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Abstract—The increasing complexity of Cyber Physical Sys-
tems (CPS) found in a variety of domains, and the unforeseen
fluctuations in operating conditions caused by the open nature of
these systems makes it significantly challenging to appropriately
configure and adapt the operating parameters of CPS to ensure
reliability and desired quality-of-service (QoS). Material handling
and packaging is one such domain experiencing these difficulties
where the plants employ composable and reconfigurable conveyor
systems that enable adaption to changing demands and business
processes. Plant operators, however, face a daunting task of
ensuring that the system throughput is maximized in the face
of fluctuating workloads, while at the same time operation costs
incurred in operating the plant are minimized. Plant operators
require that these capabilities continue to be available even after
the conveyor layouts change. To address these duo of challenges,
this paper develops and compares five different model-predictive
controller designs all of which have an inherent quality of
being composable. The five controller designs comprise a single-
level, completely decentralized controller with two alternatives
on how belt speed is estimated; a centralized controller; a two-
level controller; and a time-abstracted centralized controller. The
composable nature of all the controller designs lends towards
addressing the situation when the layouts change. An evaluation
of our controller designs in the context of a case study is presented
comparing to a baseline case with a static system configuration.

Keywords—Model-predictive Control, Composable conveyors,
CPS

I. INTRODUCTION

Material handling and packaging systems are excellent ex-
amples of widely-used engineered systems that embody many
characteristics of cyber physical systems (CPS). Such systems
have applications in warehouses, manufacturing plants, pack-
age sorting facilities (e.g., FedEx and UPS), and even in front-
line logistics for military deployments. The composable and
reconfigurable nature of these systems make them attractive
in application scenarios because they can adapt to changing
processes and environmental demands. These systems are
also attractive for the study of CPS principles because the
techniques designed for such systems to enable composability,
scalability and performance can be applied to a larger spectrum
of CPS.

The composable conveyor systems (CCS) [1] we con-
sider comprises multiple instances of two kinds of units —
namely, Segment and Turn. A Segment has a belt whose speed
and direction can be controlled. A Turn is a reconfigurable
merger/splitter unit that can be juxtaposed with up to four

Segment instances. These conveyor systems can be controlled
by regulating the speed of the belt on the individual units. The
load in the system, i.e., the number of packages handled by
different units in the system can be regulated by dynamically
routing the packages over different end-to-end paths in the
system. Configuring and synchronizing the speeds of the units
is unlikely to be scalable if the decisions are made in a central
location. The speeds must also be adjusted in response to
variabilities in the arrival rates of the packages at the different
inputs to the system. Further, the speeds and routes must be
adjusted in response to failures and repairs of conveyor units
that can occur throughout the lifecycle of the system.

Many automation systems are becoming increasingly open
and more connected to the supply chain [2]. CCS is a represen-
tative example in which the impact of such connectivity can be
studied. Workloads in the system can fluctuate substantially;
e.g., holiday season may experience dramatic increase in pack-
ages that must be sorted and shipped to their destinations. In
such situations, statically-defined preset speeds for the entities
of the CCS may not be sufficient to effectively operate the
system. Similarly, unforeseen disruptions in the supply chain
can make any fixed schedule ineffective. Plant operators are
thus faced with the task of addressing two challenges. First,
they must be able to dynamically adapt the operation of their
plant to maximize the throughput and minimize energy con-
sumption while adapting to the workload fluctuations. Second,
such dynamic adaptation capabilities must remain available
when the conveyor system topology or layout of the plant floor
undergoes change due to business-specific and other logistical
reasons.

To address such challenges, we present the design and eval-
uation of five model-predictive control approaches as follows:

1) Our first approach relies on a single level of dis-
tributed control where individual controllers reside in
each unit of the CCS. Each controller predicts the
incoming workload and adjusts its local speed.

2) Our second approach is based on a centralized man-
agement of individual controllers in the first ap-
proach. predicts and makes decisions for all the belts
in the system.

3) Our third approach presents a decentralized design
that uses local controllers for each unit as in approach
#1, however, these controllers predict the arrival rate
taking into account the speed of the preceding unit.



4) Our fourth approach provides a hierarchical design in
which the first level comprises the above mentioned
decentralized control units; however, the individual
controllers make short-term predictions of workloads.
These controllers are in turn managed by a second
level controller that makes longer-term forecasts of
expected workloads and fine tunes the performance
of the system.

