
Software-defined Wireless Mesh Networking for Reliable and
Real-time Smart City Cyber Physical Applications
Akram Hakiri

Univ de Carthage, ISSAT
Mateur, Bizerte, Tunisia
akram.hakiri@gmail.com

Aniruddha Gokhale
Dept of EECS, Vanderbilt University

Nashville, Tennessee, USA
a.gokhale@vanderbilt.edu

Pascal Berthou
CNRS, LAAS, UPS
Toulouse, France
berthou@laas.fr

ABSTRACT
The growing demand for and the diverse mobility patterns of smart
devices place an increasing strain on the wireless mesh networks
(WMNs) of smart city cyber physical systems (CPS). Realizing re-
liable and real-time smart city CPS applications is challenging be-
cause routing the data among wireless routers using existing rout-
ing algorithms that are based on Ad-Hoc and local area network
flavors cannot make effective routing decisions due mainly to only
local knowledge maintained by an individual router about each of
its neighbors, which reflects only a partial visibility of the network.
An attractive and more realistic alternative is to adopt Software
Defined Networking (SDN), which offers a logically centralized,
up-to-date view of the entire network by refactoring the wireless
protocols into control and forwarding decisions. This paper presents
solutions to overcome key challenges that must first be overcome
to realize the potential of SDN in WMNs for smart city applications.
Specifically, we describe a novel network architecture that inte-
grates SDN and WMNs to perform network virtualization, routing
and network traffic engineering thereby improving the predictabil-
ity, reliability and the flexibility of the communication network.
The benefits of this approach are demonstrated and evaluated for
an emulated smart cities use case.

CCS CONCEPTS
• Networks→ Network resources allocation; Cloud comput-
ing;Data center networks; •Computer systems organization
→ Cloud computing; Fault-tolerant network topologies.

KEYWORDS
Software Defined Networking; Internet of Things; Wireless Mesh
Networks; Smart Cities Cyber Physical Systems.

1 INTRODUCTION
Context: Urban centers across the world continue to grow steadily
as more than the half of the current world population is living
in urban areas and the number is forecast to further increase by
2030 [18]. To help address various challenges due to the increased

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RTNS 2019, November 6–8, 2019, Toulouse, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7223-7/19/11. . . $15.00
https://doi.org/10.1145/3356401.3356406

urbanization, innovative smart cities projects, such as VITAL [9]
and Padova [35], have been commissioned by local governments
and private companies to provide new solutions, services and ap-
plications. To further refine such solutions, and ultimately to make
cities livable and sustainable, smart cities need real-time and reli-
able communication capabilities to support the quality of service
(QoS) needs of such smart city Cyber Physical Systems (CPS), e.g.,
intelligent traffic light control and traffic coordination.

Wireless Mesh Networks (WMNs) often serve as the backbone
communication technology for smart city communications [32].
WMNs often consist of mesh clients, mesh routers and gateways.
Mesh clients are mobile nodes such as wireless cameras, traffic
signal controllers, and other wireless devices. Mesh routers for-
ward data to and from gateways, which in turn may connect to
the Internet. The coverage area of the radio nodes operating in a
single network is called a mesh cloud, which allows monitoring of
vehicular traffic activity in cities to help alleviate congestion.

Challenges: Supporting the myriad of smart city CPS applica-
tions with their individual QoS properties is, however, stretching
the WMN’s capabilities to its limit for a variety of reasons. First,
although several wireless protocols such as AODV [22] (Ad hoc On
Demand Distance Vector) and OLSR [6] (Optimized Link State Rout-
ing Protocol) have been investigated in the past decade for WMNs,
their designs were influenced primarily by the ad hoc nature and
local area network (LAN) constraints. Their routing decisions are
based only on local knowledge of a mesh router about its neighbors,
which reflects only a partial visibility of the network and hence
may result in suboptimal routing that can be detrimental to the
real-time needs of smart city applications. Consequently, extending
these protocols to support the timeliness needs of such applications
and their high volume network traffic patterns is very difficult,
which limits the ability of the WMNs to dynamically adapt to and
prioritize varying network traffic streams.

Furthermore, existing routing protocols fail to provide real-time
failover to reroute failed nodes or broken links, and redistribute
the orphaned clients among neighboring nodes. Since most of the
network traffic tends to flow between the client nodes and the
gateways, the gateway will become a bottleneck in WMNs. Thus,
selecting the best routes to the Internet in the mesh cloud for dif-
ferent traffic classes is needed for QoS support. Besides, due to link
quality variations in the radio channels induced by mobility and
topology changes, a mesh cloud becomes more difficult to manage
and configure, e.g., managing and upgrading routers is a complex
and error-prone task because the configuration of nodes must be
performed manually and individually at each router.

To deploy new smart city services over WMNs, we need bet-
ter manageability, control and flexibility in the network, which

https://doi.org/10.1145/3356401.3356406

is feasible using Software Defined Networking (SDN) [19]. SDN
decouples the control plane from the data plane for distributed,
networked applications so that all network management can be
enforced from a single, logically centralized and programmable
controller that resides in the control plane, while application-level
messaging is carried out in the data plane. Hence, SDN shows sig-
nificant promise in meeting smart city needs by optimizing routing
paths for information through the network [31]. OpenFlow [15] is
a dominant SDN technology for communication between control
and data plane elements.

Recent promising approaches for programmable wireless net-
works reveal the use of SDN to build relays between home gateways
and the Internet [34], simplify the network management operations
of the wireless access points [25], to ensure high priority network
traffic is assured network resources even during reconfiguration
periods [8] and enhance the traffic orchestration [11] in virtual
access points. Despite these advances, these efforts used SDN only
in a single wireless access point, which makes their solutions unsta-
ble in a highly distributed wireless environment. Moreover, since
SDN was initially introduced for wired networks such as cloud
computing and data centers to provide packet encapsulation and
tunneling, it does not yet provide any abstract programming inter-
faces for wireless communication. Second, the SDN requirements of
centralized control and simple router design contradict with the dis-
tributed routing algorithms and sophisticated switch design of the
wireless network architecture. Third, the characteristics of wireless
channels, e.g., fading, interference, and broadcast require that the
SDN controller offer modules to support centralized interference
management, node mobility, and topology discovery. Fourth, as
CPS scale up to interconnect distributed mesh clouds, it may not
be feasible for a centralized SDN controller to manage the entire
network, however, distributed controllers will require sophisticated
coordination mechanisms that preserve application QoS.

Contributions: To address these challenges, we present a novel
approach that incorporates SDN intoWMNs to define andmanage a
powerful and easy-to-deploy CPS network that is both reliable and
supports the QoS needs of CPS applications. Our approach provides
a novel way to perform routing, network monitoring, and traffic
engineering by defining a modified OpenFlow protocol. It also
supports both centralized and distributed SDN control planes based
on a bootstrapping mechanism we developed in prior work [20]
that decouples the distributed systems concerns from the primary
issues related to the controller.

The remainder of this paper is organized as follows: Section 2
introduces the architecture of a futuristic urban scenario through a
Smart Traffic Light System (STLS) and articulates some open issues
related to the deployment of SDN-based wireless communication in
such smart cities system. Section 3 describes the architecture of our
SDN-enabled solution for efficient support of wireless networking
in smart cities and discusses the role of our approach in solving
the aforementioned challenging issues. Section 4 evaluates the
framework along multiple dimensions including its performance,
overhead and load balancing properties. Section 5 compares re-
lated efforts to our solution. Finally, Section 6 provides concluding
remarks describing potential future directions and open research
problems in this realm.

