
Towards Improving End-to-End Performance of Distributed Real-time and
Embedded Systems Using Baseline Profiles

James H. Hill
Vanderbilt University
Nashville, TN, USA
j.hill@vanderbilt.edu

Aniruddha Gokhale
Vanderbilt University
Nashville, TN, USA

a.gokhale@vanderbilt.edu

Abstract

Distributed real-time and embedded (DRE) systems de-
signed using component-based software processes must be
properly deployed (i.e., the placement of components on
hosts) and configured (i.e., the setting of component prop-
erties) to realize an operational system that meets its func-
tional and quality-of-service (QoS) needs. Different deploy-
ments and configurations (D&Cs) often impact systemic
QoS concerns, such as end-to-end response time. Tradi-
tional techniques for understanding systemic QoS rely on
complex analytical and simulation models, however, such
techniques provide performance assurance at design-time
only. Moveover, they do not take into account the complete
operating environment, which greatly influences systemic
performance.

This paper presents a simple technique for searching
the deployment solution space to improve systemic QoS
along a single dimension of QoS concern, such as response
time. Our technique uses baseline profiles and experimen-
tal observations to recommend new deployments, which are
closer to those that provide the desired QoS assurance. The
results of our technique indicate that we are able to use
baseline profiles to converge towards solutions that improve
systemic performance when analyzing performance using a
single QoS dimension.

1 Introduction

Challenges of developing component-based systems.
Component-based technologies are raising the level of ab-
straction so software system developers of distributed real-
time and embedded (DRE) systems can focus more on
the application’s “business-logic”. Moreover, component-
based technologies are separating many concerns, such as
deployment (i.e., placement of component on host) and con-
figuration (i.e., setting of component properties) [2], man-
agement of the application’s lifecycle [3], and management

of execution environment’s quality-of-service (QoS) poli-
cies [3, 12], of the application. The result of separating the
concerns is the ability to fully address each concern inde-
pendently of the application’s “business-logic” (i.e., its im-
plementation). The technologies that are making this pos-
sible include, but are not limited to: CORBA Component
Model (CCM), J2EE, and Microsoft.NET.

Although component-based technologies are separating
many concerns of DRE system development, realizing sys-
temic (system wide) QoS properties, which is a key charac-
teristic of DRE systems, is being pushed into the realized
systems deployment and configuration (D&C) [2] solution
space. For example, it is hard for DRE system developers
to fully understand systemic QoS properties, such as end-to-
end response time of system execution paths until the sys-
tem has been properly deployed and configured in its target
environment. Only then would a DRE system developer de-
termine whether different components designed to collabo-
rate with each other may perform better when located on
different hosts compared to collocating on the same host,
which in turn might give rise to unforeseen software con-
tentions, such as waiting for a thread to handle an event, or
event/lock synchronization, or many known software design
anti-patterns [13].

Outside of brute force trial and error, traditional tech-
niques, such as complex analytical and mathematical mod-
els [6,9,15], can be used to locate candidate D&Cs that meet
the required systemic QoS properties. Although such tech-
niques can locate candidate D&Cs, they provide design-
time assurance and do not take into account the complete
operating environment. Moreover, using these techniques
are beyond the knowledge domain of component-based sys-
tem developers. Component-based DRE system develop-
ers, therefore, need simpler techniques that are intuitive and
easier to use that can provide assistance in understanding
systemic QoS properties in relation to the realized system’s
D&C.

Solution Approach→ Use baseline profiles to under-
stand the deployment solution space. Each individual

1

component in a component-based DRE system has a base-
line profile that captures its performance properties when
deployed in isolation to other components. As components
are collocated (i.e., placed on the same host) with other
components, their actual performance may deviate from its
baseline performance profile due to unforeseen software
contentions. Ideally, to improve systemic QoS properties
for a component-based system, system developers should
evaluate each individual component’s performance against
its baseline profile. This will allow them to understand if
a component is performing as expected. Moreover, it will
allow them to pinpoint possible problems and recommend
new deployments that could possibly improve systemic QoS
properties.

