
Reliable Distributed Real-time and Embedded
Systems Through Safe Middleware Adaptation

Akshay Dabholkar, Abhishek Dubey, Aniruddha Gokhale,
Gabor Karsai, and Nagabhushan Mahadevan

Institute of Software Integrated Systems, Dept. of EECS
Vanderbilt University, Nashville, TN 37235, USA
Email: {aky,dabhishek,gokhale}@isis.vanderbilt.edu

Abstract—Distributed real-time and embedded (DRE) systems
are a class of real-time systems formed through a composition
of predominantly legacy, closed and statically scheduled real-
time subsystems, which comprise over-provisioned resources to
deal with worst-case failure scenarios. The formation of the
system-of-systems leads to a new range of faults that manifest
at different granularities for which no statically defined fault
tolerance scheme applies. Thus, dynamic and adaptive fault
tolerance mechanisms are needed which must execute within
the available resources without compromising the safety and
timeliness of existing real-time tasks in the individual sub-
systems. To address these requirements, this paper describes
a middleware solution called Safe Middleware Adaptation for
Real-Time Fault Tolerance (SafeMAT), which opportunistically
leverages the available slack in the over-provisioned resources
of individual subsystems. SafeMAT comprises three primary
artifacts: (1) a flexible and configurable distributed, runtime
resource monitoring framework that can pinpoint in real-time
the available slack in the system that is used in making dynamic
and adaptive fault tolerance decisions; (2) a safe and resource-
aware dynamic failure adaptation algorithm that enables ef-
ficient recovery from different granularities of failures within
the available slack in the execution schedule while ensuring
real-time constraints are not violated and resources are not
overloaded; and (3) a framework that empirically validates the
correctness of the dynamic mechanisms and the safety of the DRE
system. Experimental results evaluating SafeMAT on an avionics
application indicates that SafeMAT incurs only 9-15% runtime
failover and 2-6% processor utilization overheads at runtime
thereby providing safe and predictable failure adaptability in
real-time.

Index Terms—Middleware, Adaptation, Fault Tolerance, Real-
time, Software Health Management, Profiling

I. INTRODUCTION

Applications that are deployed in safety-critical domains
such as avionics, automotive, industrial automation are often
over-provisioned in terms of the resources to handle failures in
the worst-case scenarios. Moreover, they are closed in nature
with precisely specified hard real-time Quality of Service
(QoS) requirements of schedulability, timeliness, processor
and memory allocation, and reliability. There is, however, an
increasing trend towards realizing larger systems of systems
that are composed predominantly from these deployed systems

This work was supported in part by NSF CAREER Award CNS 0845789.
Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

(e.g. ultra large-scale systems [1]), which we collectively
term as distributed real-time and embedded (DRE) systems.
The realization of DRE systems gives rise to various in-
terdependencies between individual subsystems. Moreover, a
new range of faults arise in the context of DRE systems,
which must be handled to maintain the mission-critical nature
of the overall DRE system in the context of the induced
interdependencies.

The over-provisioning of resources in the individual sub-
systems is detrimental to realizing reliable DRE systems
because fault tolerance solutions need resources but the in-
dividual subsystems do not have the flexibility to add new
resources or modify the real-time schedules of their tasks.
Redesigning and reimplementing the individual systems is
not an option due to economic forces. Thus, designing fault-
tolerance mechanisms for DRE systems must utilize available
resources without compromising the real-time properties of
the individual subsystems. Consequently, there is a need to
identify unused resources at runtime that can be used for fault
tolerance. The key insight we leverage for our work hinges
on the existence of a significant slack in the over-provisioned
individual subsystems. The challenge lies in identifying this
slack and making effective use of it, which is the subject of
this research.

Our next question is identifying the right fault tolerance
mechanisms for DRE systems. Software Health Management
(SHM) [2] is a technique which applies principles from system
health management to software intensive systems that are
ubiquitous in human society, including several safety-critical
systems. Recently, these techniques have been applied to
the system using a model-based approach [3]. SHM is a
promising approach to providing fault-tolerance in real-time
systems because it not only provides for fault detection and
recovery but also effective means for fault diagnostics and
reasoning, which can help make effective and predictable fault
mitigation and recovery decisions. However, in these earlier
works, the focus was on diagnosis of the faulty components
and recovering the functionality of the system. Moreover,
they handled only errors in a component that are known a
priori with predefined failover strategies but did not account
for system resource utilizations and availability. Thus, naively
using SHM for DRE systems fault tolerance is likely to result
in suboptimal runtime failure adaptations while also impacting

resource utilizations.
Adaptive Fault Tolerance (AFT) [4] has been known to im-

prove the overall reliability and resource utilizations. However,
the technique has been applied only for soft real-time appli-
cations. Since they require additional resources to perform
failure recovery, they can consume precious time from the
hard real-time schedule of individual subsystems. To overcome
the limitations in the existing SHM and AFT approaches
yet being able to leverage their benefits and maintain the
timeliness and safety of the real-time applications, this paper
presents a middleware-based fault-tolerance solution called
Safe Middleware Adaptation for Real-Time Fault Tolerance
(SafeMAT). Our research on SafeMAT makes the following
contributions:

• A Distributed Resource Monitoring (DRM) framework
that provides highly configurable, fine-grained, distributed and
hierarchical monitoring of system resources, such as processor,
process, component and thread utilizations, that enables the
selection of the best candidates to failover after failures. The
DRM framework not only aids in the profiling and tuning
of the system execution schedules but also provides a key
component of the adaptive failure management to handle
failures at runtime.
• An Adaptive Failure Management (AFM) framework that
leverages the DRM framework to augment software health
management mechanisms to provide an adaptive failure man-
agement capability. The AFM framework provides different
cooperating runtime mechanisms, such as safe failure isolation
and hierarchical failover algorithms, to enable the real-time
applications to dynamically respond and adapt to system
failures while ensuring that the system timeliness requirements
are still adhered to.
• A Performance Metrics Evaluation (PME) framework

that can profile the application execution by leveraging the
DRM framework to determine the actual resource utilizations
of various component tasks within their allocated scheduling
quantum in the system execution period. This forms the basis
for determining the existing slack in the system and leveraging
it to safely provision and ensure predictability of the dynamic
failure adaptation techniques provided by the AFT framework
in SafeMAT. The PME framework also provides a tool to
system integrators using which they can validate and tune
the application component allocations and reliability to ensure
safe provisioning of the necessary runtime failure adaptation
mechanisms and additional new functionalities.

