
An Analytical Approach to Performance Analysis of an

Asynchronous Web Server

U. Praphamontripong, S. Gokhale Aniruddha Gokhale Jeff Gray

Dept. of CSE Dept. of EECS Dept. of CIS

Univ. of Connecticut Vanderbilt Univ. U. of Alabama at Birmingham

Storrs, CT 06269 Nashville, TN 37235 Birmingham, AL 35294

ssg@engr.uconn.edu a.gokhale@vanderbilt.edu gray@cis.uab.edu

Abstract

Concurrency can be implemented in a Web server using synchronous and asynchronous mechanisms

provided by the underlying operating system. Compared to the synchronous mechanisms, asynchronous

mechanisms are attractive because they provide the benefit of concurrency while alleviating much of

the overhead and complexity of multi-threading. The Proactor pattern in middleware, which effectively

encapsulates the asynchronous mechanisms provided by an operating system, can be used to implement

a high performance Web server.

The performance expectations imposed on a Web server make itnecessary to analyze its performance

prior to deployment. While performance of a server can be measured after implementation, design-

time performance analysis, conducted early in the life cycle, can also enable informed configuration and

provisioning choices. A model-based approach can be used for such design-time performance analysis.

In this paper we present a queuing model of an asynchronous Web server implemented using the Proactor

pattern. We discuss the implementation of the queuing modelusing the Stochastic Reward Net (SRN)

modeling paradigm. A model decomposition strategy along with its SRN implementation to enable the

application of the model to practical Web servers is then described. We demonstrate the use of the model

to guide key provisioning and configuration decisions usingseveral examples.

1 Introduction and motivation

Within a relatively short duration since its advent, the World Wide Web (WWW) has become an important

source of information and services. Initially, users were attracted to the WWW primarily due to the con-

venience, flexibility, ease of use and low costs associated with the use of these services. However, as the



prevalence of WWW in business and critical domains grows, itis becoming evident that WWW services

must be offered with superior performance in order to retainexisting users and attract new ones [31].

A central component of any WWW service is a Web server. ModernWeb servers have to process millions

of client requests on a daily basis. In order to fulfill such high workload demands, it is inevitable that

modern Web servers be equipped with the capability to process multiple requests concurrently. Concurrency

may be implemented in a Web server using the synchronous or asynchronous capabilities provided by the

underlying operating system. Although multi-thread and multi-process Web server architectures [16] which

rely on the synchronous capabilities are commonly used, theasynchronous mechanisms may be attractive

because they provide the benefit of concurrency while alleviating much of the overhead and complexity of

multi-threading. The Proactor pattern in middleware [25],which effectively encapsulates the asynchronous

mechanisms supported by the operating system, can be used toimplement a high performance Web server.

Due to the high performance expectations associated with a WWW service, it is imperative that service

performance be analyzed prior to deployment. Although performance can be measured once the service is

implemented, it is often too late and expensive to take corrective action at this stage if it is discovered that

the target performance cannot be met. It is thus cost-effective and advantageous to conduct performance

analysis earlier in the life cycle at design time. Model-based analysis is an attractive approach to conduct

such design-time performance analysis.

In this paper we describe a model-based approach for the design-time performance analysis of a Web

server which implements concurrent processing capabilities using the asynchronous mechanisms encapsu-

lated in the Proactor pattern. We capture the characteristics of the Proactor pattern that are relevant from a

performance perspective into a queuing model. We then discuss how the queuing model can be implemented

using the Stochastic Reward Net (SRN) modeling paradigm. Wethen describe a model decomposition strat-

egy to enable the use of the model to estimate the performancemetrics in practical scenarios. The SRN

implementation of the model decomposition strategy is alsodiscussed. We illustrate how the model can be

used to guide configuration and provisioning decisions withseveral examples.

The balance of the paper is organized as follows: Section 2 provides an overview of the Proactor pat-

tern. A brief background on SRNs is presented in Section 3. Section 4 describes the performance analysis

methodology. Section 5 illustrates the potential of the methodology with examples. Section 6 summarizes

the related research. Section 7 offers concluding remarks and directions for future research.

2



2 Proactor pattern

In this section we provide an overview of the Proactor pattern. We also discuss the advantages of implement-

ing a Web server using the Proactor pattern.

2.1 Proactor description

The Proactor pattern is a software architectural pattern for event handling, which is used to describe how

to initiate, receive, demultiplex, dispatch and process events in network systems [25]. It has been primarily

developed to support many simultaneous user requests. Its main purpose is to improve the performance

of an event-driven application that receives and processesmultiple events asynchronously. Conceptually,

this pattern simplifies asynchronous operations by integrating the demultiplexing of completion events and

the dispatching of the corresponding event handlers. The general idea of the Proactor pattern is to wait

for an event to occur and then initiate the appropriate operation. Once the event starts execution, other

events may be initiated and processed. When the event finishes execution, the Proactor demultiplexes the

completion event and dispatches it to an appropriate event handler for subsequent processing of the results

of the operation.