This paper describes our solution approach for under-
standing systemic QoS properties, such as end-to-end re-
sponse time of system execution paths, in relation to the
deployment solution space of component-based DRE sys-
tems. Our solution uses baseline profiles for each compo-
nent, which are obtained by instrumenting and profiling the
component in a controlled environment. We then execute
a deployment of the system in the target environment and
compare its performance against the baseline profile. Fi-
nally, based on the percentage error between the current test
and the baseline profile, and the history of previous deploy-
ments, we recommend a new deployment for experimenta-
tion that will either improve/degrade system QoS proper-
ties. Our solution is designed so that developers not only
converge towards a D&C that ensures systemic QoS prop-
erties, but allows system developers to get a better under-
standing of how different deployments influence systemic
QoS properties.

Paper Organization. The remainder of this paper is or-
ganized as follows: Section 2 introduces a case study to
highlight challenges of software contention; Section 3 dis-
cusses our technique for understanding the deployment so-
lution space; Section 4 discusses results of applying our
technique to our case study; Section 5 presents related
work; and Section 6 provides concluding remarks and fu-
ture research.

2 Manifestation of Software Contention: A
Case Study Perspective

In this section we use a representative case study from
the shipboard computing environment domain to highlight
how different deployment and configurations can introduce
different software contention problems that impact systemic
QoS properties.

2.1 The SLICE Shipboard Computing Scenario

The SLICE scenario is a representative example of a
shipboard computing environment application. We have

used this example in prior work in multiple studies, such
as the evaluation of system execution modeling tools [5]
and the formal verification [4]. In this paper we use it to
highlight software contention issues arising out of different
deployment and configurations. We briefly reiterate its de-
scription here.

SenMain
(Sensor)

SenSec
(Sensor)

PlanOne
(Planner)

PlanTwo
(Planner)

Config
(ConfigOp)

EffMain
(Effector)

EffSec
(Effector)

Figure 1. High-level structural composition of
the SLICE scenario.

The SLICE scenario, which is illustrated in Figure 1,
consists of 7 different component implementations, i.e., the
rectangular objects): SenMain, SenSec, PlanOne, PlanTwo,
Config, EffMain, and EffSec. The directed lines between
the components represent connections for inter-component
communication, such as input/output events. The compo-
nents in the SLICE scenario are deployed across 3 comput-
ing nodes and SenMain and EffMain are deployed on
separate nodes to reflect the placement of physical equip-
ment in the production shipboard environment. Finally,
events that propagate along the path marked by the dashed
(red) lines in Figure 1 represent an execution path that must
have optimal performance.

2.2 Software Contention in the SLICE Scenario

We define software contentions as the deviation of per-
formance as a result of the system’s implementation—also
characterized as performance anti-patterns [13]. In many
cases software contention does not have noticeable affect
on hardware utilization. For example, it is possible to
achieve high end-to-end response time and low CPU utiliza-
tion if different portions of the software components (e.g.,
threads of execution) unnecessarily hold mutexes that pre-
vent other portions of the software (or components) from
executing. The (software) component holding the mutex,
however, may not be executing on the CPU but be involved
in other activities, such as sending data across the network.
Likewise, it is possible to achieve high response time if too
many components are sending event requests to a single
port of another component [10], which increases the queu-
ing time for handling events.

Figure 2 illustrates the results from prior work [5] that
used brute force ad-hoc techiques to improve critical path
end-to-end response time for the SLICE scenario. As shown
in Figure 2, each test respresents a different deployment and
each deployment yields a different critical path end-to-end

2

Figure 2. Prior results of SLICE scenario.

response time. For example, tests 10 and 11 have a criti-
cal path end-to-end response time difference of ∼ 30 msec.
We believe this is due to unforeseen software contention
resulting from collocating components that were designed
and implemented in isolation to other components. The re-
mainder of this paper, therefore, details how we use base-
line profiles to understand the deployment solution space
and improve systemic QoS performance due to unforeseen
software contentions using the SLICE scenario as an exam-
ple case study.

