
CloudCAMP: Automating the Deployment and
Management of Cloud Services

Anirban Bhattacharjee∗, Yogesh Barve∗, Aniruddha Gokhale∗
∗Department of Electrical Engineering and Computer Science

Vanderbilt University, Nashville, Tennessee, USA
Email: {anirban.bhattacharjee; yogesh.d.barve; a.gokhale}@vanderbilt.edu

Takayuki Kuroda†
†NEC Corporation

Kawasaki, Kanagawa, Japan
Email: t-kuroda@ax.jp.nec.com

Abstract—Users of cloud platforms often must expend signifi-
cant manual efforts in the deployment and orchestration of their
services on cloud platforms due primarily to having to deal with
the high variabilities in the configuration options for virtualized
environment setup and meeting the software dependencies for
each service. Despite the emergence of many DevOps cloud
automation and orchestration tools, users must still rely on
specifying low-level scripting details for service deployment and
management. Using these tools required domain expertise along
with a steep learning curve. To address these challenges in a tool-
and-technology agnostic manner, which helps promote interoper-
ability and portability of services hosted across cloud platforms,
we present initial ideas on a GUI based cloud automation
and orchestration framework called CloudCAMP. CloudCAMP
uses model-driven engineering techniques to provide users with
intuitive and higher-level modeling abstractions that preclude
the need to specify all the low-level details. CloudCAMP’s
generative capabilities leverage a built-in knowledge-base to
automate the synthesis of Infrastructure-as-Code (IAC) solution
that subsequently can be used to deploy and orchestrate services
in the cloud. Preliminary results from a small user study are
presented in the paper.

Keywords—cloud services, automation, orchestration, domain-
specific modeling, knowledge base

I. INTRODUCTION

A. Emerging Trends and Challenges

Service deployment and management in cloud platforms
demand significant manual efforts. Users of cloud platforms
have to deal with the high variabilities in the configuration
options for virtualized environment setup and meeting the
software dependencies for each service. Deployment, man-
agement and continuous delivery of composite applications
pose inherent challenges because of their complexity. De-
spite the emergence of many DevOps cloud automation and
orchestration tools, users must still rely on specifying low-
level scripting details to implement their service deployment
and management strategies. Using these tools incurs a steep
learning curve, which is further exacerbated due to the required
domain expertise to use these tools. Thus, self-service appli-
cation deployment, orchestration, and management platform
are desired for enterprises to speed up time-to-market for
their services while ensuring their reliable deployment and
management. The self-service platform needs to abstract all the
low-level details of deployment and management, especially
in the cloud environment.

B. Solution Approach: CloudCAMP

To address these challenges, we present preliminary ideas
on a model-driven and scalable, rapid provisioning framework
called CloudCAMP that significantly reduces the burden on
the users. CloudCAMP complies with the OASIS standard
Topology and Orchestration Specification for Cloud Applica-
tions (TOSCA) specification [1].

CloudCAMP incorporates domain-specific modeling so that
the specifications and dependencies of clouds and applica-
tions architecture are specified at an intuitive, higher level
of abstraction without the need for specifying all the low-
level domain details as shown in Figure.1. The extensible and
reusable knowledge base maintained by CloudCAMP helps
to complete the partial specifications and generate deployable
Infrastructure-as-Code (IAC), which can be handled by the
existing tools to provision the services components during
deployment and management phase. We validate our approach
by a prototypical application model and present results from
a preliminary user study to evaluate its relevance.

C. Comparison with Related Research

We have studied the state-of-art of deployment and manage-
ment abstraction in the literature of cloud automation and or-
chestration. Cloud orchestration tools like Apache Scalr (https:
//scalr-wiki.atlassian.net/wiki/display/docs/Apache), Cloudify
(http://getcloudify.org/) provide sophisticated techniques to
deploy, manage and monitor applications on cloud providers.
However, the users need to define the complete and correct
deployable model with all the functionalities, features and
order to deploy services using these tools. The correctness of
deployable script cannot be verified in pre-deployment phase.