To implement the Proactor pattern (considering the arrivals of events, each of which requires a single

operation to complete), when an event arrives, the application’s entity called an initiator starts an appropriate

asynchronous operation. The pattern then registers the event with an associated event handler and event

dispatcher with the Asynchronous Operation Processor (AOP). Then an initiator invokes the registered asyn-

chronous operation on the AOP. An asynchronous operation isexecuted without blocking its caller’s thread

of control. As a result, the caller can perform other operations. That is, the operation and the initiator can

run independently and the initiator can invoke a new asynchronous operation while others continue executing

concurrently. If an operation must wait for the occurrence of an event, such as a connection request gener-

ated by a remote application, its execution will be deferreduntil the event arrives. In this paper, however, we

consider only those cases where operations are processed independently and do not wait for the occurrence

of other events. Once the operation is complete, the AOP retrieves information corresponding to an event

handler and a dispatcher, and generates a completion event containing the results of the asynchronous opera-

tion. The Proactor then inserts the completion event along with the retrieved information into the completion

event queue. It then removes the completion event from the completion event queue and demultiplexes and

dispatches the event to the event handler associated with the asynchronous operation. Subsequently, the

event handler processes the results of the asynchronous operation and calls back to the application.

3



2.2 Proactor advantages

There are several advantages to implementing a Web server using the Proactor pattern [25]. These include:

• The Proactor pattern executes each asynchronous operationindependently; thus, each service that

a Web server provides can be processed separately. Accordingly, a particular demultiplexer and a

dispatcher used for each completion event associated with an asynchronous operation can be imple-

mented, managed, and treated independently. As a consequence, the implementation of the Web server

is decomposed and decoupled, and hence is more manageable.

• Structuring the demultiplexing and dispatching of completion events simplifies the development process

of a Web server, which normally requires asynchronous operations.

• Once an asynchronous operation is initiated, the thread that initiated the operation becomes available

to service additional requests.

• Since the asynchronous operations are processed concurrently and the completion events associated

with the operations are demultiplexed and dispatched asynchronously, the operations are executed

without waiting for the completion of the previous ones. Multiple client requests can be processed

simultaneously, which may improve server performance.

3 Overview of SRNs

This section provides an overview of the Stochastic Reward Net (SRN) modeling paradigm which is used

to implement the performance model of the Proactor pattern.The details of SRNs can be obtained from

elsewhere [20].

A SRN is a directed graph, which contains two types of nodes:placesand transitions. A directed arc

connecting a place (transition) to a transition (place) is called aninput (output) arc. Arcs are associated

with a positive integer called themultiplicity. Places can containtokensthat move from one place to another

through transitions. A transition is enabled when each of the places connected to it by its input arc have

at least the number of tokens equal to the multiplicity of those arcs. When an enabled transition fires, a

number of tokens equal to the input arc multiplicity is removed from each of the corresponding input places,

and a number of tokens equal to the output arc multiplicity isdeposited in each of the corresponding output

places. A SRN may also include aninhibitor arc, which can also have a multiplicity associated with it.

An inhibitor arc inhibits the transition it is connected to if the place it is connected to at its other end has

a number of tokens equal to at least its multiplicity. The state of a SRN withP places is represented by a

4



vector(m1,m2, · · · ,mp) called themarkingof the SRN, wheremi is the number of tokens in placei. A

SRN marking with at least one immediate transition enabled is called avanishing marking, and a marking

with no immediate transitions enabled is called atangible marking. A reward rate may be associated with

each tangible marking of a SRN. The tangible markings of a SRNand the rates of transition among them

are equivalent to the corresponding states and state transitions of an underlying continuous time Markov

chain (CTMC) [29]. Hence, a SRN can be mapped into an equivalent Markov reward model (MRM) [20],

automatically using software tools such as SPNP [7]. SRN models allow the concise specification of various

reward functions. To extend the power of specification, a SRNmay also include the specification ofenabling

(or guard) functionsfor each transition. The transition is enabled only if the enabling function returns 1.

SRNs substantially extend the modeling power of Generalized Stochastic Petri Nets (GSPNs) [24], which

are an extension of Petri nets [19]. SRNs represent a powerful modeling technique with concise specification

and form closer to a designer’s intuition. As a result, it is also easier to transfer the results obtained from

solving the models and interpret them in terms of the entities that exist in the system being modeled. SRNs

have been extensively used for performance, reliability and performability analysis of a variety of systems

including cluster systems, polling systems, and wireless networks [29].

4 Performance analysis methodology

In this section we discuss the performance analysis methodology for a Proactor-based asynchronous Web

server. We first discuss the characteristics of the Web server, followed by the desired performance metrics.

Subsequently, we describe the performance model of the Web server and the SRN implementation of the

model, followed by the model decomposition strategy and itsimplementation.

4.1 Web server characteristics

A Web server employs the request/reply paradigm, using the HTTP protocol to communicate between itself

and the clients (Web browsers). The clients’ requests are specified in a HTTP message, which may also

include the operation to be performed and its location. We consider a scenario where a Web server provides

m types of services. As soon as a request arrives at the Web server, a corresponding operation is assigned,

initiated, and executed. The completion of these operations is handled in a common queue regardless of

the request type. The completion events are demultiplexed by the Proactor and dispatched to an appropriate

completion event handler. The completion events are further processed by the completion event handlers.

As an instance, consider a Web server which supports a read request. When a client issues a read request

5



for a particular file, an HTTP handler can be used to initiate aread operation. After the read operation is

complete, an HTTP handler, which now acts as a completion event handler, further processes the request by

issuing a write operation to transfer the file to the client.

From the point of view of performance analysis, the Web server has the following characteristics:

• The server receivesm types of client requests.

• To service these requests, appropriate asynchronous operations are assigned and executed with a pool

of handlers for each request type registered with the Proactor. If an incoming request finds that all the

event handlers for that request type are busy, the request isrejected. To distinguish between handlers

that handle asynchronous operations and handlers that dealwith completion operations, the former are

simply referred to as event handlers, while the latter are called completion event handlers.

• The completion operations of all the types of requests, referred to as completion events, are queued in

a single completion event queue.

