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Abstract—Cloud service providers (CSPs) often overbook their
resources with user applications despite maintaining service-level
agreements with their customers. Overbooking is attractive to
CSPs because it helps to reduce power consumption in the
data center by packing more user jobs in less number of
resources while improving their profits. Overbooking becomes
feasible because user applications tend to overestimate their
resource requirements, utilizing only a fraction of the allocated
resources. Arbitrary resource overbooking ratios, however, may
be detrimental to soft real-time applications, such as airline
reservations or Netflix video streaming, which are increasingly
hosted in the cloud. At the same time, the changing dynamics
of the cloud preclude an offline determination of overbooking
ratios. To address these concerns, this paper presents iOverbook,
which uses a machine learning approach to make systematic
and online determination of overbooking ratios such that the
quality of service needs of soft real-time systems can be met while
still benefiting from overbooking. Specifically, iOverbook utilizes
historic data of tasks and host machines in the cloud to extract
their resource usage pattern and predict future resource usage
along with the expected mean performance of host machines. To
evaluate our approach, we have used a large usage trace made
available by Google of one of its production data centers. In the
context of the traces, our experiments show that iOverbook can
help CSPs improve their resource utilization by an average of
33% and save 65% power in the data center.

Keywords—resource overbooking, cloud computing, soft real-
time performance.

I. INTRODUCTION

Resource overbooking [1], [2], [3], [4] is a common prac-
tice adopted by Cloud Service Providers (CSPs) to increase
resource utilization in the servers of a data center and reducing
the number of physical servers that are powered on. The
outcome for the CSPs is a profitable business model and
lower energy bills due to lesser number of servers being used.
Resource overbooking entails committing more resources, such
as CPU and memory, than are actually available on the
physical host machines to the applications – in our case more
virtual machines (VMs) that host user applications – that are
packed onto physical servers than can actually fit. The resource
overbooking technique is a feasible option for CSPs to adopt
because cloud users often tend to overestimate the resource
requirements for their applications; in reality they use just a
fraction of the allocated resources.

This claim can be validated by observing the dynamics of
a production data center whose usage trace is made available
by Google Inc [5]. Figure 1 illustrates a snapshot of a host
machine in the data center over a time interval depicting

the actual CPU usage, host machine CPU capacity, and the
requested CPU capacity (shown as the allocation). As seen
from the figure, the actual CPU usage of a task is much
lower than the allocated amount of CPU clearly indicating that
users overestimate their resource needs. Without overbooking,
this situation yields very low resource utilizations in data
centers, which is detrimental to the CSP as well as to the
environment. It is estimated that in Google’s data centers, the
resource utilization is maintained between 40-60% whereas
this percentage is around 7-25% in other data centers [6].

Fig. 1: Allocated resources versus Actual CPU Usage of a Host
Machine in the Google Cluster Trace Data

To enable overbooking the servers of data centers with vir-
tual machines, most well-known hypervisors, such as Xen [7],
KVM [8], and VMware ESX Server [9] support a configuration
option for resource overbooking ratios. Even the cloud infras-
tructure software that manages the cloud platforms, such as
OpenNebula [10], OpenStack [11], and Eucalyptus [12] allow
overbooking. For example, OpenStack has a feature for allow-
ing up to 16:1 and 1.5:1 CPU and memory overbooking ratios,
respectively. A 16:1 CPU overbooking ratio means that one
physical CPU (pCPU) core can be overbooked by up to sixteen
virtual CPU (vCPU) cores. Techniques, such as transparent
page sharing, memory ballooning, memory compression, and
swapping to disk are some of the methods that hypervisors
utilize to make memory overbooking possible [13].

The resource overbooking approach adopted by CSPs tends
to be suitable for enterprise applications where most jobs
are of the batch processing type for whom throughput is
more important. However, as more applications with soft real-
time requirements, such as airline reservations, Netflix video
streaming, real-time stream processing, and massive open
online courses, get hosted on the cloud, resource overbooking
may cause significant jitter giving rise to unpredictable perfor-



mance, which is not acceptable for this class of applications.
Moreover, in accordance with the Service Level Agreements
(SLA) between the CSP and the customer, service providers
have to assure certain performance requirements, such as
response time and availability, which is hard to assure without
a systematic approach to resource overbooking.

