hellinger distance [19] to evaluate the
similarity between clusters. The distance between the two
cluster distributions P1 and P2 can be represented by:

H(P1, P2) =
1
√
2

√√√√ m∑
i=1

(
√
p1i −

√
p2i)2 (3)

After calculating the Hellinger distance between every pair of
clusters, we get a distance matrix D, and the element dij ,
∀i, j ∈ [1,best k] indicates the distance between ith cluster
and jth cluster.

Then, we apply KMeans again on matrix D to merge similar
clusters. The number of clusters is reduced using this merging
strategy. Then, we repeat step 7 to step 8 until the average
Hellinger distance of the matrix D meets the given threshold.

In steps 9 and 10, we visualize the clustering results and
analyze the traffic statistics within every cluster.

In summary, the novelty of our approach includes: 1) Ap-
plying PCA before running KMeans, which efficiently reduces
the dimension of the features, thereby significantly decreasing
the cost of KMeans algorithm; 2) Applying PCA after the first
run of KMeans to calculate the contribution of original features
to the clustering results, thereby helping to merge similar
clusters and simplify the clustering results; and 3) Introducting
Hellinger distance to quantify the similarity between every pair
of clusters, thereby helping to identify the optimal number of
clusters automatically.

V. RESULTS AND DISCUSSION

We conducted our experiments on the publicly available
data set of real-world IoT traffic collected by Télécom Sud-
Paris [14]. The data set consists of 164 files with a total size
of 3.0G and contains more than 5 million instances collected



over the past 3 years up to the present time. In this section,
we present and analyze the results obtained at each step of
our approach, shown in Figure 2.

A. Dimensionality Reduction – PCA

Prior to applying the PCA, we pre-processed the data set and
assessed the clustering tendency by computing the Hopkins
statistic. The value of the Hopkins statistic is 0.9986, which
suggests that our data set has a high clustering tendency.
Figure 3 shows the results of the initial PCA. It reveals
that as the number of principal components increases, the
cumulative explained variance ratio also increases; however,
the marginal effect of the number of principal components
on the cumulative explained variance ratio diminishes with
the increase in the number of principal components increases.
Note that the cumulative explained variance ratio indicates
how much information retained in the principal components
is used in the analysis. The blue dashed line in Figure 3
labels the elbow point of the cumulative explained variance
ratio curve, which helps to select the appropriate number of
principal components; here, 19 such components are able to
explain 90.52% of the variance in the original data and adding
more does not significantly improve the cumulative explained
variance ratio. Thus, the dimensionality of the data set is
reduced by a fourth, from 87 to 19 features.

Fig. 3. Initial PCA – Cumulative Explained Variance Ratio

B. Initial Clustering – KMeans

Figure 4 illustrates the distortion score elbow for KMeans
clustering, with the number of clusters (k) plotted on the x-
axis, and the distortion score plotted on the left y-axis. The
distribution score shows a decreasing trend with increasing
number of clusters, but the incremental gain in the distribution
score gradually diminishes. The gray dashed line indicates the
elbow point, which is located at k = 25. At this point, although
increasing the number of clusters increases the distribution
score, the impact of any additional clusters is negligible. The
right y-axis indicates the KMeans fit time, which increases
proportionally with the number of clusters.

C. Recursive KMeans – Hellinger Distance

The KMeans clustering algorithm gave us 25 clusters as
the optimal number, each of which is described by 19 princi-
pal components. Then, we calculated the Hellinger distance
between every pair based on Eq.(3). Figure 5 shows the
Hellinger distance among 25 clusters in a heat map. The

Fig. 4. Initial KMeans Elbow Curve after PCA

distances range from 0 to 0.42, where the distance between a
cluster to itself is 0. Heuristically, we assume that clusters with
distances between 0 and 0.2 are highly similar. Thus, we can
reduce the number of clusters to improve their interpretability
by merging similar clusters. Therefore, applying the KMeans
algorithm here is necessary to determine which clusters should
be merged. In contrast to the previous KMeans application, the
data used to drive the KMeans algorithm at this step is a matrix
of Hellinger distances. Similar to Figure 4, we identified the
elbow point using the Kneed algorithm, which indicates that
the current optimal number of clusters is 7. Therefore, we
recursively merge the 25 clusters into 7, and then repeat the
calculation of the Hellinger distance and applying KMeans.
Subsequent iterations merge the 7 clusters into the 3, and we
re-calculate the Hellinger distance among them.

