
Work-in-Progress: Towards Real-time Smart City
Communications using Software Defined Wireless

Mesh Networking
Akram Hakiri∗ and Aniruddha Gokhale†

∗University of Carthage, SYSCOM ENIT, ISSAT Mateur, Tunisia.
†ISIS, Dept of EECS, Vanderbilt University, Nashville, TN, USA.

Email: akram.hakiri@ieee.org, a.gokhale@vanderbilt.edu

Abstract—Effective management and provisioning of commu-
nication resources is as important in meeting the real-time
requirements of smart city cyber physical systems (CPS) as
managing computation resources is. The communication infras-
tructure in Smart cities often involves wireless mesh networks
(WMNs). However, enforcing distributed and consistent control
in WMNs is challenging since individual routers of a WMN
maintain only local knowledge about each of its neighbors, which
reflects only a partial visibility of the overall network and hence
results in suboptimal resource management decisions. When
WMNs must utilize emerging technologies, such as time-sensitive
networking (TSN) for the most critical communication needs,
e.g., controlling traffic and pedestrian lights, these challenges are
further complicated. An attractive solution is to adopt Software
Defined Networking (SDN), which offers a centralized, up-to-
date view of the entire network by refactoring the wireless
protocols into control and forwarding decisions. This paper
presents ongoing work to overcome the key challenges and
support the end-to-end real-time requirements of smart city CPS
applications.

Index Terms—Software Defined Networking; Wireless Mesh
Networks; Smart Cities Cyber Physical Systems.

I. INTRODUCTION

Several smart city initiatives have been undertaken world-
wide to address the myriad of problems that arise due to
rapid urbanization and the ensuing challenges. Wireless Mesh
Networks (WMNs) often serve as the backbone communi-
cation technology for the communication networks of smart
city cyber physical systems (CPS) [1]. WMNs often consist
of mesh clients, mesh routers and gateways. Mesh clients
are mobile nodes such as wireless cameras, traffic signal
controllers, and other wireless devices. Mesh routers forward
data to and from gateways, which in turn may connect to the
Internet. The coverage area of the radio nodes operating in
a single network is called a mesh cloud. Such a mesh cloud
allows monitoring of vehicular traffic activity in cities to help
alleviate congestion.

Many smart city applications, such as intelligent traffic
light control and traffic coordination, have stringent end-to-end
real-time requirements. Such a wide array of smart city CPS
applications, each with their own performance requirements,
makes it hard for WMNs to enforce effective and distributed
allocation and management of communication resources. For
example, consider the consequences if WMNs used known

wireless routing protocols such as AODV (Ad hoc On Demand
Distance Vector) and OLSR (Optimized Link State Routing
Protocol) in making effective routing decisions and satisfying
the end-to-end timeliness constraints. The design of these pro-
tocols are influenced primarily by the ad hoc nature and local
area network (LAN) constraints. Thus, any routing decision is
taken in a distributed manner based only on local knowledge of
a mesh router about its neighbors, which reflects only a partial
visibility of the network. Consequently, WMNs would make
only suboptimal decisions in supporting the real-time needs of
smart city applications and their high volume network traffic
patterns. Furthermore, existing routing protocols fail to provide
real-time failover to reroute failed nodes or broken links, and
redistribute the orphaned clients among neighboring nodes.
Finally, WMNs may need to utilize emerging technologies,
such as Time-Sensitive Networking (TSN) [2], to satisfy the
stringent real-time communication needs.

Therefore, to deploy new smart city services over WMNs,
we need better manageability, control and flexibility in the
network, which is feasible using Software Defined Networking
(SDN) [3]. SDN shows significant promise in meeting smart
city needs by optimizing routing paths for information through
the network [4]. SDN decouples the control plane from the
data plane for distributed, networked applications so that all
network management, such as routing, can be enforced from a
single, logically centralized and programmable controller that
resides in the control plane, while application-level messaging
is carried out in the data plane. The controller can manage
a variety of network elements, such as routers, switches, and
different types of middle boxes.

Recent promising approaches for programmable wireless
networks reveal the use of SDN to build relays between
home gateways and the Internet [5], simplify the network
management operations of the wireless access points [6] and
enhance the traffic orchestration [7] in virtual access points.
Despite these advances, these efforts used SDN only in a single
wireless access point, which makes their solutions unstable
in a highly distributed wireless environment. Moreover, since
SDN was initially introduced for wired networks such as cloud
computing and data centers to provide packet encapsulation
and tunneling, it does not yet provide any abstract program-
ming interfaces for wireless communication. Second, the SDN

1

requirements of centralized control and simple router design
contradict with the distributed routing algorithms and sophis-
ticated switch design of the wireless network architecture.
Third, the characteristics of wireless channels, e.g., fading,
interference, and broadcast require that the SDN controller
offer modules to support centralized interference management,
node mobility, and topology discovery. Fourth, as CPS scale up
to interconnect distributed mesh clouds, it may not be feasible
for a centralized SDN controller to manage the entire network,
however, distributed controllers will require sophisticated co-
ordination mechanisms that preserve application QoS.