3 Using Baseline Profiles to Understand the
Deployment Solution Space

This section discusses our technique for using baseline
profiles to explore and understand the deployment solution
space of component-based DRE systems.

3.1 Representing Deployment Solution Space as a
Graph

After system composition, a component-based system
becomes operational after its deployment and configuration
in the target environment. There are, however, many ways
to deploy a component-based systems, such as the SLICE
scenario in Section 2. For example, Table 1 shows two
unique deployments for the SLICE scenario where both dif-
fer by the placement of one component; the SenMain com-
ponent on either Host1 or Host2.

Table 1. Example of unique deployments in
the SLICE scenario.

Deployment
Host A B

1 SenMain, SenSec SenSec, Config
Config

2 EffSec, PlanOne EffSec, PlanOne
SenMain

3 PlanTwo, EffMain PlanTwo, EffMain

When we consider all the unique deployments in the de-
ployment solution space for a component-based systems, it

is possible to represent such a space as a graph G = (D,E)
where:

• D a set of vertices d ∈ D in graph G that represents a
unique deployment d in the deployment solution space
D. For example, deploying SenMain then SenSec on
a single host Hi is the same as deploying SenSec then
SenMain on the Hi. This is different from traditional
bin packing, which is based on permutations [1].
• E is a set of edges e ∈ E where ei,j is an edge be-

tween two unique deployments i, j ∈ D. Each edge e
signifies moving a single component from one host to
another host in the system.

Defintion 1. If Ch,i is the set of components deployed on
host h in system H for deployment i, then a unique deploy-
ment is defined as:

∃h ∈ H : Ch,i 6= Ch,j ; i, j ∈ D ∧ i 6= j (1)

Figure 3. Simple graph of component-based
system deployment solution space.

The resultant graph G, as shown in Figure 3, allows us
to create a visual representation of the deployment solution
space. The visualization, however, has no concrete meaning
from the QoS perspective because developers cannot under-
stand how one deployment differs from another deployment
except for the unique combination of components on host.
We address this problem by assigning a value to each edge
e in graph G using Equation 2,

val(e) = δ (2)

which gives rise to a directed graph G′. Figure 4 illustrates
G′ where δ represents some difference of performance in a
single QoS dimension, such as end-to-end response time or
system throughput.

QoS, however, is known to comprise a N -dimensional
space [11], and G′ shown in Figure 4 is the deployment
solution space for a single dimension of QoS, i.e., visualized
on a single plane. When we considerN dimensions of QoS,
we create an N -planar graph G′′. Figure 5 illustrates G′′

where each plane represents a single QoS dimension. The
value of each edge between unique deployments in different
planes, i.e., QoS dimensions, forms a N -tuple vector (δ1,

3

Figure 4. Directed graph of component-based
system deployment solution space.

Figure 5. N -planar directed graph of
component-based system deployment
solution space for N QoS dimensions.

δ2, ..., δn) where δi = val(e ∈ G′
i) and i ∈ QoS dimension,

G′
i ∈ G′′.
When also considering theN -planer graph of theN QoS

dimension solution space, an edge between the same de-
ployment for each QoS dimension is governed by Axiom 1.
This results in a N -tuple vector equal to zero and is, there-
fore, ignored.

Axiom 1. The value of an edge between the same unique
deployment in different planes is zero.

Due to the complexity of the N -dimensional QoS solu-
tion space in relation to component-based system deploy-
ment, we focus on evaluating QoS in a single dimension in
this paper. We, therefore, narrow our focus to a 1-planar di-
rected graph (Figure 4), which drastically reduces our solu-
tion space. The following section details how we can search
this solution space to understand and locate deployments to
improve systemic QoS properties along a single dimension.