Paper Organization - The rest of the paper is organized as
follows: Section II elicits the challenges for safe middleware
adaptation; Section III presents the SafeMAT architecture and
algorithms; Section IV empirically validates our approach
in terms of minimal failover delays, and runtime overhead
in the context of a representative DRE avionics case study;
Section V compares our approach to related work in the area of
real-time and fault tolerance; and finally Section VI provides
concluding remarks identifying lessons learned and scope for
improvements.

II. DRE PLATFORM ASSUMPTIONS AND RESEARCH
CHALLENGES

This section brings out the challenges that motivate the need
for the three primary vectors of the SafeMAT middleware
presented in this paper. Before delving into the challenges,
we present a model of the system and the underlying platform
we consider in this paper.

A. Platform Assumptions

Our research focuses on a class of DRE systems where the
system workloads and the number of tasks in the individual
subsystems that make up the DRE system are known a priori.
Examples of individual subsystems that make up DRE systems
include tracking and sensing applications found in the avionics
domain or the automobile system found in the automotive
domain (e.g., reacting to abnormalities sensed by tires). These
systems demonstrate stringent constraints on the resources that
are available to support the expected workloads and tasks. For
this paper we focus on the CPU resource only.

In our research we assume that the individual subsystems
of the DRE system use the ARINC-653 [5] model in their
design and implementation because of its support for temporal
and spatial isolation, which are key requirements for real-time
systems. ARINC-653 uses fixed-priority preemptive schedul-
ing where the platform is specified in terms of modules that
are allocated per processor which in turn are composed of one
or more partitions that are allocated as tasks. Each partition
has its own dedicated memory space and time quantum to
execute at the highest priority such that it gets preempted
only when its allocated time quantum expires. Multiple com-
ponents or subtasks can execute through multi-tasking within
each quantum. For evaluating our design of SafeMAT and
experimentation, we have leveraged an emulation [6] of the
ARINC-653 specification.1

B. Research Challenges

Realizing the objectives of SafeMAT are fraught with a
number of challenges described below. Resolving these chal-
lenges become the three primary vectors of our SafeMAT
solution.

• Challenge 1: Identifying the Opportunities for Slack in
the DRE System
As noted in Section I, DRE systems are composed often from
individual legacy subsystems. Many of these subsystems com-
prise real-time tasks with strict deadlines on their execution
times. To ensure the safety- and mission-criticality of these
subsystems, they are configured with predefined execution
schedules computed offline that are fixed for their execution
lifetime once they are deployed in the field. This ahead-of-
time system planning ensures that such subsystems will behave
deterministically in terms of their expected behavior and their
provided services, and the critical tasks with hard real-time

1We used the emulation environment since it was readily available to us,
and has been used previously to demonstrate key ideas of software health
management for avionics applications.

requirements will always satisfy their deadlines. To achieve
this predictability, these subsystems are over-provisioned in
terms of the allocated time and required capacity of resources.
Naturally, for most of the time many of these resources remain
under-utilized and hence provide an immediate opportunity to
host the fault tolerance mechanisms needed for DRE systems.
However, due to the dynamic nature of faults, the amount
of slack available in each subsystem may vary at runtime
thereby rendering any offline computation of slack for DRE
fault tolerance useless. Therefore, there is a need to obtain a
runtime snapshot of available slack in the system that then will
enable the runtime execution of fault tolerance mechanisms
for DRE systems. Such a monitoring capability must provide
real-time information while at the same time not impose any
significant overhead on the system. Section III-C presents our
solution to a scalable Dynamic Resource Monitoring (DRM)
capability in SafeMAT. In the context of our ARINC653-based
scheduling of the DRE systems, DRM is not only able to
obtain the actual CPU utilizations of the partition tasks but also
of the subtasks (i.e., application components) that are allocated
within the partition.
• Challenge 2: Designing Safe and Predictable Dynamic

Failure Adaptation
Failures in DRE systems may manifest in different types
and granularities. For example, some component failures may
be logical or critical. The granularity of failures could be a
component, group of components (subsystem), processes or
processors. Moreover, the induced interdependencies in DRE
systems due to composition of individual subsystems may lead
to cascading failures of the dependent components (domino
effect). Such an effect has the potential to increased deadline
violations and over-utilization of system resources. Statically
defined fault tolerance schemes will not work to completely
handle these kinds of failures. Dynamic failure adaptation
techniques can provide better capabilities to tolerate different
kinds and granularities of failures, and can achieve better
resource utilizations. However, given the criticality of hard
real-time system execution, the failure adaptations that can be
performed need to be safe and predictable. By utilizing the
slack (which is obtained using the DRM capabilities), we can
provision dynamic fault adaptation, however, we must ensure
that the execution deadlines are not violated while achieving
such runtime adaptations. Consequently, it is necessary to
reduce the amount of recovery, which calls for failure detection
and mitigation mechanisms that are fast and lightweight in
terms of their space and runtime overhead as well are adaptive
to the failure type and granularity, and component replica
placements. Section III-D describes the adaptive fault tolerance
mechanism supported by SafeMAT.
• Challenge 3: Validating System Safety in the Context of

DRE System Fault Tolerance
Although it may be feasible to design dynamic fault tolerance
techniques for DRE systems by leveraging the slack, there is
no easy approach to validate the safety and correctness of the
resulting system and it is difficult to develop a mathematical

proof of correctness of the system due to its dynamic nature.
Thus, there is a need for a scalable and accurate capability
that can validate the the overall DRE system for safety and
predictability. SafeMAT provides a framework to profile a
DRE system to validate if the real-time properties are met
in the context of faults that can be artificially injected into the
system. Section III-E describes such a framework that provides
empirical validation of the system safety and predictability.

The rest of this paper presents our SafeMAT middleware
that resolves these three challenges.

III. DESIGN OF SAFEMAT
This section presents our SafeMAT solution to provide

adaptive and dynamic fault tolerance to DRE systems. Since
SafeMAT is designed to extend an existing emulation environ-
ment for ARINC-653, we first briefly describe the underlying
system and the existing fault management approach. Subse-
quently, we describe our SafeMAT solution.

A. The ARINC-653 Component Model Middleware
The emulation middleware we use in our research is called

the ARINC-653 Component Model (ACM) middleware, which
essentially implements the CORBA Component Model [7]
abstraction over the ARINC-653 emulation environment. ACM
components interact with each other via well-defined patterns,
facilitated by ports: asynchronous connections (event pub-
lishers & consumers) and/or synchronous provided/required
interfaces (facets/receptacles). ACM allows the developers to
group a number of ARINC-653 processes into a reusable
component. Since this framework is geared towards hard real-
time systems, it is required that each port be statically allocated
to an ARINC-653 process whereas every method of a facet
interface be allocated to a separate process.

