
Performance Analysis of the Active Object Pattern in Middleware

Paul J. Vandal, Swapna S. Gokhale Aniruddha S. Gokhale
Dept. of CSE Dept. of EECS

Univ. of Connecticut Vanderbilt Univ.
Storrs, CT 06269 Nashville, TN

{pvandal,ssg}@engr.uconn.edu a.gokhale@vanderbilt.edu

Abstract

A number of enterprises are turning towards the Service
Oriented Architecture (SOA) approach for their systems due
to the number of benefits it offers. A key enabling tech-
nology for the SOA-based approach is middleware, which
comprises of reusable building blocks based on design pat-
terns. These building blocks can be configured in numerous
ways and the configuration options of a pattern can have
a profound impact on system performance. A performance
analysis methodology which can be used to assess this influ-
ence at design time can guide the selection of patterns and
their configuration options and thus alleviate the possibility
of performance problems arising later in the life cycle.

This paper presents a model-based performance analy-
sis methodology for a system built using the Active Object
(AO) pattern. The AO pattern is chosen because it lies at
the heart of an important class of producer/consumer and
publish/subscribe systems. Central to the methodology is a
queuing model which captures the internal architecture of
an AO-based system. Using an implementation of the queu-
ing model in CSIM, we illustrate the value of the methodol-
ogy to guide the selection of configuration and provisioning
options for a stock broker system.

1 Introduction and motivation

The introduction of distributed components into the
process of Enterprise Application Integration (EAI) has
moved traditional integrations towards a more Service Ori-
ented Architecture (SOA) based approach [6]. The SOA-
based approach offers advantages such as robust, scalable,
and cost-effective systems, achieved by reducing complex-
ity and eliminating redundant code. Since these systems
will be used in many critical domains, they will be expected
to satisfy multiple Quality of Service (QoS) attributes.

A key enabling technology for SOA-based systems is

QoS-enabled middleware [9], which comprises of building
blocks based on design patterns to codify solutions to the
commonly recurring problems. These patterns are highly
flexible since they allow a system to be customized as per
its requirements through an appropriate selection of con-
figuration options. The configuration options of a pattern,
however, exert a strong influence on system performance.
Despite this influence, current trend in the performance
analysis of these systems relies on empirical benchmark-
ing and profiling, which involves measuring the system per-
formance after it is implemented. These types of testing
techniques, which are applicable very late in the life cycle,
can be detrimental to the cost and schedule of a project,
since several design and implementation iterations may be
needed to achieve the expected performance. A systematic
methodology to facilitate design-time performance analysis
can guide the process of selecting patterns and their config-
uration options and may thus alleviate these pitfalls.

In this paper we present a model-based performance
analysis methodology for a system built using the Active
Object (AO) pattern [10, 5]. The AO pattern is chosen since
it is widely used in a class of producer/consumer and pub-
lish/subscribe systems. At the heart of the methodology is
a queuing model that captures the internal architecture of
an AO-based system. Using a CSIM implementation of the
queuing model [11], we illustrate the value of the method-
ology in guiding configuration and provisioning decisions
for a case study of a stock broker system.

The paper is organized as follows: Section 2 provides an
overview of the AO pattern. Section 3 presents the method-
ology. Section 4 illustrates the methodology with a case
study. An overview of related research is in Section 5. Con-
cluding remarks and future directions are in Section 6.

2 Description of the AO pattern

In a multi-threaded application, several threads may re-
quire the utilization of a common resource. These threads

then compete for mutually exclusive access to the resource
and utilize it for the total time taken to complete the re-
quired operation. For low request rates and short session
durations, the performance of this architecture may be ac-
ceptable. However, for high request rates and long access
times, performance degradation may be significant. The AO
pattern can be used to alleviate the performance problems in
such a system. This pattern provides concurrency and sim-
plifies synchronized access to the shared resource by decou-
pling method invocation from method execution and creat-
ing the shared resource in its own thread of control.

The AO [9] is composed of the following components:
Proxy, Activation List, Scheduler, Servant, and Method Re-
quests. The interactions between these are initiated by a
client thread invoking a method on the Proxy to the AO.
The Proxy lies in the client thread and provides an inter-
face to the public methods on the shared resource. Instead
of immediately executing the method when invoked by the
client thread, the Proxy constructs a Method Request and
enqueues it on the Activation List of the AO. Thus, from the
client thread’s perspective, the method has been executed.