5) Our fifth approach illustrates a time abstract central-
ized controller where the controller can make both
short-term and long-term prediction and come up
with which speed level that belts should use.

Our prior work for CCS has explored the use of model
driven engineering tools to reason about different properties
of CCS conveyor layouts prior to their actual deployment [3].
More recently we adapted the classical priority inheritance
protocol to resolve priority inversions in CCS [4]. None of
these efforts investigated the use of model predictive control.
On the other hand, we have designed a model-predictive, two-
level controller for the adaptive performance management of
computing systems [5], however, this solution was applied to
a purely cyber-only system. In the current work we focus
on cyber physical systems and account for both the physical
dynamics and the cyber interactions of these sysetms. Our two-
level model-predictive controller design for a system of CCS is
indeed inspired by our work in [5] but its design has a number
of differences that are explained later.

This paper makes the following contributions:

• We present the design of five model predictive con-
trollers to manage the performance of CCS.

• Using a case study we compare and contrast the
performance of each controller, and compare their
performance to CCS with static configuration.

The rest of the paper is organized as follows: Section II
describes related work comparing them with our work; Sec-
tion III provides a background on model-predictive control;
Section IV describes the design of the controllers; Section V
describes results of our simulations comparing the performance
of the two controllers with the baseline; and finally Section VI
offers concluding remarks alluding to opportunities for future
work.

II. RELATED WORK

In this section we survey some recent efforts developing
controller designs for CPS focusing mostly on related use cases
and with a focus similar to ours. Various other related efforts
also exist but we have not described them here.

A recent synergistic effort [6] is concerned with energy
efficiency of the conveyors. In this work the authors compare
an open-loop optimal control approach with a model-predictive
closed-loop control. In their case, the authors tested their sys-
tem in a coal processing plant. They conclude that the model-
predictive approach was better able to handle fluctuations
and uncertainties in workload prediction, however, in their
case rather than incoming workloads, their problem related to
predicting the consumption of coal which was driven by the
quality of coal.

Another use case involving coal is reported in [7]. In this
work the authors argue that one must also pay attention to
system constraints and external constraints such as tariffs and
storage capacities. Thus, this work seeks to find the optimal
scheduling of belt conveyors to improve energy efficiency by
taking into account all the additional constraints.

Fuzzy logic control is used as a control strategy for the
system of belt conveyors with adjustable speed drives [8]. In
this work the use case is an open pit mine where conveyors are
used to transport the mined material. The authors in this work
refer to the long distances covered by the conveyors which
require intermediate stations. To make the system efficient, the
authors have developed fuzzy logic controller.

Centralized monitoring and control is necessary to reliably
and safely operate the belt conveyor. The authors in [9] take
the belt conveyor for coal mine as the background, and design
the monitoring system based on PLC technology according
to a distributed controller structure model. In summary, each
substation in mining area can independently realize controlling
a single belt conveyor. Centralized control center can manage
them centralized.

Airport baggage handling is a representative package sys-
tem for centralized control. Authors in [10] propose a multi-
agent control approach for a baggage handling system (BHS)
using IEC 61499 Function Blocks. In particular, the work
focuses on demonstrating a decentralized control system that is
scalable, reconfigurable, and fault tolerant. The authors demon-
strate the effectiveness of the agent-based control system and
present a utility for real-time viewing of these systems.

A flexible robotic assembly system decentralized architec-
ture is presented in [11]. The system consists of conventional
manipulators and a belt conveyor. It is designed to achieve
high reconfigurability so that it can adapt to changes in
manufacturing environment; a new robot can be easily installed
to the system and execute assembly tasks immediately with
the help of other devices. For easier reconfiguration, a semi-
automated calibration method for positions of newly installed
robots is integrated into the system. The authors demonstrate
the system will not be optimal on reconfigurability until it has
effective task allocation.

Small scale, multi-directional conveyor modules which are
smaller than the goods to be transported provide outstanding
flexibility. The authors in [12] present a decentralized, self-
organizing control for these modules based on cellular au-
tomata. To fulfill the transportation task, each module partici-
pates in the solution process. The presented control makes the
system easy to reconfigure and scalable. The authors illustrated
that a complex system behavior emerges from simple rules
defining the cellular automaton.

III. BACKGROUND ON CONTROL-BASED PERFORMANCE
MANAGEMENT

Our five controller designs are based model-predictive
concepts with Limited Lookahead Control (LLC) [5]. This
section first briefly reviews some key LLC concepts. Figure 1
shows the key components of a self-managing computing
system: 1) the system model and its QoS specification, 2) the
environment-input forecaster, and 3) the controller.