ACM provides a design-time graphical modeling environ-
ment to enable a developer to assemble the components
of the application, deploy them into ARINC-653 partitions
(essentially OS processes) of ARINC-653 modules (essentially
the processors), and configure various real-time properties of
the components. A runtime middleware honors these decisions.
The ACM middleware comprises multiple different functional-
ities. Of interest to us in this research is the Module Manager
(MM), which is a controller responsible for providing temporal
partitioning among partitions.2 For this purpose, each module
is bound to a single core of the host processor. Using offline
analysis, the MM is configured with a fixed cyclic schedule
computed from the specified partition periods and durations.
It is specified as offsets from the start of the hyper period,
duration and the partition to run in that window. Once con-
figured and validated, the MM implements the schedule using
the SCHED_FIFO policy of the Linux kernel and manages the
execution and preemption of the partitions. The MM is also
responsible for transferring the inter-partition messages across
the configured channels. In case of a distributed system, there
can be multiple MMs each bound to a processor core that are
controlled hierarchically by a system-level module manager.

2Partitions are mapped to Linux processes.

1) Software Health Management in ACM: We have ex-
tended and augmented the ACM software health management
framework [3] with resource-aware adaptive fault tolerance
(AFT). ACM supports the notion of Software Health Man-
agement (SHM), which provides incremental fault mitigation
strategies and operates at two levels. The first and basic level of
protection is provided by component-level health management
(CLHM), which is implemented in all components. It provides
a localized timed state machine with state transitions triggered
either by a local anomaly or by timeouts, and actions that
perform the local mitigation. The second and global level is
called system-level health management (SLHM). The SLHM
comprises an aggregator of alarms that are received from
individual CLHMs. The Aggregator feeds these alarms to a
diagnostics engine, which is configured with a failure propa-
gation graph to reason about the root cause of failures. The
decisions are then fed to a fault mitigation capability called a
Deliberative Reasoner [8].

2) Fault Handling in ACM and SafeMAT: An ACM com-
ponent can be in one of the following three states: active
(where all ports are operational), inactive (where none of
the ports are operational) and semi-active (where only
the consumer and receptacle ports are operational, while the
publisher and facet ports are disabled). We focus on fail-
stop failures within hard DRE systems that prevent clients
from accessing the services provided by hosted applications.
Failures can be masked by recovering and failing over to
redundant backup replica components. Due to hard real-time
constraints and to avoid state synchronization overhead, we use
semi-active replication [9] to recover from fail-stop processor
failures. In semi-active replication, one replica—called the
primary—handles all client requests in active state. Backup
replicas are in semi-active state where they process client’s
requests but do not produce any output.

We consider two main sources of failure for each compo-
nent port (a) logical failure - internal software, concurrency
(deadline violations due to lock timeouts) and environmental
faults, and latent error in the developer code to implement
the operation associated with the port or (b) a critical failure,
such as process/processor failures, or undetected component
failures. By convention, to recover from logical failures, we
failover to similar backup replicas with identical interfaces but
alternate implementations (from different vendors/developers).
In case of critical failures, we failover to identical backup
replicas or to alternate backup replicas if available. Also
by convention, alternate backup replicas can be deployed
within the same partition whereas identical backup replicas are
always deployed to different partitions in the same module or
different modules of ACM.

B. SafeMAT Architecture

We have designed the Safe Middleware Adaptation for
Real-Time Fault Tolerance (SafeMAT) middleware to safely
provision adaptive failure mitigation and recovery mechanisms
in DRE systems that is resource-aware and leverages the bene-
fits of software health management. The design of SafeMAT is

driven by a holistic approach to answering the following three
questions that emerge in fault tolerance for DRE systems:

1) How to be resource-aware?: To answer this question
requires fine-grained information on the resource utilization in
the system, which can then be used in the adaptive decisions to
deal with faults. The Distributed Resource Monitoring (DRM)
framework in SafeMAT described in Section III-C provides
this capability.

2) How to deal with failures in the system of systems
context by being aware of resources?: To answer this
question requires a dynamic fault tolerance capability that can
be adaptive to account for resource availabilities. The Adaptive
Failure Management (AFM) framework in SafeMAT described
in Section III-D provides this capability.

3) How to ensure that the solutions do not compromise
the safety and timeliness of existing real-time systems?:
To answer this question requires a capability to validate that
the dynamic and adaptive fault tolerance mechanisms will not
compromise on the safety and timeliness of the already de-
ployed systems. The Performance Metrics Evaluation (PME)
framework in SafeMAT described in Section III-E provides
this capability.

Figure 1 illustrates the architectural components of Safe-
MAT and their interactions. It depicts the underlying ARINC-
653 Component Middleware solution upon which SafeMAT is
designed and implemented.

Module N

Partitions

CLHM Components

Partition
Resource
Monitor
(pRMn)

Partition Managers

Failure
Handler

Partition
Resource
Monitor
(pRMc)

Partition
Launcher

System-Level Health Manager

Alarm
Aggregator

Resource Aware
Deliberative

Reasoner
(RADaR)

Diagnoser

HFA DR

System Module Manager

Module
Scheduler

Failure
Handler

System
Resource
Monitor

(sRM)

Module 1

Module Manager 1

Partition
Scheduler

Failure
Handler

Module
Resource
Monitor
(mRM)

Partitions

CLHM Components

Partition
Resource
Monitor
(pRMn)

Partition Managers

Failure
Handler

Partition
Resource
Monitor
(pRMc)

Partition
Launcher

Module Manager N

Partition
Scheduler

Failure
Handler

Module
Resource
Monitor
(mRM)

Fig. 1. SafeMAT Architecture

SafeMAT has been architected in the form a hierarchy
of cooperating components implemented atop ACM. At the
topmost level resides the System Module Manager along with
the SLHM that hosts the System Resource Monitor (sRM)
and the Resource-Aware Deliberative Reasoner (RADaR),
respectively. At the second level are the different Module Man-
agers that are deployed on each computing processor core or
machine, each hosting a Module Resource Monitor (mRM). At

the third level are the different Partition Managers responsible
for managing each partition, each hosting a Partition Resource
Monitor (pRM). Each of the managers consequently have
Failure Handlers to detect the failures in the partitions or mod-
ules and notifying them to the RADaR. The logical failures
in components are notified by the respective CLHMs (from
the ACM framework) residing in each application component.
The different monitors form the DRM framework whereas the
RADaR along with the various Failure Handlers form the AFM
framework in SafeMAT. SafeMAT extends ACM by providing
an additional level of lower-level fault mitigation in the form
of a partition manager and its resource monitor (pRM). Doing
so helps to isolate failures in partitions and mitigate partition
faults by taking actions right away instead of involving the
module manager.

