
Approximation Techniques for Maintaining
Real-time Deployments Informed by User-provided

Dataflows Within a Cloud
James Edmondson, Aniruddha Gokhale, Douglas Schmidt

Dept of EECS, Vanderbilt University
Nashville, TN 37212, USA

{james.r.edmondson,a.gokhale,d.schmidt}@vanderbilt.edu

Abstract—Distributed applications are increasingly developed
by composing many participants, such as services, components,
and objects. When deploying distributed applications into a
mobile ad hoc cloud, the locality of application participants that
communicate with each other can affect latency, power/battery
usage, throughput, and whether or not a cloud provider can
meet service-level agreements (SLA). Optimization of important
communication links within a distributed application is partic-
ularly important when dealing with mission-critical applications
deployed in a distributed real-time and embedded (DRE) sce-
nario, where violation of SLAs may result in loss of property,
cyber infrastructure, or lives.

To complicate the optimization process, the underlying cloud
environment can change during operation and an optimal de-
ployment of the distributed application may degrade over time
due to hardware failures, overloaded hosts, and other issues
that are beyond the control of distributed application developers.
To optimize performance of distributed applications in dynamic
environments, therefore, the deployment of participants may
need adapting and revising according to the requirements of
application developers (e.g., how they inform the cloud of impor-
tant connections between participants within their distributed
application) and the resources available in the underlying cloud
environment.

This paper present two contributions to the study of dynamic
optimizations of user-provided deployments within a cloud. First,
we present a dataflow description language that allows developers
to designate key communication paths between participants
within their distributed applications. Second, we describe and em-
pirically evaluate heuristics that use this dataflow representation
to identify optimal configurations for initial deployments and/or
subsequent redeployments within a cloud. We motivate our
contributions with a distributed real-time and embedded cloud of
airborne drones to highlight the applicability of our solutions and
validate our techniques with experiments on simulated network
infrastructures of a wireless ad hoc cloud.

Index Terms—heuristics; genetic algorithms; clouds optimiza-
tion; real time; constraint problems

I. INTRODUCTION

Enterprise distributed real-time and embedded (DRE) sys-
tems are mission-critical applications that run in networked
processes across heterogeneous architectures under stringent
timing requirements and scarce resources [2]. Though enter-
prise DRE systems were originally associated with avionics,
manufacturing, and defense applications, they increasingly
focus on a broader class of distributed applications where the
right answer delivered too late becomes the wrong answer.

Information in DRE systems must therefore be delivered
according to stringent quality-of-service (QoS) needs, despite
failures and resource limitations [17], [20], [16].

Unlike some enterprise cloud-based applications—that deal
with service-level agreement (SLA) violations with small sur-
charges to the cloud infrastructure provider—mission-critical
enterprise DRE systems cannot tolerate unresponsiveness. Re-
curring SLA violations may thus result in financial loss and
even deaths. DRE systems often require continuous human
vigilance to maintain appropriate end-to-end QoS. Moreover,
cloud environments do not optimize distributed deployments
according to user-defined application dataflows between im-
portant participants. To enable next-generation cloud environ-
ments to support DRE applications, therefore, they need the
following capabilities:

1) A means to specify key communication paths within a
distributed application to inform the underlying cloud of
what participant interactions should be optimized.

2) Heuristics for optimizing distributed application partic-
ipant pathways that are identified as important by the
user or a monitoring system that informs the cloud
infrastructure of heavily utilized pathways.

This paper describes extensions to the Multi-Agent Dis-
tributed Adaptive Resource Allocation (MADARA ) [6], [7]
open-source multi-agent middleware, which provides adaptive
deployment tools to support next-generation cloud computing
capabilities for DRE systems. We have enhanced MADARA to
provide a dataflow description language that allows developers
to designate key communication paths between participants
within their distributed applications. MADARA now also pro-
vides genetic algorithms and heuristics that use this dataflow
representation to identify optimal configurations for initial
deployments and/or subsequent redeployments within a cloud
using real-time latency information. In addition, MADARA
now provides developers with methods for aggregating latency
information via summations of latencies along important paths
in the dataflow, which is useful for other approximation
techniques that require similar aggregations of latency.

The remainder of this paper is organized as follows: Sec-
tion II presents a search-and-rescue scenrio that motivates the
need for the specification and heuristics added to MADARA;



Section III describes the dataflow description specification
and heuristics MADARA uses to minimize end-to-end latency
in a DRE application dataflow within a cloud; Section IV
analyzes the results of experiments that evaluate how well the
MADARA guided genetic algorithms and heuristics approxi-
mate a user workflow; Section V compares MADARA with
related work on approximation techniques; and Section VI
presents concluding remarks.

II. MOTIVATION EXAMPLE

To motivate the need for MADARA, this section presents
a scenario that occurs during a search-and-rescue mission
where multiple government agencies utilize a cloud of remote-
controllable drones within a disaster area. Figure 1 shows this
disaster recovery scenario, where remote-controllable drones
have been deployed to search for survivors in an earthquake-
ravaged metropolitan area. The application dataflow shown

Fig. 1. Motivating Search-and-Rescue Application Scenario

in this figure show segregated groups of remote-controlled
drones in the search-and-rescue mission communicating via
satellite with human controllers. Due to the destruction, human
controllers of the drones are restricted to satellite connections
and the bandwidth available over this limited network resource
is sufficient for only a handful of dedicated sessions between
humans and the drones searching for signs of life.1

Human controllers can thus only maintain communication
with a small subset of the drones, called collector drones. Each
drone has onboard sensors that may allow it to detect radiation,
record video, observe and report atmospheric anomalies, detect
thermal signatures, and other useful functions, and regardless
of which government agency leased time on the drone cloud,
each of the automated participants aids in searching for
survivors. Each drone is also equipped with a wireless access
point that allows it to form/join ad hoc networks and transmit
sensor readings, images, or other data.