To understand the spectrum of overbooking, we observe
that at one end of the spectrum exists lower overbooking ratios,
which can result in high satisfaction for cloud users, but can
be detrimental to CSPs who would not be effectively and
economically utilizing their resources. At the other end of the
spectrum, higher and arbitrary overbooking ratios might result
in CSPs utilizing their resources effectively thereby saving
on energy costs and making their services more profitable,
but the soft real-time systems hosted in the cloud will suffer
from not receiving their desired quality of service (QoS) due
to the high resource contention and interference caused by
overbooking [14], [15], [16], [17].

The key challenge lies in systematically identifying effec-
tive overbooking ratios which will make the right tradeoffs
in meeting these conflicting objectives. Secondly, since cloud
data centers are made up of heterogeneous machines, a single
overbooking ratio may not be effective. Finally, since the
cloud environment is highly dynamic, an offline computation
of overbooking ratios is not applicable. In the current state
of the art, the common overbooking strategy being applied in
data centers is to analyze the workloads of the VMs by system
administrators through resource monitoring applications or by
using optimum overbooking ratios for CPU, memory, and disk
established by earlier studies [4]. However, none of these
contemporary approaches might be appropriate for all the CSPs
because of the workload heterogeneity and the risks of errors
due to human involvement. These limitations call for an online
and autonomous solution.

To address these limitations, this paper presents iOver-
book, which provides an autonomous, online and intelligent
performance-aware, overbooking strategy for heterogeneous
and virtualized environments hosting soft real-time applica-
tions. iOverbook autonomously forecasts asymmetric over-
booking ratios, i.e., an overbooking ratio per host machine in
the data center, by carefully considering the historic resource
usage of the applications and not jeopardizing the performance
requirements of the soft real-time systems. Specifically, it
predicts the mean CPU and memory usage of the physical
host machine within the next specified time interval – in our
case an hour – by utilizing historic resource usage patterns
along with some other features, such as CPU capacity, memory
capacity, and requests for CPU and memory, and employing
machine learning algorithms. Overbooking ratios for the next
hour for CPU and memory are then computed based on a
mathematical formula. iOverbook continues to adjust these
ratios till they converge to a precise value, which will assure
certain QoS levels of the hosted applications. The prediction
window then slides to the next hour. Resource overbooking
can cause performance interference and affect VM placement,
which is the focus of our ongoing investigations [18].

The contributions of this paper are summarized below:

• It analyzes a large Google data center trace and reports
on the time-based and machine-based overbooking

ratios, which are illustrative of overbooking ratios used
in real production servers (Section III).

• It presents an intelligent and autonomous,
performance-aware overbooking strategy for
each host machine in heterogeneous virtualized
environments that satisfies soft real-time application
QoS (Section IV).

• Through experimental validations, it analyzes how
resource utilization levels can be improved and power
consumption reduced in the cloud data centers by
utilizing iOverbook (Section V).

The rest of this paper is organized as follows: Section II
deals with relevant related work comparing it with our con-
tributions; Section III analyzes an existing usage trace from
a Google’s production data center and illustrates how Google
is using overbooking ratios on different host machines and
the resulting application performance and resource utilizations;
Section IV presents iOverbook in detail; Section V evaluates
the effectiveness of iOverbook; and finally Section VI presents
concluding remarks alluding to future work.

II. RELATED WORK

This section compares related work synergistic to our work.
Predicting future resource usage of VMs based on historic data
is a significant aspect of resource overbooking. Synergistic to
our work, machine learning-based approaches are widely used
for forecasting the future in different domains. For example, in
the energy domain, [19], [20] predict future usage of electrical
consumption and hot water production, respectively. In [19],
different machine learning approaches are evaluated in the
context of energy modeling. In the grid and cloud domain, [21]
predicts future workload and [1] predicts resource utilization
patterns.

Moreno et al. [1] presented a neural network-based over-
allocation strategy to increase the energy efficiency in data
centers and satisfy performance requirements of real-time
applications. The mechanism presented in that paper predicts
the customer’s resource utilization based on historic data and
computes the amount of resources that will be allocated to a
VM by employing cost-benefit analysis and an overallocation
algorithm. The work in that paper differs from our work in
that it does not provide per-host resource overbooking ratios
as we do. However, the forecasting of resource consumption
has similarity to our work.