Fig. 1. Key components of a self-managing computing system.

A. Forecasting Environment Inputs

In systems that operate in open and dynamic environments,
the corresponding inputs to the controller are generated by
external sources whose behavior typically cannot be con-
trolled, e.g., web-page requests made to a server by Internet
clients. It such systems, workloads of interest show strong
and pronounced time-of-day variations [13], [14], [15], and
that key workload characteristics such as request arrival rates
can change quite significantly and quickly—usually in the
order of a few minutes. In most situations, however, such
workload variations can be estimated effectively using well-
known forecasting techniques such as the Box-Jenkins ARIMA
modeling approach [16] and Kalman filters [17]. A forecasting
model is typically obtained via analysis or simulation of
relevant parameters of the underlying system environment and
has the following form:

ω̂(k) = φk(ω(k − 1, r)) (1)

where ω̂(k) denotes the estimated value at time k and
ω(k − 1, r) is the set of r previously observed environment
vectors {ω(k − 1), . . . , ω(k − r − 1)}. The other estimation
parameters—for instance, the covariance matrix in the Kalman
filter—are assumed to be embedded in the model φk. These
parameters are typically obtained by training φk using test
data representative of actual values observed in the field. We
also assume that the estimation error is bounded and known
with a certain probability distribution. Therefore, we can write,
ω(k) = φk(ω(k− 1, n)) + e(k) where e(k) ∈ E is a bounded
random variable reflecting the effect of the estimation error.

From the implementation point of view, environment inputs
are handled by a prediction module that continuously samples
environment inputs and estimates their future values. The
predictor module can be instantiated with different forecasting
techniques and can be trained offline with representative input
data. Signal and parameter estimators may also be added to
extract information about, and build an accurate model of the
operating environment.

B. System Model, Performance Specification, and Constraints

As noted in Section I, the control approach proposed in this
paper targets a general class of cyber-physical systems with
finite control-input set. The following discrete-time equation
describes the general dynamics of such a system:

x(k + 1) = f(x(k), u(k), ω(k)) (2)

where x(k) ∈ Rn is the system state at time step k, and
u(k) ∈ U ⊂ Rm and ω(k) ∈ Ω ⊂ Rr denote the control
inputs and environment parameters at time k, respectively. The
system model f captures the relationship between the observed
system parameters, particularly those relevant to the QoS spec-
ifications, and the control inputs that adjust these parameters.
This model could be in the form of difference equations for
simple systems, and in the form of an approximation structure
such as a neural network for more complex systems whose
dynamics cannot be easily described from first principles.

Since the current value of ω(k) cannot be measured until
the next sampling instant, the system dynamics can only be
captured using a model with uncertain parameters, as follows:

x̂(k + 1) = f(x(k), u(k), ω̂(k))

This estimated value of x is the one used by the controller to
evaluate applicable control options. From the dynamic point
of view, we can rewrite the system model as follows,

x(k + 1) = f(x(k), u(k), φk(ω(k − 1, r)), e(k))

In the above equation, e(k) is the only stochastic variable. In
analyzing the feasibility of the predictive control approach, one
needs to consider the value of e leading to the maximum devi-
ation from the objective state. We will introduce an algorithm
to check the feasibility of the control approach for a bounded
error domain E.

1) Performance Specifications: Computing systems must
achieve specific QoS goals while satisfying certain operating
constraints. A basic control action in such systems is set-
point regulation where key operating parameters must be
maintained at a specified level or follow a certain trajectory.
The controller, therefore, aims to drive the system to within a
close neighborhood of the desired operating state x∗ ∈ X in
finite time and maintain the system there. A general form of
such specification can be expressed using the cost function

J(x, u) = ‖x− x∗‖P + ‖u‖Q + ‖∆u‖R (3)

where ‖ · ‖A is a proper norm with weight A. The above
performance measure takes into account the cost of the control
inputs themselves and their change. It is also possible to
consider transient costs as part of the operating requirements,
expressing the fact that certain trajectories towards the desired
state are preferred over others in terms of their cost or utility
to the system.