• The completion events are dequeued by the Proactor on a first-in, first-out basis.

• Each request type has a separate queue holding completion event operations which are then processed

by the completion event handler registered with the Proactor.

• Each request type has a single completion event handler to process the completion events.

4.2 Performance metrics

In this section we present the performance metrics for each request type. We also discuss the practical

significance of these metrics.

1. Expected throughput (Ti): It is the average processing rate of the Web server.

2. Expected loss probability (Li): It is the average probability that an incoming request will be rejected

because an event handler is unavailable.

3. Expected response time (Ri): It is the average time taken by the Web server to serve a clientrequest.

4. Expected busy handlers (Bi): It is the average number of busy event handlers. This can be used to

guide provisioning decisions regarding the sizes of the event handler pools for a given load.

5. Expected queue lengths (Q andQi): It is the average number of completion events in the common and

separate completion event queues.

6



Typically, a service provider has to satisfy dual and conflicting objectives; namely, offer superior service

performance while keeping the cost minimal. From a client’sperspective, service performance is superior, if

the requests are handled at the same rate as they are presented to the server and with negligible loss and ac-

ceptable response time. From a provider’s perspective, provisioning of adequate resources (resources consist

of event handlers in the the event handler pools and buffer space for queues) is a way to provide superior per-

formance in a cost-effective manner. However, achieving the correct level of provisioning must be balanced:

over-provisioning would guarantee good performance, but will be expensive; under-provisioning would have

low cost, but would sacrifice performance. Thus, metrics #1 through #3 are important for a user, whereas

metrics #4 and #5 are important for a provider.

4.3 Performance model

In this section we first describe the performance model of a Proactor-based asynchronous Web server, fol-

lowed by the implementation of the model using the SRN modeling paradigm.

4.3.1 Description of the model

We assume that the requests of each type arrive according to aPoisson distribution, withλi denoting the

arrival rate of typei requests. The size of the event handler pool of typei requests is denotedNi. The

service time of an asynchronous operation for each request type follows an exponential distribution, with the

parameter of typei request denotedµi. The capacity of the common completion queue is denotedC and the

capacity of the separate completion queue of typei requests is denotedCi. The demultiplexing time of the

Proactor is exponentially distributed with parameterκ. The service times of the completion event handlers

are exponentially distributed, with the service time of event handleri denotedγi.

Figure 1 shows the queuing model of a Proactor-based Web server. Each event handler pool which han-

dles asynchronous operations for a single request type is modeled as a multi-server processing station with

no queuing. These servers feed completion events to the common completion event queue and they block

if there is no space available in the common completion queue. The operation of demultiplexing the com-

pletion events is conducted by a server, which accepts the completion events from the common completion

queue and dispatches them to the appropriate separate completion queue depending on the request type that

generated the completion event. Because the scheduling used for demultiplexing is first-in, first-out, the

demultiplexing operation blocks if the completion queue towhich the event is to be dispatched is full. For

example, if the current completion event to be demultiplexed and dispatched is of typei and the typei com-

pletion queue hasCi completion events, the demultiplexing operation blocks. The completion event queue

7



Figure 1: Queuing model of an asynchronous Web server

of each event type feeds the corresponding completion handler which completes the processing. Thus, the

three steps involved in fulfilling a single client request are: (i) asynchronous operation, (ii) completion event

demultiplexing and (iii) dispatching and completion eventhandling.

4.3.2 Implementation of the model

Figure 2 shows the implementation of the queuing model in Figure 1 using the SRN modeling paradigm. We

discuss how the three steps involved in fulfilling a client request are represented by the SRN model.

I: Asynchronous operation:

The asynchronous operation is performed separately for each request type. For a request typei, placeSi

represents the pool of event handlers, transitionAi represents the arrival of requests and transitionSri rep-

resents the asynchronous operation of the requests by the event handler pool. The firing rate of transitionAi

is λi. TransitionSri has a marking-dependent firing rate and is equal tosi × µi, wheresi is the number of

tokens in placeSi. The maximum number of tokens in placeSi is equal to the pool sizeNi, which results

in the maximum firing rate of transitionSri to beNi × µi. The presence ofNi tokens in placeSi indicates

that all the event handlers in the pool are busy, which shouldcause an incoming request to be rejected. This

is achieved by the inhibitor arc from placeSi to transitionAi with multiplicity Ni.

II: Completion event demultiplexing and dispatching:

8



The event demultiplexing and disptaching step is handled commonly for all the request types. PlaceCQ

represents the common completion event queue into which a token is deposited by the firing of transitions

Sris. Inhibitor arcs from placeCQ to transitionsSris prevent the firing of transitionSris when there areC

tokens in the completion queue. The firing of transitionInt dequeues a completion event from the queue and

begins its demultiplexing, which is represented by a token in placeDQ. To ensure that exactly one comple-

tion event is demultiplexed at a time, the firing of transition Int is prevented by an inhibitor arc from place

DQ. Once a demultiplexing operation is complete, transitionSd fires and deposits a token in an intermediate

placeDP , which serves to dispatch the completion event to one of the separate completion event queues.

The dispatching is achieved by probabilistic firing of transitions Sdis. The transition probability assigned to

transitionSdi is such that its likelihood of firing is the same as the probability with which an event fed into

the completion event queue is of typei. This probability is given by the ratio of the firing rate of transition

Sri to the sum of the firing rates of transitionSris.

III: Completion event handling:

Similar to the first step, the third step is conducted separately for each type of event. For an event typei,

placeCQi represents the separate completion event queue andEi represents the completion event handler.