Tomas and Tordsson [22] proposed a cloud computing
management framework comprising an admission control for
horizontal elasticity (i.e., whether to accept more VMs) and
scheduling techniques for vertical elasticity (e.g., CPU, mem-
ory, and bandwidth). Additionally, they assumed that no SLA
violations occur if the used capacity is within the bounds of
the physical host machine. This might not be always the case
due to the resource contention and interference effects. Our
work differs from this work in two ways. First, we provide
asymmetric overbooking ratios for a specified timing window
(e.g., next one hour). Second, we take many parameters,
such as number of VMs on the host machine and mean
CPU usage, into account to precisely predict the performance
when overbooked. This significantly alleviates the performance
interference problem.



In [2], the authors present an approach to determine over-
booking, define overload mitigation strategies, and investigate
the relationship among overload mitigation techniques and
SLAs in the cloud. Birkenheuer et al. [23] address the gain
of overbooking in the Grid, Cloud and HPC environments, the
restrictions in scheduling algorithms, and how strict SLA is
affected by overbooking. They also propose a time-based math-
ematical model of their overbooking strategy, which is derived
from production traces of one year duration consisting 400 pro-
cessors. Although the insights gained from these approaches
are useful for our work, these types of time-based approaches
are more appropriate for the Grid environments, which are
concerned with executing very long running, high performance
computing jobs in controlled environments whereas in our
work we primarily target cloud environments – notably public
clouds where resources are shared.

Our earlier work [24] developed a model predictive algo-
rithm for workload forecasting based on which an autonomous
framework for resource autoscaling for the cloud was devel-
oped. This work was also based on insights gained from usage
traces of the Soccer World Cup of 1998. Although the goals of
our previous and current work are performance assurance, the
previous work focused on deciding how many resources are
needed for a specific application and how to proactively scale
them up or down based on prediction of incoming workload.
The end objective was to tradeoff performance with the price
the customer pays for using cloud resources. In current work,
we take a CSP-centric viewpoint where the objective is to
pack as many jobs on the physical resources as possible
to maximize resource utilization while being cognizant of
application performance.

In the context of supporting real-time applications, Zhang
et al. [17] proposed CPI2 to improve the performance of
latency-sensitive jobs when they experience performance inter-
ference. CPI2 detects CPU performance interference incidents
by automatically identifying jobs causing the issue, and op-
tionally shielding victim jobs by throttling the triggering task.
The authors prove that CPI (cycles-per-instruction) is a good
representation of application response time. Using the insights
from this work, we have used CPI as the key metric to measure
the performance of tasks and develop our algorithms.

The technique we have presented in this paper was made
possible after gaining deep insights from a usage trace of a
production data center released by Google [5]. Several recent
efforts [6], [25], [26] have analyzed this data providing deep
insights to us on workload characteristics, task classification,
statistical profile and actual resource utilization. These insights
have helped us in our research.

III. INSIGHTS FROM GOOGLE’S PRODUCTION DATA
CENTER TRACE

Google Inc. has released a data center cluster trace col-
lected during a period of 29 days in May 2011 and a document
called Google cluster-usage traces: format+schema, which
describes the semantics, format, and schema of the trace in
detail [5]. The dataset comprises machine events, machine
attributes, jobs, tasks, constraints, and resource usage details.
Although sensitive information, such as kernel version, proces-
sor speed, actual core count, actual memory size, and external

IP address were either obfuscated or normalized, this workload
consists of substantial data for more than 12,000 physical host
machines. Due to the size of the task- and resource-usage data
(about 1.2 billion rows), we utilized only three days worth of
data, which we believe is sufficient to gain the overall insights.

The trace describes jobs, where a job is considered to be
made up of one or more tasks. The jobs and tasks in the cluster
trace have certain event types representing their states during
their life cycles. These states are shown in Table I.

TABLE I: Job/Task Event Types in Cluster Trace [5]

Event Name ID Description

SUBMIT 0 A task or job was submitted to be
scheduled

SCHEDULE 1 A task or job is scheduled to run on
a host machine

EVICT 2

A task or job was descheduled due to
overcommitting on that host machine
or due to another higher priority job
or its tasks

FAIL 3 A task or job failed and was desched-
uled

FINISH 4 A task or job has completed success-
fully

KILL 5 A task or job was canceled by the user

LOST 6 There is no indication for a task or
job after termination

UPDATE PENDING 7 A task or job info was updated while
pending for scheduling

UPDATE RUNNING 8 A task or job info was updated while
running

A host machine in the cluster could be in one of the three
states shown in Table II.