3.2 Using Baseline Profiles to Search Deployment
Solution Space

Each component in the component-based system pro-
duces a baseline profile that details its optimal performance.
Such performance is realized when the component is de-
ployed into a controlled and isolated environment, i.e., no
interference from other components in the system. As a

component is collocated with other component, its perfor-
mance will begin to deviate from its baseline performance.
This is due to both software and hardware contentions.

Hardware contentions can be resolved using traditional
analysis techniques, such as queuing theory [9], because
they have more deterministic properties, such as service
rate/time, that can be captured in a mathematical model.
Software contentions, however, require execution in the tar-
get environment to fully locate and understand because it is
hard to capture such problems using a model.

In Section 3.1, we discussed how the deployment so-
lution space in a single QoS dimension could be repre-
sented as a directed graph G′. Each directed edge e ∈
G′ represents the difference in QoS performance between
two unique deployments. When trying to locate candidate
D&Cs that meet a specific QoS performance, or improve
systemic QoS performance, it is ideal to locate deployments
that yield performance metrics for each individual compo-
nent that are close to their baseline. The problem becomes
hard when all components and their interactions must be
taken into account all at once.

We, therefore, use the percentage error (Equation 3) be-
tween observed and baseline performance of a component
and deployment history to search the deployment solution
space. We do not use the absolute value in the numerator
when calculating the percentage error because the positive/-
negative sign signifies if QoS improved/worsened. Algo-
rithm 1 lists our algorithm for locating a new deployment
after labeling the current edge with the percentage differ-
ence in QoS between the previous deployment and the cur-
rent deployment.

% error =
observed− baseline

baseline
(3)

If the current deployment has improved QoS perfor-
mance in a single dimension, such as end-to-end response
time, we use Algorithm 1 to locate a new deployment and
continuing improving QoS. As listed in Algorithm 1, given
the current graph of the D&C solution space, hosts and
components in the system, and baseline and observed per-
formance, we find the component with the max percentage
error (Line 8). We then determine if we can relocate the
component based on its history (Line 11), such as how often
has it been relocated to a new host or how has it performed
in previous tests on a given host with other components. If
we can relocate the component i, we find a candidate host
h to relocate the component to (Line 14).
hist and candidate in Algorithm 1 are placeholders for

a domain-specific function that understands how to evaluate
the history of the tests and locate a candidate host based on
the previous and current test, respectively. Moreover, the
hist and candidate functions are used to prevent a greedy
approach to frequently selecting the same component and

4

Algorithm 1 General algorithm for locating a new deploy-
ment in a single QoS dimension
1: procedure LOCATE(G, v, C, H, O, B)
2: G: current graph of D&C solution space
3: v: current location in graph G
4: C: set of components in system
5: H: set of hosts in system
6: O: set of current observed performance for C
7: B: set of baseline performance for C
8: ∆ = ∀c ∈ C : oc−bc

bc
× 100, oc ∈ O, bc ∈ B

9: while ∆ 6= ∅ do
10: ∆i = max(∆), i ∈ C
11: if hist(G, i) < hist(G, (C − i)) then
12: H′ = H
13: while H′ 6= ∅ do
14: h = candidate(H′, v, ∆)
15: if H′ − h 6= H′ then
16: ev,v′ = newedge(G, v, h, i)
17: if unique(G, v′) then
18: accept(G, ev,v′)
19: return v′

20: end if
21: H′ = H′ − h
22: else
23: H′ = ∅
24: end if
25: end while
26: end if
27: ∆ = ∆−∆i

28: end while
29: return NULL
30: end procedure

host, respectively, as target for relocation—which we call
deployment thrashing—and exhaustively searching the so-
lution space1.

If the new deployment is unique in G (Line 17) and does
not create a cycle, then we add it to the graph and return
the new deployment (Line 19). Lastly, we execute the new
deployment and repeat the location process for the new de-
ployment. In the case that the current deployment does not
improve the desired QoS, we backtrack to the previous de-
ployment from the current deployment (vertex) and repeat
the location process, i.e, Algorithm 1. We stop once we
backtrack to the initial deployment and cannot locate a can-
didate component to reassign to a new host. This simple
algorithm allows us—and in turn—developers to both un-
derstand the deployment solution space and locate solutions
that meet QoS expectations.