To address these challenges, we present ongoing work on a
novel approach that incorporates SDN into WMNs to define
and manage a powerful and easy-to-deploy CPS network that
meets the real-time requirements of CPS applications.

II. SDN-ENABLED WIRELESS MESH NETWORKS FOR CPS

We are designing our SDN-enabled wireless mesh network
solution for Smart City CPS as shown in Figure 1. At the
core of this design is a logically centralized controller, i.e.,
the control plane, which communicates with the underlying
mesh routers using the OpenFlow protocol [8]. We propose an
efficient hybrid routing scheme using SDN-enabled wireless
routers, where we divide the routing functionality into two
layers. The upper layer supports SDN routing by enabling
the OpenFlow protocol for data forwarding. The bottom layer
uses IP-based forwarding with the OLSR routing protocol. The
former is responsible for communicating OpenFlow policies
with the SDN controller. The latter is responsible for handling
IP routing among OLSR interfaces inside the mesh routers.

QoS

Monitoring Agent

Traffic Engineering

Mobility

Ryu

OpenvSwitch

Flow Tables

IP forwarding

OLSR daemon

M
o

n
ito

rin
g

 A
g

en
t

OpenFlow protocol

PHY1

CTR

L1

DATA

1

PHY2

CTR

L2

DATA

2

MAC Layer

br0br1br2

wlan0

wlan1

tap

Gatway

IP

backbone

S
D

N
 C

o
n

tr
o

lle
r

Mesh Router

Fig. 1: Architecture of the Joint SDN-WMN solution

The SDN controller comprises the following modules:
• Topology discovery module: which uses the Link Layer

Discovery Protocol (LLDP) to perform automatic discov-
ery of joining and leaving wireless mesh routers.

• Routing module: which implements the shortest path
algorithm to build the optimal routing strategy to route
packets across the mesh routers. It builds a network graph
of connected routers, removes a node from the graph
when a router leaves the network, and activates/deacti-
vates links to force packets to follow an optimal path.

• Monitoring module: which enables fine-grained control
and monitoring of the OpenFlow traffic by querying a
mesh router to gather individual statistics. It also super-
vises the path reservation and modification at run-time.

• Traffic engineering module: which supports load bal-
ancing to offload mesh routing devices in case of traffic
congestion. It also performs traffic redirection based on
the optimized routing strategy used in the routing module.

In the data plane, each mesh router (shown in the bottom
box) forwards OpenFlow messages using the OpenVSwitch
soft router. OpenVSwitch implements a software pipeline
based on flow tables. These flow tables are composed of simple
rules to process packets, forward them to another table, and
finally send them to an output queue or port. Furthermore, the
data plane includes an IP-based forwarding daemon running
the OLSR routing protocol. OpenVSwitch bridges OpenFlow
and OLSR using virtual network interfaces, shown as br0, br1,
and br2, to exploit the capacity of IP networks to route packets
via the shortest path.

There are two advantages of cohabitating IP-based routing
and SDN routing. On the one hand, the controller implements
its own routing algorithms for best path selection, and con-
figures mesh routers by adding/removing/updating OpenFlow
rules. It can also retrieve the current network states from the
nearest mesh router. On the other hand, packets can be routed
according to OLSR routing tables under the instruction of the
controller through OpenFlow.

III. ONGOING WORK AND RESEARCH EVALUATION

We are using emulation as a means to initially validate our
architecture. For the emulation testbed, we combined the NS-3
simulator [9] and Mininet SDN emulator [10]. Mininet is the
reference SDN emulator which provides a simple and inexpen-
sive network testbed for developing OpenFlow applications.
Since Mininet does not support a realistic wireless protocol
stack to enable mesh networks, we integrated Mininet with
NS-3. The latter natively supports IP forwarding protocols
such as OSLR and AODV. We leveraged the TapBridge
functionality in NS-3 to integrate it with Mininet so that
our SDN-enabled mesh routers support both OpenFlow-based
OpenVSwitch routing at the upper layer as well as OLSR
protocol as a default IP routing protocol. At the controller
side, we enhanced the Ryu SDN controller to support our
approach. To support network virtualization, the Ryu controller
can cooperate with OpenStack using the Quantum Ryu plugin
(https://github.com/osrg/ryu/wiki/OpenStack) to support Mo-
bile Cloud communication. The source code for this research
is available at https://github.com/doc-vu.