2) Operating Constraints: The system must also operate
within strict constraints on both the system variables and
control inputs. In general, such constraints can be expressed
as a feasible domain for the composite space of a set of
system variables, possibly including the control inputs them-
selves. Such operating constraints can be generally captured as
ψ(x) ≤ 0 and U(x) ⊆ U where U(x) denotes the permissible
input set in state x and ψ(x) ≤ 0 defines reachable states.

To summarize, the primary objective of the controller is
to drive the computing system to the desired state x∗ while
minimizing the control and transient costs in “reasonable”
time using an admissible trajectory, defined by the constraints
ψ(x) ≤ 0 and U(x), and maintain it close to x∗.



C. Predictive Controller

The basic concept behind predictive control is to solve an
optimization problem over a future time horizon, and then roll
this horizon forward at regular intervals, re-solving the control
problem.

Algorithm 1 The Predictive Control Algorithm: PControl(k)
input: x(k), ω(k − 1, r)
so := x(k)
for i = 0 to N − 1 do
ω̂ := φk+i(ω(k + i− 1, r))
si+1 := ∅
for all x ∈ si, u ∈ U(x) do
x̂ := f(x, u, ω̂)
si+1 := si+1 ∪ {x̂}
Compute Cost(x̂) based on J(x̂, u).

end for
end for
xmin := arg min{Cost(x) | x ∈ sN}
return u∗(k) := initial input leading from x(k) to xmin

Algorithm 1 shows the details of the predictive control
technique. At each time instant k, it accepts the current
operating state x(k), and starting from this state, the controller
constructs a tree of all possible future states up to the specified
prediction depth N . The relevant parameters of the operating
environment are first estimated and then the next set of reach-
able system states (subject to both state and input constraints)
are generated by applying all applicable control inputs from
the set U(x). The total cost function corresponding to each
estimated state is then computed based on the cost function J .
The state xmin with the minimum cost at the end of the tree is
then selected and the first input leading to this state, u∗(k), is
applied to the system while the rest are discarded. The above
search is repeated at each sampling step.

IV. MODEL PREDICTIVE CONTROLLER DESIGNS FOR
CCS

Based on the preliminaries on model predictive control
described in Section III, we now describe the design of five
different controllers we built for the composable conveyor
systems.

A. System Model of CCS

The composable conveyor systems comprise four main
components: The input bins are the places that receive the
packages, and the packages will be finally sent to the output
bins. Turnarounds are used to switch package flow while
segments enable the flow of packages on their belts. A sample
topology of a CCS is shown in Figure 2.

In the figure, In 1 and In 2 are two input bins, S1,S2 . . . S8
represent Segment belts. T1, T2 . . . T4 are Switches and Out 1
and Out 2 are output bins.

B. System Assumptions

Our modeling and subsequent simulation approach used
to evaluate the models are based on several assumption as
follows:

Fig. 2. Sample Topology for a Composable Conveyor System

1) Data relevant to control is collected and simulated
within one time unit.

2) All packages have the same physical attributes in-
cluding their dimensions, weight and coefficient of
friction with conveyor belt’s surface.

3) Speed of a belt remains constant within a given time
unit, i.e., it cannot be changed during this interval of
time.

4) Even if the number of packages in a certain time unit
is zero, the system still runs at the lowest possible
speed.

5) We do not consider power loss when there is a
switching of the speed levels for a belt.

6) The belt energy consumption is directly proportional
to the current speed of the belt. We will need to
modify this assumption in future work, especially
when considering the scenario when the speed is
changed rapidly and when considering physical at-
tributes of the packages such as weight and dimension
differences.

C. System Variables used in the Controller Designs

The following variables related to segment belts are used
in the controller design formulation.

• Input variables:

- Arrival rate λ – is the actual package workload
from the belt input side. The current arrival rate is
equivalent to the previous component’s throughput. It
is assumed that incoming packages are monitored by
an embedded sensor and the data is collected.

- Control input v – is the control value which is
generated by the controller. This value is used by the
belt to choose its speed level for that time unit.