4 Evaluating Our Deployment Search Tech-
nique Using the SLICE Case Study

In this section we present the results for searching the
deployment solution space for the SLICE scenario using the

1It is possible to design a history and candidate function that will ex-
haustively searches the solution space, however, such functions are not
ideal as the solution space grows larger and more complex.

search algorithm discussed in Section 3.

4.1 Experiment Design

The SLICE scenario introduced in Section 2.1 consists
of 7 different component instances that must be deployed
across 3 different hosts. Unlike any previous work that
used the SLICE scenario [5], we do not place any con-
straints on how the components must be deployed onto
their hosts. Instead, we are interested in locating deploy-
ments that yield better average end-to-end execution time
for SLICE scenario’s critical path—irrespective of the 350
msec deadline—based on Algorithm 1 discussed in Sec-
tion 3.2.

The hist and candidate functions of Algorithm 1 are
placeholders for domain-specific functions, i.e, functions
that can better analyze the target domain and execution en-
vironment. Accordingly, we defined our history function for
an individual component (Equation 4) and a set of compo-
nents (Equation 5) as the percentage of times a component
has been moved throughout the entire testing process.

hist(G, i) :
times i moved

of vertices in G
× 100 (4)

hist(G,C) : ∀i ∈ C # times i moved
of vertices in G

× 100 (5)

As shown later, this ensures that we do not constantly
select the same component with the worst percentage error
between unique deployments, and select components that
may not have the worst percentage error in a test because it
may not have been previously moved. The candidate func-
tion for selection is expressed in Equation 6,

candidate(H, v,∆) : min(avg(∆vh)) (6)

where ∆vh is the set of percentage error for components
deployed on host h ∈ H in deployment v, and identifies
the host that contains the set of components with the least
average percentage error from their baseline performance.
This is conceptually similar to load balancing.

Table 2. Host specification for experiments.
ISISLab Host Specification

1, 2, 3 Fedora Core 4, dual core 2.8 GHz Xeon
1 GB RAM, 40 GB HDD, 4 Gbps NIC

To test our search algorithm, we used the Compo-
nent Workload Emulator (CoWorkEr) Utilization Test Suite
(CUTS) [5], which is a system execution modeling tool
for component-based system. CUTS enables developers to
rapidly construct high-level behavior models of a system
using domain-specific modeling languages [7] and generate

5

emulation code that can be executed and monitored in the
target environment. For the target execution environment,
we used ISISLab (www.isislab.vanderbilt.edu)
at Vanderbilt University, which is a cluster of computers
managed and powered by Emulab [16] software. Table 2
lists the specifications of the three hosts we used in ISISLab
for our experiments.

Table 3. Measured baseline of SLICE compo-
nents.

Component Input Output Baseline (ms)
(A) Config Assess Command 10
(B) EffMain Command Status 10(C) EffSec
(D) PlanOne Track Situation 45
(E) PlanTwo Situation Assess 45
(F) SenMain Command Track 45(G) SenSec

We used the three ISISLab hosts to measure baseline
performance of each component on each host in an iso-
lated and controlled environment. This is necessary because
each component’s baseline performance is needed for Algo-
rithm 1 in Section 3.2. Table 3 lists the baseline metrics for
each component by their input port (e.g., event sink) and
output port (e.g., event source). We consolidated the base-
line performances for each component on each host because
they were equal.

4.2 Experiment Results

Interpreting the performance results. There are 73 =
343 unique deployments in the SLICE scenario. Table 4
lists the results for testing 17 unique deployments out of the
343—5% of the total unique deployments—for the SLICE
scenario. The 17 unique deployments were derived using
the search algorithm presented in Section 3.2 and Equa-
tions 4, 5, and 6. Out of the 17 unique deployments, we
located 6 deployments (i.e., tests 2, 4, 7, 15, 16, and 17)
that improved the critical paths end-to-end execution time
from the initial deployment.

