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Abstract

In distributed real-time and embedded (DRE) systems, the composition of system-of-
systems leads to a new range of faults that manifest at different granularities for which
no statically defined fault tolerance scheme applies. Thus, dynamic and adaptive fault
tolerance mechanisms are needed which must be able to execute within the resource
constraints of DRE systems without compromising the safety and timeliness of existing
real-time tasks in the individual subsystems. Software Health Management (SHM) is
a promising technique for DRE systems to recover from failures predictively, however,
since current SHM approaches can deal with component failures known at design-time
only and do not consider resource utilizations and availability, their use in DRE systems
result in sub-optimal failure adaptations. On the other hand, Adaptive Fault Tolerance
(AFT) approaches are known to provide dynamic fault tolerance, however, they require
additional resources, which may not be available in resource-constrained DRE systems.
To realize the benefits of SHM and AFT in a way that is resource-aware and preserves the
real-timeliness of existing applications, this paper describes a middleware solution called
Safe Middleware Adaptation for Real-Time Fault Tolerance (SafeMAT), which oppor-
tunistically leverages the available slack in the over-provisioned resources of individual
subsystems. SafeMAT comprises three primary artifacts: (1) a flexible and configurable
distributed, runtime resource monitoring framework that can pinpoint in real-time the
available slack in the system that is used to execute the dynamic and adaptive fault
tolerance decisions; (2) a safe and resource-aware dynamic failure adaptation algorithm
that enables efficient recovery from different granularities of failures within the available
slack in the execution schedule while ensuring real-time constraints are not violated and
resources are not overloaded; and (3) a framework that can be used for the dual purposes
of identifying the slack in the system and also for empirically validating the correctness
of the dynamic mechanisms and the safety of the DRE system. Experimental results
evaluating SafeMAT on an avionics application indicates that SafeMAT incurs only 9-
15% runtime failover and 2-6% processor utilization overheads thereby providing safe
and predictable failure adaptability in real-time.
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1. Introduction

Applications found in domains such as avionics, automotive, and industrial automa-
tion are safety-critical, which calls for over-provisioning of resources to handle worst-case
scenarios, such as failures. Most often these systems are closed in nature, i.e., task
and workloads are fixed, with precisely specified hard real-time quality of service (QoS)
requirements for which the algorithms and implementations for system schedulability,
resource allocation, and system reliability undergo rigorous validation and verification.
Recent trends, however, indicate that these individual safety-critical systems are increas-
ingly being interconnected to become part of larger systems. For example, intelligent
transportation systems are enabling automobiles to be connected to each other as well as
to a variety of infrastructure elements. In this paper we refer to these systems of systems
as distributed real-time and embedded (DRE) systems. The realization of DRE systems
gives rise to various interdependencies between individual subsystems. Moreover, the de-
gree of uncertainty in the overall system increases due to the induced interdependencies
between the individual subsystems. A key class of such uncertainties includes a whole
new set of faults that were not considered earlier in the design of individual subsystems of
the DRE system, which must be now be handled to maintain the mission-critical nature.

Unfortunately, the over-provisioning of resources in the individual subsystems, which
was a necessity to handle worst-case scenarios, becomes detrimental to realizing reliable
DRE systems because fault tolerance solutions to handle the new class of faults will need
additional resources. However, the individual subsystems do not have the flexibility to
add new resources or modify the real-time schedules of their tasks. Redesigning and
reimplementing the deployed individual systems is not an option. Thus, the only feasible
way to designing fault-tolerance mechanisms for DRE systems is to opportunistically
utilize available resources without compromising the real-time properties of the individual
subsystems. Opportunistic use of resources is inherently a runtime propery, which implies
the need to identify unused resources at runtime that can be used for DRE system
fault tolerance. The key insight we leverage in our work hinges on the existence of a
significant slack, which we hypothesize will exist to varying degrees due to the over-
provisioned nature of individual subsystems. The key challenge lies in identifying this
slack at runtime in a timely manner and making effective use of it.

The next we face is identifying the right fault tolerance mechanisms for DRE systems
that can execute effectively when resources are used opportunistically. Software Health
Management (SHM) [1] is a technique which applies principles from system health man-
agement to software intensive systems that are ubiquitous in human society, including
several safety-critical systems as shown in [2]. Recently, these techniques have been ap-
plied using a model-based approach [2] and a follow on work that included a goal-based
deliberative search reasoner was presented in [3]. SHM is a promising approach to pro-
viding fault-tolerance in real-time systems because it not only provides for fault detection
and recovery but also effective means for fault diagnostics and reasoning, which can help
make effective and predictable fault mitigation and recovery decisions.
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However, there exist some limitations to existing work in SHM in directly applying
these techniques to DRE systems. First, the earlier works have focused primarily on
diagnosis of the faulty components and recovering the functionality of the system. Sec-
ond, they handled only those errors in a component that were known a priori for which
predefined failover strategies were designed. Third, these techniques were not concerned
with system resource utilizations and resource availability during failover. Thus, despite
the promise, naively using SHM for DRE systems fault tolerance is likely to result in
suboptimal runtime failure adaptations while also impacting resource utilizations.

Adaptive Fault Tolerance (AFT) [4] is known to improve the overall reliability and
resource utilizations. However, the technique has been applied for systems with soft real-
time requirements. Moreover, since these techniques often require additional resources to
perform failure recovery, if applied naively to DRE systems, they can consume precious
time and resources from the hard real-time schedules of individual subsystems. Yet,
opportunistic use of resources call for adaptive mechanisms in DRE systems fault toler-
ance. To overcome the limitations highlighted above when considering SHM and AFT
in isolation while still availing of their benefits and maintaining the timeliness and safety
of the real-time applications, this paper presents a middleware-based fault-tolerance so-
lution called Safe Middleware Adaptation for Real-Time Fault Tolerance (SafeMAT).
Our research on SafeMAT makes the following contributions:

A Distributed Resource Monitoring (DRM) framework that provides highly con-
figurable, fine-grained, distributed and hierarchical monitoring of system resources, such
as processor, process, component and thread utilizations, that enables the selection of
the best candidates to failover after failures. The DRM framework not only aids in the
profiling and tuning of the system execution schedules but also provides a key component
of the adaptive failure management to handle failures at runtime.

An Adaptive Failure Management (AFM) framework that leverages the DRM
framework to augment software health management mechanisms to provide an adaptive
failure management capability. The AFM framework provides different cooperating run-
time mechanisms, such as safe failure isolation and hierarchical failover algorithms, to
enable the real-time applications to dynamically respond and adapt to system failures
while ensuring that the system timeliness requirements are still adhered to.

A Performance Metrics Evaluation (PME) framework that can profile the ap-
plication execution by leveraging the DRM framework to determine the actual resource
utilizations of various component tasks within their allocated scheduling quantum in the
system execution period. This forms the basis for determining the existing slack in the
system and leveraging it to safely provision and ensure predictability of the dynamic
failure adaptation techniques provided by the AFT framework in SafeMAT. The PME
framework also provides a tool to system integrators using which they can validate and
tune the application component allocations and reliability to ensure safe provisioning of
the necessary runtime failure adaptation mechanisms and additional new functionalities.

Paper Organization - The rest of the paper is organized as follows: Section 2 elicits

the challenges for safe middleware-based adaptation; Section 3 presents the SafeMAT

architecture and algorithms; Section 4 describes details on SafeMAT implementation;

Section 5 empirically validates our approach in terms of minimal failover delays, and

runtime overhead in the context of a representative DRE avionics case study; Section 6

compares our approach to related work in the area of real-time and fault tolerance; and
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finally Section 7 provides concluding remarks identifying lessons learned and scope for
improvements.

2. DRE System Model and Research Challenges

This section brings out the challenges that motivate the need for the primary vectors
of the SafeMAT middleware presented in this paper. Before delving into the challenges,
we present a model of the system and details of the underlying platform upon which we
build our solution for this research.

