An Analytical Approach to Performance Analysis of an

Asynchronous Web Server

U. Praphamontripong, S. Gokhale Aniruddha Gokhale JefyGra
Dept. of CSE Dept. of EECS Dept. of CIS
Univ. of Connecticut Vanderbilt Univ. U. of Alabama at Bimgham
Storrs, CT 06269 Nashville, TN 37235 Birmingham, AL 35294
ssg@engr.uconn.edu a.gokhale@vanderbilt.edu gray@bisdu
Abstract

Concurrency can be implemented in a Web server using synohsmand asynchronous mechanisms
provided by the underlying operating system. Compareddcasyimchronous mechanisms, asynchronous
mechanisms are attractive because they provide the behefinourrency while alleviating much of
the overhead and complexity of multi-threading. The Pragpattern in middleware, which effectively
encapsulates the asynchronous mechanisms provided byeaatiog system, can be used to implement
a high performance Web server.

The performance expectations imposed on a Web server magedssary to analyze its performance
prior to deployment. While performance of a server can besunea after implementation, design-
time performance analysis, conducted early in the lifegychn also enable informed configuration and
provisioning choices. A model-based approach can be useshiéh design-time performance analysis.
In this paper we present a queuing model of an asynchronobsgveer implemented using the Proactor
pattern. We discuss the implementation of the queuing mesiag the Stochastic Reward Net (SRN)
modeling paradigm. A model decomposition strategy alorn ws SRN implementation to enable the
application of the model to practical Web servers is theridiesd. We demonstrate the use of the model

to guide key provisioning and configuration decisions usieggeral examples.

1 Introduction and motivation

Within a relatively short duration since its advent, the Wakide Web (WWW) has become an important
source of information and services. Initially, users wetteaated to the WWW primarily due to the con-

venience, flexibility, ease of use and low costs associatédthe use of these services. However, as the

prevalence of WWW in business and critical domains growis iecoming evident that WWW services
must be offered with superior performance in order to re¢aisting users and attract new ones [31].

A central component of any WWW service is a Web server. Moltlégb servers have to process millions
of client requests on a daily basis. In order to fulfill suclgthiworkload demands, it is inevitable that
modern Web servers be equipped with the capability to peogratiple requests concurrently. Concurrency
may be implemented in a Web server using the synchronousyock®nous capabilities provided by the
underlying operating system. Although multi-thread andtispocess Web server architectures [16] which
rely on the synchronous capabilities are commonly usedasigachronous mechanisms may be attractive
because they provide the benefit of concurrency while atag much of the overhead and complexity of
multi-threading. The Proactor pattern in middleware [2#}jch effectively encapsulates the asynchronous
mechanisms supported by the operating system, can be usedlemnent a high performance Web server.

Due to the high performance expectations associated witiaNW\service, it is imperative that service
performance be analyzed prior to deployment. Althoughguernce can be measured once the service is
implemented, it is often too late and expensive to take ctives action at this stage if it is discovered that
the target performance cannot be met. It is thus cost-eféeaind advantageous to conduct performance
analysis earlier in the life cycle at design time. Modeldshanalysis is an attractive approach to conduct
such design-time performance analysis.

In this paper we describe a model-based approach for thgrdésie performance analysis of a Web
server which implements concurrent processing capasiliising the asynchronous mechanisms encapsu-
lated in the Proactor pattern. We capture the charactevisfithe Proactor pattern that are relevant from a
performance perspective into a queuing model. We then skdoow the queuing model can be implemented
using the Stochastic Reward Net (SRN) modeling paradigmthéfe describe a model decomposition strat-
egy to enable the use of the model to estimate the performaetecs in practical scenarios. The SRN
implementation of the model decomposition strategy is disoussed. We illustrate how the model can be
used to guide configuration and provisioning decisions sétferal examples.

The balance of the paper is organized as follows: SectioroZigees an overview of the Proactor pat-
tern. A brief background on SRNs is presented in Section 8ti@e4 describes the performance analysis
methodology. Section 5 illustrates the potential of thehodblogy with examples. Section 6 summarizes

the related research. Section 7 offers concluding remarttslmections for future research.

2 Proactor pattern

In this section we provide an overview of the Proactor patt&ve also discuss the advantages of implement-

ing a Web server using the Proactor pattern.

2.1 Proactor description

The Proactor pattern is a software architectural patterre¥ent handling, which is used to describe how
to initiate, receive, demultiplex, dispatch and procesneyin network systems [25]. It has been primarily

developed to support many simultaneous user requests. aits parpose is to improve the performance

of an event-driven application that receives and processdtiple events asynchronously. Conceptually,

this pattern simplifies asynchronous operations by integyahe demultiplexing of completion events and

the dispatching of the corresponding event handlers. Thergéidea of the Proactor pattern is to wait

for an event to occur and then initiate the appropriate djgera Once the event starts execution, other
events may be initiated and processed. When the event finestezution, the Proactor demultiplexes the
completion event and dispatches it to an appropriate evamdlar for subsequent processing of the results
of the operation.

To implement the Proactor pattern (considering the agiedlevents, each of which requires a single
operation to complete), when an event arrives, the apfitatentity called an initiator starts an appropriate
asynchronous operation. The pattern then registers the @ith an associated event handler and event
dispatcher with the Asynchronous Operation Processor jAT#RN an initiator invokes the registered asyn-
chronous operation on the AOP. An asynchronous operatiereisuted without blocking its caller’s thread
of control. As a result, the caller can perform other opersti That is, the operation and the initiator can
run independently and the initiator can invoke a new asyorabuis operation while others continue executing
concurrently. If an operation must wait for the occurrentaroevent, such as a connection request gener-
ated by a remote application, its execution will be defetratil the event arrives. In this paper, however, we
consider only those cases where operations are procestueimdently and do not wait for the occurrence
of other events. Once the operation is complete, the AOkves information corresponding to an event
handler and a dispatcher, and generates a completion exsairting the results of the asynchronous opera-
tion. The Proactor then inserts the completion event aldtigtive retrieved information into the completion
event queue. It then removes the completion event from theptaiion event queue and demultiplexes and
dispatches the event to the event handler associated vathsynchronous operation. Subsequently, the

event handler processes the results of the asynchronotatiopeand calls back to the application.