Fig. 5. Hellinger Distance – 25 Clusters

To evaluate the performance of our approach, we compare
it with the traditional KMeans algorithm on the same data
set, in terms of the number of clusters, variance, and standard
deviation (std) of Hellinger distance and the Davies-Bouldin
Index, as shown in I. The number of clusters is an important
factor to consider in clustering analysis. While a larger number
of clusters can provide a more detailed representation of the
data, it may also lead to overfitting and reduced interpretability.
In addition, reducing the number of clusters can simplify the
network slicing design and resource allocation, making it more
efficient to apply our clustering results to 5G network slicing.
Compared to KMeans, our approach efficiently reduced the
number of clusters from 25 to 3, taking into account the trade-
off between cluster granularity and interpretability, as well as



the efficiency of network slicing.
TABLE I

TRADE-OFF METRICS

Approaches Number of
Clusters

Variance of
Hellinger
Distance

Std of
Hellinger
Distance

Davies-
Bouldin
Index

KMeans 25 0.0063 0.0798 1.0765
Our Approach 3 0.0100 0.1004 2.7652

The variance and standard deviation of the Hellinger dis-
tance are measures of how well the clusters are separated
from each other. A lower variance and standard deviation
indicate that the clusters are more compact and well-separated.
In our evaluation, we observed that our approach achieved
a lower variance and standard deviation of the Hellinger
distance indicating better separation of the clusters compared
to KMeans.

The Davies-Bouldin Index [20] is another widely used
metric for evaluating clustering performance as it considers
both intra-cluster and inter-cluster distances. A lower Davies-
Bouldin Index indicates better clustering performance. How-
ever, it is worth noting that achieving a lower Davies-Bouldin
Index may come at the expense of reduced interpretability,
as it may result in overly complex or fine-grained clusters.
In our evaluation, we found that our approach achieved a
higher Davies-Bouldin Index compared to KMeans, indicating
a trade-off in clustering performance and interpretability. By
reducing the number of clusters from 25 to 3, our approach
improved the efficiency of network slicing design and resource
allocation while still achieving acceptable clustering perfor-
mance. However, depending on the specific application and
use case, a different trade-off between clustering performance
and interpretability may be preferred.

D. Visualization of Clusters

Figure 6 displays the two-dimensional PCA plot of the
first two principal components. Each data point represents a
network flow in the data set. The 2D plot reveals a rough
separation of different clusters. However, there is still some
overlap among clusters 1, 2, and 3 to some extent. Moving
on to the three-dimensional PCA in Figure 7, cluster 1 is well
separated from cluster 2, but there is still a small overlap be-
tween clusters 1, 2, and 3. Despite the overlap, the PCA results
are still acceptable as they provide a visual representation of
the data that can aid in understanding the relationships and
patterns between the network flows. The three-dimensional
PCA plot shows a better separation of clusters, but there
is still a small overlap between them. The four-dimensional
PCA, which includes the size of the data points as the fourth
dimension, did not result in a significant difference among
the three clusters. Overall, the PCA results provide valuable
insights into the clustering of the network flows despite the
presence of some overlap.