C. Distributed Resource Monitoring

The Distributed Resource Monitoring (DRM) framework
resolves Challenge 1 of Section II by providing a highly
configurable and flexible distributed, hierarchical framework
for monitoring the health and utilizations of system resources
at various granularities, such as processor, process, component
and thread. The framework comprises a distributed hierarchical
network of a single System Resource Monitor (sRM) control-
ling multiple distributed Module Resource Monitors (mRM)
that in turn control multiple Partition Resource Monitors
(pRM) local to them in client-server configurations. The sRM
resides in the system module whereas the mRMs are always
deployed within the Module Managers and the pRMs are
deployed within the individual partitions and their Partition
Managers. The pRMs are of two types depending on their
configured modes (a) pMRc in the COMPUTE mode and (b)
pMRn in the NOTIFY mode.

1) Configurability in DRM: It is possible to configure
the DRM framework using different strategies, depending
on the overall system configuration and amount of system
resources available. These strategies include reactive and
periodic monitoring strategies that can be used in con-
junction with different granularities of monitoring system
resources ranging from processes to threads. The reactive
monitoring strategy is the least resource consuming since the
CPU utilizations are computed only when instructed by the
RADaR (in case of a failure). The periodic monitoring strategy
is the most resource consuming since the monitors compute
utilizations periodically and keep the historic record of the
utilizations to provide a better prediction regarding the utility
of the resources. In the periodic strategy, the mRM periodically
sends utilizations of all components to the sRM so that the
information is readily available but may not be the most
current one. The periodic strategy is also useful for profiling
the resource utilizations during the profiling and tuning of the
system execution characteristics in Section III-E. Finally, it is
also possible to configure the DRM framework to supply only
the utilizations of the specific entities that RADaR is interested
in.

2) Discovering Resource Allocations: The DRM frame-
work is also capable of discovering the runtime deployment
and allocations of components to specific partitions and mod-
ules at runtime thereby obviating the need to configure the
framework manually thereby enabling fast monitoring. It infers
the assignments of the different subtasks to their components
as well as allocations of components to their partitions when
the monitors initialize their state. The pRMn runs within the
partition in the NOTIFY mode where it does not compute
the resource utilizations but only sends the mappings of the
deployed components and their subtasks. These mappings are
collated by the mRM and sent to the sRM which maintains
the global allocations of subtasks to components, deployment
of components to partitions, and the assignments of partitions
to their modules. This capability enables the application of
the DRM framework more generally to other types of systems
where the allocations and deployments can change at runtime.
Once the component deployment and allocations are learned
by the sRM, it updates them with the primary-backup informa-
tion about the components, component groups, and modules.

3) Resource Liveness Monitoring: The DRM framework
has been additionally entrusted with monitoring the health
of its own monitors by periodically making the monitors in
the lower level send their health status to the upper level
monitors. This monitoring capability is auxiliary to the ex-
isting signal handlers that also detect partition and partition
manager failures thereby creating a more robust dual health
monitoring capability. Thus, if the health status beacon is not
received from the pRMn and pRMc by the Module Manager
and Partition Manager then it is assumed that the Partition
(process), and the Partition Manager (process) have crashed
respectively. Similarly, it is assumed the module (processor/-
core) has crashed if the mRM has not reported its health
status beacon. Every time a failure is detected by the parent
entity, the failure status is sent to the RADaR. Thus, the major
advantage of SafeMAT over ACM is that while the SHM
framework in ACM can only detect logical component failures,
the DRM framework in SafeMAT can detect critical module,
partition and component failures.

D. Resource-Aware Adaptive Failure Mitigation

To perform resource-aware failure adaptation and address
Challenge 2 of Section II, we have developed the Adaptive
Failure Mitigation (AFM) engine that leverages the DRM
framework and augments the ACM-SHM framework through
different cooperating runtime mechanisms, such as hierarchi-
cal failover and safe failure isolation. The AFM is designed
as a collection of different components including the Failure
Handlers and RADaR that integrate the Hierarchical Failure
Adaptation (HFA) algorithm we developed with the Delibera-
tive Reasoner (DR) [8] of the SLHM. The Failure Handlers are
responsible for detecting process and processor failures and the
simultaneous logical and critical component failures that have
occurred but not reported to the HFA. The Failure Handlers
along with the DRM framework and the HFA algorithm work
together to provide quick and efficient failure adaptation at

runtime.
1) Failover Strategies: The type of failover strategy em-

ployed by the runtime failure adaptation mechanism is highly
dependent on the failure type (i.e., logical or critical), the
failure granularity (e.g., component, subsystem, partition or
module), and the primary-backup deployment topology. The
primaries can constitute individual components or groups of
components (also called subsystems) and also the modules
themselves. The graphical modeling capability provided by
ACM can be used to model the deployment of primaries
and backups. For logical failures, backups of application
components with alternate implementations can be deployed in
the same partition. However, for critical failures, backups with
identical implementations are deployed in separate partitions
within the same or remote modules (processors).

Due to the different primary-backup deployment possibil-
ities, it is necessary to implement adaptive failover mecha-
nisms that take into account the failure type, granularity and
deployment topology that can enable the ability to failover
and recover the application component(s) at the component,
subsystem, process and processor levels. Moreover, to remain
resource-aware, our algorithm chooses the best candidates at
each level for failover by ranking the backups dynamically in
increasing order of either their processor or partition or compo-
nent utilizations for which we leverage the DRM framework.

2) Enabling Hierarchical Failure Adaptation (HFA): We
have developed a Hierarchical Failure Adaptation (HFA) algo-
rithm that adapts its failover targets depending upon the failure
type, granularity and the primary-backup deployments. The
algorithm is invoked whenever any of the DRM or the ACM-
SHM frameworks detect a failure. In order to provide quick
and efficient failover once the ACM Alarm Aggregator and
the Failure Handlers detect a failed primary (component/par-
tition/module), the sRM proactively pre-computes the sorted
list of least utilized backups and the message is sent to the
RADaR already containing the failed primaries piggybacked
with the sorted list of failover target backups. The least utilized
resource indicates maximum available slack. It then hands over
the control to the SLHM.