1For simplicity, this figure only shows dozens of drones, but we anticipate
thousands of drones being deployed in future scenarios, depending on the size
of the search area and the availability of inexpensive, commercially-available
remote-controlled drones, such as the Parrot AR.Drone.

With all secondary functions (e.g., radioactivity detection)
turned on, the drones will quickly run out of power. Moreover,
the faster the drones power down, the less survivors that will be
found and useful work accomplished. Data communication is
a particularly expensive operation that quickly drains batteries.
The closer two drones are to each other, however, the lower
the latency and the less data resends required across the
communication, which extends battery life.

Each government agency may have its own satellites and
secondary functions it is interested in. Application dataflows
are therefore defined to reflect (1) the agencies funding (e.g.,
more funding generally means more drones allocated) and
(2) the path that information will make within the allocation,
which may reflect a specific flying or roaming formation. This
latter refinement means that the application dataflow is arbi-
trary and may not reflect the Area Coverage Problem [1], [19],
[14], [8], which is commonly solved with sensor networks.

An example application dataflow is shown in Figure 2.
The data shown in this figure enables two radiation detectors
and has two collector drones communicating with human
controllers via satellite links. Each edge in an application
dataflow shown in this figure is equally important, i.e., no
edge is more important than any other edge that is defined
in the application dataflow. The absence of an edge means
that the datapath is unimportant or at least that no attempt
should be made to minimize latency along that datapath. We
also assume that each edge is utilized equally (i.e., no edge
is monopolizing traffic unevenly), and this caveat helps us to
simplify the optimization problem: the best deployment will
be the one that has the lowest total latency summed across all
edges.

collector 

collector 

radiation 
detector 

radiation 
detector 

Fig. 2. Application Dataflow Example

As drones move around the area, the optimal deployment of
DRE applications that are running on the drones may become
outdated. A redeployment of the DRE application may there-
fore be necessary to ensure these collector drones are in range
of their group within the dataflow. This redeployment time is
pure overhead and the associated computation time competes
with the CPU and memory resources that the human controller



needs to view important data, as well as draining precious
battery life. If the drones remain computation-bound for too
long and lock out their controllers from viewing information or
issuing commands, survivors may be missed, drones may crash
into buildings or other obstacles, and lives and resources may
be lost. For these reasons, the time required for calculating the
redeployment should be minimized—preferably a handful of
seconds or less.

In summary, this motivating DRE application described
above has the following requirements:

1) Users must be able to define a flexible deployment
dataflow for thousands of drones, which also helps make
the techniques described in this paper applicable to
other enterprise-scale cloud applications deployed on
commercial cloud providers, such as Amazon’s EC2
service. Section III-A describes a dataflow description
specification used by MADARA to designate key com-
munication pathways.

2) Algorithms for approximating the dataflows against the
current network conditions must be able to execute
quickly (sub-second runtime is preferred for DRE sys-
tems) and failure to do so may result in loss of drones or
survivors due to faster battery depletion. Sections III-C,
III-D, and III-E describe the heuristics MADARA uses
to approximate these dataflows.

3) Any implemented deployment solution suggested to the
drones for (re)deployment should result in a noticeable
performance increase in the network. Section III-A
describes the process of preparing underlying cloud
environment latency information for heuristics and the
target conditions for redeployment.

III. APPROXIMATION TECHNIQUES IN MADARA

This section describes genetic algorithms and heuristics pro-
vided by MADARA to approximate an optimal enterprise DRE
application deployment under different constraints. We devel-
oped multiple solutions due to memory limitations imposed
by different contexts where the solutions are deployed. These
solutions are complementary and can be chained together to
produce seeds and candidates for other genetic algorithms or
heuristics. These heuristics can also be run on all hosts in the
cloud or on specific hosts, such as collector drones or a master
host.2

A. Defining the Dataflow and Identifying Degrees

MADARA optimizes DRE application dataflows from a
graph perspective. In particular, it encodes a user-defined
deployment dataflow into a graph and use degree information
to inform our approximation process. The degree of a node in
a graph is the number of connections incident on the node, i.e.,
it is essentially a connectivity metric. This concept of degree
is derived from graph algorithms, as well as distributed and
parallel computing.

2This paper does not specify how cloud hosts agree on a redeployment and
assume a distributed voting protocol is used to determine redeployment thresh-
olds (which is how we implement redeployment agreement in MADARA.)

TABLE I
DATAFLOW DESCRIPTION FOR MOTIVATING DRE APPLICATION

0 → [0, size/4)
size/4 → [size/4, size/2)
size/2 → [size/2, 3*size/4)

3*size/4 → [3*size/4, size)

The degree of a graph is relevant to MADARA because
it seeks solutions that minimize the latency or improve the
overall utility of the connections between nodes in a DRE
application dataflow. The node with the highest degree has
the most impact on this overall metric. It is therefore often a
major bottleneck in DRE applications.

To show how a degree is imparted from an application
dataflow, Table I depicts an actual dataflow description file
for our motivating application in Section II, which consists
four collector drones, each gathering messages from a quarter
of the drone population. The MADARA dataflow description
language provides a mapping of directed edges and is ideal for
specifying large ranges of values, which maps well to cloud
environments. The simplest dataflow description involves a
source mapped to a range of destination participants, which
are processing elements capable of executing a component or
service of a distributed application.