TABLE II: Host Machine Event Types in Cluster Trace [5]

Event Name ID Description
ADD 0 A machine is added to host tasks

REMOVE 1 A machine was removed from the
cluster

UPDATE 2 A machine’s available resources were
updated

A. Time-based Overbooking Ratio Analysis

In this analysis our aim is to show what the overbooking
ratios for each host machine in the cluster were at time t=0,
which is the beginning of the trace. Note that the data center
was already operational when the trace was collected. Thus,
t=0 does not mean the time when the data center was powered
up. The motivation behind selecting a specific time is to
investigate the overbooking ratios of all the host machines
in the cluster from a high-level perspective. The CPU and
memory overbooking ratios for each host machine in the
cluster trace at t=0 are depicted in Figure 2. The formula
in Equation (2) shows how the overbooking ratios in the
figures are computed. Based on the criteria mentioned in [5],
Equation (1) considers task event types in Table I and machine
event types in Table II.



(a) CPU (b) Memory

Fig. 2: Initial Overbooking Ratios in the Cluster Trace (at time 0)

The following steps are followed to compute the overbook-
ing ratios for each host machine in the cluster:

• Step 1 – When a task is scheduled (SCHEDULE event
type in the trace), the resource request is accumulated to the
total value in Equation (1).

• Step 2 – When a task is evicted, failed, finished, killed,
or lost (FAIL, FINISH, KILL, LOST event types in the trace),
the resource amount of these tasks are subtracted from the total
value in Equation (1). If a task’s resource requirements or a
machine’s resource capacity is updated, then it is also taken
into consideration.

• Step 3 – Based on the total resource requested and
actual available physical host machine resource capacity, the
overbooking ratio is computed in Equation (2).

TotalResourceAllocated =

n∑
i=0

ResourceAllocatedi (1)

OverbookingRatio =
TotalResourceAllocated

HostCapacity
(2)

where
TotalResourceAllocated :Total amount of resources allocated

to all the tasks on host machine
n : is the total number of the tasks

ResourceAllocated : size of allocated CPU or memory
HostCapacity : Resource capacity of host machine

As shown in Figure 2, it can be seen that host machines in
the cluster are overbooked to some degree at the beginning of
the trace for better utilization.

B. Machine-based Overbooking Ratio Analysis

In this analysis our aim is to show the overbooking ratios of
certain host machines throughout their lifetime in the cluster.
Since the cluster is heterogeneous, we first show the types of
host machines and their hardware attributes in Figure 3. Due
to confidentiality reasons, certain values in the cluster trace
are released as encrypted or normalized. For example, machine
attributes are transformed to hashed strings and machine capac-
ities and resource requests are rescaled to the values between
[0,1] by the normalization process. Therefore, the values seen
in Figure 3 are the normalized capacity values in the cluster

trace. As shown in Figure 3, there are ten different types of
machines having different CPU and memory capacities in the
cluster trace.

Fig. 3: Machine Types in the Cluster Trace

Among these machines, we have picked machines of types
#3, #4, #6, #8, and #10 of the cluster from Figure 3 and
depicted them in Table III because these machine types are
the ones that appear the most prominently by numbers in the
entire cluster.

TABLE III: Host Machine Information (Normalized)

Host
Name

ID in Cluster
Trace

Machine
Type

CPU
Capacity

Memory
Capacity

Host A 4837752655 #10 1 1
Host B 257337162 #8 0.5 0.749
Host C 381113 #6 0.5 0.4995
Host D 1094687 #4 0.5 0.2493
Host E 1094687 #3 0.5 0.1241

In Figure 4, overbooking ratios of Host A, Host B, Host
C, and Host D in Table III are depicted. All four types of
machines are overbooked in excess of the available physical
resources at some point except Host A in Figure 4a. Host B in
Figure 4b is overbooked up to 1.96 and 2.17 times more than
its actual CPU and memory capacity, respectively. Compared
to Host A, Host C and Host D in Figure 4, Host B has the



(a) Host A - Machine ID:4837752655 CPU:1 Memory:1 (b) Host B - Machine ID:257337162 CPU:0.5 Memory:0.749

(c) Host C - Machine ID:381113 CPU:0.5 Memory:0.4995 (d) Host D - Machine ID:1094687 CPU:0.5 Memory:0.2493

Fig. 4: CPU and Memory Overbooking Ratios for Different Types of Machines in the Cluster

highest overbooking ratios. It is noticeable in Figure 4a that
the highest capacity machine type (e.g., CPU: 1 and Memory:
1) does not overbook memory despite its noticeable CPU over-
booking ratios greater than 1. We surmise that these type of
machines in the cluster are likely reserved for latency sensitive,
compute-intensive jobs. In summary, it can be inferred from
both Figure 2 and Figure 4 that host machines in the cluster are
overbooked to make the services more profitable and increase
utilization level. This provides us an opportunity to investigate
a systematic approach to overbooking in a way that soft real-
time systems can be hosted in the cloud.