2 PROBLEM DESCRIPTION AND KEY
CHALLENGES

In this section we use a smart city use case to illustrate a plethora
of challenges along multiple dimensions, such as wireless network
virtualization, controller placement problem, traffic monitoring,
and traffic engineering and allude to solution requirements.

2.1 Smart City Motivating Example
Figure 1 shows the network architecture of a Smart Traffic Light
System (STLS) in a Smart City CPS, which we use as our motivat-
ing example. The STLS collects data from diverse sensing devices,
roadside equipment, and cameras to detect the presence of vehi-
cles, cyclists, and pedestrians. Circle (1) in the figure shows pedes-
trians wearing body-borne computers (wearable computing) and
their dogs wearing a dog collar . Motorcyclists are shown wearing
connected helmets and cyclists are shown riding smart bicycles
equipped with smart pedal for connecting to the STLS as well as
providing real-time location through a smartphone (Circle (2)). The
STLS measures the distance and the speed of the approaching vehi-
cles from every direction of an intersection (Circles (3)). It can also
disseminate warnings via publish/subscribe messaging to vehicles
to inform them about the possible crossing risks as well as the
possibility to change the routes in case of vehicular traffic jams.

Public Gateway

Mesh

Router

SDN Mesh

Router

VANET

2

3

4

Broadband Internet

(4G/5G)

5

1

Dog's Connected

Collar

Intelligent

Bicycle

Mesh

Router

Smart & wearable

Clothing

Road Side

Unit (RSU)

RSU

SDN Controller

SDN Controller

6

Figure 1: Intelligent Smart Traffic Light System Usecase

The STLS is envisioned as a wireless mesh network comprising
distributed multi-hop wireless routers embedded in the traffic light
boxes that relay into partial or full mesh topologies. These routers
represent the SDN data plane that participate in the application-
level messaging (Circles (4)) by routing packets between routers.
This setup enables a variety of performant applications, e.g., for
issuing ’slow down’ warning to vehicles which are at a risk of
collision, or for dynamically creating a sequence of green lights
by adapting traffic lights to allow emergency vehicles to pass. The
vehicles are assumed to be equipped with On-Board Units (OBUs)
to connect to various network interfaces, such as Global Positioning

System (GPS), radio transceivers for Wireless Access Vehicle Envi-
ronment (WAVE) [1], and Vehicular Ad-Hoc Network (VANET) [2]
(Circle (5)) to communicate with each other, and connect to Road
Side Units (RSUs) and mobile base stations. Each cluster of RSUs is
treated as a cluster of SDN-enabled wireless routers controlled by
a SDN controller.

The routers are connected to Internet gateways to provide ser-
vices such as route planning, traffic alert dissemination and mobile
vehicular cloud services. Finally, access to the Internet (Circle (6))
can be provided by access technologies such as xSDL, satellite or by
heterogeneous and multi-technology connectivity, such as 4G/5G
cellular networks.

2.2 Challenges Realizing Real-time and
Reliable Smart City Applications

Using the STLS motivating use case, we now highlight the key
challenges and solution requirements to resolve them.

Challenge 1: Wireless Network Virtualization. Smart clients
in the STLS scenario end up repeatedly triggering the embedded
controller for marshaling and unmarshaling the data thereby creat-
ing additional overhead on an already resource-constrainedwireless
router. Wireless router virtualization has the potential to increase
network capacity and allow high volume of traffic in the STLS
scenario by offloading the MAC layer processing to virtualized ac-
cess points (APs) and simplifying network management operations.
Running multiple non-overlapping isolated wireless networks can
provide airtime fairness for multiple different groups of wireless
smart clients [28]. Wireless virtualization includes virtualizing both
the infrastructure, i.e., processors, memory, network interfaces, and
wireless radio, and the spectrum. Spectrum virtualization has the
potential to provide better utilization of wireless resources, channel
isolation, control signaling, QoS allocation, and mobility manage-
ment [12]. Hence, each virtual router should have its own radio
configuration, capabilities for notifications, and set of distinguished
services. This is a difficult task because using a large number of
independent wireless channels induces channel fading due to multi-
path propagation and shadow fading that affects wave propagation.

Wireless virtualization should be applied to both the infrastruc-
ture and spectrum sharing. Virtualizing the infrastructure means
that processors, memory, network interfaces, and wireless radio
have to be virtualized. Since the spectrum is a scarce resource, spec-
trum virtualization should bring the potential to provide better
utilization of wireless resources, channel isolation, control signal-
ing, QoS allocation, and mobility management. Hence, each virtual
router should have its own radio configuration, capabilities for noti-
fications, and set of distinguished services. This is, however, a very
difficult task because using a large number of independent wireless
channels induces channel fading due to multi-path propagation and
shadow fading that affects wave propagation.

Challenge 2: Lack of Efficient and Scalable Routing. As the
STLS network in Figure 1 brings together diverse applications
that use the wireless technologies, e.g. RSUs, wearable comput-
ing clothes, connected helmets, and connected vehicles, the design
of routing protocols in such smart city networks should be sensitive
about how the network can handle data as well as the speed and

the processing capabilities of the wireless routers. Another chal-
lenging issue stems from enabling SDN routing in the presence of
existing wireless routing protocols. Although some approaches use
the IEEE 802.11s MAC layer for routing the traffic in SDN-enabled
WMNs [17], the link layer multi-hop routing suffers from two short-
comings. First, in MAC layer-based routing, a limited number of
wireless nodes (maximum 32 nodes) are allowed in a single net-
work. Second, the conflicting rules between 802.11s and OpenFlow
introduce severe performance degradation.

Many other interesting SDN opportunities that are not yet ad-
dressed to deal with rapid client association and re-association, and
predicting the network traffic to keep all the flows between clients
and the wireless routers in the network. Despite the presence of
several routing protocols for IoT systems, such as LoWPAN and
RPL, these routing protocols must be made dynamically adaptive
to any change in the network devices over the time. Therefore,
more research efforts are required to address such routing issues.
Further, an important issue that needs to be addressed is the cohab-
itation between existing wireless routing protocols and SDN data
forwarding to ensure interoperability, scalability and reliability of
IoT technologies in smart cities.

Challenge 3: Centralized versus Distributed SDN Control.
In the STLS scenario of Figure 1, geographically distributed mesh
routers should coordinate their activities to provide a global net-
work view and simplify theirmanagement and configuration. Nonethe-
less, this task is complex and hard to achieve because coordination
mechanisms are necessary at each router. Although SDN can bring
the benefits of the network centralization through the centralized
controller, this is however contrary to the distributed nature of
wireless mesh networks. First, the simplicity of the centralized con-
troller can come at a cost of network scalability, which could deteri-
orate the network performance. Second, the centralized controller
presents a single point of failure, which could affect availability of
the network. Conversely, distributed controllers aim at eliminating
the single point of failure and scale up the network. Despite the
advantages of distributed SDN control to improve the scalability
and the robustness of networks, several key challenges should be
addressed to obtain a consistent and a global optimal view of the
entire network.