TransitionSci represents the handling of a completion event. The firing rate of transitionSci is γi. The firing

of the immediate transitionSpi initiates the service of the completion event by the completion event handler.

Thus,Spi can fire only when there is no token in placeEi, which indicates that the completion event handler

is available. This is achieved by the inhibitor arc from place Ei to transitionSpi. To represent the blocking

of the demultiplexing operation when the separate completion event queue of an event type which is at the

head of the common completion queue is full, inhibitor arcs are added from placesCQis to placeCQ with

multiplicities Cis. We note that this represents a pessimistic scenario, since it blocks the demultiplexing

operation when any one of the separate completion queues arefull, regardless of the event type at the head

of the common completion queue.

4.4 Model decomposition

The SRN implementation of the queuing model shown in Figure 2can be solved as is using the numerical

solvers in the Stochastic Petri Net Package (SPNP) [7] to estimate the performance metrics for a given

choice of parameters. However, for the pool and queue sizes used in practical Web servers (for example, in

the Apache Web server the queue size is set to3000 and the number of threads is set to25 by default [15]),

state space explosion would make solving the SRN model infeasible. To alleviate the state space explosion

9



Figure 2: SRN implentation of the queuing model

issue, we describe a model decomposition strategy in this section. We then discuss how the decomposition

strategy can be implemented in the SRN model.

4.4.1 Description of the strategy

The model decomposition strategy consists of hierarchically partitioning the overall model into sub-models.

The sub-models are then solved and their results are combined to obtain the performance estimates.

The queuing model is partitioned into three sub-models, namely, M1, M2 andM3 as shown in Figure 1.

Sub-modelM1 comprises of the event handler pools, sub-modelM2 captures the demultiplexing and dis-

patching of the completion events and sub-modelM3 represents the handling of the completion events. In

sub-modelM1, the different types of requests are handled independentlyof each other by their respective

pools of event handlers. As a result, sub-modelM1 can be partitioned further intom lower level sub-models,

denotedM1,1, . . . ,M1,m for each of them request types. Similarly, in sub-modelM3, the queuing and the

handling of the completion events is handled independentlyfor the different event types, due to which it

can also be partitioned further intom lower level sub-models, denotedM3,1, . . . ,M3,m. For typei requests,

the parameters of sub-modelM1,i are the size of the event handler pool and the service rate of each event

handler. These parameters will impact the loss probabilities and the number of busy event handlers. The

solution of sub-modelM1,i will provide the average rate at which typei requests are processed by the event

10



handler pool, denotedα1,i. α1,is serve as inputs to the second sub-modelM2. The total input rate to the

second sub-model, denotedα2 is given by:

α2 = α1,1 + α1,2 + · · · + α1,m (1)

The rate at which the Proactor demultiplexes a single completion event and the capacity of the common

completion queue are the parameters of second sub-modelM2. These parameters will impact the average

queue length of the completion queue, the total demultiplexing timeτ2 for a completion event (queuing time

plus the demultiplexing time) and the effective demultiplexing rate, denotedδ. The input rate to modelM3,i,

denotedη3,i, is given by:

η3,i =
α1,i

α1,1 + · · · + α1,m

δ (2)

Equation (2) scales the effective demultiplexing rateδ by the likelihood of a typei event being fed into

the common completion queue to determine the rate at which completion events are demultiplexed into the

separate completion queue of typei requests. The parameters of sub-modelM3,i include the service rate of

the completion event handler and the capacity of the separate completion event queue. These parameters will

influence the total time taken to process a completion event denotedτ3,i (queuing time plus the completion

event handling time) and the throughputs of the Web server.

Table 1 summarizes the inputs, parameters and outputs of thedifferent sub-models. In summary, esti-

mates of average loss probabilities and the average number of busy handlers are obtained from the solution

of the sub-modelsM1,1, . . . ,M1,m, the total demultiplexing time and the average queue lengthof the com-

pletion queue are provided by the solution of sub-modelM2 and the handling times of the completion events,

queue lengths of the separate completion queues and the throughputs are obtained from the solution of sub-

modelsM3,1, . . . ,M3,m.

The end-to-end response time of a typei request obtained by adding the time spent by the request in the

three processing steps is given by:

Ri = τ1,i + τ2 + τ3,i (3)

In Equation (3),τ1,i is the contribution of sub-modelM1,i to the response time and is given by1/µi.

τ2 is the contribution of sub-modelM2 (demultiplexing and queuing in the common completion queue) to

the response time. Since the demultiplexing is conducted ona first-in, first-out basis and one at a time,

the contribution of sub-modelM2 to the response time is the same for all the types of requests.τ3,i is the

contribution of sub-modelM3,i (queuing in the separate completion queue and completion event handling)

to the response time.

11



Table 1: Inputs, parameters and outputs of sub-models

Sub-model Input Parameter Output

M1,i Arrival rate (λi) Pool size (Ni) Loss probability (Li)

Service rate (µi) Busy handlers (Bi)

Avg. processing rate (α1,i)

M2 Input rate (α2) Capacity (C) Queue length (Q)

Demux. rate (κ) Total demux. time (τ2)

Eff. demux. rate (δ)

M3,i Input rate (η3,i) Capacity (Ci) Queue length (Qi)

Comp. event hand. rate (γi) Total hand. time (τ3,i)

Throughput (Ti)