To evaluate the proposed solution, we used an initial ex-
perimental setup as depicted in Figure 2. We consider the

2

mesh client as an autonomous car which communicates using
its radio interfaces with the cloudlet server across multi-hop
routers. This smart car can also communicate with the gateway,
which acts as the access point to the Internet. To reach its
destination, i.e., the cloudlet server or the Internet, the Ryu
controller must install OpenFlow rules to its neighbor routers.

In-band OpenFlow

Communication

OLSR control data

Server Ryu

Smart device

(client)

In
te

r
n

e
t

WiFi (300 Mbps)

Ethernet

1Gb/s

Mesh

router

Fig. 2: Experimental setup for the wireless mesh network

Measuring the Overhead of the Solution: Before real-
world deployment, it is important to first gauge the overhead
imposed by the additional infrastructure elements our solution
introduces. To that end, we first evaluated the controller
overhead. We measured the amount of control data exchanged
between the controller and the underlying routers. We also
compared this traffic to data traffic exchanges when the
controller installs new flow entries in the routers’ flow tables.
These experiments were conducted five times and the average
values were taken for the evaluation. The captured controller
traffic includes three different matching actions: OpenFlow
packets, Ethernet packets (i.e., ARP) and data packets (i.e.,
TCP packets). The controller traffic through the routers was
captured using Wireshark and the analyses were performed
with the Tcpdump packet analyzer.

Figure 3 shows the control traffic overhead and the data
traffic through a router. The control OpenFlow traffic is close
to 15% of the overall traffic exchanged in the wireless network,
the data traffic close to 75%, and the Ethernet traffic close
to 10%. The initialization phase requires exchanging Ethernet
traffic to perform host reachability between remote hosts.

TCP
75%

OpenFlow
15%

Ethernet
10%

Fig. 3: Controller overhead

Indeed, the first host sends ARP requests across the net-
works, which generate broadcast of PACKET_OUT messages

to all nodes in that network. The routers will examine these
requests to know the source port mapping. Then, ARP re-
sponses come back with all Ethernet addresses known to the
controller, i.e., the source MAC address will be associated with
the port. The controller can now flood Flow_Mod messages
on all ports of the underlying router. Due to broadcasting
OpenFlow messages the control overhead is almost two times
the Ethernet traffic, which is still minimal when compared
to the TCP data traffic. Therefore, the control traffic does
not contribute significant overhead, which indicates that our
solution does not impose any undue overhead on the system.

We also measured the overhead on existing routers. To
that end, we considered the performance overhead in each
mesh router when using our hybrid routing approach versus
the traditional OLSR IP routing along with the OpenFlow
forwarding. Each gateway is connected to the Internet and an-
nounces the default route, i.e. 0.0.0.0/0, through OLSR, which
inserts this default route in the routing table of each router.
Moreover, each router can carry OpenFlow messages using
OpenVSwitch, which is bridged to the IP forwarding using
the br network interfaces as shown in Figure 1. This scenario
makes it possible to perform flow-based forwarding operations
using our hybrid routing approach while still routing those
flows between different mesh routers using OLSR to better
exploit the capacity of IP networks to route packets to the
shortest path between the source and destination.

Figure 4 depicts the total traffic rates generated by our
approach and OpenFlow. After the initiation phase, OpenFlow
creates control traffic at time 38 seconds when new rules are
installed by the SDN controller into its corresponding router.
As expected, the OpenFlow traffic increases as the installation
of new rules is performed, while the OLSR traffic remains the
same. The additional control traffic introduced by OpenFlow is
about 3580 Kbits/s (447.5 KB/s) and the total traffic is 6 times
higher compared to a case when OLSR is used as a routing
protocol. At time 42 seconds, the OpenFlow control traffic
decreases as all the new OpenFlow rules are installed in the
router and the controller has no new flow entries to inject into
it. Compared to OLSR and OpenFlow, our approach does not
add any extra control flow at the new rules installation phase.
Thus, our approach does not contribute to router overhead.

We also measured the overhead on the SDN control traffic
and found out that the OpenFlow traffic is close to 15% of
the overall traffic exchanged in the wireless network, the data
traffic close to 75%, and the Ethernet traffic is around 10%.

Evaluating Throughput Performance: Scalability and
throughput of applications is a key requirement in CPS sys-
tems given the scale of CPS and the presence of a large
number of competing applications. To evaluate the throughput
performance and robustness of our proposed architecture, we
consider UDP traffic between end hosts (e.g., video traffic
for smart traffic light) and the packet size is set to 1,500
bytes. We also consider that each wireless node exchanges
data at a transmission rate of 1 Mbps. In such a full mesh
topology, we consider all routers connected to each other
and the measurements of the data traffic is taken by the

3

0

500

1000

1500

2000

2500

3000

3500

4000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

Th
ro

u
gh

p
u

t
(K

b
it

s/
s)

Time (s)

OpenFlow

OLSR

our hybrid routing

Fig. 4: Evalution of the network overhead

average of different packets’ forwarding sections. To evaluate
the impact of using OLSR forwarding and OpenFlow, the
routers are placed in different locations and traffic monitoring
is performed at the controller side.

