
Demo Paper: FECBench – A Framework for
Measuring and Analyzing Performance Interference

Effects for Latency-Sensitive Applications
Yogesh D. Barve, Shashank Shekhar, Ajay D. Chhokra, Shweta Khare,

Anirban Bhattacharjee and Aniruddha Gokhale
Dept of EECS, Vanderbilt University, Nashville, TN 37212, USA

Email:{yogesh.d.barve,shashank.shekhar,ajay.d.chhokra, shweta.p.khare,anirban.bhattacharjee,a.gokhale}@vanderbilt.edu

Abstract—Cloud-enabled latency-sensitive applications are in-
creasingly exploiting fog/edge computing resources to meet their
latency requirements while still benefiting from the elastic prop-
erties of the cloud. Fog/edge computing enable the services to
perform the processing at the edge rather than sending the
data to the remote distant cloud, which can be susceptible to
high communication latencies. However, as more latency-sensitive
services get deployed on these fog/edge resources, performance
interference effects caused due to sharing of the limited fog/edge
resources such as cache, memory, disk can lead to these services
missing their deadlines and hence violation of their service level
objectives. Presently, there is a general lack of tools that can
enable developers and system administrators to study, under-
stand and predict such performance interference issues when
their services are deployed in the presence of a variety of other
services that share these resources. To address these gaps, this
paper presents a framework called Fog/Edge/Cloud Benchmark
(FECBench). FECBench allows users to build performance mod-
els of latency-sensitive fog/edge-based applications. To predict
the sensitivity of the target application to co-located workloads
and pressure that it imposes on co-located workloads, FECBench
maintains an extensible knowledge base that captures utilizations
for different resources under a variety of application co-location
combinations that includes the target application. To enable this,
FECBench provides a benchmarking and remote monitoring
infrastructure to conduct these benchmarking experiments in
an automated fashion, and collect the results from remote sites.
FECBench also supports a visual domain-specific language that
eases the construction and execution of performance interference
experiments for the users. This paper describes the FECBench
framework and the demonstration scenario.

Keywords—Performance analysis, DSML, Interference, Mon-
itoring, Cloud, Fog, Edge Computing, Resource Management.

I. INTRODUCTION

Fog/Edge computing is gaining tremendous traction for
latency-sensitive applications due to its elastic but locally
available compute processing capability. Applications, such as
medical patient monitoring, industrial internet of things, transit
vehicle monitoring applications[1], preventive equipment re-
pair monitoring services [2] and hardware-in-loop distributed
simulations are increasingly benefitting from fog/edge com-
puting resources [3].

With rapid growth in such technologies and newer types
of application workloads running on these platforms, fog/edge

providers must provide effective resource management to meet
the service level objectives (SLOs) of these applications. Like
the cloud, the fog/edge supports multi-tenancy, however, in
more resource-constrained environments because of which
applications are susceptible to more pronounced effects of
performance interference. Performance interference is caused
due to sharing of resources such cache, network, disk, etc
which are difficult to partition/isolate among applications [4].
In this context, effective schedulers need to be designed that
can mitigate the impact of performance interference thereby
providing desired level of QoS to such latency-sensitive ap-
plications [5], [6].

Developing effective resource management solutions, e.g.,
schedulers, requires an accurate understanding of application
performance under different co-location scenarios which can
give rise to different performance interference patterns. To
that end, the use of performance models learned from such a
benchmarking effort can allow resource management solutions
to rapidly make intelligent resource allocation decisions and
enforce effective application placement on the runtime plat-
forms. One approach to creating such performance interference
models was proposed by the DeepDive project [7], which uses
the system resource metrics to infer application performance.
However, to create such performance models is a challenging
task for a variety of reasons. First, the application performance
needs to be analyzed under varying levels of system resource
utilization. However, system resource utilization is a multi-
dimensional space due to the presence of multiple types
of resources, and hence creating varying levels of resource
utilizations spanning this large design space is a difficult task.
Compounding this problem is the fact that it is hard for users to
define the right kinds of software workloads that can cover this
multi-dimensional resource utilization design space. Secondly,
running such performance interference tests is a very difficult
task due to an overall lack of software tooling infrastructure
and its runtime complexity.

To address these concerns, we present FECBench
(Fog/Edge/Cloud Benchmark), which is a framework to build
performance interference models for latency-sensitive appli-
cations that can be co-located with a variety of different
applications on the fog/edge resources.