2.1. System Model and Platform Assumptions

Our research focuses on a class of DRE systems where the system workloads and
the number of tasks in the individual subsystems that make up the DRE system are
known a priori. Examples of individual subsystems that make up DRE systems include
tracking and sensing applications found in the avionics domain, the automobile system
found in the automotive domain (e.g., reacting to abnormalities sensed by tires), con-
veyors systems in industrial automation (e.g., periodic monitoring and relaying of health
of physical devices to operator consoles), or resource management in the software infras-
tructure for shipboard computing domain. These systems impose stringent constraints
on the resources that are available to support the expected workloads and tasks. For this
paper we focus on the CPU resource only.

Our research assumes that the individual subsystems of the DRE system use the
ARINC-653 [5] model in their design and implementation because of its support for
temporal and spatial isolation, which are key requirements for real-time systems. ARINC-
653 uses fixed-priority preemptive scheduling where the platform is specified in terms
of modules that are allocated per processor which in turn are composed of one or more
partitions that are allocated as tasks. Each partition has its own dedicated memory space
and time quantum to execute at the highest priority such that it gets preempted only
when its allocated time quantum expires. Multiple components or subtasks can execute
through multi-tasking within each quantum. For evaluating our design of SafeMAT and
experimentation, we have leveraged an emulation [6] of the ARINC-653 specification
described next.?

2.2. Research Challenges

Section 1 highlighted the need for resource-aware and safe adaptive fault tolerance for
DRE systems that also incorporated principles of software health management. Realizing
these objectives is fraught with a number of challenges, which are presented below. The
three primary vectors of our SafeMAT solution stem from the need to resolve these
challenges.

Challenge 1: Identifying the Opportunities for Slack in the DRE System - As
noted in Section 1, DRE systems are composed often from individual legacy subsystems.
Many of these subsystems comprise real-time tasks with strict deadlines on their execu-
tion times. To ensure the safety- and mission-criticality of these subsystems, they are

3We used the emulation environment since it was readily available to us, and has been used previously
to demonstrate key ideas of software health management for avionics applications.
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configured with predefined execution schedules computed offline that are fixed for their
execution lifetime once they are deployed in the field. This ahead-of-time system plan-
ning ensures that such subsystems will behave deterministically in terms of their expected
behavior and their provided services, and the critical tasks with hard real-time require-
ments will always satisfy their deadlines. To achieve this predictability, these subsystems
are over-provisioned in terms of the allocated time and required capacity of resources.
Naturally, for most of the time many of these resources remain under-utilized and hence
provide an immediate opportunity to host the fault tolerance mechanisms needed for
DRE systems. However, due to the dynamic nature of faults, the amount of slack avail-
able in each subsystem may vary at runtime thereby rendering any offline computation
of slack for DRE fault tolerance useless. Therefore, there is a need to obtain a runtime
snapshot of available slack in the system that then will enable the runtime execution of
fault tolerance mechanisms for DRE systems. Such a monitoring capability must provide
real-time information while at the same time not impose any significant overhead on the
system. Section 3.4 presents our solution to a scalable Dynamic Resource Monitoring
(DRM) capability in SafeMAT. In the context of our ARINC653-based scheduling of
the DRE systems, DRM is not only able to obtain the actual CPU utilizations of the
partition tasks but also of the subtasks (i.e., application components) that are allocated
within the partition.

Challenge 2: Designing Safe and Predictable Dynamic Failure Adaptation -
Failures in DRE systems may manifest in different types and granularities. For example,
some component failures may be logical or critical. The granularity of failures could be
a component, group of components (subsystem), processes or processors. Moreover, the
induced interdependencies in DRE systems due to composition of individual subsystems
may lead to cascading failures of the dependent components (domino effect). Such an
effect has the potential to increased deadline violations and over-utilization of system
resources. Statically defined fault tolerance schemes will not work to completely handle
these kinds of failures. Dynamic failure adaptation techniques can provide better ca-
pabilities to tolerate different kinds and granularities of failures, and can achieve better
resource utilizations. However, given the criticality of hard real-time system execution,
the failure adaptations that can be performed need to be safe and predictable. By utiliz-
ing the slack (which is obtained using the DRM capabilities), we can provision dynamic
fault adaptation, however, we must ensure that the execution deadlines are not violated
while achieving such runtime adaptations. Consequently, it is necessary to reduce the
amount of recovery, which calls for failure detection and mitigation mechanisms that are
fast and lightweight in terms of their space and runtime overhead as well are adaptive to
the failure type and granularity, and component replica placements. Section 3.5 describes
the adaptive fault tolerance mechanism supported by SafeMAT.

Challenge 3: Validating System Safety in the Context of DRE System Fault
Tolerance - Although it may be feasible to design dynamic fault tolerance techniques for
DRE systems by leveraging the slack, there is no easy approach to validate the safety and
correctness of the resulting system and it is difficult to develop a mathematical proof of
correctness of the system due to its dynamic nature. Thus, there is a need for a scalable
and accurate capability that can validate the the overall DRE system for safety and
predictability. SafeMAT provides a framework to profile a DRE system to validate if the
real-time properties are met in the context of faults that can be artificially injected into
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the system. Section 3.6 describes such a framework that provides empirical validation of
the system safety and predictability.

The rest of this paper presents our SafeMAT middleware that resolves these chal-
lenges.

3. Design and Implementation of SafeMAT

We have designed the Safe Middleware Adaptation for Real-Time Fault Tolerance
(SafeMAT) middleware to safely provision adaptive failure mitigation and recovery mech-
anisms in DRE systems in a way that is resource-aware and leverages the benefits of soft-
ware health management. SafeMAT addresses the three key research challenges outlined
in Section 2.2. This section first describes the underlying ARINC-653 Component Model
middleware upon which SafeMAT is designed followed by a detailed design description
of SafeMAT.

3.1. The ARINC Component Model (ACM) Framework

The ACM framework provides system-level health management by leveraging various
failure reasoning techniques that are based on the notion of interacting components. We
provide an overview of the different parts of the toolkit, which is necessary to understand
the design and evaluation of SafeMAT.

3.1.1. The ARINC-653 Component Model (ACM)

ACM combines the CORBA Component Model [7] with ARINC-653 [5]. ACM com-
ponents interact with each other via well-defined patterns, facilitated by ports: asyn-
chronous connections (event publishers & consumers) and/or synchronous provided /re-
quired interfaces (facets/receptacles). ACM allows the developers to group a number of
ARINC-653 processes into a single reusable component. Since this framework is geared
for hard real-time systems, it is required that each port is statically allocated to an
ARINC-653 process whereas every method of a facet interface is allocated to a separate
operating system Environmentprocess.

3.1.2. The ACM Modeling Environment

The ACM modeling environment captures (1) the component’s interaction ports,
conditions associated with the ports, (2) the real-time properties (priority, periodicity,
deadline, worst case execution time etc.) and resource requirements (CPU, stack size)
of the ports and the component, the data and control flow within the component, and
(optionally) a local component-level health management strategy (CLHM) part of a two-
level Health Management [8] using a domain-specific modeling language and associated
tools. The modeling tool allows the specification of the platform in terms of the mod-
ules (processors) and the partitions (processes) within each module. The integrator can
specify the deployment of each component (group of threads) into an appropriate parti-
tion such that the temporal partitioning concerns are satisfied. Lastly, the integrator can
specify whether a Software Health Management (SHM) module should be generated for
the assembly or not. Tools included with the modeling environment generate glue code
that is responsible for implementing the ports, binding each port with an ARINC-653
process and the integration code and configuration files.

6



3.1.3. The ACM Middleware

The ACM middleware shown in Figure 1 is composed of layers that are instantiated
and configured for runtime. These layers are described next.