It is the responsibility of the SLHM to determine as to when
to activate the failure recovery mechanisms which is dependent
upon the number of failures the system can withstand that
have been programmed in advance within the ACM-SHM
framework. It is also dependent upon the time taken by the
system to stabilize till all alarms/errors are collected, which
is usually a hyperperiod long in duration. Additionally, the
AFM failure handlers and the DRM liveness monitoring is
capable of detecting simultaneous module, partition, logical
and critical component failures and are intelligently mitigated
by the HFA algorithm in an hierarchical fashion.

3) The HFA Algorithm: At the core of the HFA algorithm
(Figure 2) are three functions: DetermineFailover,
DRWrapper, and Restart. DetermineFailover is a func-
tion that determines how best to choose a failover target
component and rewire it with the rest of the application. On
a failure, HFA first detects the failure type (module/parti-

RADaR

Partition Manager

BEGIN

MT = HEAD (MI)

FORALL CT in MT

PF?

NO

MF? YES

DRWrapper
(Component C)

CI not empty?

NO

CT = HEAD (CA)

YES

CT = HEAD (CI)

YES

Restart
(Partition P)

IF P has
Facets?

YES

FORALL PD

REREAD P’s
references

GF?
YES

FORALL C in P

YES

FORALL CT in GT

RESTART (P)

DetermineFailover
(Component C)

PF?

NO

FORALL c in CA

YES

IF c not in P?

CT = c

YES

NO

NO

NO

REWIRE (CT)

LEGEND
MF, PF, GF, LF, CF :- Module, Partition, Group, Logical,

Critical Component Failure Flags

MT, GT, CT :- Module, Group, Component Failover Targets

CF, CA :- Sorted Set of Identical, Alternate Backup Replicas

GF = DeliberativeReasoner (C)

GT = DeliberativeReasoner (C)

GT = CreateBackups (GT)

CF? NO

CA not empty?

LF?

YES

YES
NO

Fig. 2. The HFA Algorithm

tion/component group/critical/logical). If it’s a module failure
(MF), the algorithm fails over to the least utilized identical
module and calls REWIRE on all the components in that
module. If it’s a partition failure (PF), the algorithm invokes
the DRWrapper function for each component deployed in that
partition. Otherwise a component failure (LF /(CF)) is assumed
and the DRWrapper function is called for that component.
DRWrapper then calls the DeliberativeReasoner function to
determine group failure (GF) i.e., if the component has any
dependent components that will also require failover and it
selects the least utilized backup target group of components
and finally calls DetermineFailover on each component in the
failed group.

In case of logical failure (LF), DetermineFailover function
checks if alternate backup replica is available. Otherwise, it
checks for critical failure (CF), and if true selects the least
utilized identical backup replica if available. If not available, it
checks if alternate backup replica is available. If not available,
it restarts that partition to provide degraded QoS. If available, it
checks for a simultaneous partition failure (PF), in which case
it selects the least utilized identical replica in a different parti-
tion. If not a critical or logical failure, it restarts the partition.
DetermineFailover handles the simultaneous partition failure
as a special case where it has occurred simultaneous with a
logical component failure. In case of a simultaneous critical
component failure, it does not need to handle this special case
as identical backup replicas are always deployed on a different
partition as primary. If the restarted partition contained facets,
the Restart function ensures that the dependent partitions
reread the restarted partition’s new component references.

E. Pre-deployment Application Performance Evaluation

The real-time system execution schedule specifies the period
of execution along with the allocated start and end times of

Algorithm 1 The Hierarchical Failover Adaptation (HFA) Algorithm

Input:
1: M, P, G, C : Module, Partition, Group, Component Failed

Primaries
2: MF ,PF , GF , CF , LF : Flags for Module, Partition, Group,

Critical and Logical component Failures
3: MI , GI , CI , CA : Sorted List of Identical & Alternate

Backup Replicas
Output:

4: MT , GT , CT : Failover Target Backup Replicas

Begin HFA
5: if MF then
6: MT ← HEAD(MI)
7: for all CT ∈MT do
8: REWIRE(CT)
9: end for

10: else if PF then
11: for all C ∈ P do
12: DRWrapper(C)
13: end for
14: else
15: DRWrapper(C)
16: end if
End
Begin DRWrapper (Component C)

1: GF ← DeliberativeReasoner(C)
2: if GF then
3: GT ← DeliberativeReasoner(C)
4: GI ←CreateBackups(GT)
5: GT ← HEAD(GI)
6: for all CT ∈ GT do
7: DetermineFailover(CT)
8: end for
9: else

10: DetermineFailover(C)
11: end if
End

Begin DetermineFailover (Component C)
1: if LF then
2: CheckAlternate (C)
3: else if CF then
4: if CI 6= /0 then
5: CT ← HEAD(CI)
6: else
7: CheckAlternate (C)
8: end if
9: else

10: Restart(P)
11: end if
12: REWIRE(CT)
End
Begin CheckAlternate (Component C)

1: if CA 6= /0 then
2: if PF then
3: for all c ∈CA do
4: if c 3 P then
5: CT ← c
6: end if
7: end for
8: else
9: CT ← HEAD(CA)

10: end if
11: else
12: Restart(P)
13: end if
End
Begin Restart (Partition P)

1: RESTART (P)
2: if P has provided interfaces then
3: for all p ∈ Pd do
4: REREAD(P’s references)
5: end for
6: end if

End

the system tasks forming the scheduling quantum within the
system execution time period (P). To address Challenge 3 of
Section II, we have developed an application Performance
Metrics Evaluation (PME) framework that can profile the
application execution times and CPU utilizations by leveraging
the DRM framework to measure the actual utilizations of
various component tasks within their allocated scheduling
quantum in the system execution period. The profiling of a
system’s resource utilization during execution, both in the
presence and absence of failures, helps in determining post-
failover processor utilization of the application and SafeMAT
components. We measure the approximate worst case execu-
tion times (WCETs) of the SafeMAT adaptation mechanism
to estimate the additional runtime overhead incurred. This
can also help in safely predicting whether the application

is capable of recovering within the hard real-time deadline.
Moreover, the fine grained performance evaluation of the
application component subtasks can also provide the basis for
the system integrator for determining the slack in the system
and thereby alter the task allocations within the application
execution schedules to enable provisioning the necessary
runtime adaptation mechanisms and additional new/upgraded
functionalities.