The number of unique deployments in the SLICE sce-
nario has never been exhaustively tested. We, however, can
estimate how good a deployment is by summing the base-
line performance for all the components in an execution
path— assuming network and queuing performance is neg-
ligible since they represent another dimension of QoS—and
comparing it against its observed performance. This sum-
mation represents the optimal performance for an execution
path given there is no contention and and network and queu-
ing overhead.

The sum of the component’s performance in the critical
path for the SLICE scenario (see Section 2.1) is 155 msec.

Table 4. Results for searching SLICE deploy-
ment solution space.

Test Deployment Strategy Avg. End-To-End
Host 1 Host 2 Host 3 Performance (ms)

1 B,D,F,G A C,E 182.7
2 A,B,D,F,G C,E 181.2
3 A,B,F,G,D E C 185.9
4 B,C,D,F,G C E 180.2
5 A,D,F,G C B,E 186.7
6 A,B,D,G C E,F 186.5
7 A,B,D,F C E,G 180.4
8 A,B,F,G C D,E 193.3
9 A,B,C,D,F,G E 182.5
10 B,D,F,G C A,E 189.6
11 A,D,F,G B,C E 206.9
12 A,B,D,G F C,E 207.9
13 A,D,F,G B C,E 189.8
14 A,B,F,G D C,E 188.8
15 A,D,B,F G C,E 178.9
16 A,B,D,F C,E,G 179.1
17 A,B,D,E,F G C 174.6

This is derived by summing the baseline performances for
all the components in the critical path, which is given in Ta-
ble 3. Test 4, 7, 15, 16, and 17 were the closest test to the
optimal baseline end-to-end response time, i.e., < 16% de-
viation, with test 17 being the closest, i.e., a 12% deviation.

We also observed that for all 17 tests, the best end-to-
end response time performance for the critical path was 169
msec (not present in Table 4). Even when all components
were deployed onto the same hosts, such as in test 17, the
end-to-end response time was greater than the optimal. This
is, therefore, evidence of some form of software contention
because the event generation rate for the SLICE scenario,
i.e, 1 second, is not high enough to produce a workload that
causes over-utilization of resources, such as the CPU.

Understanding host selection. Table 4 shows that a
majority of the unique deployments did not utilize Host 2.
This is attributed to Host 2 always having the worst aver-
age percentage error for each test, even when components
were deployed in the solution. We did observe similar per-
formance results in our baseline test, however, our tech-
nique tries to create deployments where components per-
form optimally (i.e., close to their baseline) when collocated
with other components. Moreover, our candidate function
(Equation 6) was defined the avoid hosts that had compo-
nents with a high percentage error from their baseline per-
formance. We, therefore, did not investigate this anomaly
and interpreted such results as recognizing and avoiding
“bad” hosts that could potential worsen QoS performance.

Interpreting the search graph. Figure 6 is the partial
graph, or ordered tree, for the tests presented in Table 4. It
illustrates the search process of Algorithm 1 using Equa-
tions 4, 5, and 6 for their corresponding placeholders in

6

Algorithm 1. As illustrated in Figure 6, we first started
with a random deployment of the SLICE scenario. The sec-
ond test improves end-to-end response time for the critical
path, however, the third test does not improve end-to-end re-
sponse time. We, therefore, backtracked to the second test
and selected a new component to relocate to a different host.
This resulted in deriving test 4, which improved end-to-end
response time for the critical path. Test 7 had an end-to-end
response time close to test 4 (i.e., 0.11% difference), but
it was not accepted since it did not improve end-to-end re-
sponse time. It is, however, possible to use a standard error
to determine the probability of accepting QoS performances
that are close in value.

Figure 6. Partial search graph for SLICE’s
unique deployments.

After test 7, we did not locate a new deployment that
improved the critical path’s end-to-end response time until
test 15. This was a result of backtracking to the unique
deployment for test 2, and selecting a new component to
relocate to a new host. Consequently, we derived unique
deployments for test 15, an improvement to test 2; test 16,
an improvement to test 15; and test 17, an improvement to
test 16.