System Module Manager

Module
Scheduler

Alarm q
| TRt > Diagnoser — DR

System-Level Health Manager

Module Manager 1 Module Manager N

Partition Partition Module Partition Partition Module
Creator Scheduler Initializer Creator Scheduler Initializer

et CLHM Pa_r_tit_ion C CLHM P?r'tit'ion Components
Initializer
Partitions Partitions
Module 1 Module N

Figure 1: The ACM Middleware

The Module Manager (MM) is the main controller responsible for providing
temporal partitioning among partitions (i.e., Linux processes). For this purpose, each
module is bound to a single core of the host processor. The module manager is configured
with a fixed cyclic schedule computed from the specified partition periods and durations.
It is specified as offsets from the start of the hyper period, duration and the partition to
run in that window. Once configured and validated, the module manager implements the
schedule using the SCHED_FIFQ policy of the Linux kernel and manages the execution and
preemption of the partitions. The module manager is also responsible for transferring
the inter-partition messages across the configured channels. Figure 2 shows the example
execution time line of a module with two partitions and a hyper period of 2 seconds.
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Stop Part1 Stop Part2
Start Part2 Start Part1
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PARTITION_NAME = Part1 /*Period=0.001*/
PARTITION_NAME = Part2 /*Period=0.001*/
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0,0.001 /*offset,duration*/

Figure 2: A module configuration and the time line of events as they occur

7



In case of a distributed system, there can be multiple module managers each bound
to a processor core that are controlled hierarchically by a system level module manager.

The APEX Partition Scheduler is instantiated for each partition using the APEX
services emulation library that implements a priority-driven preemptive scheduling al-
gorithm using Linux SCHED_FIFO scheduler. It initializes and schedules the ARINC-653
processes inside the partition based on their periodicity and priority. It ensures that
all processes, periodic as well as aperiodic, finish their execution within the specified
deadline.

TAO Object Request Broker (ORB) [9] is an implementation of the real-time
CORBA standard. The ORB thread is executed as an aperiodic ARINC-653 process
within its respective partition. For controllability, the ORB runs at a lower priority than
the partition scheduler does. Since ARINC does not allow dynamic creation of processes
at run-time, the ORB is configured to use a predefined number of worker threads (i.e.
ARINC-653 Processes) that are created during initialization.

Component and Process Layer is a layer that provides the glue code, generated
from the definitions of components and their interfaces specified in the modeling envi-
ronment in order to map the concepts of component model into the concepts exposed by
the ARINC Emulator layer and the TAO ORB layer. The system developer provides the
functional code. This layer also consists of CLHMs that are special processes that can
take mitigation actions, if required.

3.1.4. Software Health Management (SHM) in ACM

Software Health Management (SHM) in ACM happens at two levels as shown in Fig-
ure 3. The first level of protection is provided by a component-level health management,
(CLHM) strategy, which is implemented in all components. It provides a localized timed
state machine with state transitions triggered either by a local anomaly or by time-
outs, and actions that perform the local mitigation. The System-Level Health Manager
(SLHM) is at the second, top level in our health management strategy. The deploy-
ment of the SLHM requires the addition of three special SLHM components to an ACM
assembly: the Alarm Aggregator, the Diagnosis Engine, and the Deliberative Reasoner.

The Alarm Aggregator is responsible for collecting and aggregating inputs from the
component-level health managers (local alarms and the corresponding mitigation ac-
tions). This information is collected using a moving window, which is two hyperperiods
long. The events are sorted based on their time of occurrence and then sent to the Diag-
nosis Engine. The Diagnosis Engine is initialized by a Timed Failure Propagation Graph
(TFPG) [10] model that captures the failure-modes, discrepancies (possibly indicated by
the alarms), and the failure propagations from failure modes to discrepancies and from
discrepancies to other discrepancies, across the entire system [2, 11]. The reasoner uses
this model to isolate the most plausible failure source: a software component that could
explain the observations, i.e., the alarms triggered and the CLHM commands issued.
The result, i.e., the list of faulty components is reported to the next component that
provides the system level mitigation: the Deliberative Reasoner.

3.1.5. Fault Model and Fault Handling in ACM
An ACM component can be in one of the following three states: active (where
all ports are operational), inactive (where none of the ports are operational) and

semi-active (where only the consumer and receptacle ports are operational, while the
8
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Figure 3: ACM Software Health Management Architecture.

publisher and facet ports are disabled). We focus on fail-stop failures within hard DRE
systems that prevent clients from accessing the services provided by hosted applications.
Failures can be masked by recovering and failing over to redundant backup replica com-
ponents. Due to hard real-time constraints and to avoid state synchronization overhead,
we use semi-active replication [12] to recover from fail-stop processor failures. In semi-
active replication, one replica—called the primary—handles all client requests in active
state. Backup replicas are in semi-active state where they process client’s requests but
do not produce any output.

ACM (and hence SafeMAT) considers two main sources of failure for each component
port (a) logical failure resulting from the internal software, concurrency (deadline viola-
tions due to lock timeouts) and environmental faults, and latent error in the developer
code to implement the operation associated with the port or (b) a critical failure, such
as process/processor failures, or undetected component failures. By convention, to re-
cover from logical failures, we fail over to similar backup replicas with identical interfaces
but alternate implementations (from different vendors/developers) with the hypothesis
that the same logical error may not exist in an alternate implementation. In case of
critical failures, we fail over to identical backup replicas or to alternate backup replicas
if available. Also by convention, alternate backup replicas can be deployed within the
same partition whereas identical backup replicas must always be deployed to different
partitions in the same module or different modules of ACM (and hence SafeMAT).

3.2. SafeMAT Architecture

Figure 4 illustrates the architectural components of SafeMAT and their interactions.
It depicts the underlying ACM middleware solution upon which SafeMAT is designed
and implemented. The design of SafeMAT is driven by a holistic approach to answering
the following questions on fault tolerance for DRE systems:
1. How to be resource-aware? To answer this question requires fine-grained infor-
mation on the resource utilization in the system, which can then be used in the adaptive
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Figure 4: SafeMAT Architecture

decisions to deal with faults. The Distributed Resource Monitoring (DRM) framework
in SafeMAT described in Section 3.4 provides this capability.

2. How to deal with failures in the system of systems context by being aware
of resources? To answer this question requires a dynamic fault tolerance capability that
can be adaptive to account for resource availabilities. The Adaptive Failure Management
(AFM) framework in SafeMAT described in Section 3.5 provides this capability.

3. How to ensure that the solutions do not compromise the safety and time-
liness of existing real-time systems? To answer this question requires a capability
to validate that the dynamic and adaptive fault tolerance mechanisms will not compro-
mise on the safety and timeliness of the already deployed systems. The Performance
Metrics Evaluation (PME) framework in SafeMAT described in Section 3.6 provides this
capability.

SafeMAT extensions to ACM have been architected in the form of a hierarchy of
cooperating components. As shown in Figure 4, at the topmost level, SafeMAT extends
ACM’s System Module Manager with a System Resource Monitor (sRM) and failure
handlers. Moreover, it introduces the Resource-Aware Deliberative Reasoner (RADaR)
to ACM’s SHLM. At the second level are the different Module Managers supplied by
the original ACM that are deployed on each computing processor core or machine, each
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hosting a Module Resource Monitor (mRM), which are newly introduced in SafeMAT.
At the third level, SafeMAT introduces new architectural elements to ACM in the form
of different Partition Managers that are responsible for managing each partition, each
hosting a Partition Resource Monitor (pRM). The design details of the partition manager
are shown in Figure 5.
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Figure 5: Partition Manager

Each of the managers include Failure Handlers to detect the failures in their respec-
tive partitions or modules and notifying them to the RADaR. The logical failures in
components are notified by the respective CLHMs (from the original ACM framework)
residing in each application component. The different monitors developed for SafeMAT
form the core of the DRM framework whereas the RADaR along with the different Failure
Handlers form the core of the AFM framework in SafeMAT. SafeMAT extends ACM by
providing an additional level of lower-level fault mitigation in the form of a partition man-
ager and its resource monitor (pRM) (see Section 3.3). Doing so helps to isolate failures
in partitions and mitigate partition faults by taking actions at the partition-level itself
instead of involving the module manager. The following sections provide justification for
these new architectural entities supplied by SafeMAT.