F. SafeMAT Implementation

SafeMAT has been implemented atop the ACM real-time
emulation middleware. It is implemented in around 5,000
lines of C/C++ source code excluding the ACM code. The
Partition Manager is implemented as a separate process that
gets spawned by the Module Manager for each partition

that needs to be spawned. The Module Manager sends the
necessary partition information through environment variables
and command line parameters to the Partition Manager which
in turn spawns the partition with the right parameters and the
same environment variables set.

The DRM uses the client-server paradigm and can be con-
figured with two different monitoring strategies – reactive
and periodic. The communication between the mRM and
the pRMs is established through plain UDP sockets for
performance. We did not employ TCP sockets as we as-
sume the closed network that the avionics systems operate
on have high reliability and high bandwidth performance
with a small and bounded network propagation delay. The
DRM computes processor, process and thread utilizations from
the corresponding /proc/stat, /proc/<PID>/stat and
/proc/<PID>/task/<TID>/stat Linux data structures.

To realize the PME framework, we profile SafeMAT com-
ponent’s longest execution time across various execution in-
stances and use that as an approximation for the WCETs,
and we measure the actual online CPU utilization percentages
within each execution quantum of the hyperperiod by analyz-
ing the timing logs generated by the Module Manager and the
Partitions and the performance logs generated by the DRM
framework, respectively over a large number of iterations. To
achieve this we can configure the DRM to periodically collect
the CPU utilizations only at the end of each hyperperiod. We
compare these to the actual measured CPU utilization between
those times to the duration of the quantum to get an idea of
the slack that is available within each quantum.

IV. EMPIRICAL EVALUATION OF SAFEMAT

Fig. 3. IMU System Assembly.

To measure the performance of the various SafeMAT adap-
tive mechanisms, we used a representative DRE system called
the Inertial Measuring Unit (IMU) [10] from the avionics
domain. IMU is rich and large enough to provide a large
number of components and redundancy possibilities that stem
from the composition of its subsystems comprising the Global
Positioning System (GPS), the Air Data Inertial Reference

Unit (ADIRU) [11], the flight control (PFC) subsystem, and
the Display subsystem. Figure 3 shows the IMU system assem-
bly comprising primary subsystems of GPS and ADIRU, and
their two secondary semi-actively replicated backup replica
subsystems connected to redundant actively replicated PFC
and Display subsystems. The ADIRU subsystem is designed to
withstand 2 failures of its 6 Accelerometers. The GPS and the
ADIRU subsystems feed the 3D location coordinates and ac-
celeration values, respectively, to each of the PFC subsystems
that integrate the acceleration values over the 3D coordinates
computing the next coordinate position and outputting them
to the Display subsystem. The GPS subsystems and ADIRU
subsystems run at a frequency of 0.1 Hz and 1 Hz respectively.
The PFC fetches the GPS data at a slower but accurate rate of
0.1 Hz whereas the Display subsystem fetches the data from
the PFC subsystem at a rate of 1 Hz. Thus, the hyperperiod
of the IMU is 10 seconds (LCM of 1 and 10).

A. Evaluating SafeMAT’s Utilization Overhead

We use SafeMAT’s PME framework to determine
the overhead imposed by the SafeMAT’s fast failure
adaptation capability by measuring the CPU utilizations of
its components. Measuring the actual utilizations at the end
of each execution hyperperiod is an indicator of the slack
available for accommodating failure adaptation mechanisms.
Since SafeMAT builds over ACM, we executed 100 iterations
of the IMU system each for the plain vanilla ACM-SHM and
the SafeMAT adaptation failure recovery mechanisms. We
artificially introduced failures at 15, 20, 30, 35 iterations in
the GPS Processor, Accelerometers 6, 5 and 4, respectively
such that the values output by them are exceedingly high
(i.e. deviate from the expected trend). Once Accelerometer
4 fails at iteration 35, the system begins to malfunction and
the Display starts receiving erroneously high acceleration
values. At this moment the SafeMAT failure adaptation starts
executing and makes the ADIRU and GPS primary subsystems
failover to one of their semi-active secondary subsystems
depending upon their overall least average utilizations. In
this execution scenario the Primary_ADIRU_Subsystem
fails over to the Secondary_ADIRU_Subsystem2
whereas the Primary_GPS_Subsystem fails over to
the Secondary_GPS_Subsystem1. Figure 4 shows that
the SafeMAT does not add significant utilization overhead
(2-6%) over the existing ACM-SHM imposed utilizations
(26-73.26%).

B. Evaluating SafeMAT-induced Failover Overhead Times

To qualitatively measure SafeMAT’s runtime failover over-
head times we measure the worst-case execution times
(WCETs) of the SafeMAT’s components based on two main
parameters: (1) the impact of component replica placements
relative to their primaries and (2) the number of nested
components within the component group that need failover.

Fig. 4. SafeMAT Utilization Overhead

We measure the failover overhead (TFO) as:

TFO = TDiag +TDR +
m

∑
i=1

(
TmRM +

p

∑
j=1

TpRM

)
+TsRM +THFA

where

m - number of modules

p - number of partitions within each module

TDiag - WCET for Failure Diagnosis

TDR - WCET for Deliberative Reasoning

TsRM - WCET for the sRM to collect utilizations

TmRM - WCET for each mRM to collect utilizations

TpRM - WCET for each pRM to collect utilizations

THFA - WCET for Hierarchical Failover Algorithm

1) Impact of Component Replica Deployments: To measure
the impact of component replica deployments, we focused on
the GPS subsystem from the IMU case study.

We created different deployment scenarios by altering the
placements of the component replica by either placing them
either within the same partition as primary, or a different
partition in the same module or a different partition within
a different module. We executed the GPS subsystem with the
existing vanilla ACM-SHM recovery mechanisms in place and
with the new SafeMAT failure adaptations enabled. We have
considered the WCETs of both ACM-SHM and SafeMAT in
this case. As shown in Table 5, SafeMAT incurs comparable
execution times to the existing ACM-SHM execution times as
this scenario has been evaluated on a per component basis. The
times go up as the replica partitions move further away from
the primaries. The high recovery overhead per component are
due mainly to the unavoidable network latency to collect the
utilizations. However, the minuscule overhead on the order of
a few milliseconds are very insignificant in this case and will
not cause deadline violations when there is a large amount of
slack available, which is usually the case. Therefore, this is
not a cause of concern as shown in the next evaluation where
we progressively increase the number of components that need
failover – a scenario that is more common in real systems.