Accordingly, it is difficult to decide whether a single controller
will be able to manage distributed islands of wireless devices or
multiple controllers should coordinate their activities to perform
cooperation between wireless mesh routers and enable zone spe-
cific controllers. To derive the advantages of both approaches, a
new hybrid control plan can be developed that benefits from the
simplicity of the centralized management and the scalability and
resilience of the distributed model coordination.

Challenge 4: Lack of Effective TrafficandResourceManage-
ment. Wireless routers and gateways in the STLS scenario depicted
in Figure 1 should forward the incoming traffic either between each
other in case of mesh routers or to the Internet when the traffic
reaches the gateways. Nevertheless, both the gateways and the
routers can become a potential network bottleneck due to their
high traffic overload. In particular, the concentration of traffic on
the gateways, which act as central points of attachment to the In-
ternet, may increase the network load on certain paths, which leads

to saturation of the links as well as generating buffers overflows.
Moreover, traffic overload in the routers affects the performance
of the overall mesh backbone if routing protocols are unable to
provide network offload. Although, increasing the number of wire-
less routers can help to distribute load among them, mitigating the
problem by increasing the number of routers does not necessarily
increase the capacity of the network. Additionally, traffic forward-
ing in the STLS scenario requires selecting the best paths from
smart cars towards their nearest routers. However, the best path
selection in such a scenario seems to be NP-hard problem [16] so
that heuristic algorithms should take into account both wireless
channels and routing algorithm.

3 SDN-ENABLEDWIRELESS MESH
NETWORKS FOR CPS

We present our SDN-enabled wireless mesh network solution for
CPS that meets the reliability and performance requirements out-
lined in Section 2. Figure 2 depicts our blended SDN-WMN architec-
ture. At the core of this design is a logically centralized controller,
i.e., the control plane, which communicates with the underlying
mesh routers using the OpenFlow protocol.

QoS

Monitoring Agent

Traffic Engineering

Mobility

Ryu

OpenvSwitch

Flow Tables

IP forwarding

OLSR daemon

M
o
n

ito
rin

g
 A

g
en

t

OpenFlow protocol

PHY1

CTR

L1

DATA

1

PHY2

CTR

L2

DATA

2

MAC Layer

br0br1br2

wlan0

wlan1

tap

Gatway

IP

backbone

S
D

N
 C

o
n

tr
o

lle
r

Mesh Router

Figure 2: Architecture of the Joint SDN-WMN solution

The SDN controller comprises the following modules:
• Topology discovery module: which uses the Link Layer
Discovery Protocol (LLDP) to perform automatic discovery
of joining and leaving wireless mesh routers.
• Routingmodule:which implements the shortest path algo-
rithm to build the optimal routing strategy to route packets
across the mesh routers. It builds a network graph of con-
nected routers, removes a node from the graph when a router
leaves the network, and activates/deactivates links to force
packets to follow an optimal path.
• Monitoring module: which enables fine-grained control
and monitoring of the OpenFlow traffic by querying a mesh

router to gather individual statistics. It also supervises the
path reservation and modification at run-time.
• Traffic engineering module: which supports load balanc-
ing to offload mesh routing devices in case of traffic conges-
tion. It also performs traffic redirection based on the opti-
mized routing strategy used in the routing module.

In the data plane, each mesh router (shown in the bottom box)
forwards OpenFlow messages using the OpenVSwitch soft router.
OpenVSwitch implements a software pipeline based on flow ta-
bles. These flow tables are composed of simple rules to process
packets, forward them to another table, and finally send them to
an output queue or port. Furthermore, the data plane includes an
IP-based forwarding daemon running the OLSR routing protocol.
OpenVSwitch bridges OpenFlow and OLSR using virtual network
interfaces, shown as br0, br1, and br2, to exploit the capacity of IP
networks to route packets via the shortest path.

3.1 Addressing Challenges to Realize Real-time
and Reliable Smart City Applications

We now show how our architecture resolves the challenges outlined
in Section 2.

Resolving Challenge 1: Wireless Network Virtualization by
Splitting Routers into Two Virtual Ones. To support wireless
virtualization, we slice each physical router into two virtual routers;
each having its own virtual hardware resources and virtual radio
interface, i.e. PHY1 and PHY2 shown in Figure 2. Each physical
access point (AP) in turn can be split into two non-overlapping
virtual APs, i.e., ESSID 1 and ESSID 2 thereby enabling four virtual
APs on a node. Each virtual ESSID has its virtual wireless channel
so that mobile clients can switch between them seamlessly and can
communicate using the virtualized channels. Moreover, to separate
the control traffic, i.e., signaling, from the data traffic, each SSID
forwards the traffic independent of the other. The benefit of splitting
an AP into two virtual ones is twofold. First, it provides an efficient
downlink bandwidth sharing between multiple smart clients due
primarily to the efficient airtime fairness scheduling with the help of
channel sharing. Second, it resolves the challenges of uplink channel
access when multiple clients are simultaneously transmitting while
also enabling high data rates and low latency for those smart clients.

Allowing two virtualized access points inside the same wireless
router also allows each virtual AP to deliver its traffic indication
map, i.e., broadcast Beacon messages, and enables the synchroniza-
tion of its clients with the wireless network. These beacon frames
are management frames used in mesh routers to check liveness
of all the clients attached to a wireless router. Such an approach
allows the use of existing link layer protocols while allowing MAC
settings to be changed simultaneously.

Resolving Challenge 2: Efficient Routing by Blending Open-
Flow andOLSRRouting. To support efficient and scalable routing
in SDN-enabledwireless routers, we divide the routing functionality
into two layers as shown in Figure 2. The upper layer supports SDN
routing using the OpenFlow protocol for data forwarding. The bot-
tom layer uses IP-based forwarding with the OLSR routing protocol.
The former is responsible for communicating OpenFlow policies
with the SDN controller. The latter is responsible for handling IP

routing among OLSR interfaces inside the mesh routers. To allow
the controllers to reach all the geographically distributed routers,
we use an in-band control approach in a way that provides long
distance wireless connectivity among the wireless mesh backhaul.
There are two advantages of cohabitating IP-based routing and
SDN routing. First, the controller can implement its own routing
algorithms for best path selection, and configure the mesh routers
by adding/removing/updating OpenFlow rules. It can also retrieve
the current network states from the nearest mesh router. Second,
packets can be routed according to OLSR routing tables under the
instruction of the controller through OpenFlow.

OLSR reports every change in the topology graph, such as adding/re-
moving new mesh router and/or wireless link. Each wireless router
keeps a list of its neighbors – the so called multi-points relays (MPR)
selector list, periodically builds a new refreshed routing table, and
selects the new shortest path to all destinations. Thereafter, the
controller retrieves the topology information from its nearby mesh
routers.

Resolving Challenge 3: Adapting between Centralized and
Distributed SDN Control. We propose a hybrid network con-
troller that combines centralized and distributed SDN controllers
to derive the benefits of both approaches. To that end, we leverage
our prior work on the ’InitSDN’ framework [20] as illustrated in
Figure 3. InitSDN is a meta-controller layer based on the concept
of boot loading used in operating systems. First, we start with a
single centralized controller that is deployed during the initializa-
tion phase to control and manage the entire network. Then, in case
of controller failure or overload, additional controllers are intro-
duced at runtime as required to balance the network load and scaled
elastically.

