
DREMS: OS Support for Managed Distributed
Real-time Embedded Systems

William Emfinger, Pranav Kumar, William Otte, Csanad Szabo,
Sandor Nyako, Abhishek Dubey, Aniruddha Gokhale and Gabor Karsai

ISIS, Dept of EECS, Vanderbilt University, Nashville, TN 37235, USA

Abstract—Distributed real-time and embedded (DRE) systems
composed of mixed criticality task sets are increasingly being
deployed in mobile and embedded cloud computing platforms.
These DRE systems not only must operate over a range of
temporal and spatial scales, but also require stringent assurances
on the secure communications between the system’s tasks without
violating timing constraints of the individual tasks. To address
these new challenges this paper describes a novel distributed
operating system. The paper focuses on the scheduler design
to support the mixed criticality task sets, and a novel secure
networking infrastructure. Empirical results from experiments
involving a case study of a cluster of satellites emulated in a
laboratory testbed validates our claims.

Keywords—Mixed criticality tasks, security, operating systems,
managed distributed systems.

I. INTRODUCTION

The emerging realm of mobile and embedded cloud com-
puting, which leverages the progress made in computing and
communication on mobile devices and sensors necessitates
a platform for running distributed real-time and embedded
(DRE) systems. For example, an adhoc cloud of smart phones
can share sensing and computing resources with nearby de-
vices to provide increased situational awareness in disaster
relief efforts. Ensembles of mobile devices are being used as
a computing resource in space missions as well: clusters of
satellites provide a dynamic environment for deploying and
managing distributed mission applications; see, e.g. NASA’s
Edison Demonstration of SmallSat Networks, TanDEM-X,
PROBA-3, and Prisma from ESA, and DARPA’s System F6.

As an example consider a cluster of satellites that execute
distributed applications. One application is a safety-critical
cluster flight application (CFA) that controls the satellite’s
flight and responds to emergency commands. Running con-
currently with the CFA, image processing applications (IPA)
utilize the satellites’ sensors and consume much of the CPU
resource. IPAs from different vendors may have different
security privileges and so may have limited access to sensor
data. Sensitive camera data must be compartmentalized and
must not be shared between these IPAs, unless explicitly
permitted. These applications must also be isolated from each
other to prevent performance impact or fault propagation
between applications due to lifecycle changes. However, the
isolation should not waste CPU resources when applications
are dormant because, for example, a sensor is active only
in certain segments of the satellite’s orbit. Other applications
should be able to use the CPU during these dormant phases.
Management of these applications entails providing for secure
information flows, application lifecycle management, fault
isolation, resource partitioning, and partition reconfiguration.

One technique for implementing strict application isolation
is temporal and spatial partitioning of processes (see [1]). Spa-
tial separation provides a separate memory address space per
process. Temporal partitioning provides a periodically repeat-
ing fixed interval of CPU time that is exclusively assigned to a
group of cooperating tasks. Unfortunately, strictly partitioned
systems are typically configured with a static schedule; any
change in the schedule requires the system to be rebooted [1].

We have developed an architecture called Distributed
REaltime Managed System (DREMS) [2] that addresses these
requirements. DREMS addresses a class of DRE systems that
require active management of the software platform and the
applications running on that platform. Such managed DREs
arise in application domains where a dominant entity con-
trols the complete software configuration and all operational
aspects of a large number of computing nodes, shared by
many distributed applications. The architecture consists of
(1) a design-time tool suite for modeling, analysis, synthesis,
integration, debugging, testing, and maintenance of application
software built from reusable components, and (2) a run-time
software platform for deploying, executing, and managing
application software on a network of mobile nodes. The run-
time software platform consists of an operating system kernel,
system services and middleware libraries. In prior work, we
have described the general architecture of DREMS [2], its
design-time modeling capability [3], and its component model
used to build applications [4].

This paper focuses on the design and implementation of
key components of the operating system layer in DREMS.
Specifically, it makes the following three contributions to the
realm of operating systems for managed DRE systems that
operate in mobile and embedded computing environments.