2.2 Proactor advantages

There are several advantages to implementing a Web selingrthe Proactor pattern [25]. These include:

e The Proactor pattern executes each asynchronous openatiependently; thus, each service that
a Web server provides can be processed separately. Acglydinparticular demultiplexer and a
dispatcher used for each completion event associated witisgnchronous operation can be imple-
mented, managed, and treated independently. As a consmxtleaimplementation of the Web server

is decomposed and decoupled, and hence is more manageable.

e Structuring the demultiplexing and dispatching of conipleevents simplifies the development process

of a Web server, which normally requires asynchronous dpasa

e Once an asynchronous operation is initiated, the threddritiated the operation becomes available

to service additional requests.

e Since the asynchronous operations are processed cortbuard the completion events associated
with the operations are demultiplexed and dispatched &sgnously, the operations are executed
without waiting for the completion of the previous ones. Nhlé client requests can be processed

simultaneously, which may improve server performance.

3 Overview of SRNs

This section provides an overview of the Stochastic Rewasti(ERN) modeling paradigm which is used
to implement the performance model of the Proactor patt@itme details of SRNs can be obtained from
elsewhere [20].

A SRN is a directed graph, which contains two types of nogdacesandtransitions A directed arc
connecting a place (transition) to a transition (place)aed aninput (output) arc Arcs are associated
with a positive integer called thaultiplicity. Places can contaiokensthat move from one place to another
through transitions. A transition is enabled when each efflaces connected to it by its input arc have
at least the number of tokens equal to the multiplicity ofsthn@rcs. When an enabled transition fires, a
number of tokens equal to the input arc multiplicity is remd¥rom each of the corresponding input places,
and a number of tokens equal to the output arc multiplicitgaposited in each of the corresponding output
places. A SRN may also include amhibitor arc, which can also have a multiplicity associated with it.
An inhibitor arc inhibits the transition it is connected fahe place it is connected to at its other end has

a number of tokens equal to at least its multiplicity. Thaestef a SRN withP places is represented by a

4

vector (my,mg, - -- ,m,) called themarkingof the SRN, wheren; is the number of tokens in plade A
SRN marking with at least one immediate transition enaldechlled avanishing markingand a marking
with no immediate transitions enabled is callethagible marking A reward rate may be associated with
each tangible marking of a SRN. The tangible markings of a @Rillthe rates of transition among them
are equivalent to the corresponding states and state ttoanssbf an underlying continuous time Markov
chain (CTMC) [29]. Hence, a SRN can be mapped into an equivafarkov reward model (MRM) [20],
automatically using software tools such as SPNP [7]. SRNatsaallow the concise specification of various
reward functions. To extend the power of specification, a &y also include the specificationerabling
(or guard) functionsfor each transition. The transition is enabled only if thaldimg function returns 1.
SRNSs substantially extend the modeling power of Geneil&techastic Petri Nets (GSPNs) [24], which
are an extension of Petri nets [19]. SRNs represent a polweddeling technique with concise specification
and form closer to a designer’s intuition. As a result, itlsoaeasier to transfer the results obtained from
solving the models and interpret them in terms of the estifiat exist in the system being modeled. SRNs
have been extensively used for performance, reliability performability analysis of a variety of systems

including cluster systems, polling systems, and wireleta/orks [29].

4 Performance analysis methodology

In this section we discuss the performance analysis metbggdor a Proactor-based asynchronous Web
server. We first discuss the characteristics of the Web sdblwed by the desired performance metrics.
Subsequently, we describe the performance model of the \fersand the SRN implementation of the

model, followed by the model decomposition strategy anavifgementation.

41 Web server characteristics

A Web server employs the request/reply paradigm, using tRiERrotocol to communicate between itself

and the clients (Web browsers). The clients’ requests ageifspd in a HTTP message, which may also

include the operation to be performed and its location. Wisitier a scenario where a Web server provides
m types of services. As soon as a request arrives at the Wedbrsargorresponding operation is assigned,
initiated, and executed. The completion of these operatisrhandled in a common queue regardless of
the request type. The completion events are demultipleydteoProactor and dispatched to an appropriate
completion event handler. The completion events are fuphecessed by the completion event handlers.

As an instance, consider a Web server which supports a rgagste When a client issues a read request

for a particular file, an HTTP handler can be used to initiateaa operation. After the read operation is

complete, an HTTP handler, which now acts as a completiontdandler, further processes the request by

issuing a write operation to transfer the file to the client.

From the point of view of performance analysis, the Web gemas the following characteristics:

4.2

The server receives types of client requests.

To service these requests, appropriate asynchronoustiopsrare assigned and executed with a pool
of handlers for each request type registered with the Rsod€ian incoming request finds that all the
event handlers for that request type are busy, the requesjeided. To distinguish between handlers
that handle asynchronous operations and handlers thawvidbalompletion operations, the former are

simply referred to as event handlers, while the latter aleccaompletion event handlers.

The completion operations of all the types of requestsymedeto as completion events, are queued in

a single completion event queue.
The completion events are dequeued by the Proactor on ififstst-out basis.

Each request type has a separate queue holding complegahaperations which are then processed

by the completion event handler registered with the Preacto

Each request type has a single completion event handleotegs the completion events.

Perfor mance metrics

In this section we present the performance metrics for eaghest type. We also discuss the practical

significance of these metrics.

1.