The Method Request is a structure that carries the para-
meters along with the other information necessary to exe-
cute the request later. It also has guards or synchronization
constraints. The Activation List is a buffer which resides
in the thread of the AO and holds all the pending requests.
A Scheduler monitors the Activation List for requests that
meet their synchronization constraints. It then chooses a re-
quest to be executed, dequeues it, and dispatches it to the
servant, which actually executes the method.

The AO pattern can be used to implement a class of pub-
lish/subscribe and producer/consumer systems. In this pa-
per, we focus on an AO-based producer/consumer system.

3 Performance analysis methodology

In this section we discuss the performance analysis
methodology for an AO-based producer/consumer system.
First, we describe the characteristics of a mutex-based pro-
ducer/consumer system, which is then enhanced through the
use of the AO pattern to mitigate its performance problems.
We then present queuing models of mutex- and AO-based
systems, followed by a discussion of the metrics that can be
used to gauge system performance. Finally, we describe the
implementation of the queuing models in CSIM.

3.1 System characteristics

We consider a producer/consumer system in which two
applications act as producers to a remote consumer applica-
tion. In such a system, the producers and the consumers re-
quire access to a common resource, for example, a message

buffer. The system thus requires a synchronization strategy
to create thread safe access to the resource.

Figure 1 shows a system implementation in which mu-
tex constraints are used for multi-threaded synchronization.
The solution comprises of a Consumer Handler which exists
in its own thread of control and serves as a proxy to the con-
sumer application. This handler contains a Message Queue
for outgoing messages that is implemented with the Mon-
itor Object pattern [10] to allow thread-safe synchronous
access to the queue. It also contains a Message Broker that
is responsible for monitoring the queue for new messages
to be sent to the consumer. When the Message Queue con-
tains messages, the Message Broker will contend with the
producers to access it. Once it gains access, the Message
Broker will get a message from the queue and send it to the
consumer application. Additionally, the two producers con-
tend for access to the Message Queue to put messages into
it. When the Message Broker is actively working on the
get and send functions, the Message Queue is locked from
access. Similarly, the Message Queue is locked when a pro-
ducer is trying to put a message on it. Thus, once an entity
(a producer or the Message Broker) acquires the mutex lock
from the Monitor Object, it retains control of the Message
Queue until its transaction is complete, after which it re-
leases the lock. Thus, the duration of these access times is
defined by network latency. For low to moderate network
loads, these access times are short and the system perfor-
mance may be acceptable. In a congested network, how-
ever, long access times, partly driven by the TCP flow con-
trol, may cause performance problems and starvation of the
entities from accessing the Message Queue.

Figure 1. Mutex-based system

The above issues of the mutex-based system can be al-
leviated by using the AO pattern to decouple producers and
consumers as shown in Figure 2. To decouple a producer,
a Producer Handler Proxy to the Consumer Handler is in-
troduced and implemented as a distributed AO. Its purpose
is to receive messages from the producer and then put them
in the Consumer Handler’s Message Queue. The AO Proxy
resides on the client application and provides an interface
for the method to put messages on the Consumer Handler’s
Message Queue. When the put command is invoked by

2

the client, the Proxy creates the corresponding Method Re-
quest and enqueues it on the Producer Handler’s Activation
List. The synchronization constraint of the put request is
the requirement of the Proxy to gain control of the Message
Queue. When the synchronization constraint is satisfied, the
Scheduler dequeues the request and executes the method to
put the message on the Message Queue. Thus, the time
required to add a message to the queue is reduced to the in-
ternal access time of the middleware, which decouples the
impact of the network latency on the producer side.

To decouple the consumer, the sending mechanism of
the Message Broker is also implemented using an AO. A
proxy interface containing the send method is implemented
inside the Message Broker. When the Message Broker in-
vokes the method to send a message, a Method Request is
created by the Proxy and enqueued on the Activation List
of the consumer-side AO. From the Message Broker’s per-
spective, the sending of the message is nearly instantaneous,
allowing it to relinquish control of the Message Queue after
the small time required to get the message and to invoke the
send command. This allows the affect of network latency
to be decoupled from the system. Further, it also allows the
processes of getting and sending messages to proceed asyn-
chronously. The send Method Request is guarded while a
message is being sent.