• State variables:

- Belt speed u – is the speed of the belt, which is fixed
for a given time unit. In our model, we assume that
the speed can be set from among multiple levels: low,
medium, high. According to the control value signal
v from the controller, the segment sets its own current
speed. u max is the maximum velocity that the belt
can reach. At time k,

u(k) = v(k) · u max (4)

- Throughput y – is the package output rate per time
unit incident on the next connected component. At



time k the throughput depends on the previous time
unit’s belt capacity q(k − 1) and the current adjusted
speed u(k), where T is the time unit.

y(k) = min[q(k − 1), u(k) · T ] (5)

- Belt capacity queue q – is the total number of
packages on a belt in a sample time unit period. It is
related to previous capacity, current speed and arrival
rate. We use q max to represent maximum number
of packages that the segment can hold.

q(k) = max[q(k − 1) + (λ(k)− y(k)) · T, 0] (6)

- Energy consumption e – is the belt energy consump-
tion, which is directly proportional to the current belt
velocity as shown in the equation below where α is a
parameter.

e(k) = α · u2(k) (7)

D. Limited Lookahead Controller for CCS

As discussed in Section III, our actual system (belt seg-
ment) can generate the real-time system state and apply
optimized control input u(k) using a Limited Look-ahead
Controller (LLC). We also define a utility function within the
optimizer to measure the QoS. This function takes into account
1) belt energy consumption, 2) belt current throughput, and 3)
the cost of the control inputs themselves and their switching
change.

In the predictive filter (see Figure 1) we predict for the next
several time steps the package arrival rate, and send to system
model to generates several future system state. We use ARIMA
model to make the estimation and adjust the parameter based
on the patterns of arrival. At time k, assuming the look ahead
step is 1, the prediction model will be:

λ̂(k + 1) = β · λ(k) + (1− β) · λ avg (8)

where λ(k+ 1) is the estimated arrival rate and the parameter
alpha is used as a weighting factor. A high β value would
make the estimated value of the next arrival rate closer to the
current λ(k), while a low β value will make it closer to the
average λ avg. λ avg will be calculated based on the history
of arrival rate, which is maintained in a file buffer (up to a
certain limit, for example, the last 100 values).

The system model can traverse all possible speed values
û(k+ 1), generate the predicted state variables, and then send
the state to the optimizer shown in Figure 1. The predicted
values for the three state variables are:

• Throughput in the next time unit instant

ŷ(k + 1) = min[q(k), u(k) · T ]

• Queue level in the next time unit instant

q̂(k + 1) = max[q(k) + (λ̂(k + 1)− ŷ(k + 1)) · T, 0]

• Energy consumption in the next time unit instant

ê(k + 1) = α · û2(k + 1)

In the Optimizer block, the controller can then use the
system predicted state from the system model and calculate the

utility function, and finally choose the speed which can max-
imize the next utility function, maximize energy savings and
maximize the throughput. This function also needs to smooth
the control process via minimizing ∆u = jû(k + 1)− u(k)j,
which is a threshold that reduces the speed switching time over
all belts in the system (e.g., it is less expensive to switch from
low to medium than from low to high).

Ĵ(k+1) = max[−w 1ê2(k+1)+w 2y2(k+1)−w3∆u] (9)

where w1, w2 and w3 are weight value to smooth the system
utility.

E. State Chart for Belt Speed Adjustment

As mentioned earlier, our model considers three different
speed options for the segment belt: low, speed and high. Fig-
ure 3 depicts the finite state machine for belt speed adjustment
based on a look ahead step of 2. Note that the number of states
in the state machine depends on the number of look ahead
steps. For example, when the lookahead step is 3, the total
states in the state chart will grow to be 27; when the number
of look ahead steps is 4, the total number of states is 81 etc.
Thus, the state space increases exponentially.

As shown in the figure, for a 2-step look ahead we deal
with a total of 6 speed combinations for a belt (e.g., belt
at low speed can remain low in the next instant or go to
medium or high). Thus, when the control step is executed
as an online algorithm, the computation tree will expand
significantly. In our algorithm (and hence the simulations
conducted for validation), when executing a trace of a 3-step
look ahead, we use Depth-First-Search and traverse 27 paths,
and obtain the lowest total cost among all such traversed paths,
and return the speed value computed at the first level of the
look ahead tree.

F. Controller Designs and Expected Results

We now present the design of our five different model
predictive controllers that use the LLC approach. We also dis-
cuss the static configuration, which is used as the baseline for
evaluation purposes. We qualitatively compare their properties
relative to a baseline static (fixed) configuration design. We
use 6 parameters to evaluate our control designs: 1) Memory
cost 2) CPU time 3) throughput 4) energy consumption 5) belt
speeding switching cost 6) system utility.

1) Static Configuration (SC): For the static configuration
case, we use three fixed values for conveyor speed: low,
high and medium. When the belts use low speed, although
the energy consumption is obviously low, the system can
accumulate large packages and lower the throughput, so the
total system utility will be low. When belts apply high speed
to maximize the throughput, it will waste energy especially
when incoming package rate is small. Altogether, the system
utility of applying low and high speed should be low, and
for configuring medium speed case, the utility depends on the
workload.