Expected throughputr{): It is the average processing rate of the Web server.

Expected loss probabilityl(): It is the average probability that an incoming request wéllrbjected

because an event handler is unavailable.
Expected response tim&)): It is the average time taken by the Web server to serve a chejiest.

Expected busy handlers3(): It is the average number of busy event handlers. This can dx tias

guide provisioning decisions regarding the sizes of thaelandler pools for a given load.

. Expected queue length@ @ndQ;): Itis the average number of completion events in the commdn an

separate completion event queues.

Typically, a service provider has to satisfy dual and cotifigcobjectives; namely, offer superior service
performance while keeping the cost minimal. From a cliepgsspective, service performance is superior, if
the requests are handled at the same rate as they are poesetiite server and with negligible loss and ac-
ceptable response time. From a provider’s perspectivejgioning of adequate resources (resources consist
of event handlers in the the event handler pools and bufferesfor queues) is a way to provide superior per-
formance in a cost-effective manner. However, achieviegcthrrect level of provisioning must be balanced:
over-provisioning would guarantee good performance, lillbe expensive; under-provisioning would have
low cost, but would sacrifice performance. Thus, metricsh#tugh #3 are important for a user, whereas

metrics #4 and #5 are important for a provider.

4.3 Performance model

In this section we first describe the performance model ofca®or-based asynchronous Web server, fol-

lowed by the implementation of the model using the SRN modgtiaradigm.

4.3.1 Description of the model

We assume that the requests of each type arrive accordindg’tisaon distribution, with\; denoting the
arrival rate of typei requests. The size of the event handler pool of typequests is denotefy;. The
service time of an asynchronous operation for each reqyestollows an exponential distribution, with the
parameter of type request denoted;. The capacity of the common completion queue is den6taad the
capacity of the separate completion queue of tiypeEquests is denoted;. The demultiplexing time of the
Proactor is exponentially distributed with parameterThe service times of the completion event handlers
are exponentially distributed, with the service time ofreMeandler; denotedy;.

Figure 1 shows the queuing model of a Proactor-based Webrsé&tach event handler pool which han-
dles asynchronous operations for a single request type deled as a multi-server processing station with
no queuing. These servers feed completion events to the cansompletion event queue and they block
if there is no space available in the common completion québe operation of demultiplexing the com-
pletion events is conducted by a server, which accepts timpledion events from the common completion
gueue and dispatches them to the appropriate separateatmmpjueue depending on the request type that
generated the completion event. Because the schedulimgfaselemultiplexing is first-in, first-out, the
demultiplexing operation blocks if the completion queuevtuch the event is to be dispatched is full. For
example, if the current completion event to be demultiplieaied dispatched is of typeand the type com-

pletion queue ha€’; completion events, the demultiplexing operation blockise Tompletion event queue

Service rate g

T, EHs

Demuz

rate K

1 1
1]
1 '
1 '

Arrivals ! ' CQ #m, Cap, C,, e
rate A ! ! TELE Yy
1 1
1)

1 '

Ml,m Service rate g : : M3,m

N, EHz | '
1]
M, : M, ' M,

Figure 1: Queuing model of an asynchronous Web server

of each event type feeds the corresponding completion damdiich completes the processing. Thus, the
three steps involved in fulfilling a single client request:dii) asynchronous operation, (ii) completion event

demultiplexing and (iii) dispatching and completion evieahdling.

4.3.2 Implementation of the model

Figure 2 shows the implementation of the queuing model infgig. using the SRN modeling paradigm. We

discuss how the three steps involved in fulfilling a clierguest are represented by the SRN model.

I: Asynchronous operation:

The asynchronous operation is performed separately fdr espest type. For a request typeplace.S;
represents the pool of event handlers, transitfigmepresents the arrival of requests and transifonrep-
resents the asynchronous operation of the requests byehéandler pool. The firing rate of transitiah

is \;. TransitionSr; has a marking-dependent firing rate and is equal to x;, wheres; is the number of
tokens in places;. The maximum number of tokens in plaSgis equal to the pool siz&/;, which results

in the maximum firing rate of transitiofir; to be N; x u;. The presence a¥V; tokens in places; indicates
that all the event handlers in the pool are busy, which shoalte an incoming request to be rejected. This

is achieved by the inhibitor arc from plaég to transitionA4; with multiplicity N;.

II: Completion event demultiplexing and dispatching:

8

The event demultiplexing and disptaching step is handledneonly for all the request types. Plac&)
represents the common completion event queue into whickemtis deposited by the firing of transitions
Sr;s. Inhibitor arcs from plac€’'Q to transitionsSr;s prevent the firing of transitiofr;s when there aré’
tokens in the completion queue. The firing of transitiert dequeues a completion event from the queue and
begins its demultiplexing, which is represented by a tokeplace D). To ensure that exactly one comple-
tion event is demultiplexed at a time, the firing of transitint is prevented by an inhibitor arc from place
D@Q. Once a demultiplexing operation is complete, transifigifires and deposits a token in an intermediate
place D P, which serves to dispatch the completion event to one of éparsite completion event queues.
The dispatching is achieved by probabilistic firing of tiéinas Sd;s. The transition probability assigned to
transitionSd; is such that its likelihood of firing is the same as the prolitgtbivith which an event fed into
the completion event queue is of typeThis probability is given by the ratio of the firing rate oamsition

Sr; to the sum of the firing rates of transiticfr;s.