For instance, participant 0 in the first line of Table I has
important edges from itself to participant 0 to size / 4, where
’[’ denotes inclusiveness and ’)’ denotes non-inclusiveness.
Instead of a single participant id, the source participant in
the dataflow description language can be a range of IDs,
e.g., [0, size/4] → [0, size/4) indicates that important edges
exist between each participant in one-fourth of the available
participants in the cloud. The number of participants available
per host can be potentially infinite, but for DRE systems it
should ideally map to the number of processors available or
less if threads of execution should be available for certain
system threads at all times.

From the dataflow description in Table I, we can make the
following observations. There are four special drones, and each
are servicing a large portion of the underlying drone network.
If the size is set to 12, the logical drone 0 is servicing drones
0-2. Drone 3 services 3-6, drone 6 takes care of 6-8, and
drone 9 handles information to and from 9-11. This MADARA
deployment specification interface addresses requirement 1 of
the motivating DRE application in Section I by providing users
a flexible mechanism for specifying a deployment dataflow in
a DRE system.

Figure 3 visualizes what a degree in a graph is by labeling
the high degree nodes in a user-provided DRE application
dataflow. The node with a degree of seven has seven directional
edges coming in or out of the node. A degree with three
signifies that the node has a connectivity of three. Though this
paper focuses on using degree information for the motivating
DRE application in Section I, our solution techniques are rele-
vant to approximating component placement, optimal resource
monitoring, routing, and other problems involving connected
graphs.



Degree=7 

Degree=3 

Fig. 3. Degrees in a User-provided DRE Application Dataflow

B. Preparing the Data

Before presenting MADARA’s heuristics, genetic algo-
rithms, and their hybrids, we first summarize the process
of data collection and preparation that is needed for these
solution approaches. Our heuristics discussed later depend on
a notion of utility, so the first phase of data preparation collects
the latencies (the utilities) and aggregates them according to
deployment degrees. After data has been collected, the prepare
algorithm shown in Algorithm 1 is called to aggregate, sort,
and process the latency and utility information with respect to
the DRE application graph.

Algorithm 1 Prepare
Require: DRE application dataflow nodes are sorted by de-

scending degree
Require: Gather latencies via network and place in an array

or a double array
1: if Storing all latencies involving all processes then
2: for all source ∈ latencies do
3: sort ascending(latencies[source]) ;
4: for all degree ∈ DRE application dataflow do
5: utilities[degree][source] ←

∑degree
j=1 latencies[i][j]

6: end for
7: end for
8: else if Storing only latencies involving this process then
9: sort ascending(latencies)

10: for all degree ∈ DRE application dataflow do
11: utilities[degree] ←

∑degree
j=1 latencies[j]

12: end for
13: end if
14: sort ascending(utilities)

Each utility list entry in Algorithm 1 is the sum of the
best latencies in the underlying cloud per degree in a user-
provided dataflow. This sum is used to fill in participant IDs
by an approximation heuristic. After the data is ready, it is
disseminated to interested parties in the network, e.g., the

drones or a special collector of this type of information—
perhaps a command-and-control output.

The preparation routine should be performed before the
heuristics are called. Algorithm 1 need not be called contin-
ually throughout the life of the deployment infrastructure. It
should be called at some point, however, before calling the
heuristics to avoid approximating a solution with stale data.

Before executing data collection or Algorithm 1, developers
must determine whether the network of drones should be
fully informed with latency information or if they should only
send latency degree-based utility information (the aggregates
of their latency tables). Another option is to have all drones
send latency information to a single, powerful drone that is
fully informed and have it perform all of the data aggregation,
approximating, and any other function. This option avoids
over-broadcasting data, but will also result in a single point-
of-failure in the enterprise DRE system, so failover drones or
replication mechanisms should be utilized to handle the case
where the single, powerful drone becomes unresponsive or
destroyed.

With fully-informed collection, each drone must send O(N)
latency information and O(M) utility information to each
latency/utility collection point, where N is the size of the
network and M is the number of degrees in the deployment
dataflow. During the preparation phase, the drone or computer
that is preparing the data performs N sorts of N elements
(O(N2 log N)) and also a summation of latencies (D O (N2)),
where D is the number of degrees available in the deployment.

Each step described above is fully parallelizable since each
operation has no side effects. This work can be performed on
each drone to reduce the execution complexity to O(N log N)
and O(DN) for sorting and summation, respectively, which is
what Algorithm 1 does on lines 8-13. The computation differ-
ences between these approaches are highlighted in Section IV.

This preparation time decision dictates the runtime of the
prepare algorithm, but does not necessarily affect whether
or not the drones are fully informed. If developers desire
a fully informed drone network (e.g., to use Algorithm 2),
each candidate can sort its latencies, perform summations on
the degrees necessary for the deployment, and transmit the
sorted latency list and aggregation information to all other
drones (or the current collection drones that then transmit
this information to their local group). In this way, each drone
transmits O(N) latencies and O(M) data entries, where N is
the number of drones and M is the number of different degrees
in the provided deployment dataflow.

There is a separate preparation step of sorting the user-
provided DRE application deployment graph by degree, which
helps Algorithms 2, 3, and 5 pick deployment nodes to
solve in a more intelligent order. This step can be performed
offline, however, during DRE application modeling phases.
Even when done online, the preparation step of sorting the
DRE application dataflow by degree takes just nanoseconds to
a few microseconds for 10,000+ node dataflows. It is therefore
a negligible portion of the time needed to perform the approx-
imation (the project site at madara.googlecode.comcontains



complete code examples).