• It describes the design choices and algorithms used in the
design of DREMS OS scheduler. The scheduler supports
three criticality levels: critical, application and best effort. It
supports temporal and spatial partitioning for application-level
tasks. Tasks in a partition are scheduled in a work-conserving
manner. Through a CPU cap mechanism, it also ensures that
no task starves for the CPU. Furthermore, it allows dynamic
reconfiguration of the temporal partitions.
• It describes the design and implementation of the Secure

Transport layer, which is a novel kernel-level communication
mechanism for providing secure information flows between
processes. It also ensures that at the kernel-level there are no
blocking dependencies between tasks of different criticality
levels.
• It empirically validates the design in the context of a case

study of a managed DRE system running on a laboratory
testbed.

The outline of this paper is as follows: Section II presents
the related research; Section III provides background infor-
mation and the system model; Section IV presents the sched-
uler design; Section V describes the secure transport layer;
Section VI empirically evaluates DREMS OS in the context
of a representative application; and finally Section VII offers
concluding remarks referring to future work.

II. RELATED RESEARCH

Our approach has been inspired by two areas: mixed
criticality systems and partitioning operating systems. Mixed
criticality systems provide support to multiple functionalities
that can be of different criticality, or importance to the sys-
tem. A mixed criticality computing system has two or more
criticality levels on a single shared hardware platform, where
the distinct levels are motivated by safety and/or security
concerns. For example, an avionic system can have safety-
critical, mission-critical, and non-critical tasks.

In his seminal paper on mixed criticality scheduling,
Vestal [5] argued that the criticality levels directly impact
the task parameters, especially the worst-case execution time
(WCET). In his framework, each task has a maximum crit-
icality level and a non-increasing WCET for successively
decreasing criticality levels. For criticality levels higher than
the task maximum, the task is excluded from the analyzed
set of tasks. Thus increasing criticality level results in a
more conservative verification process. Vestal [5] extended the
response-time analysis of fixed priority scheduling to mixed
criticality task sets. Vestal’s results were later improved by
Baruah et al. [6] where an implementation was proposed for
fixed priority single processor scheduling of mixed-criticality
tasks with optimal priority assignment and response-time anal-
ysis. A recent review on mixed-criticality systems research can
be found in [7].

Partitioning operating systems provide applications shared
access to critical system resources on an integrated computing
platform. Applications may belong to different security do-
mains and can have different safety-critical impact on the sys-
tem. To avoid unwanted interference between the applications
reliable protection is guaranteed in both the spatial and the
temporal domain that is achieved by using partitions on the
system level. Spatial partitioning ensures that an application
cannot access another application’s code or data in memory or
on disk. Temporal partitioning guarantees an application access
to the critical system (CPU) resources during a dedicated time
regardless of other applications.

Partitioning operating systems have been applied to avion-
ics (e.g., LynxOS-178 [8]), automotive (e.g., Tresos, the op-
erating system defined in AUTOSAR [9]), and cross-industry
domains (DECOS OS [10]). A comparison of the mentioned
partitioning operating systems can be found in [11].

Our approach combines mixed-criticality and partitioning
techniques to meet the requirements of distributed real-time
embedded systems where security plays a special role. DREMS
supports multiple levels of criticality, with tasks being assigned
to a single criticality level. For security and fault isolation

reasons applications are strictly separated by means of spatial
and temporal partitioning, and applications are required to use
a novel secure communication method for all communications.

Our work has many similarities with the resource-centric
real-time kernel [12] to support real-time requirements of
distributed systems hosting multiple applications. Though
achieved differently, both frameworks use deployment services
for the automatic deployment of distributed applications, and
enforcing resource isolation among applications. However, to
the best of our knowledge, [12] does not include support for
process management, temporal isolation guarantees, partition
management, and secure communication all at once.

III. BACKGROUND AND SYSTEM MODEL

This section provides background material and states as-
sumptions for the rest of the paper.