InitSDN Meta-Control layer

H
ie

r
a

rc
h

ic
a

l

c
o

n
tr

o
ll

e
r
s

Elected Controller

Slaves controllers

Meta-control Traffic

Data Traffic

Control Traffic

Centralized

Controller

Backup

Controller

coordination

mechanisms

Figure 3: InitSDN Hybrid Control Plane for the STLS

Coordination mechanisms are deployed to ensure consistency
among the distributed controllers. In particular, these mechanisms
include an election process that allows electing a SDN controller
as a master. Such a hybrid control strategy allows allocating and
assigning the right traffic to the right number of controllers, while
making the network more flexible, reliable, predictable, and fault-
tolerant. Details on the load balancing solution are discussed next.

InitSDN divides the wireless network into two slices: a data slice
to control the traffic exchanged between users applications and a
control slice for managing the controllers. It allows selecting the
optimum initial topology of the control slice, i.e., the number of
controllers, based on the current network conditions, i.e., network
overhead, failure, etc.

Resolving Challenge 4: System Monitoring and Load Bal-
ancing. Detecting faults and balancing load requires effective mon-
itoring of system resources. To that end, the controller implements a
monitoring agent as shown in Figure 2. It uses OpenFlow messages
to supervise the path reservation, modification and installation.
Based on the collected statistics the controller determines if the sys-
tem is overloaded. To address network overload issues, we introduce
a traffic-engineering algorithm at the controller to perform load
balancing. Figure 4 depicts the principle behind our load balancing
approach using an example: the SDN controller that connects the
edge routers of the mesh tries to establish a routing path between
mesh router 1 and mesh router 4 across the link a○ connecting
router 1 and router 4. Links a through f establish the communica-
tion paths across the mesh routers in the STLS. As soon as a link
becomes a bottleneck, e.g., because of congestion, connection loss,
interference, etc, the load-balancing algorithm is activated on the
controller side. Thereafter, the controller can easily decide the next
best available path to switch the data as illustrated by the curved
arrow in Figure 4.

SDN

controller

router 4

a

b

c

d

router 2

router 1

 router 3

e

f

GPS

Connected

Car
STLS

Figure 4: Load Balancing in the STLS network

Algorithm 1 shows the load balancing algorithm to select the
optimal path. It calculates the new rules, i.e., the MAC and IP ad-
dresses, for the new path towards the new mesh routers, i.e., b○,
f○ and c○, d○ shown in Figure 4. Once the new path is established
end-to-end by sending FlowMod messages, the controller floods
all ports towards the selected virtual routers, opens the client’s
connection to enable packets to reach their destination, and si-
multaneously continues discovering and monitoring the network
topology. The controller calculates the new optimal path using the
graph topology, which includes all available routers as well as the
links connecting them (Algorithm 2). Then, it installs new Open-
Flow rules to program the flow entries inside the software pipeline
in each router.

Algorithm 1: Load Balancing Algorithm
1 rules←− DefaultRules();
2 trafficSchudeling();
3 while Listening to LLDP packets do
4 isBestPATH = best_path(rules);
5 if , isBestPATH then
6 rules←− calculateNewRules();
7 FlowMod_router(); path←− bestPath(rules);
8 else
9 installOFRules(path);

10 end
11 hostsReachable();
12 monitoringPath();
13 end

Algorithm 2: Function bestPath(rules)
Data: rules, PATH
Result: Function to find optimal path

1 bestPath(rules);
2 if (∃ PATH in (rules) then
3 PATH←− find(rules) ;
4 return PATH
5 else
6 rules←− calculateNewRules(); FlowMod_router();
7 return rules
8 end
9 best_path(rules);

Algorithm 1 uses the function in Algorithm 2 to find the op-
timal end-to-end path to the destination. This recursive function
makes it possible to look for the best path for each iteration. On the
controller side we implemented all the mechanisms and functions
required for routing data toward the selected path. In particular,
it implements the routing function to forward data towards the
SDN routers. First, the data path is extracted from in the incoming
packets, then data and protocols are extracted to initialize the SDN
controller. Thereafter, OpenFlow rules are added to all routers in
the destination path.

Table 1 depicts the flow entries that the controller can program
before traffic congestion and after triggering the load balancer
algorithm. At startup time, the controller has already installed the
data path between router 1 with ID dpID1 and router 4 with ID
dpID4. When router 1 receives incoming packets in its virtual port,
i.e., ingress-Port: virtual port 1, the headers of those packets are
inspected to check whether they match the OpenFlow rules in the
flow entries. The action sets are provided through the physical
port of router 1, i.e., output: To port router 4 and the destination
of packets from router 1 is the next nearest hop, i.e., the router 4.
Thus, packets from router 1 should encapsulate in their headers
the IP and MAC destination addresses of router 4. Hence, the flow
entries are injected by the controller to allow forwarding the data
to router 4 using both its IP, i.e., SetDestIP: IP router 4, and its MAC,
i.e., SetDestMAC: MAC router 4, destination addresses.

OF Before After
OpenFlow router1: dpID1 router1: dpID1
rules router4: dpID4 router2: dpID2

ingress-Port: virtual port 1 router4: dpID4
ingressPort: virtual port 1
ingressPort: virtual port 2

OpenFlow SetDestIP: IP router 4 setDestIP: IP router 2
entries SetDestMAC: MAC router 4 SetDestMAC: MAC router2

output: To port router 4 output: To port router 2
setDestIP: IP router 4
SetDestMAC: MAC router4
output: Port router 4

Table 1: Flow entries the controller install in the routers

Upon the failure of radio link a, the controller installs new Open-
Flow rules to redirect the flow from router 1 to router 4 through
router 2. Since the new available forwarding path should pass
through router 2, the controller should program routers 2 and 4
with the new flow entries as described in the “After” column of
Table 1.

4 EVALUATING THE BLENDED SDN-OLSR
ARCHITECTURE

This section evaluates our solution that blends SDN and OLSR by
measuring the performance, evaluating the claims on the architec-
ture’s properties, and the overhead, if any, that is imposed by the
overall design and its architectural elements.

4.1 Testbed Settings and Experimental Setup
We have prototyped our solution using OpenWRT in Raspberry Pi
2s. At the controller side, we enhanced the Ryu SDN controller to
support our approach. Furthermore, to support network virtualiza-
tion, the Ryu controller can cooperate with OpenStack using the
Quantum Ryu plugin to support Mobile Cloud communication. The
extension can easily be integrated into OpenStack++ [10] for en-
abling mobile cloudlets (which are edge-based micro data centers).

In-band OpenFlow

Communication

OLSR control data

Server Ryu

Smart device

(client)

In
te

r
n

e
t

WiFi (300 Mbps)

Ethernet

1Gb/s

Mesh

router

Figure 5: Experimental setup for the wireless mesh network

To evaluate the proposed solution, we consider an emulation-
based experimental setup depicted in Figure 5. We consider the
mesh client as an autonomous car which communicates using its
radio interfaces with the cloudlet server across multi-hop routers.

This smart car can also communicate with the gateway, which acts
as the access point to the Internet. To reach its destination, i.e., the
cloudlet server or the Internet, the Ryu controller should be able to
install OpenFlow rules to its neighbor router.