[11: Completion event handling:

Similar to the first step, the third step is conducted sepbrdior each type of event. For an event type
placeCQ); represents the separate completion event queudsanebresents the completion event handler.
TransitionS¢; represents the handling of a completion event. The firirgaétransitionSc; is ;. The firing

of the immediate transitioSp; initiates the service of the completion event by the conmuetvent handler.
Thus,Sp; can fire only when there is no token in plaEg which indicates that the completion event handler
is available. This is achieved by the inhibitor arc from gld; to transitionSp;. To represent the blocking
of the demultiplexing operation when the separate congietivent queue of an event type which is at the
head of the common completion queue is full, inhibitor aresadded from placeS'Q;s to placeC' @) with
multiplicities C;s. We note that this represents a pessimistic scenarice #itdocks the demultiplexing
operation when any one of the separate completion queudsliamegardless of the event type at the head

of the common completion queue.

4.4 Model decomposition

The SRN implementation of the queuing model shown in Figucar2be solved as is using the numerical
solvers in the Stochastic Petri Net Package (SPNP) [7] ionat the performance metrics for a given
choice of parameters. However, for the pool and queue s&d in practical Web servers (for example, in
the Apache Web server the queue size is s8000 and the number of threads is setfby default [15]),

state space explosion would make solving the SRN modelsiifisa To alleviate the state space explosion

oy CQy
Bpy S

E, By

Figure 2: SRN implentation of the queuing model

issue, we describe a model decomposition strategy in toisose We then discuss how the decomposition

strategy can be implemented in the SRN model.

4.4.1 Description of the strategy

The model decomposition strategy consists of hierardiigartitioning the overall model into sub-models.
The sub-models are then solved and their results are cothtr@btain the performance estimates.

The queuing model is partitioned into three sub-models,etgm/{,, M> and M3 as shown in Figure 1.
Sub-modelM; comprises of the event handler pools, sub-madglcaptures the demultiplexing and dis-
patching of the completion events and sub-matlglrepresents the handling of the completion events. In
sub-modelM;, the different types of requests are handled independehtbach other by their respective
pools of event handlers. As a result, sub-matglcan be partitioned further inta lower level sub-models,
denoted)M 1,. .., M, for each of then request types. Similarly, in sub-modgfs, the queuing and the
handling of the completion events is handled independdntiyhe different event types, due to which it
can also be partitioned further inte lower level sub-models, denotéds i, . .., Ms ,,,. For type:i requests,
the parameters of sub-model; ; are the size of the event handler pool and the service rataabf event
handler. These parameters will impact the loss probadslitind the number of busy event handlers. The

solution of sub-model/; ; will provide the average rate at which typeequests are processed by the event

10

handler pool, denoted; ;. «;;S serve as inputs to the second sub-madel The total input rate to the

second sub-model, denoted is given by:
a=ap+aig+-+om 1)

The rate at which the Proactor demultiplexes a single caiople@vent and the capacity of the common
completion queue are the parameters of second sub-midglelThese parameters will impact the average
queue length of the completion queue, the total demultiptetime , for a completion event (queuing time
plus the demultiplexing time) and the effective demultknbg rate, denoted. The input rate to model/s ;,

denotedys ;, is given by:
aq g

a1+t am

()

N3, =

Equation (2) scales the effective demultiplexing ratey the likelihood of a typé event being fed into
the common completion queue to determine the rate at whistpltion events are demultiplexed into the
separate completion queue of typeequests. The parameters of sub-matlgl; include the service rate of
the completion event handler and the capacity of the sepacampletion event queue. These parameters will
influence the total time taken to process a completion evembteédrs ; (queuing time plus the completion
event handling time) and the throughputs of the Web server.

Table 1 summarizes the inputs, parameters and outputs dfiffeeent sub-models. In summary, esti-
mates of average loss probabilities and the average nurfibesy handlers are obtained from the solution
of the sub-modeld/; 1,. .., M ., the total demultiplexing time and the average queue leafjithe com-
pletion queue are provided by the solution of sub-mddeland the handling times of the completion events,
gueue lengths of the separate completion queues and thgytipats are obtained from the solution of sub-
modelsMs 1, ..., M3 .

The end-to-end response time of a typequest obtained by adding the time spent by the requestin th
three processing steps is given by:

Ri=1ii+m+T13,; (3

In Equation (3),7;; is the contribution of sub-modél/; ; to the response time and is given byp;.
T9 IS the contribution of sub-modél/; (demultiplexing and queuing in the common completion gli¢oe
the response time. Since the demultiplexing is conducted 6brst-in, first-out basis and one at a time,
the contribution of sub-model/; to the response time is the same for all the types of requestss the
contribution of sub-models ; (qQueuing in the separate completion queue and completient éxandling)

to the response time.

11

Table 1: Inputs, parameters and outputs of sub-models

Sub-model Input Parameter Output
M ; Arrival rate (\;) Pool size (V;) Loss probability ;)
Service rate;) Busy handlers ;)

Avg. processing raten ;)

Mo Input rate () Capacity () Queue length®)

Demux. rate £) Total demux. time+y)

Eff. demux. rated)

Ms ; Input rate s ;) Capacity ;) Queue length®;)

Comp. event hand. rate; Total hand. time4s ;)
Throughput T3)

Typically, using a model decomposition strategy only agpnate performance estimates can be ob-
tained. This is because of the errors and inaccuracies h@taoduced at the interfaces of the sub-models
and the propagation of these errors and inaccuracies tahiee sub-models. These inaccuracies arise due
to the implicit assumptions that the decoupling and partitig of the different pieces of the model is based
upon. In this case, at the interface of sub-moddlsand M, the decomposition strategy assumes that the
event handlers do not block due to the lack of space in the ammmoompletion event queue. This will hold
if the capacity of the common queue is sufficiently large teasb any short-term spikes or bursts and the
demultiplexing rate is greater than the rate at which theptetion events are fed into the common queue
to ensure long-term stability. Similarly, at the interfamiesub-models), and M3 ;s, the decomposition
scheme assumes that the demultiplexing operation doedauit thue to the lack of space in the separate
completion event queues. Once again, by provisioning aepgueues with large capacities and ensuring
that the service rate of each completion event handler etgréhan the rate at which the completion events
are fed into its queue, it can be ensured that this assumpttats. The second factor which gives rise to
approximate estimates also arises at the interfaces betiweesub-models, when the outputs produced from
one sub-model are fed as inputs to other sub-models. Althdlg possible to obtain the average values of
the output of one sub-model (and hence the average valube offiuts to the next sub-model), it is usually
difficult to determine the distributions of these outputg(its). This makes it necessary to assume the dis-
tribution of the inputs, which may result in approximaterastes. For example, in the queuing model of the