3.3. Isolating the Impact of Failed Partitions

SafeMAT extends ACM by providing an additional level of lower-level fault mitiga-
tion in the form of a partition manager and its resource monitor (pRM). As with any
multiprocess system, processes can fail due to external factors such as driver faults, buffer
overruns, segmentation faults, etc. It is necessary to enhance the safety of the real-time
application by preventing failed partition processes from affecting the real-time sched-
ule. The Module Manager handles the scheduling and execution of the partitions. Thus,
whenever a partition process fails, it needs to ensure a quick recovery of that partition in
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a way that will not affect the real-time application schedule. However, in order to achieve
this, the Module Manager needs to stop its scheduler and focus on restarting and initial-
izing the partition. So in order to detect and isolate the effect of the partition failure and
relieve the Module Manager from handling the partition recovery, we have developed a
Partition Manager as shown in the Figure 5. The Partition Manager is instantiated for
each partition and is responsible for handling the execution and failure management of
each individual partitions. Partition Manager coordinates with the RADaR described
in Section 3.5 for managing the partition failures and their recovery.

Algorithm 1 Algorithm for the Partition Manager

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:

27:
28:

29:
30:

31:
32:
33:

procedure PARTITION MANAGER(P) > Set of all partitions.
Set scheduling policy to SCHED _FIFO
Set CPU affinity to a single core.
for channel € CHANNELS do
for pe P do
if SRC(channel) € SRC _SP(p) or SRC(channel) € SRC_QP(p) then
p.SRCCHAN N EL.append(channel)
end if
end for
end for
for p € P do
OFFSETS.add(OF FSET(p), p)
end for
Sort OF FSETS in ascending order based on the time value.
for p e P do
childprocess =fork(EX ECUT ABLE(p))
Wait on handshake from childprocess subject to a timeout
if timeout then
Shutdown Module
Exit
end if
end for
for entry in OFFSETS do
T1 < currenttime
T2 <~ T1+ DURATION (entry.Partition)
Send SIGCONT to EXECUTABLE(entry.Partition) > SIGCONT is a POSIX
signal
clock _nanosleep(T2) > Use a high-resolution clock such as clock real-time in Linux.
Send SIGSTOP to EXECUTABLE((entry.Partition) > SIGSTOP is a POSIX
signal
for c € entry.Partition. SRCCHANNEL() do
c.fire() > Move message from source port of the channel to all the destination
ports
end for
end for
end procedure

Algorithm 1 illustrates the responsibilities of the partition manager. Whenever, it de-

tects a partition failure, it restarts the partitions if instructed by the RADaR. Moreover,
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it also hosts the pRM to enable computation the resource utilization of the partition
process and its constituent component threads. It also ensures that if the partition is
restarted then it does not need to re-perform the synchronization with the Module Man-
ager in order to save time and be ready and initialized before its next scheduling quantum
arrives.

3.4. Distributed Resource Monitoring: the DRM Framework

The Distributed Resource Monitoring (DRM) framework resolves Challenge 1 of Sec-
tion 2 by providing a highly configurable and flexible distributed, hierarchical framework
for monitoring the health and utilizations of system resources at various granularities,
such as processor, process, component and thread. The framework comprises a dis-
tributed hierarchical network of a single System Resource Monitor (sRM) controlling
multiple distributed Module Resource Monitors (mRM) that in turn control multiple
Partition Resource Monitors (pRM) local to them in client-server configurations. The
sRM resides in the system module whereas the mRMs are always deployed within the
Module Managers and the pRMs are deployed within the individual partitions and their
Partition Managers. The pRMs are of two types depending on their configured modes (a)
pMRc, which are applicable in the COMPUTE mode, i.e., during the period of ongoing
computations, and (b) pMRn, which are applicable in the NOTIFY mode, i.e., during
the period of ongoing notifications.

3.4.1. Configurability in the DRM

It is possible to configure the DRM framework using different strategies, depending
on the overall system configuration and amount of system resources available. These
strategies include reactive and periodic monitoring strategies that can be used in
conjunction with different granularities of monitoring system resources ranging from
processes to threads. The reactive monitoring strategy is the least resource consuming
since the CPU utilizations are computed only when instructed by the RADaR (in case
of a failure). The periodic monitoring strategy is the most resource consuming since the
monitors compute utilizations periodically and keep the historic record of the utilizations
to provide a better prediction regarding the utility of the resources.

In the periodic strategy, the mRM periodically sends utilizations of all components
to the sSRM so that the information is readily available but may not be the most current
one. The periodic strategy is also useful for profiling the resource utilizations during
the profiling and tuning of the system execution characteristics explained in Section 3.6.
Finally, it is also possible to configure the DRM framework to supply only the utilizations
of the specific entities that RADaR is interested in. Table 1 shows the different valid
configurations at the different levels of DRM.

Table 1: DRM Configuration and Compatible Strategies

sRM mRM PRM pPRM

(Partition Manager) (Partition)

ONDEMAND REACTIVE REACTIVE, COMPUTE NOTIFY
PERIODIC REACTIVE REACTIVE, COMPUTE NOTIFY
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3.4.2. Discovering Resource Allocations

The DRM framework is also capable of discovering the deployment and allocations of
components to specific partitions and modules at runtime thereby obviating the need to
configure the framework manually and enabling fast monitoring. It infers the assignments
of the different subtasks to their components as well as allocations of components to their
partitions when the monitors initialize their state. The pRMn runs within the partition
in the NOTIFY mode where it sends the mappings of the deployed components and their
subtasks but does not compute the resource utilizations. These mappings are collated
by the mRM and sent to the sSRM which maintains the global allocations of subtasks to
components, deployment of components to partitions, and the assignments of partitions
to their modules. The pRMc computes the resource utilizations and is configured within
the partition in the COMPUTE mode. This capability enables the application of the
DRM framework more generally to other types of systems where the allocations and
deployments can change at runtime. Once the component deployment and allocations
are learned by the sRM, it updates them with the primary-backup information for the
components, component, groups, and modules.

3.4.8. Resource Liveness Monitoring: Quvercoming Single Point of Failures

The DRM framework has been additionally entrusted with monitoring the health of
its own monitors by periodically making the monitors in the lower level send their health
status to the upper level monitors. This monitoring capability is auxiliary to the existing
signal handlers that also detect partition and partition manager failures thereby creating
a more robust dual health monitoring capability. Thus, if the health status beacon is
not received from the pRMn and pRMc by the Module Manager and Partition Manager,
then it is assumed that the Partition (process), and the Partition Manager (process)
have crashed, respectively. Similarly, it is assumed the module (processor/core) has
crashed if the mRM has not reported its health status beacon. Every time a failure is
detected by the parent entity, the failure status is sent to the RADaR. Thus, the major
enhancement of SafeMAT over ACM is that while the SHM framework in ACM can only
detect logical component failures, the DRM framework in SafeMAT can detect critical
module, partition and component failures also.

3.5. Resource-Aware Adaptive Failure Mitigation: the AFM Framework

To perform resource-aware failure adaptation and to address Challenge 2 of Section 2,
we have developed the Adaptive Failure Mitigation (AFM) framework that leverages the
DRM framework and augments the ACM-SHM framework through different cooperating
runtime mechanisms, such as hierarchical failover and safe failure isolation. The AFM
is designed as a collection of different components including the Failure Handlers and
RADaR that integrate the Hierarchical Failure Adaptation (HFA) algorithm we devel-
oped with the Deliberative Reasoner (DR) [3] of the SLHM. Figure 6 shows the basic
flowchart for the HFA algorithm. The details of the algorithm are provided below. The
Failure Handlers are responsible for detecting process and processor failures and the si-
multaneous logical and critical component failures that have occurred but not reported to
the HFA. The Failure Handlers along with the DRM framework and the HFA algorithm
work together to provide quick and efficient failure adaptation at runtime.
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Figure 6: The HFA Algorithm

3.5.1. Fuailover Strategies

The type of failover strategy employed by the runtime failure adaptation mechanism
is highly dependent on the failure type (i.e., logical or critical), the failure granularity
(e.g., component, subsystem, partition or module), and the primary-backup deployment
topology. The primaries can constitute individual components or groups of components
(also called subsystems) and also the modules themselves. The ACM modeling paradigm
allows various deployment scenarios for the primary components and their backups as
shown in the Figure 7.