A. DREMS Architecture

DREMS [2] is a distributed system that consists of one or
more computing nodes grouped into a cluster. We assume that
at least one network route exists between any two nodes in the
cluster. Distributed applications composed from cooperating
processes called “actors” provide services for the end-user. Ac-
tors specialize the notion of OS processes; they have persistent
identity that allows them to be transparently migrated between
nodes, and they have strict limits on resources that they can
use. Each actor is constructed from one or more reusable
components [4] where each component is single-threaded.

B. The Linux Scheduler

The DREMS OS scheduler builts upon the standard Linux
scheduler (kernel version: 3.2.7). The scheduler is responsible
for allocating CPU resource(s) to all currently running com-
putational entities. Schedulers are implemented in the Linux
kernel through scheduler classes. The two important scheduler
classes are CFS (Completely Fair Scheduler) and the RT (Real
Time) scheduler [13]. The CFS scheduler attempts to allocate
CPU time between processes fairly, while the RT scheduler
selects processes based on their priority. Tasks eligible for
scheduling are maintained in a structure called the runqueue.

A runqueue is a structure associated with each CPU. The
runqueue is not necessarily just a queue – it is a container
using a data structure that contains a bit array – one bit for
each priority level and a list containing the tasks ready to be
scheduled at that level. The bit at a level is set to one when
there are tasks at that level. A 0 value indicates an empty queue
at that level. In a multi core system, this structure is replicated
per CPU. In a fully preemptive mode, the scheduling decision
evaluates which task should be executed next on a CPU when
an interrupt handler exits, when a system call returns, or when
the scheduler function is explicitly invoked to preempt the
current process.

C. Task Levels and Temporal Partitioning

While most tasks1 perform application functions, some
tasks are used for system management and mission-critical
functions. Thus, we group these tasks into different criticality
levels: (a) Critical tasks are those tasks which are required

1We use the term threads and tasks interchangeably in this paper.

P1P2 P3 P1P2 P4 P1P2 P3 P1P2

Hyperperiod

Major frame
Minor frame

Fig. 1: A Major Frame. The four partitions (period,duration) in this frame are
P1 (2s, 0.25s), P2 (2s, 0.25s), P3 (4s, 1s), and P4 (8s, 1.5s).

for system and mission management; (b) Application tasks
perform mission-specific, non-critical work; (c) Best Effort
tasks are those low priority tasks that are scheduled only when
there are no runnable tasks from the previous two categories.

The system guarantees performance isolation between pro-
cesses by (a) providing separate address spaces per actor; (b)
enforcing that an I/O device can be accessed by only one
actor at a time; and (c) facilitating temporal isolation between
actors by the scheduler. Temporal isolation is provided via
ARINC-653 [1] style partitions – a periodically repeating fixed
interval of the CPU’s time exclusively assigned to a group of
cooperating actors of the same application.

A temporal partition is characterized by two parameters:
period and duration. The period reflects how often the tasks
within the partition will be guaranteed CPU allocation. The
duration governs the length of the CPU allocation window
in each cycle. Given the period and duration of all temporal
partitions, an execution schedule can be generated by solving a
series of constraints, see [14]. A feasible solution, e.g. Figure 1,
comprises a repeating frame of windows, where each window
is assigned to a partition. These windows are called minor
frames. The length of a window assigned to a partition is
always the same as the duration of that partition. The repeating
frame of minor frames, known as the major frame, has a length
called the hyperperiod. The hyperperiod is the lowest common
multiple of the partition periods.

IV. DREMS OS SCHEDULER

A. Criticality Levels Supported by the DREMS OS Scheduler

The DREMS OS scheduler provides the ability to manage
computation time for tasks at three different criticality levels:
Critical, Application and Best Effort. The Critical tasks pro-
vide kernel level services and system management services.
These task will be scheduled based on their priority whenever
they are ready. Application tasks are mission specific and
are isolated from each other. These tasks are constrained by
temporal partitioning and can be preempted by tasks of the
Critical level. Finally, Best Effort tasks are executed whenever
no tasks of any higher criticality level are available.

Note that actors in an application can have different criti-
cality levels, but all tasks associated with an actor must have
the same criticality level, i.e. an actor cannot have both Critical
tasks and Application tasks.