2) Impact of Component Group Size: To measure the
impact of size of the group of components that require failover,
we measure the overhead incurred by SafeMAT for the GPS
and ADIRU subsystems where the number of components
increase from just 2 to 13. As shown in the evaluation Table 6,

Fig. 5. SafeMAT Mitigation Overhead for Different Replica Deployments

when the number of components increase, the SafeMAT over-
head costs gets amortized over larger number of components.
The effective additional runtime overhead incurred by Safe-
MAT’s adaptive mechanisms becomes significantly less (9-
15%) compared to the ACM-SHM’s diagnostic and reasoning
overhead. SafeMAT’s overhead is largely dependent on the
size of the recovery group, deployment complexity of the com-
ponents within the recovery group, and the amount of network
communication required within the DRM as shown in the TFO
equation. However, it does not grow exponentially, as recovery
group size increases. The more the number of components
that need failover, the more the amount of utilization data
that can be bundled together in the network messages that are
sent by the DRM monitors to RADaR. Conversely, the smaller
the number of components affected, the greater the overhead
incurred by SafeMAT due to the network communication that
is mandatory even for relatively small number of messages
exchanged.

Fig. 6. SafeMAT Mitigation Overhead for Component Group Recovery

C. Discussion: System Safety and Predictability

Compared to the vanilla ACM-SHM mechanisms, SafeMAT
adds negligible runtime utilization overhead without overload-
ing the system while performing better failure recovery within
the available utilization slack. Moreover, by selecting the least-
utilized failover targets, SafeMAT maintains more available
post recovery slack within the system compared to ACM-
SHM, while potentially improving the task response times as
well. Figure 7 shows that there was no noticeable impact on
the Display jitter values using SafeMAT over vanilla ACM-

SHM and therefore the response times remained largely un-
affected while at the same time failure recovery was superior.
Moreover, there were no missed real-time deadlines for the
application tasks. Moreover, SafeMAT adds negligible runtime
failover overhead thereby maintaining the predictability of the
overall system Thus, these results illustrate that SafeMAT
maintains the safety of the system and also the predictability.

Fig. 7. Application Display Jitter (Hyperperiod = 1 sec)

V. RELATED WORK

In this section we discuss the existing body of research
in the area of adaptive fault tolerance in distributed real-time
and embedded systems and compare and relate our work on
SafeMAT. We categorize adaptive fault tolerance research in
following areas:
Dynamic Scheduling: Common methodologies to leverage
the slack in execution schedule have focused on dynamic
scheduling depending upon the runtime conditions. The Real-
ize middleware [12] provides dynamic scheduling techniques
that observes the execution times, slack, and resource require-
ments of applications to dynamically schedule tasks that are
recovering from failure, and make sure that non-faulty tasks
do not get affected by the recovering tasks.
Resource-aware Adaptations: The DARX framework [13]
provides fault-tolerance for multi-agent software platforms by
focusing on dynamic adaptations of replication schemes as
well as replication degree in response to changing resource
availabilities and application performance. [14] proposes
adaptive fault tolerance mechanisms to choose a suitable
redundancy strategy for dynamically arriving aperiodic tasks
based on system resource availability. Research performed
in AQUA [15] dynamically adapts the number of replicas
receiving a client request in an ACTIVE replication scheme so
that slower replicas do not affect the response times received
by clients. Eternal [16] dynamically changes the locations
of active replicas by migrating soft real-time objects from
heavily loaded processors to lightly loaded processors, thereby
providing better response times for clients. FLARe [4] proac-
tively adjusts failover targets at runtime in response to system
load fluctuations and resource availability. It also performs
automated overload management by proactively redirecting
clients from overloaded processors to maintain the desired
processor utilization at runtime. [17] focuses on an adaptive
dependability approach by mediating interactions between

middleware and applications to resolve constraint consisten-
cies while improving availability of distributed systems.
Real-time fault-tolerant systems: IFLOW [18] and
MEAD [19] use fault-prediction techniques to reduce fault
detection and client failover time to change the frequency
of backup replica state synchronization to minimize state
synchronization during failure recovery, and by determining
the possibility of a primary replica failure and redirecting
clients to alternate servers before failures occur, respectively.
The Time-triggered Message-triggered Objects (TMO)
project [20] considers replication schemes such as the
primary-shadow TMO replication (PSTR) scheme, for which
recovery time bounds can be quantitatively established,
and real-time fault tolerance guarantees can be provided to
applications. FC-ORB [21] is a real-time Object Request
Broker (ORB) middleware that employs end-to-end utilization
control to handle fluctuations in application workload and
system resources by enforcing desired CPU utilization bounds
on multiple processors by adapting the rates of end-to-end
tasks within user-specified ranges. Delta-4/XPA [22] provided
real-time fault-tolerant solutions to distributed systems by
using the semi-active replication model. Other research [23]
uses simulation models to analyze multiple checkpointing
intervals and their effects on fault recovery in fault-tolerant
distributed systems.
Need for Safe Fault Tolerance: For the hard real-time DRE
systems, applying dynamic load balancing, dynamic rate and
scheduling adjustments, adaptive replication and redundancy
schemes add extraneous dynamism and therefore potential un-
predictability to the system behavior. Altering the redundancy
strategies require altering the real-time schedules which is not
acceptable for hard real-time systems that are strictly specified.
Constantly redirecting clients upon overload and promoting
backups to primaries adds unnecessary resource consumptions
for fixed priority systems. Such approaches do not attempt
to minimize the number of resources used; their goal is to
maintain service availability and desired response times for
the given number of resources in passively replicated systems.
However, in hard real-time systems exceeding the RMS bound
of 70% of the processor utilization is not a concern as the
tasks are guaranteed to not be preempted until their allocated
quantum is over. So as long as task utilizations are guaranteed
to be under 100% processor load, their deadlines and profiled
WCETs are guaranteed to be satisfied. In SafeMAT we guar-
antee through exhaustive application performance profiling by
establishing runtime utilization and failover overhead bounds
that the dynamic failure adaptations will not violate the real-
time deadlines and overload the resources. Moreover, as the
system resources are over-provisioned we use semi-active
replication which subsumes the need for expensive state-
synchronization and load balancing mechanisms.

VI. CONCLUSION

Mission-critical hard real-time applications being in-service
for many years, have too rigid execution schedules to incor-
porate additional evolving domain requirements in the form

of new functionalities and better failure adaptation techniques
even if their resources are over-provisioned to ensure their
safety and predictability. While, existing SHM techniques
are predictable, they are too static and do not offer the
best case failure adaptation in real-time. In order to evolve
these systems and improve their predictability, reliability and
resource utilizations, it is necessary to discover the existing
slack within their execution schedules and utilize it to safely
provision additional and efficient dynamic failure adaptation
mechanisms.