E. Interpretation of Clusters

Table II displays the network features for the final three
clusters produced by the iterative application of KMeans
algorithm on the Hellinger distance. Some of these features

TABLE II
NETWORK FEATURES STATISTIC

Cluster ID Number
of Flows

Average
Bandwidth
(Bytes/s)

Average
Duration

(s)

Burstiness
(pkt)

Cluster 1 270353.00 19258.55 71563.33 24.08
Cluster 2 3512893.00 17167.94 72204.80 23.27
Cluster 3 1328511.00 19959.27 72076.13 23.70

can be directly extracted from the data set, such as the number
of flows, while others have been calculated using existing
features, including average bandwidth, average duration, and
burstiness.

1) Cluster 1 - eMBB: Based on the information from
Table II, compared to cluster 2, cluster 1 has relatively fewer
flows, higher average bandwidth, smaller average duration,
and slightly higher burstiness. This indicates that cluster 1 is
suitable for a 5G network slice that prioritizes high-bandwidth
applications with moderate to low latency requirements, such
as eMBB (enhanced Mobile Broadband) as defined in Sec-
tion III. The higher average bandwidth suggests that cluster 1
may consist of flows that require high-speed data transmission.
The smaller total and average duration indicate that the flows
in cluster 1 may not require sustained connectivity for long
periods of time. The slightly higher burstiness suggests that
these flows may have occasional bursts of traffic, which could
benefit from the high bandwidth available in eMBB. In terms
of QoS, cluster 1 requires high throughput and low latency
to ensure that the high-bandwidth flows can be transmitted
quickly and with minimal delay. The burstiness of the flows
may also require low packet loss and low jitter to ensure that
bursts of traffic can be handled efficiently and effectively.
To support this cluster, a network slice requires sufficient
bandwidth to handle the high-bandwidth flows, as well as
low latency and low packet loss to meet the QoS require-
ments. Additionally, the network slice may require sufficient
computing resources to process the bursts of traffic efficiently
and sufficient storage to buffer the flows during bursts of
traffic. One possible example application that uses this type
of network service could be a video streaming platform that
requires high-bandwidth connections to provide high-quality
video playback to users. Another example could be a cloud
storage service that requires high-speed data transmission for
large file uploads and downloads.

2) Cluster 2 -URLLC: Compared to cluster 1, cluster 2
has relatively more flows, lower average bandwidth, longer
average duration, and lower burstiness. For cluster 2, a slice
such as URLLC may be suitable. URLLC aims to provide
ultra-reliable and low-latency communications for critical ap-
plications. An application example that may use this type of
network service is industrial automation, which requires real-
time and reliable communication for safety-critical operations.
The QoS requirements for URLLC include ultra-low latency,
high reliability, and high availability.

3) Cluster 3 - mMTC: Cluster 3 has the largest bandwidth.
This type of traffic is suitable for the massive machine-type
communication (mMTC) network slice, which provides high-
capacity communication services for a large number of low-
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power and low-rate devices. The QoS requirements for mMTC
include high throughput, low power consumption, and high
scalability. An example of an application that may use this
type of network service is smart cities, which involve a large
number of connected devices that transmit small amounts of
data.

VI. CONCLUSION AND FUTURE WORK

This paper proposed an unsupervised IoT network traffic
clustering approach, which automates determining the appro-
priate number of 5G network slices for IoT applications.
By applying Principal Component Analysis (PCA) and the
Hellinger distance-based recursive KMeans algorithm (rK-
Means), we can substantially alleviate the problem of high
dimensionality while maintaining the original information,
simplify the clustering results, and identify the optimal number
of clusters. The evaluation results show that the proposed
approach can efficiently reduce the high dimensionality of the
dataset while effectively visualizing the clustering result in
2D, 3D, and 4D plots. Additionally, the clustering results can
provision the network resources in terms of 5G network slices.

Our future work will involve additional research to optimize
the approach to handle large-scale IoT traffic datasets. Addi-
tionally, the work can be further tested with real-world traffic
data and compared with existing traffic clustering methods.
Finally, prototyping of the approach as a framework is needed
to ascertain its feasibility in integrating with the existing 5G
resource management control plane.
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