C. Degree-based Heuristics in MADARA

Two heuristics are discussed below, each targeting a
different context of the motivating DRE application. The
Comparison-based Iteration by Degree (CID) Heuristic
(shown in Algorithm 2) is useful for seeding genetic algo-
rithms when the drone has enough memory to hold latency
information of all other drones (O(N2) space requirement),
which can become hundreds of megabytes when thousands of
drones or processes are involved.

Algorithm 2 CID Heuristic
Require: Call Prepare (Algorithm 1)

1: for all node ∈ dataflow do
2: if degree (node) > 0 then
3: solution[node] ← best candidate (utili-

ties[degree(node)])
4: end if
5: end for
6: for all node ∈ DRE application dataflow do
7: if degree (node) > 0 then
8: for neighbor ∈ connections(dataflow, node) ∧ neigh-

bor /∈ solved(solution) do
9: solution[neighbor] ← best candidate

(latencies[node])
10: end for
11: end if
12: end for
13: for all node ∈ DRE application dataflow ∧ node /∈

solved(solution) do
14: solution[node] ← best candidate (utilities[size])
15: end for

Algorithm 2 shows how the CID Heuristic begins by iter-
ating over the deployment and placing candidates based on
lowest latency available in the cloud for the degree. See Lines
2-7 of Algorithm 1 that construct the utilities list. This list
provides presorted summed latencies per degree.

The latencies list is a sorted list of latencies between
all participants. Thus, latencies[node] is the list of latencies
involving a certain node. We place our lowest total latency
candidates on the nodes with the highest connectivity (lines
1-5) and then iteratively fill in their closest neighbors when
possible on lines 6-12 (i.e., when it does not conflict with other
high degreed nodes in the DRE application dataflow).

The final phase of the CID heuristic (lines 13-15) deals
with nodes that are not connected to the rest of the DRE
application dataflow. For example, this phase could be used
for worker drones that do not communicate with the drone
collector and serve as sentries, data analyzers, or passive
entities whose results can be processed or collected offline
(non-mission critical).

A variant of the CID heuristic we developed called the Blind
CID heuristic is shown in Algorithm 3.

Algorithm 3 Blind CID
Require: Call Prepare (Algorithm 1)

1: for all node ∈ dataflow do
2: if degree (node) > 0 then
3: solution[node] ← best candidate (utilities[degree])
4: end if
5: end for
6: for all node ∈ dataflow do
7: if degree (node) > 0 then
8: for neighbor ∈ connections(deployment, node) ∧

neighbor /∈ solved(solution) do
9: solution[neighbor] ← best candidate

(utilities[size])
10: end for
11: end if
12: end for
13: for all node ∈ dataflow ∧ node /∈ solved(solution) do
14: solution[node] ← best candidate (utilities[size])
15: end for

The Blind CID heuristic is useful for deployments where
drones do not have as much memory (O(N) space instead of
O(N2)). The drawback is that the Blind CID heuristic is a less
informed approximation of the solution than the CID Heuristic
and may not find the optimal deployment, which results in less
battery life, longer latencies, and more resends of important
information.

A key difference between the CID heuristic and the Blind
CID heuristic (Algorithm 3) is that the CID heuristic uses
the fine-grained latency information from all drones in the
network. In contrast, the Blind CID heuristic only uses aggre-
gation of this knowledge (the utilities list that we obtain from
Algorithm 1). The Blind CID heuristic does use deployment
information in the dataflow to prioritize which node of the
dataflow to approximate next. It always selects from the best
total latency value (essentially the aggregate of a full broadcast
from the node), however, rather than the aggregate of best
latencies from this node for the degree.

The benefit of the Blind CID heuristic is that the drones
need not send their individual latency values to other drones
that must make redeployment decisions (O(N) total message
complexity unlike the other algorithms). Each node using
Algorithm 3 alone has a message complexity of O(1), a
message containing an aggregrate latency value for a full
broadcast from the node. Sending fewer messages increases
battery life for all participants in the dataflow.

D. Genetic Algorithms in MADARA

Not all DRE application dataflows can be solved opti-
mally by the heuristics described in Section III-C. The CID
and BCID heuristics are tailored to solving certain types of
dataflows like acyclic collector drones and not more complex
dataflows like hierarchical or cyclic dataflows. For more com-
plex dataflows, a randomized search technique may be more
appropriate.



To complement the heuristics discussed in Section III-C,
we therefore developed two genetic algorithms to hone the
approximated solution before deciding if a redeployment is
necessary for the special drones. Only one of these genetic
algorithms—Guided GA shown in Algorithm 4—is guided
with degree information.

Algorithm 4 Guided GA
Require: Call Prepare (Algorithm 1)

1: mutations ← min + rand() % (max - min)
2: orig utility ← utility(new)
3: for i → mutations do
4: new ← solution
5: if rand() % 5 < 4 then
6: c1 ← random degreed node (dataflow)
7: c2 ← location(new[good candidate(utilities)])
8: while c1 ≡ c2 do
9: c2 ← location(new[good candidate(utilities)])

10: end while
11: else
12: c1 ← rand() % size
13: c2 ← rand() % size
14: while c1 ≡ c2 do
15: c2 ← rand() % size
16: end while
17: end if
18: if utility(new) < orig utility then
19: solution ← new
20: end if
21: end for
22: if utility(solution) < orig utility then
23: return solution
24: end if

The Blind GA Algorithm 5 does not use degree information
to mutate solutions and instead uses pure randomness when
selecting solution chromosomes to mutate.