Figure 2. AO-based system

3.2 Queuing models

We assume that the arrival process at the producers is
Poisson with ratesλ1 andλ2. The times taken to put and
get messages from the Message Queue remotely, over the
network, are assumed to be exponential with parameterµ.
The put and get times are assumed to be identically distrib-
uted for remote access, since these are governed by the net-
work conditions, which are expected to be similar for both
the producers and the consumer. Further, the internal times
taken to put and get messages are assumed to be exponential
with parameterτ . Since the internal access time is expected
to be much lower than the remote access time,τ is at least
an order of magnitude higher thanµ.

Figure 3 shows the queuing model of the mutex-based
system. The producers store the incoming messages in the
producer-side buffersPS1 andPS2 until they gain access to
the Consumer Handler’s Message Queue, labeledMQ. The
time taken by a producer to put a message on the queue and
by the Message Broker to send a message to the consumer
application is exponential with rateµ. A producer will not
gain access to the queue if its buffer is empty or if the queue
is full. Similarly, the Message Broker will not gain access
to the Message Queue if the queue is empty.

Figure 3. Queuing model: Mutex-based sys-
tem

Figure 4 shows the queuing model of the AO-based sys-
tem. The producer-side Activation Lists are modeled as
buffers labeledPHAL1 andPHAL2 with capacitiesN3

andN4 respectively. A producer can continue to invoke the
put method until its Activation List has spare capacity to
enqueue a request. The time taken by a producer to put a
message on its Activation List is exponential with rateµ.
The time taken to enqueue a message on the queue inter-
nally by the producer-side servant is exponential with pa-
rameterτ . The servant can put messages on the Message
Queue as long as it is not full. Also, it will not gain access
to the queue if its corresponding Activation List is empty.

Figure 4. Queuing model: AO-based system

The consumer-side Activation List is also modeled as a
buffer labeledCHAL1 with capacityN5. The time taken
by the Message Broker to dequeue a message from the Mes-
sage Queue is exponential with parameterτ . The rate at
which the servant sends messages to the consumer isµ. The
Message Broker will not gain access to an empty queue.

3

3.3 CSIM implementation

The implementation of queuing models using a general
purpose simulation language/package such as CSIM [11] is
fairly common practice. However, the implementation of
the constraint of mutually exclusive access to the Message
Queue in the producer/consumer systems required careful
consideration and is described here. To allow synchronized
access, we keep track of the threads which are “enabled” or
whose constraints are satisfied and hence can gain access to
the queue, in a single process that runs continuously for the
entire duration of the simulation. An entity is considered to
be enabled to gain access to the queue if its synchroniza-
tion or guard constraints are satisfied. For example, in the
mutex-based system, the producer is allowed access to the
queue if there is at least one message in its buffer and if
the queue is not full. This monitoring process then chooses
one of the enabled entities according to a uniform distribu-
tion. It then provides the chosen entity with a semaphore,
a structure called an “event” in CSIM, for the total time the
entity needs access to the queue. Once the entity has com-
pleted its action on the queue, it releases the event back to
the monitoring process, which then repeats the steps.

3.4 Performance metrics

In this section we define the metrics to gauge system per-
formance. We also discuss their relevance from the user’s
and the provider’s perspectives.

1. Throughput: This is the average rate at which mes-
sages are sent to the consumer application.

2. Loss probability: This is the average probability that
an incoming message will be discarded on the pro-
ducer side, due to a lack of buffer space.

3. Response time: This is the average time taken for a
message to be received at the consumer application
from the point it is created by a producer.

4. Queue length: This is the average queue length of the
various queues in the system, namely, the producer-
side queues and the Message Queue.

A service provider typically needs to balance compet-
ing concerns that consist of offering superior service per-
formance while keeping the service cost acceptable. In
a producer/consumer system, service performance will be
deemed superior if the consumer application can receive
messages at the same rate at which they are produced by
the producers. The loss probability of the messages must
thus be negligible. Further, these messages must be deliv-
ered with an acceptable response time. Thus, the first three
metrics are relevant to a user’s perception of performance.

To ensure acceptable service performance while main-
taining reasonable costs, it is then the responsibility of the
service provider to provision adequate resources. For a pro-
ducer/consumer system, the storage resources consist of the
various buffers used to hold messages. Thus, metric #4 can
provide valuable guidance to a service provider in deciding
the appropriate levels of resource provisioning.