Several efforts come close to the CloudCAMP idea. Several
pattern-based approaches [2], [3] are proposed to alleviate
the complexity of designing the deployment of the appli-
cation, however unlike our approach, they lack verification
and extensibility, and they did not consider distributed micro-
service architecture based applications. In other approaches,
the requirements are predefined as constraints on the config-
uration by the developers. Engage [4] deploys and manages
the application from a partial specification using a constraint-
based algorithm. Aeolus Blender [5] also use the configuration
optimizer Zephyrus [6], the ad-hoc planner Metis [7], and
deployment engine Arnomic to deploy a service from partial



Fig. 1: Box 1 (blue color) depicts the responsibilities of service management team for defining the low-level details in the existing automation tools as scripts to automate
the service management and orchestration tools can provision the infrastructure for service components and execute them on heterogeneous cloud environments. Box
2 (red color) depicts the contributions of this paper which introduces a self-service framework to automate the generation of whole IAC design solutions.

description. In contrast to the use of knowledge base in
CloudCAMP, these efforts require lots of domain expertise
to define the model specifications as constraints for the CSP
solver. CSP solvers, however, can take significant time to
transform the partial model to concrete deployable model.

D. Paper Organization

The rest of the paper is organized as follows: Section II
presents the design of CloudCAMP alluding to the challenges
faced and solution approach; Section III presents preliminary
results from a user study; and finally, Section IV concludes
the paper alluding to future directions.

II. CLOUDCAMP APPROACH

This section delves into the design of CloudCAMP alluding
to the key challenges and how its design helps resolve these.

A. Challenges Faced in Cloud-based Service Provisioning

Although IAC helps mask the heterogeneity stemming from
the differences in the cloud platforms and their resource types,
two key challenges remain unresolved as described below.

Challenge 1: Variability and Complexities in Automated
Deployment of Services: Although IAC decouples the user
from directly accessing the cloud platform APIs, service
deployment and continuous delivery workflow include man-
ually creating the IAC logic and configuring the provisioning
environments to perform a series of automation tasks. Since
each of the orchestration and automation frameworks use their
language with its syntax, semantics and formatting rules, this
requires users to write IAC code that is very specific to the
orchestration and automation tool being used. Consequently,
in addition to dealing with the variability in the framework
space and learning curve incurred, users also experience a
framework lock-in. Existing frameworks also require elaborate
specification of service topologies comprising requirements,
functionalities, dependencies and relationships of the com-
ponents. The variability in application package dependencies
makes the script writing further challenging. For instance,
depending on the technology used such as MySQL versus
PostgreSQL or PHP versus Node.js, the script must include
the appropriate drivers. Moreover, additional dimensions of
variability (i.e., addressing application’s compatibility and
cloud providers’ incompatible APIs) as depicted in Box 1 of

Figure 1 further amplifies the manual effort which is daunting,
tedious and error-prone. Finally, existing approaches do not
account for pre-deployment validation to check if the end-user
requirements and software dependencies are met.

Challenge 2: Complexities in Automated Migration of
Service Components across Providers: Service components
may need to migrate between cloud providers to derive the
benefit of best quality along with optimal pricing [8]. Mi-
grating application components in the heterogeneous cloud
environment requires rewriting different plans for different
cloud providers, and for each deployment of new application
components [9]. Defining the configurations and the scripts to
install/uninstall specific software packages for the components
is time-consuming and can even lead to service unavailability
or erroneous deployment. Finally, the script-centric approach
does not offer pre-migration validation [10].

B. CloudCAMP Approach

We address these challenges in CloudCAMP as follows:
1) Domain-specific Modeling: The complexity of infrastruc-

ture design and deployment is abstracted and restricted to
just the most business-relevant model.

2) Generative techniques: We improve user productivity by
reducing both the manual effort and need for substantial
domain expertise.

3) Portability: Our approach is TOSCA-compliant so that all
the models are portable, vendor-neutral and interoperable.

We have designed CloudCAMP’s cloud-based service pro-
visioning approach in the form of a workflow as depicted in
Figure 2. The different actors of CloudCAMP architecture are
described below.

1) Abstraction of Business Model: An application model
is comprised of different application component types.
The user has to select appropriate application component
types from the CloudCAMP application pane and needs
to specify the attributes to bind it with the cloud provider
and the operating systems, on which they want to deploy
the application components. The domain-specific model-
ing language handles all low-level details of deployment
and management and abstracts it from the business users.

2) Configurator: This actor is responsible for transforming
each user specified abstract application component to a



Fig. 2: The CloudCAMP Workflow

cloud automation task (e.g., Ansible-specific). Config-
urator realizes a user-defined abstract description of a
cloud application model, and then it maps the application
components with the operating system, and query the
knowledge base to find the software dependency tree.
Using the software dependency tree, it generates full
‘correct-by-construction’ Ansible-specific code from the
application type template.