B. Modifications to the runqueue

To support the different levels of criticality, we extend the
runqueue data structure described in Section III-B by creating
one runqueue per partition per CPU. Currently, the system can

support 64 temporal partitions. One runqueue is created for the
critical tasks. The Best effort tasks are managed through the
Linux Completely Fair Scheduler runqueue.

C. CPU Cap and Work Conserving Behavior

The schedulability of the Application level tasks is con-
strained by the current load coming from the Critical tasks
and the temporal partitioning used on the Application level.
Should the load of the Critical tasks exceed a threshold the
system will not be able to schedule tasks on the Application
level. A formal analysis of the response-time of the Application
level tasks will not be provided in this paper, however, we
present a description of the method we will use to address the
analysis which will build on available results [6], [15], [16].

The submitted load function Hi(t) determines the maxi-
mum load submitted to a partition by the task τi itself after
its release together with all higher priority tasks belonging to
the same partition. The availability function AS(t) returns for
each time instant the cumulative computation time available
for the partition2 to execute tasks. The response-time of a task
τi is the time when Hi(t) intersects the availability function
AS(t) for the first time. In our system AS(t) is decreased by
the load of the available Critical tasks which if unbounded
could block the application level tasks forever. This motivates
us to enforce a bound on the load of the Critical tasks. This
bound will be referred to as CPU cap.

In DREMS OS the CPU cap can be applied to tasks on the
Critical and Application level to provide scheduling fairness
within a partition or hyperperiod. Between criticality levels,
the CPU cap provides the ability to prevent higher criticality
tasks from starving lower criticality tasks of the CPU. On the
Application level, the CPU cap can be used to bound the CPU
consumption of higher priority tasks to allow the execution
of lower priority tasks inside the same partition. If CPU cap
enforcement is enabled, then it is possible to set a maximum
CPU time that a task can use, measured over a configurable
number of major frame cycles.

The CPU cap enforcement is performed in work conserving
manner, i.e., if a task has reached its CPU cap but there are
no other available tasks, the scheduler will continue scheduling
the task past its ceiling. In case of Critical tasks when CPU cap
is reached, the task is not marked ready for execution unless
(a) there is no other ready task in the system; or (b) the CPU
cap accounting is reset. This behavior ensures that the kernel
tasks such as those belonging to Secure Transport, discussed
in Section V, do not overload the system, for example in
a denial-of-service attack. For the tasks on the Application
level, the CPU cap is specified as a percentage of the total
duration of the partition, the number of major frames, and the
number of CPU cores available all multiplied together. When
an Application task reaches the CPU cap it is not eligible to be
scheduled again unless the following is true: either (a) there
are no Critical tasks to schedule and there are no other ready
tasks in the partition; or (b) the CPU cap accounting has been
reset.

2In the original model [15] AS(t) is the availability function of a periodic
server.

TABLE I: DREMS Symbols used in Section IV

APP_INACTIVE The scheduler state in which tasks in temporal
partitions are not scheduled

APP_ACTIVE Inverse of APP_INACTIVE
firstrun A global variable, set whenever the major frame

has been changed
mfl A global circular linked list of minor frames used

by the scheduler
cur_frame Current minor frame.
HP_start Global variable, stores the start time of a new

major frame.

Procedure 1 Update Major frame
Input: frame {A sorted but not necessarily contiguous major frame struc-

ture}
Input: V alid(mf)

1: Reassign Task to CPU 0
2: Acquire update frame spinlock, disable preemption/interrupts
3: frame← Fill_Empty(frame)
4: Atomic :state← APP_INACTIV E
5: firstrun← true
6: mfl← frame.minorframelist
7: Atomic :state← APP_ACTIV E
8: Release update frame spinlock, enable preemption/interrupts

D. Major Frame Configuration

This section describes the mechanism used to configure
(or reconfigure during a mission) the partition scheduler, Pro-
cedure 1. Table I summarizes the key symbols used in this and
related subsections. During the configuration process that can
be repeated at any time without rebooting the node, the kernel
receives a major frame structure that contains a list of minor
frames. It also contains the length of the hyperperiod, partition
periodicity and duration. Note that major frame reconfiguration
can only be performed by a process with suitable capabilities.
The DREMS capability model is not discussed in this paper,
it can be found in [2].