IV. IOVERBOOK SYSTEM ARCHITECTURE AND DESIGN

Figure 5 depicts the architecture of iOverbook, which is
our intelligent, machine learning-based approach to online
determination of effective overbooking ratios for the machines
of a data center. The goal of iOverbook is to online compute
the CPU and memory overbooking ratios for each individual
host machine within the next specified time interval. Since
our aim is to compute the effective overbooking ratios online
that will continue to assure the performance of soft real-time
applications, we require an understanding of how the resources
are currently utilized and the properties of existing applications
so that we can predict the resource usage for a future specified
time interval. Once we know this information, it should be
feasible to determine how much overbooking is feasible and
if it is acceptable for soft real-time applications.

Fig. 5: iOverbook System Architecture

These three responsibilities motivated a three stage design
for iOverbook, which comprises: (1) a resource usage pre-
dictor, (2) an overbooking ratio prediction engine, and (3)
a performance assessor. The resource usage predictor and
performance assessor components retrieve historic data from a
training set repository to train their internal neural networks.
iOverbook utilizes mean CPU and memory request, mean CPU
and memory usage, mean performance, mean VM count, mean
CPU and memory capacity, and CPU and memory overbooking
ratios as input parameters. For this paper, we have showcased
how iOverbook predicts the overbooking ratios for a time



window of one hour, however, this property is tunable. The rest
of this section explains the three components of iOverbook.

A. Resource Usage Predictor

The purpose of the resource usage predictor is to predict
the mean CPU and memory usage of the host machine within
the next hour (or the specified time interval). A two layer,
feed forward artificial neural network (ANN) is employed
for prediction. ANNs have a powerful ability to model and
generalize both linear and non-linear relationships between
input and output, and only a hidden layer is sufficient to
make any prediction [27]. The sliding window mean CPU
and memory resource usage data, and mean CPU and memory
requests along with the host machine’s resource capacity are
the extracted features that are provided to the resource usage
predictor. The structure of the ANN is depicted in Figure 6.
The Levenberg-Marquardt back-propagation algorithm is em-
ployed for training the ANN.

Fig. 6: Structure of the Resource Usage Prediction Artificial
Neural Network

The topology of the ANN for predicting mean CPU and
memory usage within the next specified time interval – in our
case one hour – is shown in the mathematical formulation of
the ANN below.

Input Layer : cu(t− 1), cu(t− 2),mu(t− 1),mu(t− 2),

cr(t− 1), cr(t− 2),mr(t− 1),mr(t− 2),

cc,mc

Hidden Layer : 23 neurons
Activation Function (in hidden layer)

: Tangent Sigmoid
Output Layer : cu(t),mu(t)

Transfer Function (in output layer)
: Pure Linear

where
t = the predicted hour

cu(t− 1) = mean CPU usage at hour t− 1

cu(t− 2) = mean CPU usage at hour t− 2

mu(t− 1) = mean memory usage at hour t− 1

mu(t− 2) = mean memory usage at hour t− 2

cr(t− 1) = mean CPU request at hour t− 1

cr(t− 2) = mean CPU request at hour t− 2

mr(t− 1) = mean memory request at hour t− 1

mr(t− 2) = mean memory request at hour t− 2

cc = CPU capacity of the host machine
mc = Memory capacity of the host machine

cu(t) = mean CPU usage at hour t
mu(t) = mean memory usage at hour t

For testing and experimentation, 67 of the host machines
which have the mean CPU usage greater than 10% (i.e. max
percentage in the three days usage of the entire cluster trace
to pick sufficient number of host machines for experimental
study) are utilized. The idea behind this filtering is to study
only those host machines having more compute-intensive tasks.

The reason behind utilizing these input parameters for
resource usage prediction is that they are the common factors
affecting the CPU and memory usage of a host machine. CPU
and memory capacity are also provided to ANN due to the
heterogeneity of data center machines, and help convey better
correlation between input and output.

The best performance of the ANN was produced with 23
neurons in the hidden layer with the mean squared error value
(MSE), which is the averaged squared difference between
inputs and outputs, of 0.00009. The regression (R) value,
which is the correlation between inputs and outputs, is 0.9.
The generated MSE and R values indicate that the resource
usage predictor predicts outputs with a negligible error value,
and that the outputs of the ANN are very well correlated with
its inputs.