3) Enactor: It generates the infrastructure design workflow
of IAC solutions by integrating the generated automation
code with the business rules and cloud infrastructure
specifications. The connection types between the ap-
plication components are defined by the users. There
are four types of connections: ‘hostedOn’, ‘connectsTo’,
‘deleteFrom’, ‘migrateTo’. The details of the connection
types and their role is described in [11]. The orchestration
tool executes all the automation tasks based on the con-
nection types to deploy and run the business application
components in proper order.

4) Knowledge Base: A knowledge base aids to generate full
automation code from the partially specified deployment
models. We predefine the software dependencies for
application type in a relational table with a key-value
pair. All the software packages needed for a particular
application component are defined in the tables along
with their dependency on the operating system and its
version. The application developer needs to populate the
tables with all software dependencies for including the
new application component type in the CloudCAMP.

C. CloudCAMP Design Implementation

We have used the WebGME MDE framework (www.
webgme.org) to define the metamodel for the CloudCAMP
Domain-specific Modeling Language (DSML).1 WebGME is

1Due to space constraints, we do not describe the DSML design. The
interested reader can find these details in [11].

a cloud-based framework that offers an environment for DSML
developers to define their language and create model parsers
that can serve as generators of code artifacts. The CloudCAMP
platform comprises of three services: (a) the WebGME mod-
eling UI, and orchestration and automation frameworks, as
one service, (b) the WebGME modeling details are stored in a
MongoDB database, and (c) the knowledge base in a MySQL
database.

III. VALIDATION VIA USER STUDY

This section describes a LAMP based application scenario
and initial results from a simple user study we conducted as
part of a cloud computing course taught by us.

Use Case: A LAMP stack deployment: We conducted a
small user study in a Cloud Computing course for case study
involving sixteen teams of three students each. We goal of the
user study was to measure both the time taken and efforts (a)
for a fully manual effort, (b) for writing scripts in Ansible and
executing these manually and (c) use CloudCAMP framework
to deploy the scenario.

Our use case handed out to students of our cloud com-
puting class involved a prototypical three-tier Linux, Apache,
MySQL, and PHP (LAMP)-based microservice architecture
deployment. Figure 3 shows the application topology illus-
trating the modeling effort in CloudCAMP, where the PHP-
based web application needs to be ‘HostedOn’ on OpenStack
platform on Ubuntu 16.04 VM, and the database service will
be deployed on another OpenStack platform on Ubuntu 14.04
VM, and these two tiers must have ‘ConnectsTo’ relationship
between them.

To test the usefulness of the CloudCAMP for deployment
of cloud application, the students were first asked to manually
install all the software and dependencies to deploy the LAMP
web services by spawning OpenStack VMs. As a second step,
the students were asked to use the CloudCAMP platform
to create the same deployment topology and specify the



Fig. 3: Sample LAMP Application Model

attributes, and then run the code generation plugin to deploy
the intended application on the desired cloud platform.

Hypothesis: The LAMP stack web service deployment with
the provided source code requires installing and configuring
PHP, Apache HTTP server, and MySQL RDBMS. We surmise
that in a fully manual effort, the users will need to configure
the files, create the handlers to specify the deployment order
in the desired host, log into each host where the application
components are deployed and manually install the packages,
configure the software packages and finally start the different
components in the correct order. In the manual scripting
case, the user will first incur a significant learning curve for
Automation and Orchestration tools. Thereafter we expect that
despite improving automation via these tools, the user will
still incur trial-and-error, which is likely to be amplified for
complex deployment scenarios and decrease the productivity.

Qualitative Benefits using CloudCAMP: The “correct-by-
construction” and automation benefits of CloudCAMP are
achieved as follows. Modeling errors are resolved at modeling
time via constraint checking. Once the model is completely
specified in the CloudCAMP framework, then CloudCAMP
generates IAC solution for the application components and
deploys it via backend DevOps tools. The WebApplication
component type connects to the DBApplication component
type based on the ‘connectsTo’ relationship in the business
model. Moreover, CloudCAMP automatically infers from this
relationship that the web service must wait for the database
service to start first. For those cases that are not constrained by
‘ConnectsTo’ relationship, CloudCAMP ensures that deploy-
ment can be executed with maximal parallelism by leveraging
the underlying generated scripts.