4.2 Evaluating the Predictability of End-to-end
Latency

Rationale and Methodology. Real-timeliness can be gauged based
on how predictable are the response times for smart city applica-
tions. To that end, we consider the latency as the time duration
from a packet to be sent from the source mesh client until it is
received by the destination server which executes the services. We
conducted this experiment multiple times and recorded the average
latency. The measurement of one-way latency is not straightfor-
ward because packets experience different network delays including
processing delay, queuing delay, transmission and propagation de-
lays. Thus, we have calculated the Round Trip Time (RTT), which
then estimates the one-way latency by assuming half of the RTT.
Additionally, we calculated the delay required for a packet to be
sent by the controller until it is received by its nearest router.

0

5

10

15

20

25

30

35

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

L
at

en
cy

 (
m

s)

Time (s)

Controller-Router Latency (ms)

End-to-End Latency (ms)

End-to-End Jitter (ms)

Figure 6: Evaluating the controller-router Latency and the
end-to-end latency

Analysis. Figure 6 depicts the latency between the SDN con-
troller and its corresponding router as well as the end-to-end la-
tency between the client and the gateway. At the startup phase, the
controller-router delay is close to 10 milliseconds and decreases
close to 3 milliseconds after the controller has installed new Open-
Flow rules into the router. At this time only the OpenFlow keepalive
messages are exchanged to check whether an idle control connec-
tion occurs to indicate a loss of controller-switch connectivity. At
time 40 seconds, a new mobile client joins the network, but its
forwarding rules are still unknown for both the controller and the
switch. Thus, they start exchanging messages to setup new forward-
ing rules for packets belonging to that client. The same behavior
occurs at time 140 seconds. In all those cases, the controller-router
latency remains bounded to 15ms during the setup phases and close
to 5 ms otherwise. Therefore, the controller-router latency does not
present a network bottleneck.

The end-to-end latency and the bounded jitter between remote
hosts is also shown in Figure 6. In the regular case where no setup
traffic is injected into the network, the delay is close to 30 ms. It
becomes close to 38 ms each time new OpenFlow rules are being
negotiated between the controller and the switches. In both cases,
the latency remains bounded to 35ms. Similarly, the experiment

illustrated a lower jitter, i.e. around 2.5ms, which is necessary to
support predictable latencies in real-time applications.

4.3 Evaluating Throughput Performance
Rationale and Methodology. Scalability and throughput of appli-

cations is another key requirement. To evaluate the throughput
performance and robustness of our proposed architecture, we con-
sider UDP traffic between end hosts (e.g., video traffic in STLS
scenario) and the packet size is set to 1,500 bytes. We also consider
that each wireless node exchanges data at a transmission rate of
1 Mbps. In such a full mesh topology, we consider all routers con-
nected to each other and the measurements of the data traffic is
taken by the average of different packets’ forwarding sections. To
evaluate the impact of using OLSR forwarding and OpenFlow, the
routers are placed in different locations and traffic monitoring is
performed at the controller side.

We assume that the controller has already pushed down and
installed the flow rules in the OpenFlow tables of the underlying
mesh routers. Hence, the incoming packets in a given ingress port
of a router are directly forwarded to its physical output port to
enable the packets to reach the next wireless hop.

Analysis. Figure 7 shows the throughput measured with the Iperf
measurement tool on the client side. We repeated the experiments
multiple times to ensure the consistency of the results. In each run,
there are three different traffic types: (i) the OpenFlow control traf-
fic, (ii) the OLSR forwarding traffic; and (iii) the UDP/IP data traffic
exchanged between end users. The average throughput is close
to 950 KB/s while the maximum expected throughput is bounded
by 998 KB/s at time 30 seconds. There are many reasons that may
lead to the decrease of the throughput: data plane to control plane
encapsulation, thread priorities, CPU interrupts, amount of OLSR
traffic and OpenFlow control data exchanged across the network.
The average throughput drops closer to 950 KB/s, which we con-
sider as a good value for such an unreliable traffic. The evaluation
data confirms our claims on ensuring the fairness of the global
optimization of our approach.

990

992

994

996

998

1000

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

Th
ro

u
gh

p
u

t
(k

B
/s

)

Time (s)

Figure 7: UDP Throughput

4.4 Evaluating the System Reliability
Rationale and Method. Reliability is another key requirement for

CPS. To that end, to provide an in-depth inspection of the aver-
age relative error in the throughput described in Section 4.3, we
estimated the per-flow packet loss by polling the flow statistics in

the edge routers assuming a relationship between the link packet
loss and the throughput. The packet loss can be obtained by calcu-
lating the difference between the average throughput in the edge
router on the client side and the edge router on the server side.
Throughput results using UDP traffic are shown in Figure 7.

Analysis. The packet loss measurements depicted in Figure 8
show that the average error is close to 1%. The average packet loss
is calculated by subtracting the difference of packet counters in edge
routers between the client and the server. These measurements give
a sufficient estimate about service degradation. The current version
of the OpenFlow specification does not include any QoS service
differentiation to enable per-class packet classification, scheduling
and forwarding. Thus, traffic prioritization is not applied to protect
packets against any computing flows. A close inspection of these
results shows that our solution is successfully able to support SDN-
based communication in the smart cities scenario.

0,00%

0,50%

1,00%

1,50%

Ti
m

e 1

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0P
a

ck
et

 L
o

ss
 (

%
)

Time (s)

Packet loss (%)

Figure 8: Packet Loss

4.5 Evaluating the Load Balancing Strategy
Rationale and Methodology. Overload and failure management

is critical for smart city applications. OpenFlow allows setting up
of flow paths by inserting flow entries at the controller. Each con-
nected node to the controller is considered as a mesh router so that
any incoming flow that matches the OpenFlow flow rules is redi-
rected by the controller based on the OpenFlow actions. Redirecting
flows between routers is essential to enable traffic engineering in
mesh networks. It allows offloading certain paths to allow fairness
among different flows. Recall that all routers are OpenFlow-enabled
and each has an OLSR instance to allow IP-based data forwarding
and routing table updates. To evaluate the performance of the load
balancing approach, after 40 seconds we inject a competing flow
into router 4 to simulate network congestion and introduce a per-
formance degradation in this node.

Analysis. Figure 9 shows the throughout observed in router 4.
Due to buffer overflow, router 4 starts dropping packets so that the
throughput decreased from 800 kB/s to 697 kB/s and a significant
packet losses is observed. At time 50 seconds, the load balancing
algorithm at the controller is activated to redirect the traffic from
radio link a to radio links b and f. The topology discovery module
at the controller discovered the disconnection of the wireless radio
between routers 1 and 2, checks the new available path based on the
graph its has and selects router 2 as new shortest path to destination.

The new path is extracted from the routing table updated regu-
larly by the OLSR protocol. Then, the controller needs to remove
the old OpenFlow rules in router 1, i.e., those used for sending the
traffic across link a, pushing down and installs new forwarding

0

500

1000

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

Th
ro

u
gh

p
u

t
(K

b
/s

)

Time (s)

Throughput

Figure 9: TCP Throughput

0

20

40

60

80

100

120

140

2 4 6 8 10 12 14 16 18 20
La

te
n

cy
 (

m
s)

Number of hops

OpenFlow Only Our Approach OLSR Only

Figure 10: Latency when increasing the number of wireless
hops

rules as described in column 3 of Table 1. The IP andMAC addresses
of router 2 are added in the new rules. The bow in Figure 4 shows
the new path selected by the controller by installing new OpenFlow
rules in node 1.