Before describing the Guided GA Algorithm 4 and Blind
GA Algorithm 5 solutions we briefly describe what constitutes
a mutable chromosome in the deployment. Each of these
algorithms considers a chromosome as a mapped participant of
the final deployment solution. For instance, if a user-provided
dataflow contained five participants, then five chromosomes
would exist in the solution list and the genetic algorithms will
attempt to optimize the deployment by mutating chromosomes
until a time limit is reached. The best generated solution that
contained the lowest summed latency according to the edges in
the user-provided dataflow would be returned by these genetic
algorithms as the solution list (this list is actually a vector in
MADARA for performance reasons).

Both algorithms select chromosomes (i.e., nodes/drones) of
the proposed solution (the approximated deployment) to mu-
tate and then perform mutations for a specified time interval or
number of allowed mutations before returning the best solution
(either the original or the improved solution). The Guided GA
in Algorithm 4, however, targets the higher degreed nodes 80%

Algorithm 5 Blind GA
Require: Call Prepare (Algorithm 1)

1: mutations ← min + rand() % (max - min)
2: orig utility ← utility(new)
3: for i → mutations do
4: new ← solution
5: c1 ← rand() % size
6: c2 ← rand() % size
7: while c1 ≡ c2 do
8: c2 ← rand() % size
9: end while

10: swap(new[c1], new[c2])
11: if utility(new) < orig utility then
12: solution ← new
13: end if
14: end for
15: if utility(solution) < orig utility then
16: return solution
17: end if

of the time and selects from the best available participants in
the underlying cloud, which allows it to make more intelligent
mutations by targeting highly degreed chromosomes more
often. While the Guided GA does converge much more quickly
than the Blind GA, the randomness inherent in the Blind
GA can be better for the hybrid approaches we discuss in
Section III-E below.

The Guided GA takes longer per iteration due to its added
intelligence. After some initial timing, we determined that
the maximum mutations available to the Guided GA imple-
mentation in a second might be 500 per solution, while the
less-informed Blind GA solution could manage over 2,000 in
the same time period. We analyze the effectiveness of both
solutions in Section IV.

E. Hybrid Approaches in MADARA

A guided genetic algorithm need not be directly codified
with degree information, as we did with Guided GA Algo-
rithm 4. We can also seed the Guided GA algorithm with
heuristic results to help local searches converge much faster
than they might have otherwise. We therefore combine the
two heuristics in Section III-C with each genetic algorithm
presented in Section III-D to produce four methods: (1)
CID with Blind Genetic Algorithm (CID-BGA), (2) CID with
Guided Genetic Algorithm (CID-GGA), (3) Blind CID with
Blind Genetic Algorithm (BCID-BGA), and (4) Blind CID with
Guided Genetic Algorithm (BCID-GGA).

IV. EXPERIMENTAL VALIDATION OF THE HEURISTICS

This section analyzes the performance of—and utility pro-
duced by—the MADARA algorithms and heuristics described
in Section III. We used two types of metrics for our ex-
periments: (1) runtime, which evaluates the time required
to approximate an optimal large-scale deployment dataflow
within a simulated mobile DRE adhoc cloud with varying



latencies between hosts and maps directly to requirement 2 of
the motivating DRE application in Section II and (2) system
slowdown, which evaluates the runtime performance of the
resulting deployment after a redeployment occurs and maps
to requirement 3 of the motivating DRE application.

A. Experiment Setup

The first experiment creates a hand-coded network con-
figuration where four drones in four disjoint groups have
500us latency to their local drones and these special drones
have complete coverage of the network topology at the 500us
latency. Every other link has 1s latency, which is typical for
radio-based communication in a disaster area. The underlying
network has exactly one perfect configuration for this deploy-
ment of four special drones collecting from equal divisions of
the DRE cloud. Consequently, system slowdown will be high
(i.e., performance will be poor) if the heuristic does not find
the optimal deployment.

For the second experiment, we add noise to the underlying
network that allows for thousands of local minima and maxima
to exist. A perfect configuration with 500us latency links is
present. To confuse the tested heuristics, however, we added
a uniform distribution of latencies from 600us to 3s to the
network.

We examine the second experiment in three
configurations—two collector drones that communicate
with size/2 local participants, three collector drones that
communicate with size/3 local participants, and four collector
drones that with size/4 local participants. These tests expect
that the guided heuristics and algorithms will far outperform
the unguided ones. The motivating DRE application favors
techniques that put as little strain on the CPU as possible to
conserve battery, so smaller runtimes are preferred to allow
for longer drone uptime.

System slowdown is defined by the equation “slowdown =
2 * system latency / (1,000,000 * size)” in these experiments.
With the optimal configuration, slowdown == 1. Anything
greater than one is a factor of slowdown. For example, 2.0 is
a 100% slowdown in the overall system, which drain a battery
more significantly than an optimal deployment.

All experiments were repeated ten times and the averages
are reported. Each experiment was conducted on an Intel
Core2 Duo clocked at 2.53 GHz and 4 GB of RAM running
Windows 7 32-bit operating system. We allow the heuristics to
run on this processor configuration with virtual latencies that
mimic real-world large-scale cloud infrastructures of 1,000 to
10,000 hosts and then run the heuristics on these virtual cloud
environments. The C++ code was compiled in MS Visual
Studio 2008 under the optimized release mode. Code for all
the experiments and the configuration information is available
from the MADARA project site at madara.googlecode.com.

B. Analysis of Results

Below we analyze the experimental outcomes in regards
to runtime and system slowdown, which reflect requirement 2
and 3 from the motivating scenario in Section ??, respectively.