4 Illustrations

In this section, we illustrate the potential of the method-
ology to guide configuration and provisioning decisions us-
ing the case study of a stock broker system [2]. The system
has two producers, one each for creating NYSE and NAS-
DAQ feeds, which we designate as producers #1 and #2 re-
spectively. A remote data mining consumer application re-
ceives these feeds and provides stock data to the stock bro-
kers. Since the stock brokers base important trading deci-
sions on this data, it is extremely necessary that these feeds
be received in a timely manner. Thus, the response time is
a vital performance metric for the stock broker system.

For the sake of illustration, we use the nominal parame-
ter values reported in Table 1. When using the methodology
at design time, these values can be obtained for a specific
hardware and operating environment either by conducting
measurements on similar systems or by consultation with
the experts. The performance metrics for the mutex-based
and AO-based systems for the nominal values are reported
in Table 2. The table indicates that both the systems have
identical throughput, and is the same as the total rate at
which messages are produced. The response time of the
AO-based system, however, is lower than the mutex-based
system. This is consistent with the average queue lengths,
which are higher in the mutex-based system than the AO-
based system. Thus, if the response time of the mutex-based
system is unacceptable then the provider may have to dis-
favor the mutex-based system despite its simplicity and in-
stead use the AO-based implementation.

Table 1. Nominal parameter values
Parameter Value

Arrival rates (λ1, λ2) 15.0/sec.
Service rate (µ) 120.0/sec.

Producer-side buffers (N1, N2) 10

Message Queue (N3) 100

Producer Hdlr. Activation Lists (N4, N5) 1

Consumer Hdlr. Activation List (N6) 1

Internal access rate (τ) 1000.0/sec.

It is important to note that the performance of the AO-
based system is better than the mutex-based system, even

4

when the sizes of Activation Lists in the AOs are 1. When
the Activation List sizes are 1, the producer blocks and
cannot place any message on the Activation List until the
producer-side servant gains access and puts the message it
already has on the Message Queue. This shows that the
AO-based implementation is effective in shielding the sys-
tem from the impact of the network latency even with mini-
mum possible Activation List sizes. This effectiveness may
increase as the sizes of the Activation List increase.

Table 2. Performance of Mutex and AO sys-
tems

Metric Mutex system AO system
Throughput 30.00/sec. 30.00/sec.

Loss probability 0.00 0.00

Response time 0.0326 0.0227

Producer-side queue 0.261 0.146

Message queue size 0.456 0.052

Next we illustrate the utility of the methodology to en-
able sensitivity analysis, which is particularly valuableat
design time, since at this stage the parameter values are not
known with certainty. It is then crucial to determine the
parameter ranges over which system performance is accept-
able for a given set of configuration options. As an example,
in the stock broker system frequent feeds are desirable to
improve the accuracy of the data provided to the stock bro-
kers. However, each feed must be delivered in a reasonable
time. For given configuration options, the maximum rate of
data feeds that can be sustained while providing an accept-
able response time must then be determined. For this pur-
pose, we vary the message arrival rate of the producers from
10.0/sec to30.0/sec in steps of5.0/sec. The performance
metrics for both the systems as a function of the arrival rate
are in Figure 5. The top left plot in the figure shows that
the throughput of both the systems is identical over most
of the range, except when the arrival rate is very close to
30.0/sec., at which the throughput of the mutex-based sys-
tem dips slightly. As expected, the queue lengths and the
response time increase as the arrival rate increases, how-
ever, the increase is more pronounced for the mutex-based
system than for the AO-based system. When the arrival rate
exceeds25.0/sec. the queue lengths and the response time
of the mutex-based system increase sharply, while the in-
crease is still gradual for the AO-based system. Thus, if it
is expected that the feed rates will exceed25.0/sec., the per-
formance of the mutex-based system may be unacceptable,
mandating a switch to the AO-based system.

The above examples illustrate how the performance
analysis methodology could be used to select an appropriate
pattern and its configuration options to achieve acceptable
system performance.