For instance, the application component primaries and their corresponding backups
can be deployed within the same module or can be spread across multiple modules.
Moreover, they can either be deployed within the same partition or different partitions
depending whether they are identical instances or alternate implementations of the pri-
mary replica. If the backups are an identical replica then by convention they are never
deployed within the same partition as they are meant to handle critical failures that
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Figure 7: Backup Deployment Scenarios

usually result in the process or the processor crashing. However, backups with alternate
component implementations can be deployed within the same partition as they are meant
to handle latent errors in the component’s implementation logic.

Due to the different primary-backup deployment possibilities, it is necessary to im-
plement adaptive failover mechanisms that take into account the failure type, granularity
and deployment topology that can enable the ability to fail over and recover the applica-
tion component(s) at the component, subsystem, process and processor levels. Moreover,
to remain resource-aware, our algorithm chooses the best candidates at each level for
failover by ranking the backups dynamically in increasing order of either their processor
or partition or component utilizations for which we leverage the DRM framework.

3.5.2. Enabling Hierarchical Failure Adaptation (HFA)

We have developed the Hierarchical Failure Adaptation (HFA) algorithm that adapts
its failover targets depending upon the failure type, granularity and the primary-backup
deployments. The algorithm is invoked whenever any of the DRM or the ACM-SHM
frameworks detect a failure. In order to provide quick and efficient failover once the
ACM Alarm Aggregator or the Failure Handlers detect a failed primary (componen-
t/partition/module), the sSRM proactively pre-computes the sorted list of least utilized
backups and the message is sent to the RADaR with the listing of failed primaries piggy-
backed with the sorted list of failover target backups. The least utilized resource indicates
maximum available slack. It then hands over the control to the SLHM.

It is the responsibility of the SLHM to determine as to when to activate the failure
recovery mechanisms, which is dependent upon the number of failures the system can
withstand that have been programmed in advance within the ACM-SHM framework. It
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is also dependent upon the time taken by the system to stabilize till all alarms/errors
are collected, which is usually a hyperperiod long in duration. Additionally, the AFM
failure handlers and the DRM liveness monitoring is capable of detecting simultaneous
module, partition, logical and critical component failures and are intelligently mitigated
by the HFA algorithm in an hierarchical fashion. Algorithm 2 depicts the details of the
HFA algorithm.

Algorithm 2 The Hierarchical Failover Adaptation (HFA) Algorithm

1: procedure HFA(M, P,G,C) > Input Parameters
2: M, P, G, C : Module, Partition, Group, Component Failed Primaries
3: Mp,Pr, Gp, Cp, Lr : Flags for Module, Partition, Group, Critical and Logical
component Failures

M;, Gy, Cr, C4 : Sorted List of Identical & Alternate Backup Replicas >
Output Parameters

o

5 My, Gp, Cr : Failover Target Backup Replicas
6 if My then

7 My + HEAD(MI)
8: for all Cr € Mr do
9 REWIRE(Cr)
10: end for

11: else if Pr then

12: for all C € P do

13: DRWrapper(C)
14: end for

15: else

16: DRWrapper(C)

17: end if

18: end procedure

Lines (1-6): The failed primaries alongwith the type of failure is provided by the Failure
Handlers whereas the SRM provides the least utilized backups. The RADaR maintains
the current status of the set of backup replicas available in sorted order based on their
utilizations and it updates and rewires the failover target backups after the algorithm
finishes it’s execution.

Lines (8-14): If a module (processor) failure is detected, the Failure Handlers in the
System Module Manager instruct the sRM to gather the utilizations of the backup
modules and provide the module with the least utilization and finally report the failure
to the RADaR.

Lines (15-21): If a process (partition) failure is detected, the algorithm checks if it
was due to a component or logical failure and call the subroutine DetermineREWIRE
(C) that handles the further failover

Lines (21-23): In case of a critical component failure, again the control is handled over
to the DetermineEREWIRE (C) subroutine.

DetermineREWIRE (Component C)

a. Lines (1-4): In case of a logical component failure and alternate backup replicas if
17



19: procedure DRWRAPPER(C) > Component

20: G < DeliberativeReasoner(C')

21: if Gr then

22: Gt < Deliberative Reasoner(C)
23: G « CreateBackups(Gr)

24: Gr + HEAD(G[)

25: for all Cr € Gr do

26: DetermineF ailover(Cr)

27: end for

28: else

29: DetermineFailover(C')

30: end if
31: end procedure

32: procedure DETERMINEFAILOVER(C) > Component
33: if Ly then

34: CheckAlternate (C)

35: else if Cr then

36: if Cr # 0 then

37: Cp + HEAD(C[)
38: else

39: CheckAlternate (C)
40: end if

41: else

42: Restart(P)

43: end if

44: REWIRE(CT)

45: end procedure

available, the one with the least utilized component utilization is selected or else if
available, one with the least utilized identical backup replicas is selected

b. Lines (5-7): If it is not a logical failure and there are no more backup replicas are
left then the partition is restarted in the hope that failure will not recur.

c. Line (8): The Deliberative Reasoner is called to figure out if the dependent group
of components also need failover. In this case the dependent group can be a entire
subsystem.

d. Lines (9-12): If Group failure is detected, the failover target component group
determined by the Deliberative Reasoner is updated with head of the list of alternate
or identical backup components and a rewire command is issued to the group.

e. Lines (13-14): If only the primary component needs failover, it’s least utilized backup
component is rewired.

6. RESTART (Partition P)

a. Lines (1-4): Restart the partition and if it has any component facets then the
partitions with the dependent component receptacles are instructed to reread the
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1: procedure CHECKALTERNATE(C') > Component
2 if C4 # 0 then

3 if Pr then

4 for all c € C4 do
5: if ¢ > P then
6 Cr+c

7 end if

8 end for

9: else
10 Cp <+ HEAD(C4)
11: end if
12: else
13: Restart(P)
14: end if

15: end procedure

1: procedure RESTART(P) > Partition
2. RESTART(P)

3 if P has provided interfaces then

4: for all p € P; do

5: REREAD(P’s references)

6 end for

7 end if

8

: end procedure

component references.

At the core of the HFA algorithm are three functions: DetermineFailover, DRWrapper,
and Restart. DetermineFailover is a function that determines how best to choose a
failover target component and rewire it with the rest of the application. On a failure,
HFA first detects the failure type (module/partition/component group/critical/logical).
If it is a module failure (Mp), the algorithm fails over to the least utilized identical
module and calls REWIRE on all the components in that module. If it is a partition
failure (Pr), the algorithm invokes the DRWrapper function for each component de-
ployed in that partition. Otherwise a component failure (Lg/(CF)) is assumed and the
DRWrapper function is called for that component. DRWrapper then calls the Deliber-
ativeReasoner function to determine group failure (G) i.e., if the component has any
dependent components that will also require failover and selects the least utilized backup
target group of components and finally calls DetermineFailover on each component in
the failed group.

In case of logical failure (L), DetermineFailover function checks if alternate backup
replica is available. Otherwise, it checks for critical failure (Cr), and if true selects the
least utilized identical backup replica if available. If not available, it checks if alternate
backup replica is available. If not available, it restarts that partition to provide degraded
QoS. If available, it checks for a simultaneous partition failure (Pg), in which case it
selects the least utilized identical replica in a different partition. If not a critical or logical
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1: procedure CreateBackups(G) > Group
2 if Lr then

3 if C4 # () then

4: for all C1 € G do

5: for all C2 € Cl14 do
6 if Pr then

7 if C2 € P then
8 continue

9: end if

10: G+~ GruC2
11: end if

12: end for

13: end for

14: end if

15: else if Cr then

16: if Cr 75 ? then

17: for all C1 € G do

18: for all C2 € C1; do
19: G+~ GruC2
20: end for
21: end for
22: end if
23: end if

24: SORT(G})
25: end procedure

failure, it restarts the partition. DetermineFailover handles the simultaneous partition
failure as a special case where it has occurred simultaneous with a logical component
failure. In case of a simultaneous critical component failure, it does not need to handle
this special case as identical backup replicas are always deployed on a different partition
as primary. If the restarted partition contained facets, the Restart function ensures that
the dependent partitions reread the restarted partition’s new component references.