II. TOOL DEMONSTRATION

Figure 1 shows the high level architecture of FECBench.
The experiment modeling provides intuitive abstractions to the
user to configure and automate the benchmarking experiments
and collect the desired resource utilization metrics. The gener-
ative aspects of the framework synthesize the artifacts needed
to automate the entire performance modeling and analysis
process.

Model 
Interpreter

Runtime Platform

Constraint 
Checker

Code 
Generator

Application &
Configuration 

Templates

Deployment 
Manager

Runtime System Monitoring

Experiment Modeling

W
e

b
G

M
E

 V
is

u
a

l
E

n
v

ir
o

n
m

e
n

t

P
e

r
fo

r
m

a
n

c
e

 
V

is
u

a
li

z
a

t
io

n Code
Artifacts

Code Generation and Deployment Workflow

Fig. 1. High Level Overview of FECBench Workflow

The demonstration we will show at the conference will
include the following steps.

1) Modeling of the Experiment: In this step we will
showcase the visual domain specific modeling language
(DSML) that can be utilized to specify different metrics
of interest to be monitored on the runtime platform. These
system metrics are then utilized to monitor in real time
the resource consumption metrics.

2) Executing Benchmarks of Applications: Using
FECBench, we will demonstrate how one can run
performance benchmarks for the latency-sensitive
application when executing in the context of colocated
workloads. This step will also showcase how the
collection and aggregation of metrics takes place, and
how we can visualize them using a graphical dashboard.

3) Displaying the Effects of Performance Interference:
Using a latency-sensitive application, such as machine
learning inference, we will demonstrate the effect of
performance interference on the application’s execution
time. The goal of this step is to show how the interference
effects manifest as performance degradation in the appli-
cation during its execution on the underlying platform.
As an example, consider a machine learning prediction
service running on an Intel Xeon platform and co-located

along with some long running batch applications. As
seen in Figure 2, the response time of the machine
learning inference step can be severely degraded due to
performance interference effects caused due to the co-
located workloads.

350 400 450 500 550 600 650 700
Response Time in msec.

0.0

0.2

0.4

0.6

0.8

1.0

F(
x) 372 549

95th percentile Performance
Baseline Application Performance
Multi-tenant Application Performance

Fig. 2. CDF Representation of Prediction Inference Response Times for
Inception RESNETv2 Keras Model

4) Strategies for minimizing performance interference :
In this, we will show how using an intelligent placement
and job scheduler that we can minimize performance
interference effects in a multi-tenant environment.

ACKNOWLEDGMENTS

This work is supported in part by NSF US Ignite CNS
1531079 and AFOSR DDDAS FA9550-18-1-0126. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of NSF or AFOSR.

REFERENCES

[1] Y. Simmhan, P. Ravindra, S. Chaturvedi, M. Hegde, and R. Ballamajalu,
“Towards a data-driven iot software architecture for smart city utilities,”
Software: Practice and Experience, 2018.

[2] A. Bayoumi and R. McCaslin, “Internet of things–a predictive mainte-
nance tool for general machinery, petrochemicals and water treatment,”
in Advanced Technologies for Sustainable Systems. Springer, 2017, pp.
137–146.

[3] S. Jeschke, C. Brecher, T. Meisen, D. Özdemir, and T. Eschert, “Industrial
internet of things and cyber manufacturing systems,” in Industrial Internet
of Things. Springer, 2017, pp. 3–19.

[4] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-up:
Increasing utilization in modern warehouse scale computers via sensible
co-locations,” in Proceedings of the 44th annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 2011, pp. 248–259.

[5] S. Shekhar, A. D. Chhokra, A. Bhattacharjee, G. Aupy, and A. Gokhale,
“Indices: exploiting edge resources for performance-aware cloud-hosted
services,” in Fog and Edge Computing (ICFEC), 2017 IEEE 1st Interna-
tional Conference on. IEEE, 2017, pp. 75–80.

[6] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for
heterogeneous datacenters,” in ACM SIGPLAN Notices, vol. 48, no. 4.
ACM, 2013, pp. 77–88.

[7] D. Novakovic, N. Vasic, S. Novakovic, D. Kostic, and R. Bianchini,
“Deepdive: Transparently identifying and managing performance interfer-
ence in virtualized environments,” in Proceedings of the 2013 USENIX
Annual Technical Conference, no. EPFL-CONF-185984, 2013.


	Introduction
	Tool Demonstration
	References