Typically, using a model decomposition strategy only approximate performance estimates can be ob-

tained. This is because of the errors and inaccuracies that are introduced at the interfaces of the sub-models

and the propagation of these errors and inaccuracies to the other sub-models. These inaccuracies arise due

to the implicit assumptions that the decoupling and partitioning of the different pieces of the model is based

upon. In this case, at the interface of sub-modelsM1 andM2, the decomposition strategy assumes that the

event handlers do not block due to the lack of space in the common completion event queue. This will hold

if the capacity of the common queue is sufficiently large to absorb any short-term spikes or bursts and the

demultiplexing rate is greater than the rate at which the completion events are fed into the common queue

to ensure long-term stability. Similarly, at the interfaceof sub-modelsM2 andM3,is, the decomposition

scheme assumes that the demultiplexing operation does not block due to the lack of space in the separate

completion event queues. Once again, by provisioning separate queues with large capacities and ensuring

that the service rate of each completion event handler is greater than the rate at which the completion events

are fed into its queue, it can be ensured that this assumptionholds. The second factor which gives rise to

approximate estimates also arises at the interfaces between the sub-models, when the outputs produced from

one sub-model are fed as inputs to other sub-models. Although it is possible to obtain the average values of

the output of one sub-model (and hence the average values of the inputs to the next sub-model), it is usually

difficult to determine the distributions of these outputs (inputs). This makes it necessary to assume the dis-

tribution of the inputs, which may result in approximate estimates. For example, in the queuing model of the

Proactor-based server, where the processing rates of sub-modelsM1,1, . . . ,M1,m serve as the input rates to

12



Figure 3: Model decomposition in SRN

sub-modelM2, the average processing rates and hence the average input rates can be determined, but it may

not be possible to determine the actual distribution.

Although exact performance estimates can be rarely obtained using a model decomposition scheme, the

approximate performance estimates that can be obtained usually provide sufficient information for design-

time analysis, where the primary purpose is to determine therange of parameter choices for which the

performance is acceptable for an expected load. Such information can be used to guide provisioning and

configuration decisions.

4.4.2 Implementation of the strategy

The model decomposition strategy can be implemented by partitioning the SRN model in Figure 2 as shown

in Figure 3. The figure indicates that additional transitions and arcs are needed in sub-modelsM2 andM3,is

to facilitate model decomposition.

In sub-modelM2, transitionsI2,i represent inputs to the common completion event queue, which are

provided by the outputs of sub-modelsM1,is. The firing rate of transitionI2,i is the same as the firing rate

of transitionSri and is given byα1,i. Inhibitor arcs from placeCQ to transitionsI2,is with multiplicity C

prevent their firing when the common completion queue is full. The effective demultiplexing rateδ is the

rate at which transitionSd fires. In sub-modelM3,i, transitionI3,i represents the dispatching of events to

the completion event handler queue after demultiplexing. The firing rate of transitionI3,i is η3,i and is given

by Equation (2). An inhibitor arc from placeCQi to transitionI3,i with multiplicity Ci prevents the firing

13



Table 2: Reward rates for performance measures

Sub-model Perf. Measure Reward rate

M1,i Loss probability (Li) return(#Si == Ni?1 : 0)

Busy handlers (Bi) return(#Si)

Processing rate (α1,i) return rate(Sri)

M2 Queue length, common queue (Q) return (#CQ)

Total demultiplexing time (τ2) return ((#CQ + #DQ)/κ)

Effective demux. rate (δ) return rate(Sd)

M3,i Throughput (Ti) return rate(Sci)

Queue length, separate queue (Qi) return(#CQi)

Total comp. hand. time (τ3,i) return ((#CQi + #Ei)/γi)

of transitionI3,i when the separate completion event queue is full. We note that the capacities of the queues

need to be very large to prevent request loss and enable modeldecomposition. The inhibitor arcs need to

be added to the sub-models however, to prevent an overflow of tokens while solving the sub-models using

numerical techniques.

The rationale used to assign reward rates to obtain the performance measures from the sub-models is as

follows. For sub-modelM1,i, the busy event handlersBi is given by the number of tokens in placeSi, the

loss probabililityLi is given by the probability ofNi tokens in placeSi and the processing rateα1,i is given

by the firing rate of transitionSri. For sub-modelM2, the queue length of the common completion queue

Q is the number of tokens in placeCQ and the effective demultiplexing rateδ is given by the firing rate of

transitionSd. The total demultiplexing timeτ2, according to Little’s law [29], is given by the ratio of the

sum of the number of tokens in placesCQ andDQ and the demultiplexing rateκ. For sub-modelM3,i,

the queue length of the separate completion queueQi is given by the number of tokens in placeCQi, the

throughputTi is the firing rate of transitionSci and the total completion event handling timeτ3,i is given by

the ratio of the sum of the number of tokens in placesCQi andEi and the completion event handling rateγi.

The total completion event handling time is obtained using Little’s law, similar to the total demultiplexing

time. These reward rates are summarized in Table 2. In the table the notation# is used to denote the number

of tokens in a place, for example#CQi denotes the number of tokens in placeCQi. The measures that

are indicative of Web server performance (defined in Section4.2) are in boldface, whereas the ones which

facilitate model decomposition are in plain text.

14



Table 3: Nominal parameter values

Parameter Value

Arrival rate (λi) 10.0/s

Pool size (Ni) 8

Service rate (µi) 2.0/s

Capacity, common queue (C) 3000

Demultiplexing rate (κ) 25.0/s

Capacity, separate queue (Ci) 3000

Completion event handling rate (γi) 25.0/s

5 Illustrative examples

In this section we illustrate the potential of the methodology to guide configuration and provisioning deci-

sions with examples. We consider a Web server which providestwo types of services, orm = 2. In the

first experiment, we validate the performance estimates obtained from the SRN model using simulation. We

then conduct several experiments to analyze the impact of the parameters of each one of three sub-models

on the performance metrics. In all the experiments, the performance estimates were obtained by solving the

SRN sub-models shown in Figure 3 using SPNP. Because the arrival and service rates, and the configuration

parameters for both types of requests are set to the same values in all the experiments, it results in nearly

similar performance estimates for both request types. As a result, performance estimates of only one request

type are reported for all the experiments.