Before the frames are set, the process configuring the frame
has to ensure that the following three constraints are met:
(C0) The hyperperiod must be the least common multiple of
partition periods; (C1) The offset between the major frame start
and the first minor frame of a partition must be less than or
equal to the partition period: (∀p ∈ P)(Op

1 ≤ φ(p)); (C2) Time
between any two executions should be equal to the partition
period: (∀p ∈ P)(k ∈ [1, N(p) − 1])(Op

k+1 = Op
k + φ(p)).,

where P is the set of all partitions, N(p) is the number of
partitions, φ(p) is the period of partition p and ∆(p) is the
duration of the partition p. Op

i is the offset of ith minor frame
for partition p from the start of the major frame, H is the
hyper period.

The kernel checks two additional constraints: (1) All minor
frames finish before the end of the hyperperiod: (∀i)(Oi +
Oi.duration ≤ H) and (2) minor frames cannot overlap,
i.e. given a sorted minor frame list (based on their offsets):
(∀i < N(O))(Oi +Oi.duration ≤ Oi+1), where N(O) is the
number of minor frames. Note that the minor frames need not
be contiguous, as Procedure 1 fills in any gaps automatically.

If the constraints are satisfied, then the task is moved to
CPU0 if it is not already on CPU0. This is done because
the global tick (explained in next subsection) used for imple-

Fig. 2: Two single-threaded processes run in separate partitions with a
duration of 60ms each. The schedule is dynamically reconfigured so that
each partition duration is doubled. A Critical task is responsible for calling
the update_major_frame system call. Duration of the active partition is cut
short at the point when update_major_frame function is called.

menting the major frame schedule is also executed on CPU0.
By moving the task to CPU0 and disabling interrupts, the
scheduler ensures that the current frame is not changed while
the major frame is being updated. At this point the task also
obtains a spin lock to ensure that no other task can update the
major frame at the same time. In this procedure the scheduler
state is also set to APP_INACTIVE, to stop the scheduling of
all application tasks across other cores. The main scheduling
loop reads the scheduler state before scheduling application
tasks. A scenario showing dynamic reconfiguration can be seen
in Figure 2.

Note that, though it is not shown in the algorithm, it is
possible to set the global tick to be started with a delay. This
delay can be used to synchronize the start of the hyperperiods
across nodes of the cluster. This is necessary to ensure that all
nodes schedule related temporal partitions at the same time.
This ensures that for an application that is distributed across
multiple nodes, its Application level tasks run at approximately
the same time on all the nodes which enables low latency
communication between dependent tasks across the node level.

E. Main Scheduling Loop

A periodic tick running at 250 Hz3 is used to ensure that a
scheduling decision is triggered at least every 4 ms. This tick
runs with the base clock of CPU0 and executes Procedure 2
in interrupt context only on CPU0. Procedure 2 is executed
only CPU0 so that every CPU switches the current partition
at approximately the same time, to within one global tick of
the scheduler. This algorithm enforces the partition scheduling
and updates the current minor frame and hyperperiod start
time (HP_start). The partition schedule is determined by
the mfl, which is a circular linked list of minor frames which
comprise the major frame. Each entry in the mfl contains that
partition’s duration, so the scheduler can easily calculate when
to switch to the next minor frame.