3.6. Pre-deployment Application Performance Evaluation: the PME Framework

The real-time system execution schedule specifies the period of execution along with
the allocated start and end times of the system tasks forming the scheduling quantum
within the system execution time period (P). To address Challenge 3 of Section 2, we
have developed an application Performance Metrics Evaluation (PME) framework that
can profile the application execution times and CPU utilizations by leveraging the DRM
framework to measure the actual utilizations of various component tasks within their
allocated scheduling quantum in the system execution period. The profiling of a sys-
tem’s resource utilization during execution, both in the presence and absence of failures,
helps in determining post-failover processor utilization of the application and SafeMAT
components. We measure the approximate worst case execution times (WCETs) of the
SafeMAT adaptation mechanism to estimate the additional runtime overhead incurred.
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This can also help in safely predicting whether the application is capable of recovering
within the hard real-time deadline. Moreover, the fine grained performance evaluation of
the application component subtasks can also provide the basis for the system integrator
for determining the slack in the system and thereby alter the task allocations within the
application execution schedules to enable provisioning the necessary runtime adaptation
mechanisms and additional new/upgraded functionalities.

4., Implementation of SafeMAT

SafeMAT has been implemented atop the ACM hard real-time ARINC-653 emulation
middleware (implemented on Linux). It is implemented in around 5,000 lines of C/C++
source code excluding the ACM code. We describe the implementation details of the
individual frameworks of SafeMAT in the rest of this sectionimpl.

4.1. Partition Manager

We have implemented the Partition Manager as a separate Linux process that gets
spawned by the Module Manager for each partition that needs to be spawned. The
Module Manager sends the necessary partition information through environment vari-
ables and command line parameters to the Partition Manager which in turn spawns the
partition with the right parameters and the same environment variables set. In order
for the partitions to correctly synchronize back with the Module Manager, the Module
Manager’s PID is also set as one of the environment parameters along with the par-
tition name, and the boolean indicating whether the partition is being restarted. The
Partition Manager implements signal handlers as a means of handling partition failures.
Whenever the failure handlers detect a partition failure, they check its exit status after
receiving a SIGCHLD and if it is an abnormal termination, the Partition Manager restarts
the partition and also sets the boolean to true. If the boolean is set to true then the par-
titions do not need to re-perform the synchronization with the Module Manager and can
quickly recover in time before their next scheduling quantum in the next hyperperiod.
Furthermore, in order to handle partition restarts as described in the HFA algorithm in
Section 3.5, if the facet side partition needs restarting the facet reference is reread for
the receptacle side partition. This can be achieved through catching the invalid object
reference exception and/or by sending a message to the partitions.

4.2. Distributed Resource Monitoring (DRM) Framework

We have developed the DRM using the client-server paradigm that can be configured
with two different communication strategies: reactive and periodic. The communi-
cation between the mRM and the pRMs is established through plain UDP sockets for
performance. We did not employ TCP sockets as we assume the closed network that
the avionics systems operate on have high reliability and high bandwidth performance
with a small bounded network propagation delay. The sRMs are in charge of configur-
ing the mRMs and pRMs with the communication strategies so that the clients need to
worry about correctly configuring all the monitors and thereby alleviating the need for
configuration checking before deployment. This is achieved by making the mRM always
initiate the first communication to setup and configure the monitors with the right strat-
egy, the CPU number on which the module is deployed, the name of the partition to be
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monitored. The port at which they are expected to receive the messages is set through
the environment variables while spawning the Partition Managers which forwards this
information to the partitions that configure the pRMs. Additionally each of the moni-
tors of the DRM framework are also programmed to perform their health monitoring by
periodically sending their health status beacons to the their immediate parents through
ALIVE socket messages. This aids in the detection of the partition (process) and module
(processor) failures.

System Module Manager ‘ Module Manager H mRM H Partition Manager H PRMc H Partition H PRMn ‘
‘ Run | Run( ] Run () [ *Run()
Sync
*Gather () GET
GET - GET
UTIL
UTIL
MAPPING - I |
MAPPING || ¢
T T T T T

Figure 8: Distributed Resource Monitoring (DRM) Communication Sequence

The pRMc computes the processor, process and thread utilizations from the /proc/stat,
the corresponding /proc/<PID>/stat and /proc/<PID>/task/<TID>/stat files on Linux.
In the ACM emulated middleware we associate the module, partition and component
utilizations with the respective processor, process and thread group utilizations. The
partition and component utilizations are always computed as a fraction of the processor
utilizations on which they are deployed on to reflect their true utility to the AFM en-
gine. To allow for efficient querying, the mRMs and the sRM maintain the mappings of
the component allocations to their partitions and modules so that the AFM engine can
selectively query the utilizations of specific components, partitions and modules. The
PIDs are reported back by the pRMs to their corresponding mRM within the Module
Manager when the partitions notify their initialization statuses to the Module Manager
through the Linux message queues /dev/mqueue/<Q-NAME>.

The pRMns within the partition communicate with the partition initialization logic
and obtains the list of components assigned and deployed within that partition. The
partition initializer also reports the corresponding ARINC-653 process (Linux Pthreads)
identifiers (TIDs) that execute the different ports and methods within a component.
This mapping of the components to their corresponding TIDs is reported back by the
pRMns to their corresponding mRM. Once the mRM has the necessary partition PIDs
and the component to TID mappings, it enables the sSRM to report CPU utilizations
on a per component or a per process or a per module basis whenever queried by the
SLHM components. The sequence of communications that occur between the sRM,
mRM, pRMc, and pRMn components is shown in Figure 8.

4.8. Adaptive Failure Mitigation (AFM) Engine
The Diagnoser and Deliberative Reasoner components from the SLHM framework

have been extended by integrating the HFA algorithm and DRM frameworks. We have
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developed the Resource Aware Deliberative Reasoner (RADaR) by improving the reason-
ing algorithm employed by the Deliberative Reasoner (DR) within the SLHM framework
to compute component failover targets by considering the CPU utilizations, failure type,
failure granularity and the deployment topology. We have incorporated the failure de-
tection of the partitions and modules through failure handlers and DRM health status
monitoring. Additionally, in order to detect logical or component failures in case of
simultaneous partition or module failures, the RADaR traverses the history of any fail-
ures that were caught by the Alarm Aggregator and the output files generated out by
the CLHMs that indicate the failure types. This gives us the capability to handle both
logical component failures as well as critical process and processor failures simultane-
ously within the same framework. The HFA algorithm provides a wrapper over the DR’s
reasoning algorithm.

We integrated the HFA algorithm in the decision making part of the deliberative
reasoning algorithm that gets executed each time the DR gets invoked with the failed
components. First it uses the DR’s dependency tracking phase to figure out the de-
pendent group of component’s that require failover and the failover candidates initially
generated by the DR. The DR achieves this through a search of the component’s assembly
specification and deduces the failed component’s dependencies and determines whether
the dependent components also need recovery. When the DR comes up with the initial
failover target component or a group of components, they may not be necessarily the
best candidates. We select the best failover target for the failed component by executing
the HFA algorithm on the initial result of the DR and manipulate the DR’s output with
the better candidates provided by our algorithm. The HFA algorithm achieves this by
querying the sRM for the sorted rank lists of failover target backup replica components
based on their relative utilizations.