5 Related research

Performance and dependability analysis of some middle-
ware services and patterns has been addressed by a few re-
searchers. Aldredet al. [1] developed Colored Petri Net
(CPN) models for different types of coupling between the
application components and with the underlying middle-
ware. They also defined the composition rules for com-
bining the CPN models if multiple types of coupling are
used simultaneously in an application. A dominant aspect
of these works is related to application-specific performance
modeling. In contrast, we are concerned with determining
how the underlying middleware that is composed for the
systems they host will perform. Kahkipuro [4] proposed
a multi-layer performance modeling framework based on
UML and queuing networks for CORBA-based systems.
The methodology, however, is for generic CORBA-based
client/server systems rather than for systems built using de-
sign patterns. The research reported in this paper is con-
cerned with performance analysis of a specific design pat-
tern used in the development of producer/consumer sys-
tems. The work closest to our work is in [8], where a
performance model of the CORBA event service is devel-
oped. Our prior research has focused on performance analy-
sis methodologies for other middleware patterns including
the Reactor [3] and the Proactor patterns [7].

6 Conclusions and future research

In this paper we presented a model-based performance
analysis methodology for an AO-based system. It com-
prised of a queuing model which captured the internal ar-
chitecture of an AO-based system. A CSIM implementa-
tion of the model was used to demonstrate the utility of the
methodology in guiding provisioning and configuration de-
cisions on an example stock broker system.

Our future research consists of developing an analyti-
cal/numerical approach for the performance analysis of the
AO pattern. Developing a strategy to compose the perfor-
mance models of patterns mirroring their composition on
the middleware stack is also a topic of future research.

Acknowledgments

This research was supported by the following grants
from NSF: Univ. of Connecticut (CNS-0406376, CNS-
SMA-0509271) and Vanderbilt Univ. (CNS-SMA-
0509296).

References

[1] L. Aldred, W. M. P. van der Aalst, M. Dumas, and
A. H. M. ter Hofstede. “On the notion of coupling in

5

Figure 5. Sensitivity of performance measures to message ar rival rates (λ1, λ2)

communication middleware”. InProc. of Intl. Sympo-
sium on Distributed Objects and Applications (DOA),
pages 1015–1033, Agia Napa, Cyprus, 2005.

[2] G. Banavar, T. Chandra, R. Strom, and D. Sturman.
“A case for message oriented middleware”. InProc.
of the 13th Intl Symposium on Distributed Computing,
pages 1–18, London, UK, 1999. Springer-Verlag.

[3] S. Gokhale, A. Gokhale, and J. Gray. “Performance
analysis of a middleware demultiplexing pattern”. In
Proc. of Hawaii Intl. Conference on System Sciences
(HICSS), January 2007.

[4] P. Kahkipuro.“Performance modeling framework for
CORBA based distrbuted systems”. PhD thesis, Dept.
of Computer Science, Univ. of Helsinki, Helsinki, Fin-
land, May 2000.

[5] R. Greg Lavender and Douglas C. Schmidt.Pattern
languages of program design 2, chapter Active ob-
ject: an object behavioral pattern for concurrent pro-
gramming, pages 483–499. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, 1996.

[6] ORACLE. “Bringing SOA value patterns to life”.
White Paper, June 2006.

[7] U. Praphamontripong, S. Gokhale, A. Gokhale, and
J. Gray. “Performance analysis of an asynchronous
Web server”. InProc. of Intl. Conference on Computer
Science and Applications, pages 22–25, 2006.

[8] S. Ramani, K. S. Trivedi, and B. Dasarathy. “Perfor-
mance analysis of the CORBA event service using sto-
chastic reward nets”. InProc. of the 19th IEEE Sympo-
sium on Reliable Distributed Systems, pages 238–247,
October 2000.

[9] R. E. Schantz and D. C. Schmidt. “Middleware for
distributed systems: Evolving the common structure
for network-centric Applications”. In John Marciniak
and George Telecki, editors,Encyclopedia of Software
Engineering, pages 801–813. Wiley & Sons, 2002.

[10] D. C. Schmidt, M. Stal, H. Rohnert, and
F. Buschmann. Pattern-Oriented Software Ar-
chitecture: Patterns for Concurrent and Networked
Objects, Volume 2. Wiley & Sons, New York, 2000.

[11] H. Schwetman. “CSIM reference manual (revision
16)”. Technical Report ACA-ST-252-87, Microelec-
tronics and Computer Technology Corp., Austin, TX.

6