2) Independent Distributed and Decentralized Controllers:
Figure 4 shows the decentralized, distributed controller ap-
proach. In this case, each belt has a local controller which pre-
dicts arrival rates independently of each other. This approach
is easy to extend but lacks precision and incurs instability



Fig. 3. Finite State Machine with Look Ahead Step of 2

with large variability in arrival rate. With the value of look
ahead step growing, the system utility result could be larger or
smaller depending on the weight value we set; CPU time and
memory utilization should increase because of time and space
complexity becoming larger. If we make system’s throughput
high enough so that throughput can act as a static variable in
the utility function, then the function depends on the weight
values of QoS parameters. In such a case, there will be one
of the parameters among energy consumption and belt speed
switching cost that performs better over the other.

Fig. 4. Distributed controllers model design

3) Centralized Controller: Figure 5 depicts the centralized
controller design. The system has one controller, which is
responsible for prediction of speeds for all belts and deci-
sion making. This controller requires extensive centralized
communication. Compared with the decentralized, distributed
controllers, the behavior for throughput, belt speed switching
cost and system utility should be similar. We need to further
evaluate CPU time and memory usage because in distributed
controllers, all controllers are self-optimized so that the con-
trol decisions are also made simultaneously. However, in a
centralized controller, the control input for all belts emerge
sequentially.

4) Decentralized Controllers With Dependency: Figure 6
depicts our third controller design, which is similar to the
decentralized, distributed controller design. The differences is
that each belt in system has a local controller that predicts the
arrival rate of packages taking into account the speed of the
preceding unit. This is more accurate than the previous ap-
proach but requires additional communication. When the look
ahead steps is larger than 1, the CPU time for executing this
controller should be smaller than the independent distributed
controllers. For instance, in our system model, only S1 and

Fig. 5. Centralized controller model design

S4 that connect with input bins are required to executed the
look ahead designated steps, while the other belts just need to
predict future one step according to the sum of their input belt
speeds.

Fig. 6. Decentralized controllers model design

5) Hierarchical Controllers: This control design is based
on the distributed controllers design, however, with two lev-
els as shown in Figure 7. At the first level, the individual
controllers make short-term predictions of workloads. These
controllers are in turn managed by a second level global con-
troller that makes longer-term forecasts of expected workloads
and fine tunes the performance of the system. The global
controller tunes the range of control input every 60 time units.
Within 60 time units, each belt keeps sending its real-time
state variable (current speed, incoming packages, queue level,
throughput and energy consumption) to the global controller,
so the communication of the global controller is very high,
which is proportional to the total number of belts in the system.

The global controller can compute the average values for



Fig. 7. Hierarchical global controllers model design

all state variables over a number of time units as shown below
for 60 time units.

X(K) = [U(K),Λ(K), Q(K), Y (K), E(K)]

where

U(K) =

∑n
i=1

∑60
j=1 ui(j)

60 · n

where X[K] is the global state and U [K] is the average
of all belt speeds in this case for the given time range.
Other state variables in X(K) are defined similarly. The long
term prediction generates next 60 time unit global states by
traversing all possible speed levels Ĥ(k+1) to calculate global
utility function JG.

X̂(K + 1) = [Q̂(K + 1), Ŷ (K + 1), Ê(K + 1)]

ĴG(K+1) = max[−w1·Ê2(K+1)+w2·Y 2(K+1)−w3·∆U ]

The benefit of hierarchical controllers is that the global
controller can reduce the local controllers having to traverse
all the steps in decision-making computation and should save
significant CPU time, i.e., if the lookahead steps is 3, once
the global controller decides the speed range as medium, then
the local controllers do not have to traverse all 27 paths
as decentralized controllers’local controllers did. The local
controllers in hierarchical controllers can traverse only one
path rather than 27 paths.

6) Time Abstract Centralized Controller: In our final ap-
proach, one centralized controller is used in the system. The
controller synthesizes the properties of the global controller
and distributed local controllers in the hierarchical controllers
design. The centralized controller can not only tune the control
input for all belts, but also self-tune the speed range every
pre-set time unit to reduce the decision making time. So the
parameters of time abstract centralized controllers design on
throughput, energy consumption, belt speed switching cost
should be similar to the hierarchical controllers. The communi-
cation cost of the centralized controller is as high as the global
controller in hierarchical controllers design. However, unlike

hierarchical controllers, in time abstract centralized controller
there are no segments communicates with a local controller, so
the CPU time of time of abstract centralized controller should
less than hierarchical controllers.