After the global tick handles the partition switching, the
main scheduler function, described in Procedure 3, executes.
This scheduler function is run on each processor. The main
part of the scheduler function is to get the next runnable

3The kernel tick value is also called ’jiffy’ and can be set to a different
value when the kernel image is being compiled

Procedure 2 Global Tick
1: if {Current CPU is CPU0} then
2: if firstrun and mfl 6= null then
3: firstrun← false
4: HP_start ← Sched_clock(){ Sched_clock() provides the cur-

rent uptime measured based on elapsed jiffies}
5: MF_start← HP_start
6: cur_frame← HEAD(mfl)
7: next_switch← HP_start+ cur_frame.duration
8: end if
9: if Sched_clock() ≥ next_switch then

10: cur_frame← cur_frame.next
11: next_switch← next_switch+ cur_frame.duration
12: if cur_frame == HEAD(mfl) then
13: HP_start← Sched_clock()
14: end if
15: end if
16: end if

Procedure 3 Main Scheduler Function - Called when task
wishes to give up the CPU or a CPU tick occurs
Input: TIF_NEED_RESCHED flag on the task is set by sched-

uler_tick(). Preemption is enabled.
1: Disable(Preemption)
2: RQ← Get_CPU_RQ(CurrentCPU)
3: prev_task ← RQ.curr_task
4: [index, next_task]← Pick_Next_Task(RQ, sys_partition)
5: if index >= MAX_RT_PRIO and state 6= APP_INACTIV E

then
6: [index, next_task]← Pick_Next_Task(RQ, cur_frame.partition)
7: if index >= MAX_RT_PRIO then
8: [index, next_task]← Pick_Next_Best_Effort_Task()
9: end if

10: end if
11: Update_Exec_T ime(prev_task)
12: RQ.curr_task ← next_task
13: if {CPU Cap Enabled} then
14: Update_Stats(prev_task)
15: Update_Disabled_Bit(prev_task)
16: end if
17: if prev_task! = next_task then
18: Context_Switch{RQ, prev_task, next_task}
19: end if
20: Enable(Preemption)

task from the runqueues, corresponding to lines 4− 10 in the
algorithm. These lines show the implementation of the mixed
criticality scheduling into the temporal partition scheduling.
For mixed criticality scheduling, the Critical system tasks
should preempt the Application tasks, which themselves should
preempt the Best Effort tasks. This criticality is displayed in
the algorithm, as Pick_Next_Task is called first for the system
partition. Only if there are no runnable Critical system tasks
and the scheduler state is not set to APP_INACTIV E will
Pick_Next_Task be called for the Application tasks. Thus, the
scheduler does not schedule any Application tasks during a
major frame reconfiguration. Similarly Pick_Next_Task will
only be called for the Best Effort tasks if there are both no
runnable Critical tasks and no runnable Application tasks.

F. Pick Next Task and CPU Cap

The Pick_Next_Task algorithm, described in Proce-
dure 4, returns MAX_RT_PRIO and null if there are
no runnable tasks in the runqueue. If CPU cap is dis-
abled, the Pick_Next_Task algorithm returns the first task
from the specified runqueue (see Section IV-B). The
Pick_Next_Best_Effort_Task() algorithm is not shown as it is

Fig. 3: Single Threaded processes 1000 and 1001 share a partition with a
duration of 60ms. Process 1000 has 100% CPU cap and priority 70; process
1001 has 20% CPU cap, and higher priority 72. Since process 1001 has a CPU
cap less than 100%, a ceiling is calculated for this process: 20% of 60ms
= 12ms. The average jitter was calculated to be 2.136 ms with a maximum
jitter of 4.0001 ms.

the default algorithm for the Completely Fair Scheduler class,
as implemented in Linux Kernel [13].

If the CPU cap is enabled, the Pick_Next_Task algorithm
iterates through the task list at the highest priority index of the
runqueue, because unlike the Linux scheduler, the tasks may
have had their disabled bit set by the scheduler as it enforced
their CPU cap. If the algorithm finds a disabled task in the
task list, it checks to see when it was disabled; if the task was
disabled in the previous CPU cap window, it reenables the task
and sets it as the next_task. If, however, the task was disabled
in the current CPU cap window, the algorithm continues
iterating through the task list until it finds a task which is
enabled. If the algorithm finds no enabled task, it returns the
first task from the list if the current runqueue belongs to an
application partition. If the current runqueue belongs to the
system or critical partition then MAX_RT_PRIO and null
since the CPU cap for critical tasks is a hard limit; see section
IV-C for a discussion of this behavior.