We assume that the controller has already pushed down
and installed the flow rules in the OpenFlow tables of the
underlying mesh routers. Hence, the incoming packets in a
given ingress port of a router are directly forwarded to its
physical output port to enable the packets to reach the next
wireless hop.

Figure 5 shows the throughput measured with the Iperf mea-
surement tool on the client side. We repeated the experiments
multiple times to ensure the consistency of the results. In each
run, there are three different traffic types: (i) the OpenFlow
control traffic, (ii) the OLSR forwarding traffic, and (iii) the
UDP/IP data traffic exchanged between end users. The average
throughput is close to 950 KB/s while the maximum expected
throughput is bounded by 998 KB/s at time 30 seconds. There
are many reasons that may cause the throughput to decrease:
data plane to control plane encapsulation, thread priorities,
CPU interrupts, amount of OLSR traffic and OpenFlow control
data exchanged across the network. The average throughput
drops closer to 950 KB/s, which we consider as a good value
for such an unreliable traffic.

990

992

994

996

998

1000

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

Th
ro

u
gh

p
u

t
(k

B
/s

)

Time (s)

Fig. 5: UDP Throughput

Ongoing Work: Although our empirical validations to
date are emulation-based, we are prototyping our solution on
a collection of Raspberry Pi-2 running the OpenWRT Linux
OS. We are also incorporating TSN [2] evaluation boards and
integrating them into our SDN-enabled WMN design for traffic
that needs stringent real-time properties. We are conducting a
variety of additional experiments including measuring the end-
to-end latencies and their predictability for CPS applications.
Additionally, we are incorporating TSN in the networks and
measuring the performance and predictability improvements
using TSN. Third, we aim to provide a more holistic re-
source management solution where multiple different resource
types, e.g., CPU, networks, etc are managed through a single
framework. Finally, we are seeking opportunities to deploy
our solution in Smart City scenarios for which we are seeking
ongoing efforts such as US Ignite Smart Cities.

ACKNOWLEDGMENT

This work was supported in part by the Fullbright Visiting
Scholars Program and NSF CNS US Ignite 1531079. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of NSF or the Fulbright program.

REFERENCES

[1] S. Vural, D. Wei, and K. Moessner, “Survey of experimental evaluation
studies for wireless mesh network deployments in urban areas towards
ubiquitous internet,” IEEE Communications Surveys Tutorials, vol. 15,
no. 1, pp. 223–239, 2013.

[2] A. Nasrallah, A. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. E. Bakoury, “Ultra-low latency (ull) networks:
The ieee tsn and ietf detnet standards and related 5g ull research,” IEEE
Communications Surveys Tutorials, pp. 1–1, 2018.

[3] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,
“A Survey of Software-Defined Networking: Past, Present, and Future
of Programmable Networks,” Communications Surveys Tutorials, IEEE,
vol. 16, no. 3, pp. 1617–1634, 2014.

[4] X. Wang, C. Wang, J. Zhang, M. Zhou, and C. Jiang, “Improved
rule installation for real-time query service in software-defined internet
of vehicles,” IEEE Transactions on Intelligent Transportation Systems,
vol. PP, no. 99, pp. 1–11, 2016.

[5] K.-K. Yap, M. Kobayashi, R. Sherwood, T.-Y. Huang, M. Chan,
N. Handigol, and N. McKeown, “Openroads: empowering research in
mobile networks,” SIGCOMM Comput. Commun. Rev., vol. 40, no. 1,
pp. 125–126, 2010.

[6] J. Schulz-Zander, L. Suresh, N. Sarrar, A. Feldmann, T. Hühn, and
R. Merz, “Programmatic orchestration of wifi networks,” in 2014
USENIX Annual Technical Conference (USENIX ATC 14). USENIX
Association, 2014.

[7] H. Huang, P. Li, S. Guo, and W. Zhuang, “Software-defined wireless
mesh networks: architecture and traffic orchestration,” Network, IEEE,
vol. 29, no. 4, pp. 24–30, July 2015.

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[9] T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley, “Ns-3 project
goals,” in Proceeding from the 2006 Workshop on Ns-2: The IP Network
Simulator, ser. WNS2 ’06, 2006.

[10] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, ser. Hotnets-IX,
2010.

4