4.4. Application Performance Metrics Evaluation (PME) Framework

We profile the SafeMAT component’s actual WCETs and actual online CPU utiliza-
tion percentages within each execution quantum of the hyperperiod by analyzing the
timing logs generated by the Module Manager and the Partitions and the performance
logs generated out by the DRM framework, respectively, over a large number of iterations.
To achieve this we can configure the DRM to periodically collect the CPU utilizations
only at the end of each hyperperiod. The analysis of the timing log files is performed by
parsing the standard tags such as START_#*, STOP_* corresponding to the start and stop
times of the various processing blocks using Python scripting. We compare these to the
actual measured CPU utilization between those times to the duration of the quantum to
get an idea of the slack that is available within each quantum. We particularly profile
the utilizations of the Health Management and SafeMAT framework components to ver-
ify that the utilizations do not reach 100% so that they are able to finish their decision
making within the allocated quantum . This ensures that the recovery from failures is
made as fast as possible.

5. Empirical Evaluation of Safe MAT

To measure the performance of the various SafeMAT adaptive mechanisms, we used
a representative DRE system called the Inertial Measuring Unit (IMU) [13] from the

23



avionics domain. IMU is rich and large enough to provide a large number of compo-
nents and redundancy possibilities that stem from the composition of its subsystems
comprising the Global Positioning System (GPS), the Air Data Inertial Reference Unit
(ADIRU) [14], the flight control (PFC) subsystem, and the Display subsystem. Figure 9
shows the IMU system assembly comprising primary subsystems of GPS and ADIRU,
and their two secondary backup replica subsystems connected to redundant PFC and
Display subsystems.
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Figure 9: IMU System Assembly.

When the GPS processor has an updated position, it sends a pulse out of its publisher
port and the subscriber GPS Receiver can asynchronously detect it and fetch the data
coordinates. The ADIRU subsystem comprises actively replicated six Accelerometers,
four Processors, and three Voters and is designed to withstand two Accelerometer failures.
The six Accelerometers feed acceleration values to each of the four Processors which
compute the body acceleration data and fed it to each of the three Voters. In turn
the Voters choose the middle value and output it to the PFC subsystem. The GPS
Processor and the ADIRU Voter feed the 3D location coordinates and acceleration values,
respectively, to each of the PFC subsystem that integrates the acceleration values over
the 3D coordinates and computes the next coordinate position and outputs it to the
Display subsystem which further votes and chooses one of the three coordinate values
received. The Secondary GPS and ADIRU subsystems are semi-actively replicated.

The GPS subsystems and ADIRU subsystems run at a frequency of 0.1 Hz and 1 Hz,
respectively. The PFC fetches the GPS data a slower but accurate rate of 0.1 Hz whereas
the Display subsystem fetches the data from the PFC subsystem at a rate of 1 Hz. Thus,
the hyperperiod of the IMU is 10 seconds (LCM of 1 and 10). Deployment information
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of all the subsystems is not shown in this paper for similar reasons. However, we discuss
the impact of various primary-backup deployments on the overall runtime adaptation
overhead added by SafeMAT by going into the deployment details of the standalone
adaptation of the GPS Subsystem in Section 5.2.*

5.1. Ewvaluating SafeMAT’s Utilization Overhead

We use SafeMAT’s PME framework to determine the overhead imposed by the Safe-
MAT’s fast failure adaptation capability by measuring the CPU utilizations of its com-
ponents. Measuring the actual utilizations at the end of each execution hyperperiod is
an indicator of the slack available for accommodating failure adaptation mechanisms.
Since SafeMAT builds over ACM, we executed 100 iterations of the IMU system each for
the plain vanilla ACM-SHM and the SafeMAT adaptation failure recovery mechanisms.
We artificially introduced failures at 15, 20, 30, 35 iterations in the GPS Processor,
Accelerometers 6, 5 and 4, respectively, such that the values output by them are exceed-
ingly high (i.e. deviate from the expected trend). Once Accelerometer 4 fails at iteration
35, the system begins to malfunction and the Display starts receiving erroneously high
acceleration values.

Figure 10 shows the 3D-position (X, Y, Z coordinates) values received by the Pilot_Display_Subsystem
getting out of sync between iterations 30 and 40, and recovering after the SafeMAT fail-
ure adaptation takes place. The perturbation is caused by the erroneous acceleration
values because the IMU is solely capable of operating using just the acceleration values
without the need for continuous GPS input. GPS coordinates are used to just supply
the initial coordinates for the integration over the acceleration values computed by the
PFC subsystem.

At this moment the SafeMAT failure adaptation starts executing and makes the
ADIRU and GPS primary subsystems failover to one of their semi-active secondary sub-
systems depending upon their overall least average utilizations. In this execution scenario
the Primary_ADIRU_Subsystemn fails over to the Secondary_ADIRU_Subsystem2 whereas
the Primary_GPS_Subsystem fails over to the Secondary_GPS_Subsysteml. Figure 11
shows that the SafeMAT does not add significant utilization overhead (2-6%) over the
existing ACM-SHM imposed utilizations (26-73.26%).

5.2. Ewvaluating Safe MAT-induced Failover Overhead Times

To qualitatively measure SafeMAT’s runtime failover overhead times we measure the
worst-case execution times (WCETs) of the SafeMAT’s components based on two main
parameters: (1) the impact of component replica placements relative to their primaries
and (2) the number of nested components within the component group that need failover.
We measure the failover overhead (Trp) as:

4The details of each subsystem and their deployments have been omitted in this paper for the lack
of space, which can be found in [13].
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Figure 10: Application Recovery after Failover

m P
Tro = Tpiag + TDR + E (TmRM + E TpRM> +Tsrm +THFA

i=1 j=1
where

m - number of modules

p - number of partitions within each module
Tbiag - WCET for Failure Diagnosis

Tpr - WCET for Deliberative Reasoning

Tsryv - WCET for the sRM to collect utilizations
Tmrym - WCET for each mRM to collect utilizations
Tprym - WCET for each pRM to collect utilizations
Tura - WCET for Hierarchical Failover Algorithm

5.2.1. Impact of Component Replica Deployments

To measure the impact of component replica deployments, we focused on the GPS sub-
system from the IMU case study. Figure 12 shows the assembly for the BasicSP system
with a redundant set of Sensor and GPS components (Sensor2 Sensor3, GPS2, GPS3).
Sensors publish an event every 2 sec for their associated GPS. The GPS consumes the
event published by its sensor at a periodic rate of 2 sec. Afterwards, it publishes an event,
which is sporadically consumed by the Navigation Display. Thereafter, the NavDisplay
component updates its location by using getGPSData facet of the GPS Component. In
the initial setup of the assembly, the Sensor, GPS, and NavDisplay components are used
and hence set to be in active mode. The redundant Sensor and GPS (Sensor2 Sensor3,
GPS2, GPS3) are not used. The GPS2 & GPS3 is set to a semi-active mode, leaving
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Figure 11: SafeMAT Utilization Overhead

the Sensor2 & Sensor3 components in active mode. This would allow the GPS2 & GPS3
to keep track of the current state (by being in semi-active mode where the GPS2’s and
GPS3’s consumers are active) but not affecting NavDisplay.

We created different deployment scenarios by altering the placements of the compo-
nent replica by either placing them either within the same partition as primary (Fig-
ure 13a), or a different partition in the same module (Figure 13b) or a different partition
within a different module (Figure 13c). We executed the GPS subsystem with the exist-
ing vanilla ACM-SHM recovery mechanisms in place and with the new SafeMAT failure
adaptations enabled. We have considered the WCETs of both ACM-SHM and SafeMAT
in this case.

As shown in Table 14, SafeMAT incurs comparable execution times to the existing
ACM-SHM execution times as this scenario has been evaluated on a per component
basis. The times go up as the replica partitions move further away from the primaries.
The high recovery overhead per component are due mainly to the unavoidable network
latency to collect the utilizations. However, the minuscule overhead on the order of a
few milliseconds are very insignificant in this case and will not cause deadline violations
when there is a large amount of slack available, which is usually the case (See Figure 15.
Therefore, this is not a cause of concern as shown in the next evaluation where we
progressively increase the number of components that need failover — a scenario that is
more common in real systems.