The selection of activation function made in hidden layer
and output layer are based upon the ANN type (e.g. back
propagation dictates an activation function in hidden layer
providing derivative), desired output value constraints, and
based on trial-and-error performance results of ANN.

The predicted CPU and memory usage values along with
the actual usage values for each host machine is illustrated in
Figure 7. The training ANN involved using 72 hours of the
cluster trace except the 49th hour. The prediction was made for
the 49th hour. As seen in Figure 7, the predicted resource usage
value follows the actual usage values well enough because of
the decent MSE and R values.

B. Overbooking Ratio Prediction Engine

After the resource usage predictor predicts the CPU and
memory usage for the next one hour time window, the
overbooking ratio prediction engine computes the CPU and
memory overbooking ratios per machine, and hands it to the
performance assessor. The performance assessor component
predicts the performance by using these new overbooking
ratios and hands it back to the overbooking ratio prediction
engine. This two way communication between overbooking
ratio prediction engine and performance assessor iterates until
the predetermined convergence values (calculated manually
from the trace) in Table IV is satisfied.



Fig. 7: Actual and Predicted Hourly Mean CPU and Memory Value Comparison

The details of the computation are shown in Equation (3).

OverbookingRatio(t) =
HostCapacity(t)− SecuritySlack(t)

PredictedUsage(t)
(3)

SecuritySlack(t) = HostCapacity(t)× SecurityPercentage
(4)

ResourceRequest(t) = OverbookingRatio(t)×HostCapacity

where
OverbookingRatio(t) : CPU and memory overbooking

ratios at hour t for a host machine
HostCapacity(t) : resource capacity (e.g. CPU and memory)

of a host machine at hour t
SecurityPercentage(t) : elastic capacity on a host machine

to converge the best ratio at hour t

C. Performance Assessor

The performance assessor component is responsible for
predicting the performance thereby providing an assurance that
the new overbooking ratios computed by the overbooking ratio
engine do not violate the SLAs. The Performance assessor
uses the 1/CPI as the performance metric which means that
the higher the value, the better the performance. The SLA
violation is checked based on the mean performance values of
the same type of host machine in Table IV. If the machine
under consideration’s mean performance is greater than the
overall mean performance of the same type of host machine
in the cluster, iOverbook assumes that SLA is not going to
be violated thereby providing performance assurances to soft
real-time applications. In Section V, this SLA violation logic
is elaborated upon by taking standard deviation of same type
of host machines into account for better performance results.

The structure of the performance predictor ANN is similar
to the resource usage predictor ANN in Figure 6 with different
input and output. The topology of this ANN for predicting per-
formance is provided in the mathematical formulation below. It
is considered that allocated amount of resources and mean VM
count on a host machine are changed once the overbooking
ratio engine computes new ratios. Based upon newly computed

TABLE IV: Mean Performance Values of Each Host Machine
Type in the Cluster

CPU Memory Mean (µ)
Performance

Stdev (σ) Per-
formance

1 1 0.1384 0.0896
0.5 0.749 0.1416 0.1142
0.5 0.4995 0.1474 0.1157
0.5 0.2493 0.1474 0.1227
0.5 0.1241 0.1647 0.1485

ratios in Equation (3), the performance assessor is employed to
check whether these new overbooking ratios may trigger any
SLA violations. As long as the predicted performance is less
than the mean performance value (i.e., a SLA violation will
occur), the performance assessor increases the security slack
value in Equation (4) by 0.5% and requests new ratios from
overbooking ratio engine till the ratios converge to the values
not violating SLA.

Input Layer : cr(t),mr(t), cor(t),mor(t),
vm(t), cc,mc

Hidden Layer : 22 neurons
Activation Function (in hidden layer)

: Tangent Sigmoid
Output Layer : P (t)

Transfer Function (in output layer)
: Pure Linear

where
t = the predicted hour

cr(t) = mean CPU request at hour t
mr(t) = mean memory request at hour t
cor(t) = CPU overbooking ratio at hour t
mor(t) = memory overbooking ratio at hour t
vm(t) = mean VM count at hour t

cc = CPU capacity of the host machine
mc = Memory capacity of the host machine



Fig. 8: Actual and Predicted Performance Results Comparison

The best performance of the ANN was produced with 22
neurons in the hidden layer with the MSE of 0.0053 and
the R of 0.67. The generated MSE and R values indicate
that the performance assessor component predicts performance
output value with a somewhat negligible error compared to our
resource usage predictor ANN. The outputs of this ANN are
well correlated with its inputs.