We, therefore, can conclude that our algorithm can be
parameterized with domain-specific functions to logically
search the deployment solution space for a component-
based system, and locate deployments that will improve
QoS in a single dimension, such as average end-to-end re-
sponse time, based on component baseline profiles.

5 Related Work

Traditional analytical techniques, such as rate monotonic
analysis [14], queuing networks [15], and queuing petri

nets [6], have been used to predict the performance of DRE
systems. Such techniques enable system developers to pre-
dict performance at design time, however, they require in
depth knowledge of the system architecture. Moreover,
these techniques do not completely take into account the tar-
get operating environment, unless such a model exists and
has been verified. Our technique differs from traditional
analytical techniques because we evaluate a deployment by
executing it in the target environment. We, therefore, are
able to take into account the entire operating environment
irrespective of system developers having any knowledge of
its properties. We also believe that such analytical tech-
niques can be integrated with our approach to analyze can-
didate deployments before executing them in the target en-
vironment to reduce search complexity and false positives.

Diaconescu et al. [3] discusses a framework and tech-
nique for improving the performance of component-based
system by selecting implementations that are more suit-
able for a given execution context. Their technique in-
volves “training” an adaptation module, locating perfor-
mance anomalies in deployed applications, and select im-
plementations that will address the anomaly and improve
performance. Our technique is similar in that we use base-
line profiles, which can be viewed as “training” to under-
stand component performance. Our approach differs in that
we do not focus on run-time adaption to improve perfor-
mance. Instead, we are focus on locating a collection of
unique deployments at design-time that will improve QoS
performance, such as end-to-end response time.

Memon et al. [8] discuss a framework and customizable
technique for providing continuous quality assurance for
applications with a large configuration space. Their tech-
nique randomly tests different solutions in the configura-
tion space and when a valid configuration, i.e., one that
meets their goal, is found, other configurations related to
the good configuration is tested. Our approach is similar to
their approach in that our search functions are customizable.
Our approach differs in that we do not permutate all pos-
sible unique deployments and randomly test until we find
a valid deployment. Instead, we start with a random de-
ployment and base subsequent searches on the observations
of the current test. Moreover, we base our search criteria
on a component’s percentage error from its baseline perfor-
mance instead of testing by solely moving a component to
a new host.

6 Concluding Remarks

Bad deployment choices for a component-based system
can have dire effects on systemic QoS properties, such as
end-to-end response time. In this paper, we presented a
simple technique for locating deployments to improve sys-
tem QoS along a single dimension of QoS. Our technique
uses baseline profiles to calculate the percentage error in a

7

component’s performance irrespective of resource utiliza-
tions. This performance metric is used in conjunction with
domain-specific functions to evaluate the history of a com-
ponent and locate candidate hosts for relocating individual
components based on a component’s percentage error and
current state of testing.

This approach allows for a flexible technique for search-
ing the deployment solution space for systems that do not
suffer from high resource utilization problems. Likewise, as
more is learned about the system (and domain), system de-
velopers can modify their domain-specific functions to im-
prove search capabilities.

Lessons Learned and Future Research

Techniques for searching deployment solution space is
a process that continuously evolves as more is learned
about the domain. The following list, therefore, discuss the
lessons learned and future research directions:

• The SLICE scenario has 343 unique deployments,
however, the solution space has not been exhaus-
tively tested. Future work, therefore, includes exhaus-
tively testing the SLICE scenario’s deployment solu-
tion space to locate the optimal deployments under
various workloads, such as increased event generation
rate, to strengthen the validation of our technique.
• Manually searching the deployment solution space, re-

gardless of any search algorithm used, is inefficient
and error prone. Future work, therefore, includes ex-
tending CUTS to automate the process of intelligently
searching the solution space.
• The generalized QoS problem has a N -dimensional

solution space, however, we reduced the solution space
to one dimension in this paper to simplify the deploy-
ment search problem and focus on the technique. Fu-
ture work, therefore, will extend our technique to in-
clude multiple dimensions of QoS.