A close inspection of Figure 9 shows that the controller is able
to make traffic adjustment using the load balancing algorithm. The
traffic is balanced among the new wireless links after establishing
the new data path. Furthermore, we find the delay required by
the controller for deciding the new available path and forwarding
data is close to 6 milliseconds. Therefore, the controller-router
communication does not degrade the performance of the network
during the traffic engineering process. The redirection delay is
composed of the delay required to drop the old rules from routers
and pushing down the new rules in the flow tables of each router.
The results show that our approach succeeds in redirecting packets
to the new selected path when multiple wireless hops are available
in the network.

4.6 Evaluating the Impact on Latency with
Increasing Hops and Link Failures

Rationale and Methodology. To evaluate the latency in a dis-
tributed wireless network, we increased the number of wireless
routers for the scenario in Figure 1. We also compared the latency of
our solution with both the OLSR-only and the OpenFlow-only laten-
cies. We repeated this experiment multiple times and recorded the
average. Additionally, we measured the controller-switch latency
for reconnecting them during failures. In particular this latency is
evaluated against the number of broken links.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

La
te

n
cy

 (
m

s)

Number of Broken Wireless Links

OpenFlow Only Our Approach OLSR Only

Figure 11: Latency after Links failure and reconnection

Analysis. The controller attempts to connect to all switches using
discovery messages to find the shortest path to all the underlying
SDN routers. Figure 10 illustrates the controller connection latency
against the number of hops towards the remote SDN routers. Our ap-
proach shows better latency compared to both the OpenFlow-only
and the OLSR-only approaches. The latency incurred by our ap-
proach is approximately 50% less compared to the other approaches,
which is around 40ms, while it is about 60ms and 75ms for OSLR-
only and OpenFlow-only approaches, respectively. Additionally, we
observed the same behavior when we measured the latency after
the controller re-connection against the number of broken wireless
links.

Figure 11 illustrates that the latency observed in our approach
is close to 60ms, while both the OSLR-only and OpenFlow-only
approaches incur 75ms and 85 ms, respectively. Therefore, our
approach outperforms the two other approaches as the number of
hops increase between switches. The reason for this result is that
the SDN routers have better connection to the controller than in
the in the OSLR-only and OpenFlow-only approaches

4.7 Evaluating the Router overhead
Rationale and Methodology. We consider the performance over-

head in each mesh router when using our hybrid routing approach
and we compare it with OLSR IP routing along with the Open-
Flow forwarding. Each gateway is connected to the Internet and
announces the default route, i.e. 0.0.0.0/0, through OLSR, which in-
serts this default route in the routing table of each router. Moreover,
each router can carry OpenFlow messages using OpenVSwitch,
which is bridged to the IP forwarding using the br network in-
terfaces as shown in Figure 2. This scenario makes it possible to
perform flow-based forwarding operations using our hybrid rout-
ing approach while still routing those flows between different mesh
routers using OLSR to better exploit the capacity of IP networks to
route packets to the shortest path between the source and destina-
tion.

Analysis. Figure 12 depicts the total traffic rates generated by our
approach and OpenFlow. After the initiation phase, OpenFlow cre-
ates control traffic at time 38 seconds when new rules are installed
by the SDN controller into its corresponding router. As expected,
the OpenFlow traffic increases as the installation of new rules is
performed, while the OLSR traffic remains the same. The additional
control traffic introduced by OpenFlow is about 3580 Kbits/s (447.5

KB/s) and the total traffic is 6 times higher compared to a case when
OLSR is used as a routing protocol. At time 42 seconds, the Open-
Flow control traffic decreases as all the new OpenFlow rules are
installed in the router and the controller has no new flow entries to
inject into it. Compared to OLSR and OpenFlow, our approach does
not add any extra control flow at the new rules installation phase.
Thus, our approach do not contribute to the router overhead.

0

500

1000

1500

2000

2500

3000

3500

4000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

Th
ro

u
gh

p
u

t
(K

b
it

s/
s)

Time (s)

OpenFlow

OLSR

our hybrid routing

Figure 12: Evalution of the network overhead

4.8 Evaluating the Controller Overhead
Rationale and Methodology. It is also important to gauge the over-

head of the additional infrastructure elements. Hence, to evaluate
the controller overhead, we measured the amount of control data
exchanged between the controller and the underlying routers. We
also compared this traffic to data traffic exchanges when the con-
troller installs new flow entries in the routers’ flow tables. These
experiments are conducted five times and the average values are
taken for the evaluation. The captured controller traffic includes
three different matching actions: OpenFlow packets, Ethernet pack-
ets (i.e., ARP) and data packets (i.e., TCP packets). The controller
traffic through routers is captured using Wireshark and analysis
are performed with Tcpdump packet analyzer.

TCP
75%

OpenFlow
15%

Ethernet
10%

Figure 13: Controller overhead

Analysis. Figure 13 shows the control traffic overhead along with
the data traffic through a router. The control OpenFlow traffic is
close to 15% of the overall traffic exchanged in the wireless network,
the data traffic close to 75%, and the Ethernet traffic is close to 10%.
The initialization phase requires exchanging Ethernet traffic to
perform host reachability between remote hosts.

Indeed, the first hosts send ARP requests across the networks,
which generate broadcast of PACKET_OUT messages to all nodes
in the network. The routers will examine these requests to know
the source port mapping. Then, ARP responses come back with all
Ethernet addresses known to the controller, i.e., the source MAC
address will be associated with the port. The controller can now
flood Flow_Mod messages on all ports of the underlying router.
Due to broadcasting OpenFlow messages the control overhead
is almost two times the Ethernet traffic, which is minimal when
compared to the TCP data traffic. Therefore, the control traffic does
not contribute significant overhead.

5 RELATEDWORK
Realizing and sustaining smart city-scale networks that are reliable
and support predictable response times requires new approaches
which can support timely bandwidth reservation, load balancing,
data security, etc. Many efforts that use SDN in this context ex-
ist. Wang et al. [32] proposed a SDN-based Internet of Vehicles
(IoV) architecture that optimizes OpenFlow rules by introducing
compact flow rules. Sahoo et al. [23] introduced a SDN-based traf-
fic engineering approach that solves the connectivity problems of
vehicles in a smart city. Likewise, Bozkaya et al. [4] have demon-
strated the feasibility of combining SDN with wireless access in
vehicular environments. They proposed a flow and power man-
agement model implemented in a SDN controller to enhance the
connectivity of the Road-Side Units (RSU). Similarly, Xu et al. [33]
proposed a cloud-based architecture to improve the capacity and
performance of vehicular networks. Truong et al. [29] combined
SDN-based VANETs with fog Computing to offer delay-sensitive,
location-aware services, while optimizing resource utilization. Greff
et al. [7] combined online flow admission control and pathfinding
algorithms to address real-time flow allocation problem in SDN-
enabled mesh networks. Similarly, the authors [8] accomplished
path redundancy in mesh network to handle fault tolerance in
SDN-aware Real-Time mesh networks.