Proactor-based server, where the processing rates of edblsi/; 1, ..., M; ,, serve as the input rates to

12

Ay A CQ CQu
M My
5 sese o Spy s P
51 By E E.
By S
(@ Sub-models M; , {b) Sub-model M, fc) Sub-models M,

Figure 3: Model decomposition in SRN

sub-modelM,, the average processing rates and hence the average itgsucaa be determined, but it may
not be possible to determine the actual distribution.

Although exact performance estimates can be rarely olttaisgg a model decomposition scheme, the
approximate performance estimates that can be obtainedlyuguovide sufficient information for design-
time analysis, where the primary purpose is to determinerdhge of parameter choices for which the
performance is acceptable for an expected load. Such iatiwmcan be used to guide provisioning and

configuration decisions.

4.4.2 |Implementation of the strategy

The model decomposition strategy can be implemented bitipaihg the SRN model in Figure 2 as shown
in Figure 3. The figure indicates that additional transgi@md arcs are needed in sub-modelsand M3 ;S
to facilitate model decomposition.

In sub-model),, transitionsl,; represent inputs to the common completion event queue,vdrie
provided by the outputs of sub-model$; ;s. The firing rate of transitiot, ; is the same as the firing rate
of transition Sr; and is given byw; ;. Inhibitor arcs from plac&'@ to transitionsl, ;s with multiplicity C
prevent their firing when the common completion queue is fihe effective demultiplexing rat& is the
rate at which transitiorbd fires. In sub-model\/s ;, transition/s ; represents the dispatching of events to
the completion event handler queue after demultiplexirtge flring rate of transitiors ; is 73 ; and is given

by Equation (2). An inhibitor arc from plac€@Q); to transition/s ; with multiplicity C; prevents the firing

13

Table 2: Reward rates for performance measures

Sub-model Perf. Measure Reward rate
M ; L oss probability (L;) return@tS; == N;71 : 0)
Busy handlers (B;) returns;)
Processing ratex ;) return ratefr;)
Mo Queuelength, common queue (Q) return 4#CQ)
Total demultiplexing time+,) return (#CQ + #DQ)/k)
Effective demux. rated) return ratefd)
Ms ; Throughput (T;) return ratefc¢;)
Queuelength, separate queue (Q;) returné:CQ;)
Total comp. hand. timerg ;) return (#CQ; + #E;) /i)

of transition/s ; when the separate completion event queue is full. We notehtbaapacities of the queues
need to be very large to prevent request loss and enable rdedemposition. The inhibitor arcs need to
be added to the sub-models however, to prevent an overfloakefhs while solving the sub-models using
numerical techniques.

The rationale used to assign reward rates to obtain therpgaface measures from the sub-models is as
follows. For sub-model/; ;, the busy event handler; is given by the number of tokens in plasg the
loss probabilility Z; is given by the probability ofV; tokens in places; and the processing ratg ; is given
by the firing rate of transitiorbr;. For sub-model\/,, the queue length of the common completion queue
Q is the number of tokens in placg() and the effective demultiplexing radeis given by the firing rate of
transition Sd. The total demultiplexing times, according to Little’s law [29], is given by the ratio of the
sum of the number of tokens in placé€%) and D@ and the demultiplexing rate. For sub-modelM/s ;,
the queue length of the separate completion quguis given by the number of tokens in plac&);, the
throughputZ; is the firing rate of transitio¥c; and the total completion event handling timg is given by
the ratio of the sum of the number of tokens in pla€&g; and E; and the completion event handling rate
The total completion event handling time is obtained usiitgd’s law, similar to the total demultiplexing
time. These reward rates are summarized in Table 2. In thetadnotation# is used to denote the number
of tokens in a place, for exampiC'Q; denotes the number of tokens in plaCé);. The measures that
are indicative of Web server performance (defined in Secti@h are in boldface, whereas the ones which

facilitate model decomposition are in plain text.

14

Table 3: Nominal parameter values

Parameter Value
Arrival rate (\;) 10.0/s

Pool size (V;) 8
Service rate;) 2.0/s
Capacity, common queu€’j 3000
Demultiplexing rate £) 25.0/s
Capacity, separate queug;} 3000
Completion event handling rate;§ | 25.0/s

5 Illustrative examples

In this section we illustrate the potential of the methodgldo guide configuration and provisioning deci-
sions with examples. We consider a Web server which prowidesypes of services, o, = 2. In the
first experiment, we validate the performance estimatesimdd from the SRN model using simulation. We
then conduct several experiments to analyze the impactegbainameters of each one of three sub-models
on the performance metrics. In all the experiments, theop@idince estimates were obtained by solving the
SRN sub-models shown in Figure 3 using SPNP. Because tkalarid service rates, and the configuration
parameters for both types of requests are set to the samesvialall the experiments, it results in nearly
similar performance estimates for both request types. Agsuat; performance estimates of only one request

type are reported for all the experiments.

Experiment |: Model validation

The first experiment serves to validate the performancenagtis obtained from SRN using simulation, for
nominal parameter values summarized in Table 3. For thipgag;, the queuing model of the Proactor-
based Web server was implemented using CSIM [26]. The pa#nce estimates obtained from SRN and
simulation are shown in Table 4. The confidence intervalgHerestimates obtained using simulation are
within 5% of the mean and are not shown here. The results reported fialifeeindicate that the performance

estimates obtained using simulation match very well witinestes obtained from the model decomposition

strategy.