The predicted performance value along with the actual
performance values for each host machine is illustrated in
Figure 8. The predicted hour is the same as the overbooking
ratio prediction engine, which is chosen as the 49th hour in the
timeline. As can be seen in Figure 8, the predicted performance
value follows the actual usage values well because of the lower
MSE and good R values.

V. VALIDATING THE IOVERBOOK APPROACH

This section validates the iOverbook approach using the
Google cluster usage trace.

Validation Approach: Since it is not possible to recre-
ate the Google’s data center trace, we have used an alternate
approach to validating iOverbook. We use part of the usage
trace to train iOverbook. Subsequently, we use iOverbook to
predict overbooking for a time interval that was not used in the
training phase. The results of this prediction are then compared
to the actual numbers appearing in the usage trace.

To that end we have used 72 hours of usage trace data to
train iOverbook’s ANNs except the 49th hour in that interval,
and instead used iOverbook to predict the overbooking rates
for the 49th hour. The predicted overbooking rates (both CPU
and memory) and performance are compared to the actual
overbooking and performance seen from the usage trace. In our
experiments, two different overbooking ratios are computed
under two different conditions: (1) if the predicted performance
value (P (t)) is greater than or equal to the mean performance
value of the same type of host machines in the cluster (i.e.,
P (t) >= µ), and (2) if the predicted performance value is
greater than or equal to the sum of the mean performance
value of the same type of host machines and two times the
standard deviation of this value (i.e., P (t) >= µ + 2σ ).
The motivation behind computing overbooking ratios under
two different conditions is to provide results under tighter

constraints. The mean and standard deviation values are shown
earlier in Table IV.

We then analyze how these predicted overbooking ra-
tios for each host machine help to improve the resource
utilization and reduce power consumption in the data cen-
ter. To determine the power consumption, we have utilized
SPECpower ssj2008 [28], an industrial benchmark measuring
power and performance values of different computer architec-
tures, to compute power consumption of host machines.

Comparing Actual versus Predicted Overbooking and
Performance: Figure 9 compares Google host machines’
actual and iOverbook’s overbooking ratios computed by over-
booking ratio prediction engine at t=49.

Fig. 9: Comparison of Google’s Host Machines’ Actual and
iOverbook’s CPU Overbooking Ratios under Different Perfor-
mance Considerations

Fig. 10: Comparison of Google’s Host Machines’ Actual
and iOverbook’s Memory Overbooking Ratios under Different
Performance Considerations

In the context of the Google trace, the following inferences
can be made from Figures 9 and 10. Overall, iOverbook was
able to predict higher overbooking ratios for host machines
compared to Google’s overbooking without SLA violations.

(1) 66/67 host machines could have been overbooked
without SLA violation under P (t) >= µ condition (recall that
performance is measured as 1/CPI so any value less than the
mean is a SLA violation).



(2) 20/67 and 36/67 host machines could have had CPU
and memory overbooking ratios greater than 4, respectively,
without SLA violation under P (t) >= µ condition.

(3) 60/67 host machines could have been overbooked
without SLA violation under P (t) >= µ+2σ condition. These
results are somewhat inferior compared to #1 due to a tighter
performance constraint.

(4) 12/67 and 26/67 host machines could have had CPU
and memory overbooking ratios greater than 4, respectively,
without SLA violation under P (t) >= µ+2σ condition. These
results are somewhat inferior compared to #2 due to a tighter
performance constraint.

In Figure 11, Google’s host machines’ actual (i.e, at t=49)
and iOverbook’s predicted performance values associated with
the overbooking ratios in Figure 9 are depicted. A zero value in
the figure means that machine is not overbooked. As seen from
the Figure 11, there is one host machine under P (t) >= µ
condition and seven host machines under P (t) >= µ + 2σ
condition that iOverbook predicted a SLA violation and did
not allow those host machines to be overbooked.

Fig. 11: Google’s Host Machines’ Actual and iOverbook’s
Predicted Performance Value under Different Performance
Considerations

Improved Utilizations and Power Savings due to
iOverbook: Recall from Section III that the cluster trace pro-
vides obfuscated configurations of machine attributes, which
does not allow us to identify and compute the exact power
consumption of host machines. Therefore, we surmise the
potential configuration of the machine such that it is in
tune with the normalized resource capacities of physical host
machines shown in Table III. The estimated configurations are
shown in Table V.