Runtime. Figure 4 depicts the runtime performance of the
heuristics in approximating deployments for the first experi-
ment, the scenario where only one good solution exists and
every other solution is highly suboptimal. Figure 5 depicts the

0 

1,000 

2,000 

3,000 

4,000 

5,000 

6,000 

7,000 

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 

Ti
m

e
 (

m
s)

 

Participants in deployment 

CID BCID BGA GGA 

CID-BGA CID-GGA BCID-BGA BCID-GGA 

Fig. 4. Runtime Required Under the First Experiment

runtime performance of heuristics in approximating deploy-
ments for the second experiment, where thousands of good
approximations exist but only one is optimal.

0 

1,000 

2,000 

3,000 

4,000 

5,000 

6,000 

7,000 

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 

Ti
m

e
 (

m
s)

 

Participants in deployment 

CID BCID BGA GGA 

CID-BGA CID-GGA BCID-BGA BCID-GGA 

Fig. 5. Runtime Required Under the Second Experiment

Running CID and BCID alone requires roughly 18-20ms
to approximate dataflows of 10,000 participants in the various
configurations noted in Section IV-A. The genetic algorithms
are anytime algorithms that can be given a timed run. To show
the runtime differences between these algorithms, we allowed
them both to perform 500 mutations of up to 10 chromosome
changes. The guided genetic algorithm has more intelligence,
so it takes longer to perform these mutations. As show below,
however, it can find better solutions more quickly than the
blind genetic algorithm.

It takes the genetic algorithms much longer to perform
the same number of mutations in experiment 2, shown in



Figure 5. This increase in time required to approximate is
caused by the increased frequency of finding better solutions
and performing deep copies of these new deployments (e.g.,
line 19 of Algorithm 4). When there are fewer good solutions
to find, the genetic algorithms tends to perform mutations
much faster because it rarely has to perform these expensive
deep copies of the current best deployment.

The final analysis we make for runtime performance con-
cerns the latency preparation defined in Algorithm 1. The Pre-
pare algorithm is required by each heuristic to sum latencies
by degree before the heuristics can approximate deployments
from the underlying cloud. Figure 6 shows the runtime re-
quired on each host that runs this algorithm.

0.01 

0.10 

1.00 

10.00 

100.00 

1,000.00 

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 

Ti
m

e
 (

m
s)

 

Participants in deployment 

All latencies Only own latencies 

Fig. 6. Preparation Runtime for 4 Specialized Drones in a Noisy Environment

As the number of participants (i.e., along the x-axis) in-
creases, the runtime also increases, but more importantly,
the runtime to prepare all latencies on each node becomes
prohibitive. By requiring each host to aggregate its own latency
information by the degrees in the user-provided dataflows, we
reduce the runtime of the Prepare algorithm from seconds to
microseconds for a 10,000 participant deployment.

System slowdown. System slowdown is a factor of worse
overall performance within the distributed application accord-
ing to the important paths defined in the dataflow description.
The lower the slowdown, the longer the battery life of the
mobile DRE cloud and the better latency and throughput will
be along important paths. We measure system slowdown as
the total latency along important links, as this maps to the
conditions we outlined in the motivating scenario—namely
that no important path is being used more frequently than any
other and each are weighted equally important.

In the experiments described below, a random deployment
exists for the distributed application before heuristics are
applied. The system slowdown is the resulting performance
of the deployment as a factor of the optimal performance
available in the underlying cloud environment.

In the first experiment only one optimal deployment has mi-
crosecond latencies within the cloud environment that mimic

pathways in the defined dataflow of four collector drones
communicating with four equally sized groups of participants,
as shown in Figure 7. This figure shows how CID finds the

1.00 

501.00 

1,001.00 

1,501.00 

2,001.00 

2,501.00 

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 

Fa
ct

o
r 

o
f 

p
e

rf
o

rm
an

ce
 f

ro
m

 o
p

ti
m

al
 

Participants in deployment 

CID BCID BGA GGA 

CID-BGA CID-GGA BCID-BGA BCID-GGA 

Fig. 7. System Slowdown under the First Experiment

optimal deployment every time, whereas the less-informed
BCID heuristic sometimes finds the optimal solution, but often
does not. The guided genetic algorithm (GGA) also finds the
optimal solution occasionally, but the blind genetic algorithm
(BGA) never finds an optimal solution and the resulting system
deployment performance is poor. When GGA and BGA are
seeded with the results of CID and BCID, they quickly find
much better solutions.

Figures 8, 9, and 10 highlight system slowdown perfor-
mance in the second experiment. When many good approx-

1.00 

1.20 

1.40 

1.60 

1.80 

2.00 

2.20 

2.40 

2.60 

2.80 

3.00 

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 

Fa
ct

o
r 

o
f 

p
e

rf
o

rm
an

ce
 f

ro
m

 o
p

ti
m

al
 

Participants in deployment 

CID BCID BGA GGA 

CID-BGA CID-GGA BCID-BGA BCID-GGA 

Fig. 8. System Slowdown with 2 Specialized Drones in a Noisy Environment

imations exists, the CID heuristic still always finds optimal
solutions. BCID and GGA both find excellent alternatives,
which is an important point because only the BCID heuristic
requires O(M) memory. All other heuristics require fully-
informed hosts of each other’s latencies. If cloud infrastructure
providers can be reasonably certain that many thousands of



1.00 

1.20 

1.40 

1.60 

1.80 

2.00 

2.20 

2.40 

2.60 

2.80 

3.00 

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 

Fa
ct

o
r 

o
f 

p
e

rf
o

rm
an

ce
 f

ro
m

 o
p

ti
m

al
 

Participants in deployment 

CID BCID BGA GGA 

CID-BGA CID-GGA BCID-BGA BCID-GGA 

Fig. 9. System Slowdown with 3 Specialized Drones in a Noisy Environment

1.00 

1.20 

1.40 

1.60 

1.80 

2.00 

2.20 

2.40 

2.60 

2.80 

3.00 

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 

Fa
ct

o
r 

o
f 

p
e

rf
o

rm
an

ce
 f

ro
m

 o
p

ti
m

al
 

Participants in deployment 

CID BCID BGA GGA 

CID-BGA CID-GGA BCID-BGA BCID-GGA 

Fig. 10. System Slowdown with 4 Specialized Drones in a Noisy Environ-
ment

good solutions exist, then BCID can be a powerful approxi-
mator.