Quantitative Evaluation based on a User Study: The aver-
age time the students took to complete the entire deployment
process manually is 171 minutes, and the average time is 516
minutes to script and debug Ansible code correctly, whereas
our rough estimates for students using the CloudCAMP-based
topology creation and deployment will be only 15-20 minutes
for the first time users. The average line of code written for
the deployment process is 315 lines.

IV. CONCLUSIONS

This paper presented preliminary ideas on a model-driven
engineering and generative programming approach to auto-

mated deployment and management of cloud applications.
CloudCAMP’s use of domain-specific modeling is meant to
aid the application deployer in modeling the service pro-
visioning at a higher level of abstraction, and deploy its
code without requiring significant domain expertise, minimal
modeling effort and no low-level scripting. The generative
capabilities help in the automated synthesis of infrastructure-
as-code scripts that then can be used by existing DevOps tools.

This paper presented only preliminary ideas and on-
going work. A substantial additional work is needed to
make this technology mature and adopted by practition-
ers. Our ongoing work is addressing many of these unre-
solved challenges. The technology’s capabilities are being
made available in open source at https://doc-vu.github.io/
DeploymentAutomation/. Additionally, substantial additional
user studies are necessary and our future efforts will focus on
addressing this unresolved issue.

ACKNOWLEDGMENT

This work was supported in part by NEC Corporation, Kanagawa,
Japan and NSF US Ignite CNS 1531079. Any opinions, findings, and
conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect views of NEC or NSF.

REFERENCES

[1] OASIS, “Topology and orchestration specification for cloud ap-
plications,” http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.
pdf, 2013, oASIS Standard.

[2] H. Lu, M. Shtern, B. Simmons, M. Smit, and M. Litoiu, “Pattern-based
deployment service for next generation clouds,” in Services (SERVICES),
2013 IEEE Ninth World Congress on. IEEE, 2013, pp. 464–471.

[3] E. Di Nitto, M. A. A. da Silva, D. Ardagna, G. Casale, C. D. Craciun,
N. Ferry, V. Muntes, and A. Solberg, “Supporting the development and
operation of multi-cloud applications: The modaclouds approach,” in
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC),
2013 15th International Symposium on. IEEE, 2013, pp. 417–423.

[4] J. Fischer, R. Majumdar, and S. Esmaeilsabzali, “Engage: a deployment
management system,” in ACM SIGPLAN Notices, vol. 47, no. 6. ACM,
2012, pp. 263–274.

[5] R. Di Cosmo, A. Eiche, J. Mauro, S. Zacchiroli, G. Zavattaro, and
J. Zwolakowski, “Automatic deployment of services in the cloud with
aeolus blender,” in Service-Oriented Computing. Springer, 2015, pp.
397–411.

[6] R. Di Cosmo, M. Lienhardt, R. Treinen, S. Zacchiroli, J. Zwolakowski,
A. Eiche, and A. Agahi, “Automated synthesis and deployment of
cloud applications,” in Proceedings of the 29th ACM/IEEE international
conference on Automated software engineering. ACM, 2014, pp. 211–
222.

[7] T. A. Lascu, J. Mauro, and G. Zavattaro, “A planning tool supporting the
deployment of cloud applications,” in Tools with Artificial Intelligence
(ICTAI), 2013 IEEE 25th International Conference on. IEEE, 2013,
pp. 213–220.

[8] B. Dougherty, J. White, and D. C. Schmidt, “Model-driven auto-scaling
of green cloud computing infrastructure,” Future Generation Computer
Systems, vol. 28, no. 2, pp. 371–378, 2012.

[9] K. El Maghraoui, A. Meghranjani, T. Eilam, M. Kalantar, and A. V.
Konstantinou, “Model driven provisioning: Bridging the gap between
declarative object models and procedural provisioning tools,” in Mid-
dleware 2006. Springer, 2006, pp. 404–423.

[10] A. Bhattacharjee, “Mde-based automated provisioning and management
of cloud applications.”

[11] A. Bhattacharjee, Y. Barve, A. Gokhale, and T. Kuroda, “CloudCAMP:
A Model-driven Generative Approach for Automating Cloud Application
Deployment and Management,” Vanderbilt University, Nashville, TN,
USA, Tech. Rep. ISIS-17-105, Sep. 2017.