Table VI compares the actual (from the trace) and iOver-
book’s resource utilization effects. The “Total CPU” request
value in the table is based upon the overbooking ratios com-
puted by iOverbook. The ratio of total CPU usage over total
CPU requested is used to calculate the utilization value when
the host machines are overbooked with iOverbook. As seen in
Table VI, the actual utilization for 67 host machines in the trace
was 11%. In contrast, the utilization level using iOverbook
could have been 44% under P (t) >= µ and 34% under
P (t) >= µ + 2σ conditions, which shows an improvement
of 33% and 23%, respectively.

TABLE V: Estimated Host Machine Configurations [28]

Host
Name

Processor
Name

CPU
(cores)

Memory
(GB)

Mean
Watts
@100%

Mean
Watts
@Idle

Host A Intel Xeon
E5-4607 24 64 368 109

Host B Intel Xeon
X5675 12 48 293 118

Host C Intel Xeon
E5-2640 12 32 231 57

Host D Intel Xeon
E5645 12 16 200 63.1

Host E
AMD
Opteron
2419 EE

12 8 178 74.6

TABLE VI: Resource Utilization Results in Test Set

Actual
Value

iOverbook
(P (t) >= µ)

iOverbook
(P (t) >=
µ+ 2σ)

Total CPU Request 36.08261 138.72779 106.16678
Total CPU Capacity 34 34 34
Total CPU Usage
/ Total CPU Re-
quested

0.10821 0.10821 0.10821

Total CPU Usage 3.90452 15.01184 11.48839
Mean CPU Utiliza-
tion 11% 44% 34%

The comparison of power consumption results for different
consolidation cases are shown in Table VII. Consolidation
refers to packing as many tasks on as less number of machines
as possible and leave the rest of the machines at either powered
off or idle mode. Actual Case is the current status of the
host machines. Case-1 and Case-2 represent the status of the
host machines under P (t) >= µ condition representing the
expected power consumption if the host machines with no
tasks on it after the consolidation were powered off or remain
powered on but in idle mode conditions, respectively. Case-3
and Case-4 are the same cases as Case-1 and Case-2 except
they show the results under the P (t) >= µ+ 2σ condition.

TABLE VII: Power Consumption Results in Test Set

Total
Watt

Number
of
Servers
@On

Number
of
Servers
@Off

Number
of
Servers
@Idle

Savings

Actual 6597.85 67 0 0 0%
Case-1 2337.92 11 56 0 65%
Case-2 6661.72 11 0 56 -1%
Case-3 4873.33 31 36 0 26%
Case-4 7204.53 31 0 36 -9%

As seen from Table VII, iOverbook helped save roughly
65% and 26% of energy for Case-1 and Case-3, respectively.
However, if the host machines with no tasks on it are left in the
idle state (Case-2 and Case-4), then it has a negative impact
on energy consumption, which we surmise can be attributed
to the power consumption of host machines at idle mode.



Lessons from the Validation Experiments: These val-
idation results demonstrate that adding higher standard devia-
tions gives us less beneficial results but probably tighter and a
preferred result to assure SLAs. CSPs can utilize our technique
by first training our ANNs with their own historic data and then
integrating iOverbook with their actual job and VM scheduler
in the data center. Therefore, the scheduler could overbook
each host machine by considering the overbooking ratios
provided by iOverbook. Since our approach allows runtime
updates to overbooking ratios, it can adapt autonomously to
changing workloads.

VI. CONCLUSION

This paper presented insights from an analysis of Google’s
production data center usage trace. Using these insights we
presented iOverbook, which is an intelligent and online re-
source overbooking strategy for supporting cloud-based soft
real-time applications and effective server utilization. iOver-
book employs two artificial neural networks for predicting
a host machine’s future resource usage and performance. It
requires historical usage data that cloud providers can provide
for use in their data centers. The forecasted values are used in
computing significantly better CPU and memory overbooking
ratios than those used by Google in their production data center
without triggering SLA violations.

In this work, we considered an hour interval for our
prediction mechanism, however, this value is tunable. Based
on the needs and requirements of CSPs, this interval could
easily be changed to another interval by modifying the training
set of neural networks. Another approach could be to train
different neural networks for different time intervals required
and employ the one for which time interval is desired for
prediction.

In the current work we did not consider the potential for
noise in the available traces. Our future work will investigate
effective filtering of noise and using confidence intervals.
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