The BCID-BGA hybrid performed well in this second
experiment and benefited from the selection of good generic
candidates for the collector drones and blind mutations of
the other lower-degreed nodes. GGA mimics the intelligence
of the CID and BCID algorithms, so its performance in
combination with them is lower because it continues to try to
change the highly-degreed nodes, even though CID and BCID
already made excellent guesses concerning the appropriate
participant-to-host mappings within the DRE cloud. This result
helps create better guided genetic algorithms and random
search techniques that are specifically tailored for being seeded
with excellent approximations from CID and BCID.

V. RELATED WORK

This section compares our work on MADARA with related
work on deployment problems based on constraint satisfaction
problem solving, genetic algorithms, and heuristics.

Constraint satisfaction problem solving. Haldik et.
al. [11] presents a constraint programming technique to solve
static allocation problems in real-time tasks. Cucu-Grosjean
et. al. [4] propose two approaches to addressing real-time
periodic scheduling on heterogeneous platforms, which is
a constraint satisfaction problem (CSP). The first method
requires an encoding of the problem into a basic format that
is then passed into state-of-the-art CSP solvers. The other
approach encodes problems in an optimized way to obtain
solutions faster. Despite being faster than traditional CSP
solvers, both techniques take dozens to hundreds of seconds
to solve even small number of constraints, which does not
meet the requirements of our motivating DRE application in
Section II that exhibits thousands of constraints defined on the
deployment between the collection drone and its group.

White et. al. [21] scale a CSP solver to work with 5,000
features in a software product line. The time required for doing
this activity ranged from 50 seconds in an incomplete bounded
worst case to 170 seconds to find an optimal configuration. In
contrast, our motivating DRE application in Section II requires
runtime solutions within milliseconds or at most seconds.
Section III presents techniques provided by MADARA that
can meet these time constraints.

Genetic algorithms. Whereas CSP solving typically in-
volves backtracking through potential matches, genetic algo-
rithms are a type of local search that tries to approximate
an optimal match through mutations, fitness functions, and
crossbreeding best candidates according to the fitness criteria.
Heward et. al. [10] recently used genetic algorithms to opti-
mize configurations of monitors in a web services application.
This method is unsuitable for our motivating DRE application,
however, since it requires roughly an hour to compute an
approximated good configuration.

Wieczorek et. al. [22] use a genetic algorithm to schedule
scientific dataflows in Grid environments, but their mutation-
based scheme similarly required at least hundreds of seconds
(some of their tests showed requirements of tens of thousands
of seconds—several hours). Other implementers have used
combinations of genetic algorithms and neural networks [15]
and even knowledge and reasoning [12] to converge to optimal
solutions. These approaches concentrate on offline or human-
interactive solutions, however, and thus are not suitable for
DRE application problem solving because they require many
minutes or hours to approximate a solution.

Though these results appear to discount genetic algorithms
as solution possibilities, recent publications [13], [5], [18]
and our on experience with the MADARA guided genetic
algorithms (via heuristics) described in Section III, indicates
that this approach has merit.

Heuristics. Heuristics approximate good solutions and often
serve as guides for local search techniques, such as genetic al-
gorithms, simulated annealing, or backtracking and depth-first
searches. Some researchers use these heuristics to directly ap-
proximate scheduling [10] in grids and dataflow solutions [3]
for real-time solutions. The latter is of interest to us since the
heuristic approximates a constraint problem involving a set



of dataflows within milliseconds. The solution [3], however,
was demonstrated on only five hosts and not thousands, so it
is not readily apparent how to migrate our motivating DRE
application to the heuristic defined in either of these papers.

The heuristic-based anytime A* search [9] is similar to our
MADARA approach to genetic algorithms for the motivating
DRE application. In particular, both solutions may be stopped
at any time and a solution is presented to the user (though it
may not be optimal). The MADARA heuristics offered in this
paper can be used with an A* search, which is the focus of
future work.

VI. CONCLUDING REMARKS

Enterprise DRE systems are increasingly essential in
mission-critical domains, such as aerospace, defense, telecom-
munications, health care, and financial service. This paper pre-
sented two heuristics provided in MADARA to approximate
user-provided dataflows in next-generation DRE clouds. We
also presented MADARA’s genetic algorithms and hybrids of
the heuristics and genetic algorithms to improve the solutions
generated by the heuristics. We analyzed the results of ex-
periments to validate the MADARA heuristics and genetic
algorithms, as well as highlighted issues with unguided genetic
algorithms in a representative DRE application context.

The following are a summary of lessons learned from our
work on MADARA :

• The CID heuristic can produce optimal results (low-
est possible aggregate latency for a DRE application
dataflow) in a variety of useful scenarios like a centralized
or common broker, failover servers, collectors, and broad-
casters. This heuristic can be used to produce effective
solutions within microseconds for developers who need to
optimize these types of deployments online for enterprise
DRE systems.