Experiment I1: Impact of event handler pool size

15

Table 4: Comparison of performance measures

Perf. Measure SRN | Sim.
Loss probability () 0.07 | 0.70
Busy handlersB;) 4.64 | 4.65

Queue length, common queug)(| 2.12 | 2.13

Queue length, separate quedg)(| 0.22 | 0.24

Response timekK;) 0.64 | 0.63

Throughput T;) 9.29 | 9.27

The second experiment analyzes the impact of the sizes ef/dr handler pools. We consider three request
arrival rates, namely); = 10.0/s, \; = 15.0/s and)\; = 20.0/s. The sizes of the event handler pools were
varied fromb5 to 25 in steps of5 and the service rate of a single event handler was s2ife. The loss
probability, and the number of busy event handlers as aifumdf the event handler pool size are shown
in the left and the right plots in Figure 4. These figures iathcthat a pool size df is not sufficient to
handle the lowest level of load, which leads to a high loseaipdity and causes the throughput to be lower
than the arrival rate. As the pool size increases, the paeoce improves. However, for a given arrival rate
increasing the pool size beyond a certain threshold offienggéhing returns. For example, when the arrival
rates are0.0/s, the loss probability when the pool sizeisis less than %. Thus, increasing the pool size
beyond20 is perhaps not cost-effective, especially, since the riitawamb suggests that no more than two
event handlers be placed on a single processor [23, 22, I4].aVerage processing rates of sub-model #1
are lower than the arrival rates when the loss probabil#iesgreater thaf.0. However, with a pool size of

20 when the loss probabilities are negligible, the averagegesing rates are the same as the arrival rates.

——10 —a—10
—=— 15 —— 15
20 n

Loss probability
= =
(5])

=
Murnber of busy event handlers
@

=
(=]

@
=

15 0 25 5 o 15 20 5

Event handler pool size Beent handler pool size

Figure 4: Performance metrics as a function of event hamtlel size

16

Experiment I11: Impact of servicerate of asynchronous operations

In the third experiment we analyze the impact of service odesynchronous operations on the loss proba-
bility and the number of busy event handlers. For this pupag set the pool size id, and vary the service
rate of each event handler fro2xD/s to5.0/s in steps of).5/s. The loss probability and busy event handlers
for each one of the three arrival rates considered in Exparirti as a function of the event handler service
rate are plotted in Figure 5. As intuitively expected, forieeg arrival rate the loss probabilities decrease
as the event handler service rate increases. Further, 8 kandler rate for which the loss probability

becomes negligible decreases with the arrival rate, wisielfisio expected.

—a—10 —a— 10
—m— 15 —= 15
20 1)

0.5

=
b
=

i

=
=

Loss probability
=
=

-
H,

%
=

4 e
'_-__“‘—t-—_ i e |
2 25 3 35 4 45 § 25 3 248 4 4.5 5

Evernt handler service rate Evert handler service rate

=
=1
&

Nurnber of busyevert handlers

L T S - S N - S

=
(=1
=

ra

Figure 5: Performance metrics as a function of event harsdlesice rate

The results of Experiments Il and Il indicate that the gdalegligible loss probability can be achieved
in two ways. In the first approach, the size of the event hangid®l can be increased for a fixed event
handler rate, while in the second approach the event haradiecan be increased for a fixed size of the event
handler pool. Typically, an increase in the pool size alspires procurement of additional processors to
support the desired level of concurrency, since the rulawhb as discussed in Experiment Il is two threads
per processor [23, 22, 14]. On the other hand, it may be pedsilincrease the event handler service rate to
some extent by implementing changes that do not requirensi@echanges to the hardware infrastructure.
Such a change, for example, might include replacing thdiegisersion of the algorithm by a more efficient

one.

Experiment 1V: Impact of demultiplexing rate

This experiment seeks to analyze the impact of the demexiipd rate of the Proactor. The queue size of
the common completion queue was se8®0. The sizes of the event handler pools are s€0tt ensure
negligible loss probabilities. The input rates to the castiph events to the second sub-model are given

by the average processing rates;s of the first sub-model. Since the loss probability is néiglég these

17

input rates are the same as the original arrival rates. Tieetie input rate seen by the demultiplexer is
thus the sum of the average processing rates of the two retypes and is given bg0.0/s, 30.0/s, and
40.0/s. For the demultiplexer to maintain the processing ratheasame level as the input rate for all the
three input rates, the demultiplexing rateshould be greater that0.0/s. x was thus varied from0.5/s to
45.0/s, and the two performance metrics, namely, queue lengtihencontribution of the second sub-model
to the response time, namely, were obtained. The queue length of the completion queue @scidn of
the demultiplexing rate is shown in Figure 6. The figure iaths that even for the highest effective input
rate (\; = 20.0/s) and the lowest demultiplexing rate the average quewgthdan about35. This suggests
that a buffer space @000, which was used in this experiment, may be unnecessaryn&sts ofr, are used

in conjunction with the estimates of ; to obtain the end-to-end response times of the requests.

—— 10
—a— 15
0

I
o
I

s
=1
1

=S R R L
o oo oth &
{HEES U B (LI (I |

GQueue size [common quele]

w
L

o
b
-
o
=
b
b
B

T T T T
1 2 3 4 B B 7 g a 1o
Dernultiplexing rate

Figure 6: Queue length (common queue) as a function of dgtaxing rate

Experiment V: Impact of completion event handler rate

The input rate the third sub-models were obtained by comgulie effective demultiplex rate using Equation
(2). The effective demultiplexing rate was obtained whendtient handler pool size was settband the
demultiplexing rate was set #5.0/s. Since these parameter settings ensure that the pribpalbitequest
loss in sub-modeld/; ; and M; is negligible, the input rates of the completion events taleld/s ; are
the the same as the original arrival rates. Thus, to ensuabbegueue, the service rates of the completion
event handlers should be greater tizan0/s. Thus, the service rates were varied fraths/s to 25.0/s

in steps of0.5/s. The sizes of the separate completion queues were $800 The queue lengths of
the separate completion queues as a function of the completient handler rate is shown in Figure 7.
Similar to Experiment |V, the highest average queue lengtiis case is approximateBg, indicating that
provisioning a buffer o000 may be unnecessary. For all the completion event handkes cainsidered, the

throughput of the Web server for each request type is idarticthe request arrival rate.