In this paper, we presented a dynamic, safe middleware
adaptation technique and a performance metric evaluation
framework that provided a fast and adaptive failover through
flexible and configurable fine-grained resource monitoring and
an hierarchical failure adaptation algorithm that is not only
resource-aware but also took into account the failure type,
failure granularity, the relative component replica placements.
Our approach manifested in the form of the SafeMAT middle-
ware and the PME framework. We also rigorously evaluated
our adaptive middleware by measuring the runtime utilization
and the execution overhead for different replica deployments
as well as an increasing number of components.

REFERENCES

[1] S. E. Institute, “Ultra-Large-Scale Systems: Software Challenge of the
Future,” Carnegie Mellon University, Pittsburgh, PA, USA, Tech. Rep.,
June 2006.

[2] A. Srivastava and J. Schumann, “The case for software health manage-
ment,” in Space Mission Challenges for Information Technology (SMC-
IT), 2011 IEEE Fourth International Conference on. IEEE, 2011, pp.
3–9.

[3] A. Dubey, G. Karsai, and N. Mahadevan, “Model-based software health
management for real-time systems,” in Aerospace Conference, 2011
IEEE, march 2011, to appear. Draft available at http://isis.vanderbilt.
edu/sites/default/files/PaperSubmission.pdf.

[4] J. Balasubramanian, S. Tambe, C. Lu, A. Gokhale, C. Gill, and D. C.
Schmidt, “Adaptive Failover for Real-time Middleware with Passive
Replication,” in Proceedings of the 15th Real-time and Embedded
Applications Symposium (RTAS ’09), San Francisco, CA, Apr. 2009,
pp. 118–127.

[5] ARINC, “ARINC specification 653-2: Avionics application software
standard interface part 1 - required services,” ARINC Incorporated,
Annapolis, Maryland, USA, Tech. Rep., May 2010.

[6] A. Dubey, G. Karsai, and N. Mahadevan, “A component model for hard
real-time systems: CCM with ARINC-653,” Software: Practice and
Experience, vol. 41, no. 12, pp. 1517–1550, 2011. [Online]. Available:
http://dx.doi.org/10.1002/spe.1083

[7] The Common Object Request Broker: Architecture and Specification
Version 3.1, Part 3: CORBA Component Model, OMG Document
formal/2008-01-08 ed., Object Management Group, Jan. 2008.

[8] A. Dubey, N. Mahadevan, and G. Karsai, “A deliberative reasoner for
model-based software health management,” in The Eighth International
Conference on Autonomic and Autonomous Systems, 2012, to appear.

[9] A. M. Déplanche, P. Y. Théaudière, and Y. Trinquet, “Implementing a
semi-active replication strategy in chorus/classix, a distributed real-time
executive,” in SRDS ’99: Proceedings of the 18th IEEE Symposium on
Reliable Distributed Systems. Washington, DC, USA: IEEE Computer
Society, 1999, p. 90.

[10] A. Dubey, N. Mahadevan, and G. Karsai, “The inertial measurement
unit example: A software health management case study,” Institute for
Software Integrated Systems, Vanderbilt University, Tech. Rep., 02/2012
2012.

[11] M. McIntyre and C. Gossett, “The boeing 777 fault tolerant air data and
inertial reference system-a new venture in working together,” in Digital
Avionics Systems Conference, 1995., 14th DASC, Nov. 1995, pp. 178
–183.

[12] V. Kalogeraki, P. M. Melliar-Smith, and L. E. Moser, “Dynamic Schedul-
ing of Distributed Method Invocations,” in 21st IEEE Real-time Systems
Symposium. Orlando, FL: IEEE, Nov. 2000.

[13] O. Marin, M. Bertier, and P. Sens, “Darx: A framework for the fault-
tolerant support of agent software,” in ISSRE ’03: Proceedings of
the 14th International Symposium on Software Reliability Engineering.
Washington, DC, USA: IEEE Computer Society, 2003, p. 406.

[14] O. Gonzalez, H. Shrikumar, J. A. Stankovic, and K. Ramamritham,
“Adaptive fault tolerance and graceful degradation under dynamic hard
real-time scheduling,” in RTSS ’97, San Francisco, CA, USA, 1997,
p. 79.

[15] S. Krishnamurthy, W. H. Sanders, and M. Cukier, “An Adaptive Quality
of Service Aware Middleware for Replicated Services,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 14, no. 11, pp. 1112–
1125, 2003.

[16] V. Kalogeraki, P. M. Melliar-Smith, L. E. Moser, and Y. Drougas,
“Resource Management Using Multiple Feedback Loops in Soft Real-
time Distributed Systems,” Journal of Systems and Software, 2007.

[17] L. Froihofer, K. M. Goeschka, and J. Osrael, “Middleware support for
adaptive dependability,” in Middleware, 2007, pp. 308–327.

[18] Z. Cai, V. Kumar, B. F. Cooper, G. Eisenhauer, K. Schwan, and
R. E. Strom, “Utility-Driven Proactive Management of Availability in
Enterprise-Scale Information Flows.” in Proceedings of ACM/Usenix/I-
FIP Middleware, 2006, pp. 382–403.

[19] S. Pertet and P. Narasimhan, “Proactive recovery in distributed corba
applications,” in DSN ’04: Proceedings of the 2004 International Con-
ference on Dependable Systems and Networks. Washington, DC, USA:
IEEE Computer Society, 2004, p. 357.

[20] K. H. K. Kim and C. Subbaraman, “The pstr/sns scheme for real-time
fault tolerance via active object replication and network surveillance,”
IEEE Trans. on Know. and Data Engg., vol. 12, no. 2, 2000.

[21] X. Wang, Y. Chen, C. Lu, and X. Koutsoukos, “FC-ORB: A robust
distributed real-time embedded middleware with end-to-end utilization
controlstar, open,” Journal of Systems and Software, vol. 80, no. 7, pp.
938–950, 2007.

[22] D. Powell, “Distributed Fault Tolerance: Lessons from Delta-4,” IEEE
Micro, vol. 14, no. 1, pp. 36–47, 1994.

[23] P. Katsaros and C. Lazos, “Optimal object state transfer - recovery
policies for fault tolerant distributed systems,” in Proc. of DSN. (2004).