Venkatramana et al. [30] proposed a centralized SDN controller
deployed on a cloud to perform geographical routing protocol in Ve-
hicular ad hoc network (VANET). The controller maintains a global
topology routing table to perform an optimal routing path within
the considered vicinity of mobile cars. Nonetheless, deploying the
controller in remote cloud is more sensitive to the latency since
it needs powerful cloud resources such as communication, com-
putation, network control and storage. Similarly, Wang et al. [32]
introduced a real-time query services for SDN-based Internet of
Vehicles (IoV). A cloud-hosted SDN controller uses a multicast com-
munication pattern to send and retrieve information from mobile
vehicles. Likewise, Bi et al. [3] proposed a SDN architecture to sup-
port smart city services. A network control layer includes a SDN
controller is deployed in cloud data center for controlling big data
transfer centrally.

A fault-tolerant SDN routing mechanism was introduced in [21]
to construct elastic-aware routing tree and perform routers selec-
tions. In [24], the authors introduced a structured scheme to handle
user’s demands over SDN-aware WMNs based on multichannel
multiradio WMNs. Likewise, the authors in [14] proposed an ap-
proach to offload 3GPP Radio Access Network (RAN) traffic through

SDN-enabled WMNs to facilitate fast devices configuration and ser-
vices deployment. Authors in [13] proposed different design SDN
approaches to accommodate dynamic conditions such as mobil-
ity and unreliable wireless connectivity. Venkatramana et al [30]
introduced a SDN-aware WMNs backbone to support intelligent
transportation system that is envisaged to play a significant role in
the futuristic smart cities for safety and traffic management.

In comparing our work to all the prior efforts, the SDN controller
in our work is hosted at the network edge in close proximity to
wireless devices to improve network reliability and latency, and
overcome the issues stemming from geographically distributed
locations in cloud computing. Additionally, in the aforementioned
approaches, the controller is used to carry both signaling messages
and data packets. In contrast to these efforts, our approach uses
the SDN controller only for the control traffic and whereas we use
IP-based data forwarding to transmit data in hop-by-hop fashion.
We show that this approach provides superior performance.

6 CONCLUSIONS
Cyber physical system wireless communication networks, such
as those in smart cities, must be scalable, reliable and predictable
to support real-time applications. To address these needs, we in-
troduced a novel architecture based on a symbiotic relationship
between wireless mesh networks (WMNs) and software defined
networking (SDN). Our experimental results validate our claims.
Although our empirical validations are emulation-based, we are
prototyping the capabilities on Raspberry Pi-2 running the Open-
WRT Linux OS. Although our research is validated in the context
of smart city CPS, the work is broadly applicable to other domains
such as Industry 4.0 or smart grids. The source code for this research
is available at https://github.com/hakiri/sdn-ns-3.

Several new directions for additional research exist. First, we
need more experiments to evaluate the distributed controllers. Sec-
ond, recent trends in fog/edge computing have focused primarily
on resource management of fog compute resources (including our
recent work [5, 26, 27]) but new research is needed to also include
wireless network resource management for CPS applications. Sec-
ond, although SDN allows the programmability of the data plane,
current wireless devises employ diverse modulation protocols to
comply with a specific radio interface, which limits their flexibility
and versatility to respond to the increasing demands on bandwidth
and frequency spectrum resources. We believe that the coexistence
of SDN and the Software Defined Radio (SDR) can unify the net-
work resource management and the radio resource management,
which may require a cross layer design. Incorporating time sensi-
tive networking is an additional dimension of future work. Finally,
and more importantly, our solutions need to be tested in real smart
city deployments.

ACKNOWLEDGMENT
This work was supported in part by the Fullbright Visiting Scholars
Program and NSF CNS US Ignite 1531079. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
NSF or the Fulbright program.

https://github.com/hakiri/sdn-ns-3

REFERENCES
[1] 2016. IEEE Approved Draft Standard for Wireless Access in Vehicular Environ-

ments (WAVE) - Networking Services. IEEE P1609.3v3/D6, November 2015 (Jan.
2016), 1–162.

[2] K. M. Alam, M. Saini, and A. E. Saddik. 2015. Toward Social Internet of Vehicles:
Concept, Architecture, and Applications. IEEE Access 3 (2015), 343–357.

[3] Y. Bi, C. Lin, H. Zhou, P. Yang, X. Shen, and H. Zhao. 2017. Time-Constrained
Big Data Transfer for SDN-Enabled Smart City. IEEE Communications Magazine
55, 12 (2017), 44–50.

[4] E. Bozkaya and B. Canberk. 2015. QoE-Based Flow Management in Software
Defined Vehicular Networks. In 2015 IEEE Globecom Workshops (GC Wkshps).
1–6.

[5] Faruk Caglar, Shashank Shekhar, Aniruddha Gokhale, and Xenofon Koutsoukos.
2016. An Intelligent, Performance Interference-aware Resource Management
Scheme for IoT Cloud Backends. In 1st IEEE International Conference on Internet-
of-Things: Design and Implementation. IEEE, Berlin, Germany, 95–105.

[6] T. Clausen and P. Jacquet. 2003. Optimized Link State Routing Protocol (OLSR).
RFC 3626 (Experimental). http://www.ietf.org/rfc/rfc3626.txt

[7] F. Greff, Y. Song, L. Ciarletta, and A. Samama. 2017. A dynamic flow allocation
method for the design of a software-defined real-time mesh network. In 2017
IEEE 13th International Workshop on Factory Communication Systems (WFCS).
1–11. https://doi.org/10.1109/WFCS.2017.7991949

[8] Florian Grefff, Ye-Qiong Song, Laurent Ciarletta, and Arnaud Samama. 2017.
Combining Source and Destination-tag Routing to Handle Fault Tolerance in
Software-defined Real-time Mesh Networks. In Proceedings of the 25th Interna-
tional Conference on Real-Time Networks and Systems (RTNS ’17). ACM, New York,
NY, USA, 257–266. https://doi.org/10.1145/3139258.3139264

[9] A. Gyrard and M. Serrano. 2016. Connected Smart Cities: Interoperability with
SEG 3.0 for the Internet of Things. In 2016 30th International Conference on
Advanced Information Networking and Applications Workshops (WAINA). 796–
802.

[10] Kiryong Ha and Mahadev Satyanarayanan. [n. d.]. OpenStack++ for Cloudlet
Deployment. , 24 pages.

[11] Huawei Huang, Peng Li, Song Guo, and Weihua Zhuang. 2015. Software-defined
wireless mesh networks: architecture and traffic orchestration. Network, IEEE 29,
4 (July 2015), 24–30.

[12] S. N. Khan, A. Kliks, Tao Chen, M. Mustonen, R. Riggio, and L. Goratti. 2017.
Virtualization of spectrum resources for 5G networks. In 2017 European Conference
on Networks and Communications (EuCNC). 1–5.

[13] Ian Ku, You Lu, and Mario Gerla. 2014. Software-Defined Mobile Cloud: Architec-
ture, services and use cases. In International Wireless Communications and Mobile
Computing Conference, IWCMC 2014, Nicosia, Cyprus, August 4-8, 2014. 1–6.