V. EVALUATING THE CONTROLLER DESIGNS

We evaluate the performance management properties of our
five controllers via simulations. We use Matlab to implement
the controller design in the context of a sample topology shown
in Figure 8. Two workload flows are used according to the
arrow direction: In1 → S1 → T1 → S2 → T2 → S8 →
T4 → S6 → Out2 In2 → S4 → T3 → S5 → T4 → S6 →
Out2. The data collection is from a network flow scenario,
which is a trend model that provides all the requirements in
our experiments. All data is collected over 9,000 simulation
time units. A time unit is the smallest time range to simulate
discrete event, i.e. within one time unit, we need to transmit
500 packages from one belt to its succeeding belt.

Fig. 8. Pre-fixed Routing

A. Prediction Evaluation

We evaluate local controller’s prediction and self-optimized
performance by applying look ahead 1 step. The actual work
loads is presented in Figure 9. Initially, the local controller
does nothing, simply keeps waiting and collecting data about
incoming packages via an embedded sensor, and it controls
the belt using high velocity. After collecting enough data for
control purposes, the local controller starts using ARIMA
prediction model. It sends the control input to the belt. In
Figure 10 we can see the trend for belt speed for each time
unit as it matches the fluctuation of actual incoming package
arrival rate with a sample 240-unit time period. As illustrated in
Figure 11, 100% denotes the accuracy of workload prediction
by the local controller. The prediction consistency line is
gradually growing after first 100 time units, and remains high.
As a result, the mean of prediction correctness for 9,000 time
unit is 96.06%, with the standard deviation of 0.1058. In
conclusion, when the trend of incoming packages arrival rate
is close to a trend model, it is predictable and well-defined.

B. Controllers Design Evaluation

In this section, we evaluate the different 5 control designs
with 6 different parameters discussed in Section III. For each
design, we apply 3 different look ahead steps to evaluate the
simulation performance.

1) CPU Time: The simulation unit of decision making
time unit is millisecond shown in Figure 12. For independent
distributed and decentralized controllers, we can easily observe
that the time increases exponentially. Hierarchical controllers
greatly reduce the traverse time each round, so it spends



Fig. 9. Trend-mode Actual Arrival Rate

Fig. 10. Belt Speed Matches Trend of Arriving Workload

much less time compared to independent controllers as look
ahead steps increase. When look ahead steps is larger than
1, not all belts in decentralized controllers with dependency
need to forecast that many steps if they have input belts, so
this design’s CPU time is better than completely independent
controllers. In the independent controllers, the decision making
is simultaneous, and in centralized controllers, the strategies
are made sequentially, but we fail to see any big difference
with their CPU time performance. Both hierarchical controllers
and time abstract controllers have long-term and short-term
decision making, while the former one has two levels, so its
CPU time is larger than time abstract one-level controller.

2) Memory Usage: With the look ahead step growing, the
average (Figure 13) and maximum memory usage (Figure 14)

Fig. 11. Prediction Accuracy Sample Example

Fig. 12. CPU Time Summary

of each approach also increases. Decentralized controllers with
dependency consumes large memory because of the extra com-
munication within belts and their preceding belts. Besides local
communication, the hierarchical controller design also needs
layer-to-layer communication between first level and second
level, so it performs worse than one level control design, e.g.,
independent distributed and decentralized controllers.

The centralized design’s memory usage is less than dis-
tributed design’s although there is much more interaction
in centralized controller. Hierarchical controllers needs more
local communication than time abstract centralized controllers
and hence needs more memory usage. According to the result
between independent controllers and centralized controllers,
we can conclude that local distributed communication memory
cost is more significant than centralized communication.

Fig. 13. Average Memory Usage Summary

3) Throughput: We assume the capacity of each belt is
large enough, so all 5 approaches can be self-optimized and
achieve maximum throughput at the end of the simulation.
For this, the max speed must be set sufficiently high for large
arrival rate. However in real industry, package piling up is also
a key question. If we have a large arrival rate that max belt
velocity cannot handle, the number of packages on a belt will
substantially increase, and it will need more time to reduce the



Fig. 14. Maximum Memory Usage Summary

queue of a belt to reach a normal load. In this case, we need to
use extra warehouse or space to store the overflow packages.
Figure 15 shows the relationship with between large incoming
arrival rate (first 200 time unit) and belt capacity.