The CUTS framework and our research artifacts are
available in open source at www.dre.vanderbilt.
edu/CUTS.

References

[1] D. de Niz and R. Rajkumar. Partitioning Bin-Packing
Algorithms for Distributed Real-time Systems.
International Journal of Embedded Systems, 2005.

[2] G. Deng, J. Balasubramanian, W. Otte, D. C. Schmidt, and
A. Gokhale. DAnCE: A QoS-enabled Component
Deployment and Configuration Engine. In Proceedings of
the 3rd Working Conference on Component Deployment
(CD 2005), pages 67–82, Grenoble, France, Nov. 2005.

[3] A. Diaconescu and J. Murphy. Automating the Performance
Management of Component-based Enterprise Systems

Through the Use of Redundancy. In Proceedings of the 20th
IEEE/ACM International Conference on Automated
Software Engineering (ASE ’05), pages 44–53, 2005.

[4] J. H. Hill and A. Gokhale. Model-driven Specification of
Component-based Distributed Real-time and Embedded
Systems for Verification of Systemic QoS Properties. In
Proceeding of the Workshop on Parallel, Distributed, and
Real-Time Systems (WPDRTS ’08), Miami, FL, April 2008.

[5] J. H. Hill, J. Slaby, S. Baker, and D. C. Schmidt. Applying
System Execution Modeling Tools to Evaluate Enterprise
Distributed Real-time and Embedded System QoS. In
Proceedings of the 12th International Conference on
Embedded and Real-Time Computing Systems and
Applications, Sydney, Australia, August 2006.

[6] S. Kounev. Performance Modeling and Evaluation of
Distributed Component-Based Systems Using Queueing
Petri Nets. IEEE Transactions on Software Engineering,
32(7):486–502, 2006.

[7] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei,
G. Nordstrom, J. Sprinkle, and G. Karsai. Composing
Domain-Specific Design Environments. IEEE Computer,
pages 44–51, November 2001.

[8] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. C.
Schmidt, and B. Natarajan. Skoll: Distributed Continuous
Quality Assurance. In Proceedings of the 26th IEEE/ACM
International Conference on Software Engineering,
Edinburgh, Scotland, May 2004.

[9] D. A. Menasce, L. W. Dowdy, and V. A. F. Almeida.
Performance by Design: Computer Capacity Planning By
Example. Prentice Hall PTR, Upper Saddle River, NJ, USA,
2004.

[10] T. Parsons and J. Murphy. Detecting Performance
Antipatterns in Component Based Enterprise Systems. PhD
thesis, University College Dublin, Belfield, Dublin 4,
Ireland, 2007.

[11] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A
Resource Allocation Model for QoS Management. In In
Proceedings of the IEEE Real-Time Systems Symposium,
Dec. 1997.

[12] N. Shankaran, X. Koutsoukos, D. C. Schmidt, and
A. Gokhale. Evaluating Adaptive Resource Management
for Distributed Real-time Embedded Systems. In
Proceedings of the 4th Workshop on Adaptive and Reflective
Middleware, Grenoble, France, Nov. 2005.

[13] C. Smith and L. Williams. Performance Solutions: A
Practical Guide to Creating Responsive, Scalable Software.
Addison-Wesley Professional, Boston, MA, USA,
September 2001.

[14] Tri-Pacific. RapidRMA. www.tripac.com, 2002.
[15] A. Ufimtsev and L. Murphy. Performance Modeling of a

JavaEE Component Application using Layered Queuing
Networks: Revised Approach and a Case Study. In
Proceedings of the Conference on Specification and
Verification of Component-based Systems (SAVCBS ’06),
pages 11–18, 2006.

[16] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
integrated experimental environment for distributed systems
and networks. In Proc. of the Fifth Symposium on
Operating Systems Design and Implementation, pages
255–270, Boston, MA, Dec. 2002. USENIX Association.

8