18

=
=

—— 10
—a— 15
20

[
&

b
=

Queue size [separate queue)]
= =

o

-
T a3 a2 a4

=

1 2 2 4 5] T 2 a 0

Com pletion event handler rate

Figure 7: Queue length (separate queue) as a function ofletimpevent handler rate

The estimates of; obtained from Experiment IV and those of, ands ,, from Experiment V were
combined to obtain the response time as a function of the Highexing and completion event handler
rates for each arrival rate using Equation (3). Table 5 shiwsesponse times when the request arrival
rates arel5.0/s for the purpose of illustration. The response times inldf&bindicate that for a given
value of completion handler rate, increasing the demeliplg rate from41.0/s to 45.0/s, provides only
a small improvement in the performance. On the other harda fgiven demultiplexing rate, improving
the completion handler rate yields better performance fiitsneThe table also provides opportunities for
tradeoffs, by identifying multiple combinations of the coletion handler and demultiplexing rates which
provide the same response time. For example, the respomsést).635s for two combinations: (i) handler
rate of 24.0/s and demultiplexing rate of1.0/s, and (ii) handler rate o£3.0/s and demultiplexing rate
of 43.0/s. Similarly, the combinations where completion eventdi@nrate is25.0/s and demultiplexing
rate is43.0/s and completion event handler rate 2df0/s and demultiplexing rate of5.0/s provide the
same response time 0f614s. By identifying multiple possible combinations with thenge performance,
a service provider can choose a combination which is moreeftective to achieve the same end-to-end

response time.

6 Related research

Research efforts in two areas, namely, performance asalysniddleware services and patterns and perfor-
mance analysis of Web servers, are relevant to the presekt wo

Performance analysis of middleware services and pattemée broadly classified into two categories;
namely, measurement-based and model-based. The meastiwaned approach comprises of testing spe-
cific implementations with benchmarking suite(s) and thexasuring the relevant metrics [4, 11, 18, 30].

The model-based approach consists of building and solvingdel using analytical/numerical or simulation

19

Table 5: Response times (9), = 15.0/s

Completion Demultiplexing rate (/s)
handler rate (/s) 41.0 | 42.0 43.0 | 44.0 | 45.0
21.0 0.687 | 0.680 | 0.674 | 0.669 | 0.664
22.0 0.664 | 0.657 | 0.651 | 0.646 | 0.641
23.0 0.648 | 0.641 | 0.635 | 0.630 | 0.626
24.0 0.635 | 0.629 | 0.623 | 0.618 | 0.614
25.0 0.627 | 0.620 | 0.614 | 0.609 | 0.604

methods to obtain performance estimates. Ramizali [21] present a framework for performability analysis
of messaging systems in middleware. Aldetcl.[1] develop Colored Petri Net (CPN) models for different
types of coupling between the application components attdtive underlying middleware. Kahkipuro [12]
propose a multi-layer performance modeling framework aseUML and queuing networks for CORBA-
based systems. The methodology, however, is for genericB2atsed client/server systems rather than
for systems built using design patterns.

With the growing complexity of software systems and incig@@ressure to reduce the time to market,
there is a significant push towards composing large systsing teusable building blocks or patterns [3, 25].
Performance analysis of such a composed system requiresdsraddhe individual building blocks and their
composition. In this paper we have developed a performaramehof the Proactor pattern. Although the
model was developed to analyze the performance of an asymmis Web server, it is generic and could
be used for the performance analysis of any Proactor-basdns. Our previous work has developed an
analytical model of the Reactor pattern [5].

Web server performance analysis can also be broadly ckssifto measurement-based and model-
based approaches. The former approach measures the safeemance using benchmarks [9, 8, 10]. Many
model-based approaches use queuing networks to analyperpance [27, 6, 2, 17, 28, 13]. However, most
of these techniques are for Web servers that use synchraneabanisms for concurrency, whereas the

model presented in this paper is applicable for the anabfsi®m asynchronous Web server.

7 Conclusions and futureresearch

In this paper we presented a model-based approach for tiygnetene performance analysis of a Web server

which implements concurrent processing capabilitiesgugtile asynchronous mechanisms encapsulated in

20

the Proactor pattern. We represented the characteridtibe &roactor pattern that are relevant from a per-
formance perspective in the form of a queuing model. We thresgmted a model decomposition strategy
to enable the application of the model in practical scesarie illustrated the use of the model to guide
configuration and provisioning decisions with several eglasi Our future research consists of developing
an analytical/numerical approach for the performanceyaismbf the Proactor pattern. Developing perfor-

mance models for other patterns such as the Active objettasaatopic of future research.

Acknowledgments

This research was supported by the following grants froniNtonal Science Foundation (NSF): Univ. of
Connecticut (CNS-0406376 and CNS-SMA-0509271), Vandtddpiiv. (CNS-SMA-0509296) and Univ. of
Alabama at Birmingham (CNS-SMA-0509342).

References

[1] L. Aldred, W. M. P. van der Aalst, M. Dumas, and A. H. M. teofdtede. “On the notion of coupling
in communication middleware”. IRroc. of Intl. Symposium on Distributed Objects and Appiaes

(DOA), pages 1015-1033, Agia Napa, Cyprus, 2005.