Experiment I: Model validation

The first experiment serves to validate the performance estimates obtained from SRN using simulation, for

nominal parameter values summarized in Table 3. For this purpose, the queuing model of the Proactor-

based Web server was implemented using CSIM [26]. The performance estimates obtained from SRN and

simulation are shown in Table 4. The confidence intervals forthe estimates obtained using simulation are

within 5% of the mean and are not shown here. The results reported in thetable indicate that the performance

estimates obtained using simulation match very well with estimates obtained from the model decomposition

strategy.

Experiment II: Impact of event handler pool size

15



Table 4: Comparison of performance measures

Perf. Measure SRN Sim.

Loss probability (Li) 0.07 0.70

Busy handlers (Bi) 4.64 4.65

Queue length, common queue (Q) 2.12 2.13

Queue length, separate queue (Qi) 0.22 0.24

Response time (Ri) 0.64 0.63

Throughput (Ti) 9.29 9.27

The second experiment analyzes the impact of the sizes of theevent handler pools. We consider three request

arrival rates, namely,λi = 10.0/s, λi = 15.0/s andλi = 20.0/s. The sizes of the event handler pools were

varied from5 to 25 in steps of5 and the service rate of a single event handler was set to2.0/s. The loss

probability, and the number of busy event handlers as a function of the event handler pool size are shown

in the left and the right plots in Figure 4. These figures indicate that a pool size of5 is not sufficient to

handle the lowest level of load, which leads to a high loss probability and causes the throughput to be lower

than the arrival rate. As the pool size increases, the performance improves. However, for a given arrival rate

increasing the pool size beyond a certain threshold offers diminishing returns. For example, when the arrival

rates are20.0/s, the loss probability when the pool size is20 is less than1%. Thus, increasing the pool size

beyond20 is perhaps not cost-effective, especially, since the rule of thumb suggests that no more than two

event handlers be placed on a single processor [23, 22, 14]. The average processing rates of sub-model #1

are lower than the arrival rates when the loss probabilitiesare greater than0.0. However, with a pool size of

20 when the loss probabilities are negligible, the average processing rates are the same as the arrival rates.

Figure 4: Performance metrics as a function of event handlerpool size

16



Experiment III: Impact of service rate of asynchronous operations

In the third experiment we analyze the impact of service rateof asynchronous operations on the loss proba-

bility and the number of busy event handlers. For this purpose, we set the pool size to10, and vary the service

rate of each event handler from2.0/s to5.0/s in steps of0.5/s. The loss probability and busy event handlers

for each one of the three arrival rates considered in Experiment II as a function of the event handler service

rate are plotted in Figure 5. As intuitively expected, for a given arrival rate the loss probabilities decrease

as the event handler service rate increases. Further, the event handler rate for which the loss probability

becomes negligible decreases with the arrival rate, which is also expected.

Figure 5: Performance metrics as a function of event handlerservice rate

The results of Experiments II and III indicate that the goal of negligible loss probability can be achieved

in two ways. In the first approach, the size of the event handler pool can be increased for a fixed event

handler rate, while in the second approach the event handlerrate can be increased for a fixed size of the event

handler pool. Typically, an increase in the pool size also requires procurement of additional processors to

support the desired level of concurrency, since the rule of thumb as discussed in Experiment II is two threads

per processor [23, 22, 14]. On the other hand, it may be possible to increase the event handler service rate to

some extent by implementing changes that do not require expensive changes to the hardware infrastructure.

Such a change, for example, might include replacing the existing version of the algorithm by a more efficient

one.

Experiment IV: Impact of demultiplexing rate

This experiment seeks to analyze the impact of the demultiplexing rate of the Proactor. The queue size of

the common completion queue was set to3000. The sizes of the event handler pools are set to20 to ensure

negligible loss probabilities. The input rates to the completion events to the second sub-model are given

by the average processing ratesα1,is of the first sub-model. Since the loss probability is negligible, these

17



input rates are the same as the original arrival rates. The effective input rate seen by the demultiplexer is

thus the sum of the average processing rates of the two request types and is given by20.0/s, 30.0/s, and

40.0/s. For the demultiplexer to maintain the processing rate atthe same level as the input rate for all the

three input rates, the demultiplexing rateκ should be greater than40.0/s. κ was thus varied from40.5/s to

45.0/s, and the two performance metrics, namely, queue length and the contribution of the second sub-model

to the response time, namely,τ2 were obtained. The queue length of the completion queue as a function of

the demultiplexing rate is shown in Figure 6. The figure indicates that even for the highest effective input

rate (λi = 20.0/s) and the lowest demultiplexing rate the average queue length is about35. This suggests

that a buffer space of3000, which was used in this experiment, may be unnecessary. Estimates ofτ2 are used

in conjunction with the estimates ofτ3,i to obtain the end-to-end response times of the requests.