• Pairing an unguided genetic algorithm with breeding
candidates from fast heuristic approaches shows promise
to create targeted guided heuristics. If a purely random
mutating scheme can improve results by 10-20% under
noisy conditions, a more intelligent version may produce
even better system utility in fewer generations, which is
an important goal for enterprise DRE system developers.

• Our experiment results showed that degree-based heuris-
tics (such as CID and BCID) are less effective at gen-
erating solutions for hierchical tree graphs and complex
dataflows. To address this issue, our future work will de-
velop better guided genetic algorithms and local searches
that cater to these types of DRE application dataflows.
We will release these techniques within the MADARA
project to aid enterprise DRE system developers.

C++ code for the MADARA heuristics and algorithms is
available in open-source form from madara.googlecode.com.

REFERENCES

[1] K. Arisha, M. Youssef, and M. Younis. Energy-aware TDMA-based
MAC for sensor networks. IEEE IMPACCT, pages 21–40, 2002.

[2] J. Balasubramanian, S. Tambe, B. Dasarathy, S. Gadgil, F. Porter,
A. Gokhale, and D. C. Schmidt. Netqope: A model-driven network
qos provisioning engine for distributed real-time and embedded systems.
In RTAS’ 08: Proceedings of the 14th IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 113–122, Los Alamitos,
CA, USA, 2008. IEEE Computer Society.

[3] T. Cucinotta and G. Anastasi. A heuristic for optimum allocation
of real-time service workflows. In Service Oriented Computing and
Applications, 2011. SOCA ’11. International Conference on, pages 169–
172, 2011.

[4] L. Cucu-Grosjean and O. Buffet. Global multiprocessor real-time
scheduling as a constraint satisfaction problem. In Parallel Processing
Workshops, 2009. ICPPW ’09. International Conference on, pages 42–
49, sept. 2009.

[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: Nsga-ii. Evolutionary Computation,
IEEE Transactions on, 6(2):182 –197, apr 2002.

[6] J. Edmondson and A. Gokhale. Design of a scalable reasoning engine
for distributed, real-time and embedded systems. In Proceedings of the
5th International Conference on Knowledge, Science, Engineering and
Management (KSEM).

[7] J. Edmondson, A. Gokhale, and S. Neema. Automating testing of
service-oriented mobile applications with distributed knowledge and
reasoning. In Proceedings of the Service-Oriented Computing and
Applications (SOCA).

[8] J. Elson and D. Estrin. Sensor networks: a bridge to the physical world.
pages 3–20, 2004.

[9] E. A. Hansen and R. Zhou. Anytime heuristic search. Journal of
Artificial Intelligence Research (JAIR, 28:267–297, 2007.

[10] G. Heward, J. Han, J.-G. Schneider, and S. Versteeg. Run-time manage-
ment and optimization of web service monitoring systems. In Service
Oriented Computing and Applications, 2011. SOCA ’11. International
Conference on, pages 294–299, 2011.

[11] P.-E. Hladik, H. Cambazard, A.-M. Daplanche, and N. Jussien. Solving
a real-time allocation problem with constraint programming. Journal of
Systems and Software, 81(1):132–149, 2008.

[12] Y. Hu and S. Yang. A knowledge based genetic algorithm for path
planning of a mobile robot. In Robotics and Automation, 2004. Pro-
ceedings. ICRA ’04. 2004 IEEE International Conference on, volume 5,
pages 4350 – 4355 Vol.5, april-1 may 2004.

[13] L. Ingber and B. Rosen. Genetic algorithms and very fast simulated
reannealing: A comparison. Mathematical and Computer Modelling,
16(11):87 – 100, 1992.

[14] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a
scalable and robust communication paradigm for sensor networks. In
Mobile Computing and Networking, pages 56–67, 2000.

[15] A. Javadi, R. Farmani, and T. Tan. A hybrid intelligent genetic algorithm.
Advanced Engineering Informatics, 19(4):255 – 262, 2005.

[16] J. S. Kinnebrew, W. R. Otte, N. Shankaran, G. Biswas, and D. C.
Schmidt. Intelligent Resource Management and Dynamic Adaptation in
a Distributed Real-time and Embedded Sensor Web System. In Proceed-
ings of the 12th International Symposium on Object/Component/Service-
oriented Real-time Distributed Computing (ISORC ’09), Tokyo, Japan,
Mar. 2009.

[17] H. Kopetz. Real-Time Systems: Design Principles for Distributed
Embedded Applications. Real-time Systems. Springer, 2011.

[18] X. Meng and B. Song. Fast genetic algorithms used for pid parameter
optimization. In Automation and Logistics, 2007 IEEE International
Conference on, pages 2144 –2148, aug. 2007.

[19] A. Sinha and A. Chandrakasan. Dynamic Power Management in Sensor
Networks. Smart dust: sensor network applications, architecture, and
design, page 1, 2006.

[20] V. Subramonian, G. Deng, C. Gill, J. Balasubramanian, L. Shen, W. Otte,
D. Schmidt, A. Gokhale, and N. Wang. The design and performance of
component middleware for QoS-enabled deployment and configuration
of DRE systems. The Journal of Systems & Software, 80(5):668–677,
2007.

[21] J. White, D. Schmidt, D. Benavides, P. Trinidad, and A. Ruiz-Cortes.
Automated diagnosis of product-line configuration errors in feature
models. In Software Product Line Conference, 2008. SPLC ’08. 12th
International, pages 225–234, sept. 2008.

[22] M. Wieczorek, R. Prodan, and T. Fahringer. Scheduling of scientific
workflows in the askalon grid environment. SIGMOD Rec., 34:56–62,
September 2005.