Fig. 15. Package Piling Up

This exceeding package accumulation can happen on any
belts that connect to the input bins. In both the hierarchical
controllers and time abstract controllers, packages piling up
may also happen when large workload fluctuations occur
between two long term predictions. Because the speed level
range of the local controller can be used to traverse within a
long-term unit, the superfluous packages can be detected and
handled in next long-term forecasting.

4) Energy Consumption and Speed Switching Cost: We
fixed the throughput parameter to be maximum value so that
we can analyze belt energy (Figure 16 and speed switching
cost (Figure 17 at the same time. With the look ahead steps
increasing, the energy consumption has the same trend, but the
speed switching cost has opposite trend. This implies if we
reduce the time and range of switching belt speed, the total
energy cost will increase. It also illustrates that the system
aims to smooth the belt switching level when the system
look ahead has more steps. Decentralized local controllers
that connect a belt which consider the preceding belt’s speed
as estimated arrival rate can only foresee 1 look ahead, so

the decentralized controllers with dependency performs worst
in this scenario. On the other hand, independent distributed
controllers make similar belt switching decision as hierarchical
controllers, however, independent controllers conserve less
energy.

Fig. 16. Energy Consumption Summary

Fig. 17. Belt Speed Switching Cost Summary

5) System Utility: The system utility decreases with in-
creasing look ahead steps as shown in Figure 18. In consid-
eration of energy consumption and belt speed switching cost,
we can conclude that if we further increase the look ahead
step, the performance cannot have prominent change, so the
system utility of the 5 control designs tends to be stable. So
they are greatly superior to a static configuration system (see
Table I). The reason for the utility trend for 5 control designs
is that since we drop the belt switch cost so that the energy
consumption gets large, it is decided by utility function’s
weight value. For static configuration, high speed can result
in max throughput but needs incredible energy consumption;
low or medium speed may not handle high package arrival
rate so that the system throughput gets smaller, which greatly
affects the system utility.

To decide which strategy and how many look ahead steps
we need to overall consider all 6 parameters. Decentralized
controllers with dependency performs better than the other
4 control designs, but it needs more memory usage and
its CPU time is also exceptionally high when look ahead
step is large. The system utilities of independent distributed
controllers and centralized controllers are almost same but
they cannot do better when look ahead steps is larger. Their
CPU time is also short but they can conserve more energy. For
hierarchical controllers and time abstraction controllers, they



can use less CPU time to make a decision compared to the
other 3 approaches with large memory usage. But they can
reduce the belt speed switching cost which can also compete
with other control designs.

In summary, to decide which control design to use is a
trade-off and we need to consider more on what is going on
in real industry environment.

Fig. 18. System Utility Summary

TABLE I. SYSTEM UTILITY FOR STATIC CONFIGURATION

Static Configuration Low Medium High
System Utility -2.49E+11 -1.91E+15 -6.04601E+13

VI. CONCLUSIONS

This paper presented five controller designs that are based
on model-predictive concepts with Limited Lookahead Control
(LLC). The five controller designs comprise a single-level,
completely decentralized controller with two alternatives on
how belt speed is estimated; a centralized controller; a two-
level controller; and a time-abstracted centralized controller.

We evaluate the prediction accuracy on incoming package
arrival rate, and demonstrate how conveyor belts are self-
optimized to match the fluctuation in workloads under the
actuation commands from the controllers. The controllers can
tune the belts to select the best speed for the next time unit
according to a self-defined utility function. We also compare
the CPU time and memory usage of 5 designs, which are also
the metric to evaluate the controllers. Our result shows that it
exists some dependence relationship among all 6 parameters,
we need to balance them in order to know which control
designs we should apply and get good QoS result.

Our future work in this area will explore analysis of failures
in the system. We plan to target both the physical failures, such
as motor failing, and cyber failures, such as the microcontroller
logic failing. Our goal is to identify the impact on the system
throughput due to failures, and also to understand how runtime
adaptation by rerouting goods will help to maintain acceptable
levels of performance in system operation. We also plan to
prioritize according to package types and packet dimensions.

The controller designs in the form of Matlab mod-
els are available at https://github.com/onealbao/Composable
Predictable Controller/.
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