Figure 6: Queue length (common queue) as a function of demultiplexing rate

Experiment V: Impact of completion event handler rate

The input rate the third sub-models were obtained by computing the effective demultiplex rate using Equation

(2). The effective demultiplexing rate was obtained when the event handler pool size was set to20 and the

demultiplexing rate was set to45.0/s. Since these parameter settings ensure that the probability of request

loss in sub-modelsM1,i andM2 is negligible, the input rates of the completion events to model M3,i are

the the same as the original arrival rates. Thus, to ensure a stable queue, the service rates of the completion

event handlers should be greater than20.0/s. Thus, the service rates were varied from20.5/s to 25.0/s

in steps of0.5/s. The sizes of the separate completion queues were set to3000. The queue lengths of

the separate completion queues as a function of the completion event handler rate is shown in Figure 7.

Similar to Experiment IV, the highest average queue length in this case is approximately39, indicating that

provisioning a buffer of3000 may be unnecessary. For all the completion event handler rates considered, the

throughput of the Web server for each request type is identical to the request arrival rate.

18



Figure 7: Queue length (separate queue) as a function of completion event handler rate

The estimates ofτ2 obtained from Experiment IV and those ofτ3,r andτ3,w from Experiment V were

combined to obtain the response time as a function of the demultiplexing and completion event handler

rates for each arrival rate using Equation (3). Table 5 showsthe response times when the request arrival

rates are15.0/s for the purpose of illustration. The response times in Table 5 indicate that for a given

value of completion handler rate, increasing the demultiplexing rate from41.0/s to 45.0/s, provides only

a small improvement in the performance. On the other hand, for a given demultiplexing rate, improving

the completion handler rate yields better performance benefits. The table also provides opportunities for

tradeoffs, by identifying multiple combinations of the completion handler and demultiplexing rates which

provide the same response time. For example, the response time is0.635s for two combinations: (i) handler

rate of 24.0/s and demultiplexing rate of41.0/s, and (ii) handler rate of23.0/s and demultiplexing rate

of 43.0/s. Similarly, the combinations where completion event handler rate is25.0/s and demultiplexing

rate is43.0/s and completion event handler rate of24.0/s and demultiplexing rate of45.0/s provide the

same response time of0.614s. By identifying multiple possible combinations with the same performance,

a service provider can choose a combination which is more cost-effective to achieve the same end-to-end

response time.

6 Related research

Research efforts in two areas, namely, performance analysis of middleware services and patterns and perfor-

mance analysis of Web servers, are relevant to the present work.

Performance analysis of middleware services and patterns can be broadly classified into two categories;

namely, measurement-based and model-based. The measurement-based approach comprises of testing spe-

cific implementations with benchmarking suite(s) and then measuring the relevant metrics [4, 11, 18, 30].

The model-based approach consists of building and solving amodel using analytical/numerical or simulation

19



Table 5: Response times (s),λi = 15.0/s

Completion Demultiplexing rate (/s)

handler rate (/s) 41.0 42.0 43.0 44.0 45.0

21.0 0.687 0.680 0.674 0.669 0.664

22.0 0.664 0.657 0.651 0.646 0.641

23.0 0.648 0.641 0.635 0.630 0.626

24.0 0.635 0.629 0.623 0.618 0.614

25.0 0.627 0.620 0.614 0.609 0.604

methods to obtain performance estimates. Ramaniet al.[21] present a framework for performability analysis

of messaging systems in middleware. Aldredet al. [1] develop Colored Petri Net (CPN) models for different

types of coupling between the application components and with the underlying middleware. Kahkipuro [12]

propose a multi-layer performance modeling framework based on UML and queuing networks for CORBA-

based systems. The methodology, however, is for generic CORBA-based client/server systems rather than

for systems built using design patterns.

With the growing complexity of software systems and increasing pressure to reduce the time to market,

there is a significant push towards composing large systems using reusable building blocks or patterns [3, 25].

Performance analysis of such a composed system requires models of the individual building blocks and their

composition. In this paper we have developed a performance model of the Proactor pattern. Although the

model was developed to analyze the performance of an asynchronous Web server, it is generic and could

be used for the performance analysis of any Proactor-based system. Our previous work has developed an

analytical model of the Reactor pattern [5].

Web server performance analysis can also be broadly classified into measurement-based and model-

based approaches. The former approach measures the server performance using benchmarks [9, 8, 10]. Many

model-based approaches use queuing networks to analyze performance [27, 6, 2, 17, 28, 13]. However, most

of these techniques are for Web servers that use synchronousmechanisms for concurrency, whereas the

model presented in this paper is applicable for the analysisof an asynchronous Web server.

7 Conclusions and future research

In this paper we presented a model-based approach for the design-time performance analysis of a Web server

which implements concurrent processing capabilities using the asynchronous mechanisms encapsulated in

20



the Proactor pattern. We represented the characteristics of the Proactor pattern that are relevant from a per-

formance perspective in the form of a queuing model. We then presented a model decomposition strategy

to enable the application of the model in practical scenarios. We illustrated the use of the model to guide

configuration and provisioning decisions with several examples. Our future research consists of developing

an analytical/numerical approach for the performance analysis of the Proactor pattern. Developing perfor-

mance models for other patterns such as the Active object is also a topic of future research.

Acknowledgments

This research was supported by the following grants from theNational Science Foundation (NSF): Univ. of

Connecticut (CNS-0406376 and CNS-SMA-0509271), Vanderbilt Univ. (CNS-SMA-0509296) and Univ. of

Alabama at Birmingham (CNS-SMA-0509342).

References

[1] L. Aldred, W. M. P. van der Aalst, M. Dumas, and A. H. M. ter Hofstede. “On the notion of coupling

in communication middleware”. InProc. of Intl. Symposium on Distributed Objects and Applications

(DOA), pages 1015–1033, Agia Napa, Cyprus, 2005.