[14] M. Labraoui, M. M. Boc, and A. Fladenmuller. 2017. Opportunistic SDN-controlled
wireless mesh network for mobile traffic offloading. In 2017 International Confer-
ence on Selected Topics in Mobile and Wireless Networking (MoWNeT). 1–7.

[15] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
enabling innovation in campus networks. ACM SIGCOMM Computer Communi-
cation Review 38, 2 (2008), 69–74.

[16] B. Mumey, Jian Tang, I.R. Judson, and D. Stevens. 2012. On Routing and Chan-
nel Selection in Cognitive Radio Mesh Networks. Vehicular Technology, IEEE
Transactions on 61, 9 (Nov. 2012), 4118–4128.

[17] V. Nascimento, M. Moraes, R. Gomes, B. Pinheiro, A. Abelém, V. C. M. Borges,
K. V. Cardoso, and E. Cerqueira. 2014. Filling the gap between Software Defined
Networking and Wireless Mesh Networks. In 10th International Conference on
Network and Service Management (CNSM) and Workshop. 451–454.

[18] United Nations. [n. d.]. World Population Prospects: The 2015 Revision, Method-
ology of the United Nations Population Estimates and Projections.

[19] B.A.A. Nunes, M. Mendonca, Xuan-Nam Nguyen, K. Obraczka, and T. Turletti.
2014. A Survey of Software-Defined Networking: Past, Present, and Future of
Programmable Networks. Communications Surveys Tutorials, IEEE 16, 3 (2014),
1617–1634.

[20] Prithviraj Patil, Aniruddha Gokhale, and Akram Hakiri. 2015. Bootstrapping
Software Defined Network for flexible and dynamic control plane management.
In Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft).
1–5.

[21] Yuhuai Peng, Xiaoxue Gong, Lei Guo, and Dezhi Kong. 2016. A survivability
routing mechanism in SDN enabled wireless mesh networks: Design and evalua-
tion. China Communications 13, 7 (July 2016), 32–38. https://doi.org/10.1109/
CC.2016.7559073

[22] C. Perkins, E. Belding-Royer, and S. Das. 2003. Ad hoc On-Demand Distance
Vector (AODV) Routing. RFC 3561 (Experimental). http://www.ietf.org/rfc/
rfc3561.txt

[23] P. K. Sahoo and Y. Yunhasnawa. 2016. Ferrying vehicular data in cloud through
software defined networking. In 2016 IEEE 12th International Conference on Wire-
less and Mobile Computing, Networking and Communications (WiMob). 1–8.

[24] D. Sajjadi, R. Ruby, M. Tanha, and J. Pan. 2018. Fine-Grained Traffic Engineering
on SDN-Aware Wi-Fi Mesh Networks. IEEE Transactions on Vehicular Technology
67, 8 (Aug. 2018), 7593–7607. https://doi.org/10.1109/TVT.2018.2832010

[25] J Schulz-Zander, L Suresh, N Sarrar, A Feldmann, T Hühn, and R Merz. 2014.
Programmatic Orchestration of WiFi Networks. In 2014 USENIX Annual Technical
Conference (USENIX ATC 14). USENIX Association.

[26] Shashank Shekhar, Hamzah Abdel Aziz, Aniruddha Gokhale, and Xenofon Kout-
soukos. 2018. Online Performance Model Learning for Dynamic Resource Man-
agement in Cloud Computing Infrastructure. In To Appear in IEEE International
Conference on Cloud Computing (CLOUD). San Francisco, CA, USA, 8.

[27] Shashank Shekhar, Ajay Chhokra, Anirban Bhattacharjee, Guillaume Aupy, and
Aniruddha Gokhale. 2017. INDICES: Exploiting Edge Resources for Performance-
Aware Cloud-Hosted Services. In IEEE 1st International Conference on Fog and Edge
Computing (ICFEC). Madrid, Spain, 75–80. https://doi.org/10.1109/ICFEC.2017.16

[28] K. Tan, H. Shen, J. Zhang, and Y. Zhang. 2012. Enable flexible spectrum access
with spectrum virtualization. In 2012 IEEE International Symposium on Dynamic
Spectrum Access Networks. 47–58.

[29] N. B. Truong, G. M. Lee, and Y. Ghamri-Doudane. 2015. Software defined
networking-based vehicular Adhoc Network with Fog Computing. In 2015
IFIP/IEEE International Symposium on Integrated Network Management (IM). 1202–
1207.

[30] D. K. N. Venkatramana, S. B. Srikantaiah, and J. Moodabidri. 2017. SCGRP: SDN-
enabled connectivity-aware geographical routing protocol of VANETs for urban
environment. IET Networks 6, 5 (2017), 102–111.

[31] X. Wang, C. Wang, J. Zhang, M. Zhou, and C. Jiang. 2016. Improved Rule Installa-
tion for Real-Time Query Service in Software-Defined Internet of Vehicles. IEEE
Transactions on Intelligent Transportation Systems PP, 99 (2016), 1–11.

[32] X. Wang, C. Wang, J. Zhang, M. Zhou, and C. Jiang. 2017. Improved Rule Installa-
tion for Real-Time Query Service in Software-Defined Internet of Vehicles. IEEE
Transactions on Intelligent Transportation Systems 18, 2 (2017), 225–235.

[33] K. Xu, R. Izard, F. Yang, K. C. Wang, and J. Martin. 2013. Cloud-Based Handoff as
a Service for Heterogeneous Vehicular Networks with OpenFlow. In 2013 Second
GENI Research and Educational Experiment Workshop. 45–49.

[34] Kok-Kiong Yap, Masayoshi Kobayashi, Rob Sherwood, Te-Yuan Huang, Michael
Chan, Nikhil Handigol, and Nick McKeown. 2010. OpenRoads: empowering
research in mobile networks. SIGCOMM Comput. Commun. Rev. 40, 1 (2010),
125–126.

[35] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi. 2014. Internet of
Things for Smart Cities. IEEE Internet of Things Journal 1, 1 (2014), 22–32.

http://www.ietf.org/rfc/rfc3626.txt
https://doi.org/10.1109/WFCS.2017.7991949
https://doi.org/10.1145/3139258.3139264
https://doi.org/10.1109/CC.2016.7559073
https://doi.org/10.1109/CC.2016.7559073
http://www.ietf.org/rfc/rfc3561.txt
http://www.ietf.org/rfc/rfc3561.txt
https://doi.org/10.1109/TVT.2018.2832010
https://doi.org/10.1109/ICFEC.2017.16

	Abstract
	1 Introduction
	2 Problem Description and Key Challenges
	2.1 Smart City Motivating Example
	2.2 Challenges Realizing Real-time and Reliable Smart City Applications

	3 SDN-enabled Wireless Mesh Networks for CPS
	3.1 Addressing Challenges to Realize Real-time and Reliable Smart City Applications

	4 Evaluating the Blended SDN-OLSR Architecture
	4.1 Testbed Settings and Experimental Setup
	4.2 Evaluating the Predictability of End-to-end Latency
	4.3 Evaluating Throughput Performance
	4.4 Evaluating the System Reliability
	4.5 Evaluating the Load Balancing Strategy
	4.6 Evaluating the Impact on Latency with Increasing Hops and Link Failures
	4.7 Evaluating the Router overhead
	4.8 Evaluating the Controller Overhead

	5 Related Work
	6 Conclusions
	References