5.2.2. Impact of Component Group Size

To measure the impact of size of the group of components that require failover, we
measure the overhead incurred by SafeMAT for the GPS and ADIRU subsystems where
the number of components increase from just 2 to 13. As shown in the evaluation Ta-
ble 16, when the number of components increase, the SafeMAT overhead costs gets
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amortized over larger number of components. The effective additional runtime overhead
incurred by SafeMAT’s adaptive mechanisms becomes significantly less (9-15%) com-
pared to the ACM-SHM’s diagnostic and reasoning overhead. SafeMAT’s overhead is
largely dependent on the size of the recovery group, deployment complexity of the com-
ponents within the recovery group, and the amount of network communication required
within the DRM as shown in the Tro equation. However, it does not grow exponentially,
as recovery group size increases. The more the number of components that need failover,
the more the amount of utilization data that can be bundled together in the network
messages that are sent by the DRM monitors to RADaR. Conversely, the smaller the
number of components affected, the greater the overhead incurred by SafeMAT due to the
network communication that is mandatory even for relatively small number of messages

exchanged.
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5.8. Discussion: System Safety and Predictability

Compared to the vanilla ACM-SHM mechanisms, SafeMAT adds negligible runtime
utilization overhead without overloading the system while performing better failure re-
covery within the available utilization slack. Moreover, by selecting the least-utilized
failover targets, SafeMAT maintains more available post recovery slack within the sys-
tem compared to ACM-SHM, while potentially improving the task response times as
well. Figure 17 shows that there was no noticeable impact on the Display jitter val-
ues using SafeMAT over vanilla ACM-SHM and therefore the response times remained
largely unaffected while at the same time failure recovery was superior. Moreover, there
were no missed real-time deadlines for the application tasks. Furthermore, SafeMAT
adds negligible runtime failover overhead thereby maintaining the predictability of the
overall system Thus, these results illustrate that SafeMAT maintains the safety of the
system and also the predictability.
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6. Related Work

In this section we discuss existing body of research in the area of adaptive fault tol-
erance in distributed real-time and embedded systems, and compare and relate our work
on SafeMAT. We categorize prior work along the following three different dimensions
and subsequently summarize the limitations in related work that motivated the research
on SafeMAT.

6.1. Resource-aware Adaptations

The DARX framework [15] provides fault-tolerance for multi-agent software platforms
by focusing on dynamic adaptations of replication schemes as well as replication degree
in response to changing resource availabilities and application performance. In [16], an
adaptive fault tolerance mechanism is proposed to choose a suitable redundancy strategy
for dynamically arriving aperiodic tasks based on system resource availability. Research
performed in AQUA [17] dynamically adapts the number of replicas receiving a client
request in an ACTIVE replication scheme so that slower replicas do not affect the response
times received by clients.

Eternal [18] dynamically changes the locations of active replicas by migrating soft
real-time objects from heavily loaded processors to lightly loaded processors, thereby
providing better response times for clients. FLARe [4] proactively adjusts failover tar-
gets at runtime in response to system load fluctuations and resource availability. It also
performs automated overload management by proactively redirecting clients from over-
loaded processors to maintain the desired processor utilization at runtime. In [19], an
adaptive dependability approach is presented which mediates interactions between mid-
dleware and applications to resolve constraint consistencies while improving availability
of distributed systems.
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Figure 17: Application Display Jitter (Hyperperiod = 1 sec)

6.2. Real-time Fault-tolerant Systems

Our SafeMAT work is influenced by the Time-aware fault Tolerance (TAFT) [20]
work in that we leverage the architectural patterns in SafeMAT. While TAFT was ap-
plied to CORBA /C+-+-based systems, we extended the work to systems that following
the ARINC-653 model with partition scheduling, and also provide comprehensive soft-
ware health management. IFLOW [21] and MEAD [22] use fault-prediction techniques to
reduce fault detection and client failover time to change the frequency of backup replica
state synchronization to minimize state synchronization during failure recovery, and by
determining the possibility of a primary replica failure and redirecting clients to alter-
nate servers before failures occur, respectively. The Time-triggered Message-triggered
Objects (TMO) project [23] considers replication schemes such as the primary-shadow
TMO replication (PSTR) scheme, for which recovery time bounds can be quantitatively
established, and real-time fault tolerance guarantees can be provided to applications.
FC-ORB [24] is a real-time Object Request Broker (ORB) middleware that employs
end-to-end utilization control to handle fluctuations in application workload and system
resources by enforcing desired CPU utilization bounds on multiple processors by adapting
the rates of end-to-end tasks within user-specified ranges.

Delta-4/XPA [25] provided real-time fault-tolerant solutions to distributed systems by
using the semi-active replication model. Other research [26] uses simulation models to an-
alyze multiple checkpointing intervals and their effects on fault recovery in fault-tolerant
distributed systems. The ROAFTS architecture [27] is designed to support adaptive
fault tolerance in both process-structured and object-structured distributed real-time
applications. ROAFTS considers those fault tolerance schemes for which recovery time
bounds can be easily established and provides quantitative guarantees on the real-time
fault tolerance of these schemes.

6.3. Dynamic Scheduling

Common methodologies to leverage the slack in execution schedule have focused on
dynamic scheduling depending upon the runtime conditions. The Realize middleware [28]
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provides dynamic scheduling techniques that observes the execution times, slack, and
resource requirements of applications to dynamically schedule tasks that are recovering
from failure, and make sure that non-faulty tasks do not get affected by the recovering
tasks.

6.4. Limitations in Prior Work and Need for Safe Fault Tolerance

For the hard real-time DRE systems, applying dynamic load balancing, dynamic rate
and scheduling adjustments, adaptive replication and redundancy schemes add extrane-
ous dynamism and therefore potential unpredictability to the system behavior. Altering
the redundancy strategies require altering the real-time schedules which is not acceptable
for hard real-time systems that are strictly specified. Constantly redirecting clients upon
overload and promoting backups to primaries adds unnecessary resource consumptions
for fixed priority systems. Such approaches do not attempt to minimize the number of
resources used; their goal is to maintain service availability and desired response times
for the given number of resources in passively replicated systems.

However, in hard real-time systems exceeding the RMS bound of 70% of the processor
utilization is not a concern as the tasks are guaranteed to not be preempted until their
allocated quantum is over. So as long as task utilizations are guaranteed to be under
100% processor load, their deadlines and profiled WCETs are guaranteed to be satis-
fied. In SafeMAT we guarantee through exhaustive application performance profiling by
establishing runtime utilization and failover overhead bounds that the dynamic failure
adaptations will not violate the real-time deadlines and overload the resources. More-
over, as the system resources are over-provisioned we use semi-active replication which
subsumes the need for expensive state-synchronization and load balancing mechanisms.

7. Conclusion

Mission-critical hard real-time applications that are in service for many years, have
too rigid execution schedules to incorporate additional evolving domain requirements in
the form of new functionalities and better failure adaptation techniques even if their
resources are over-provisioned for worst-case scenarios. While, existing software health
management (SHM) techniques are predictable, they are too static and do not offer the
best case failure adaptation in real-time. In order to evolve these systems and improve
their predictability, reliability and resource utilizations, it is necessary to discover the
existing slack within their execution schedules and utilize it to safely provision additional
and efficient dynamic failure adaptation mechanisms.

In this paper, we presented a dynamic and safe middleware adaptation technique, and
a performance metric evaluation framework that provided a fast and adaptive failover
through flexible and configurable fine-grained resource monitoring and an hierarchical
failure adaptation algorithm that is not only resource-aware but also took into account the
failure type, failure granularity, the relative component replica placements. Our approach
is manifested in the form of the SafeMAT middleware. We also rigorously evaluated our
adaptive middleware by measuring the runtime utilization and the execution overhead
for different replica deployments as well as an increasing number of components.

The underlying task model for DRE systems in SafeMAT and its performance evalu-
ation are conducted assuming the ARINC-653 task model. ARINC-653 is a standard to
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support hard real-time avionics applications. Since DRE systems are often represented
by a mix of different criticality levels, there is a need to segregate these applications
and ease verification. This is achieved through the partitioning scheme supported by
ARINC-653 that provides both temporal and spatial isolation among the applications.
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