[2] J. Cao, M. Andersson, C. Nyberg, and M. Kihl. Web server performance modeling using an

M/G/1/K*PS queue. In10th International Conference on Telecommunications (ICT’03), pages 1501–

1506, 2003.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, Reading, MA, 1995.

[4] A. Gokhale and D. C. Schmidt. “Measuring and optimizing CORBA latency and scalability over high-

speed networks”.IEEE Trans. on Computers, 47(4), April 1998.

[5] S. Gokhale, A. Gokhale, and J. Gray. “Response time analysis of an event demultiplexing pattern in

middleware for network services”. InProc. of IEEE Global Telecommunications Conference (GLOBE-

COM), Symposium on Advances for Networks and Internet, St. Louis, MO, November 2005.

[6] J. Heidemann, K. Obraczka, and J. Touch. Modeling the performance of HTTP over several transport

protocols.IEEE/ACM Transactions on Networking, 5(5):616–630, 1997.

[7] C. Hirel, B. Tuffin, and K. S. Trivedi. “SPNP: Stochastic Petri Nets. Version 6.0”.Lecture Notes in

Computer Science 1786, 2000.

21



[8] J. C. Hu, I. Pyarali, and D. C. Schmidt. “Measuring the impact of event dispatching and concurrency

models on Web server performance over high-speed networks”. In Proc. of GLOBECOM, pages 1024–

1031, 1997.

[9] Y. Hu, A. Nanda, and Q. Yang. Measurement, analysis and performance improvement of the

Apache Web server. InIEEE International Performance, Computing and Communications Confer-

ence (IPCCC’99), pages 261–267, 1999.

[10] A. Iyengar, J. Challenger, D. Dias, and P. Dantzig. High-performance Web site design techniques.

IEEE Internet Computing, 4(2):17–26, March 2000.

[11] M. Juric, I. Rozman, M. Hericko, and T. Domajnko. “CORBA, RMI and RMI-IIOP performance

analysis and optimization”. InProc. of SCI 2000, pages 582–587, Orlando, FL, July 2000.

[12] P. Kahkipuro.“Performance modeling framework for CORBA based distrbuted systems”. PhD thesis,

Dept. of Computer Science, Univ. of Helsinki, Helsinki, Finland, May 2000.

[13] K. Kant and C. R. M. Sundaram. A server performance modelfor static Web workloads. InIEEE

International Symposium on Performance Analysis of Systems and Software (ISPASS’00), pages 201–

206, 2000.

[14] Y. Ling, T. Mullen, and X. Lin. Analysis of. optimal thread pool size.ACM SIGOPS Operating System

Review, 34(2):42–55, 2000.

[15] Apache Software Foundation. Apache HTTP server project. http://httpd.apache.org/.

[16] D. Menascé. Web server software architecture.IEEE Internet Computing, 7(6):78–81, 2003.

[17] R. Nossenson and H. Attiya. The N-burst/G/1 model with heavy-tailed service-times distribution.

In Proceedings of 12th Annual International Symposium on Modeling, Analysis, and Simulation of

Computer and Telecommunications Systems (MASCOTS’04), pages 131–138, 2004.

[18] O. Othman, J. Balasubramanian, and D. C. Schmidt. “Performance evaluation of an adaptive middle-

ware load balancing and monitoring service”. InProc. of the 24th IEEE Intl. Conference on Distributed

Computing Systems, pages 135–146, Tokyo, Japan, May 2004.

[19] J. L. Peterson.Petri Net Theory and the Modeling of Systems. Prentice-Hall, 1981.

[20] A. Puliafito, M. Telek, and K. S. Trivedi. “The evolutionof stochastic Petri nets”. InProc. of World

Congress on Systems Simulation, pages 3–15, Singapore, September 1997.

22



[21] S. Ramani, K. Goseva-Popstojanova, and K. S. Trivedi. “A framework for performability modeling of

messaging services in distributed systems”. InProc. of 8th IEEE Intl. Conference on Engineering of

Complex Computer Systems (ICECCS 02), Greenbelt, MD, December 2002.

[22] J. Richter.Advanced Windows (3rd Edition). Microsoft Press, 1996.

[23] J. Richter.Programming Server-Side Applications for Microsoft Windows 2000. Microsoft Press, 2000.

[24] R. A. Sahner, K. S. Trivedi, and A. Puliafito.Performance and Reliability Analysis of Computer Sys-

tems: An Example-Based Approach Using the SHARPE Software Package. Kluwer Academic Publish-

ers, Boston, 1996.

[25] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.Pattern-Oriented Software Architecture: Pat-

terns for Concurrent and Networked Objects, Volume 2. Wiley & Sons, New York, 2000.

[26] H. Schwetman. “CSIM reference manual (revision 16)”. Technical Report ACA-ST-252-87, Micro-

electronics and Computer Technology Corp., Austin, TX.

[27] L. Slothouber. A model of Web server performance. InProceedings of the Fifth International World

Wide Web Conference, 1996.

[28] M. S. Squillante, D. D. Yao, and L. Zhang. Web traffic modeling and Web server performance analysis.

In Proceedings of the 38th Conference on Decision and Control, pages 4432–4439, 1999.

[29] K. S. Trivedi. Probability and Statistics with Reliability, Queuing and Computer Science Applications.

John Wiley, 2001.

[30] P. Tuma and A. Buble. “Overview of the CORBA performance”. In Proc. of the 2002 EurOpen CZ

Conference, September 2002.

[31] R. D. van der Mei, R. Hariharan, and P. Reeser. Web serverperformance modeling.Telecommunication

Systems, 16(3-4):361–378, 2001.

23