[2] J. Cao, M. Andersson, C. Nyberg, and M. Kihl. Web serverfgrenance modeling using an
M/G/1/K*PS queue. Irn0th International Conference on Telecommunications 03)[pages 1501—
1506, 2003.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissid&esign Patterns: Elements of Reusable Object-
Oriented SoftwareAddison-Wesley, Reading, MA, 1995.

[4] A. Gokhale and D. C. Schmidt. “Measuring and optimizinQRBA latency and scalability over high-
speed networks”IEEE Trans. on Computerg7(4), April 1998.

[5] S. Gokhale, A. Gokhale, and J. Gray. “Response time aigbf an event demultiplexing pattern in
middleware for network services”. Froc. of IEEE Global Telecommunications Conference (GLOBE

COM), Symposium on Advances for Networks and InteB8tet. ouis, MO, November 2005.

[6] J. Heidemann, K. Obraczka, and J. Touch. Modeling théopaiance of HTTP over several transport
protocols.IEEE/ACM Transactions on Networking(5):616—-630, 1997.

[7] C. Hirel, B. Tuffin, and K. S. Trivedi. “SPNP: Stochastietd Nets. Version 6.0".Lecture Notes in
Computer Science 1788000.

21

[8] J. C. Hu, I. Pyarali, and D. C. Schmidt. “Measuring the anpof event dispatching and concurrency
models on Web server performance over high-speed netwdrk&roc. of GLOBECOMpages 1024—
1031, 1997.

[9] Y. Hu, A. Nanda, and Q. Yang. Measurement, analysis amdopeance improvement of the
Apache Web server. ItEEE International Performance, Computing and Commutidcet Confer-

ence (IPCCC'99)pages 261-267, 1999.

[10] A. lyengar, J. Challenger, D. Dias, and P. Dantzig. Hugnformance Web site design techniques.
IEEE Internet Computingd(2):17-26, March 2000.

[11] M. Juric, I. Rozman, M. Hericko, and T. Domajnko. “CORBRMI and RMI-IIOP performance
analysis and optimization”. IRroc. of SCI 2000pages 582-587, Orlando, FL, July 2000.

[12] P. Kahkipuro.“Performance modeling framework for CORBA based distriuggstems.” PhD thesis,
Dept. of Computer Science, Univ. of Helsinki, Helsinki, kind, May 2000.

[13] K. Kant and C. R. M. Sundaram. A server performance mdaektatic Web workloads. IhEEE
International Symposium on Performance Analysis of Systard Software (ISPASS'Q@ages 201—
206, 2000.

[14] Y. Ling, T. Mullen, and X. Lin. Analysis of. optimal theel pool size ACM SIGOPS Operating System
Review 34(2):42-55, 2000.

[15] Apache Software Foundation. Apache HTTP server ptojetct p: / / ht t pd. apache. org/ .
[16] D. Menascé. Web server software architectliEE Internet Computing7(6):78-81, 2003.

[17] R. Nossenson and H. Attiya. The N-burst/G/1 model widavy-tailed service-times distribution.
In Proceedings of 12th Annual International Symposium on NagleAnalysis, and Simulation of

Computer and Telecommunications Systems (MASCOT$@ges 131-138, 2004.

[18] O. Othman, J. Balasubramanian, and D. C. Schmidt. tPerdnce evaluation of an adaptive middle-
ware load balancing and monitoring service” Aroc. of the 24th IEEE Intl. Conference on Distributed

Computing Systempages 135-146, Tokyo, Japan, May 2004.
[19] J. L. PetersonPetri Net Theory and the Modeling of Systemsgentice-Hall, 1981.

[20] A. Puliafito, M. Telek, and K. S. Trivedi. “The evolutioof stochastic Petri nets”. IRroc. of World
Congress on Systems Simulatipages 3—15, Singapore, September 1997.

22

[21] S. Ramani, K. Goseva-Popstojanova, and K. S. Trivefliframework for performability modeling of
messaging services in distributed systems”Piac. of 8th IEEE Intl. Conference on Engineering of

Complex Computer Systems (ICECCS ®&Egenbelt, MD, December 2002.
[22] J. Richter.Advanced Windows (3rd EditionMicrosoft Press, 1996.
[23] J. Richter.Programming Server-Side Applications for Microsoft Wiwd@®000 Microsoft Press, 2000.

[24] R. A. Sahner, K. S. Trivedi, and A. Puliafité?erformance and Reliability Analysis of Computer Sys-
tems: An Example-Based Approach Using the SHARPE Softwakage Kluwer Academic Publish-
ers, Boston, 1996.

[25] D. C. Schmidt, M. Stal, H. Rohnert, and F. BuschmaRattern-Oriented Software Architecture: Pat-
terns for Concurrent and Networked Objects, Volum&\aey & Sons, New York, 2000.

[26] H. Schwetman. “CSIM reference manual (revision 16)echnical Report ACA-ST-252-87, Micro-

electronics and Computer Technology Corp., Austin, TX.

[27] L. Slothouber. A model of Web server performance.Phoceedings of the Fifth International World

Wide Web Conferenc&996.

[28] M. S. Squillante, D. D. Yao, and L. Zhang. Web traffic miag and Web server performance analysis.
In Proceedings of the 38th Conference on Decision and Cqrgagles 4432—-4439, 1999.

[29] K. S. Trivedi. Probability and Statistics with Reliability, Queuing and@puter Science Applications
John Wiley, 2001.

[30] P. Tuma and A. Buble. “Overview of the CORBA performahcén Proc. of the 2002 EurOpen CZ
ConferenceSeptember 2002.

[31] R.D.vander Mei, R. Hariharan, and P. Reeser. Web spedormance modelinglelecommunication

Systems16(3-4):361-378, 2001.

23