This iteration through the task list when CPU cap enforce-
ment is enabled increases the complexity of this algorithm to
O(n), where n is the number of tasks in that temporal partition,
from the Linux scheduler’s complexity of O(1). Note that this
complexity increase occurs only when CPU cap enforcement is
enabled and there is at least one actor that has less than 100%
CPU cap. In the worst case, all actors are given a partial (less
than 100%) CPU cap, the scheduler performance may degrade,
necessitating more efficient data structures.

To complete the enforcement of the CPU cap, the scheduler
updates the statistics tracked about the task and then updates
the disabled bit of the task accordingly, as seen in lines 13−16
of Procedure 3.

Example: Figure 3, shows the above mentioned scheduler
decisions when CPU cap is placed on processes that share a
temporal partition. To facilitate analysis, the scheduler uses
a logging framework that updates a log every time a context
switch happens. Figure 3 clearly shows the lower priority actor
executing after the higher priority actor has reached its CPU
cap. If the CPU cap of the higher priority process is set to
100%, it has no ceiling and therefore consumes all of the CPU

Procedure 4 Pick Next Task from RunQueue
Input: RQ {The scheduler runqueue}; partition {The currently active

partition}
1: prio_array ← RQ.PartitionRQ[partition]
2: next_task ← null
3: next_index←MAX_RT_PRIO
4: index← 0
5: while index < MAX_RT_PRIO do
6: index← FindF irstBit(prio_array.bitmap+ index) {find first

enabled bit after index}
7: if index >= MAX_RT_PRIO then
8: return MAX_RT_PRIO, null
9: end if

10: runlist← prio_array.queue+ index {runlist is a doubly linked
list containing all the tasks at that priority level}

11: if next_task == null then
12: next_task ← runlist[0]
13: next_index← index
14: end if
15: if {CPU Cap Enabled} then
16: for task in runlist do
17: if task.disabled == true then
18: if task.last_disabled_time < CPUCAP_WIN_start

then
19: task.disabled← false
20: next_task ← task
21: next_index← index
22: return next_index, next_task
23: end if
24: else
25: next_task ← task
26: next_index← index
27: return next_index, next_task
28: end if
29: end for
30: else
31: return next_index, next_task{CPU CAP is DISABLED}
32: end if
33: end while{This implies that all tasks are disabled due to CPU cap.}
34: if partition == sys_partition then
35: return MAX_RT_PRIO, null {the CPU cap for critical tasks is

a hard limit.}
36: end if
37: return next_index, next_task {returns the highest priority task if all

tasks are disabled or returns a null task with MAX_RT_PRIO.}

time within the partition (not shown in the figure). From the
scheduler log, the average jitter was calculated to be 2.136 ms
with a maximum jitter of 4.0001 ms. This jitter is consistent
with the value of jiffy used, 4 ms, indicating that the scheduler
would occasionally take an extra jiffy of time to switch to
the next minor frame. Also, no overshoot was observed in
the thread activity for all processes - neither process executed
outside its temporal partition.

V. SECURE TRANSPORT

In order to support communication and coordination be-
tween applications of different criticality, priority, and security
levels, we developed the DREMS Secure Transport (ST)
facility. ST is a managed communications infrastructure that
provides for datagram oriented exchange of messages between
application tasks. ST restricts the transmission of datagrams
according to both a communication topology and a Multi-Level
Security (MLS) policy ([17], [18], [2]), both of which must
be configured for each task by a trusted system administration
infrastructure. MLS defines a policy based on partially ordered
security labels that assign classification and need-to-know
categories to all information that may pass across process

boundaries. This policy requires that information only be
allowed to flow from a producer to a consumer if and only
if the label of the consumer is greater than or equal to that of
the producer.

The remainder of this section will provide an overview of
the core concepts of DREMS Secure Transport and discuss
the architecture of its implementation. Discussion of the MLS
policy and its enforcement or detailed empirical evaluation of
this facility, however, is outside the scope of this paper and
will not be included.

A. Secure Transport Overview

1) Endpoints: Endpoints are the basic communication ar-
tifact used by applications to transmit and receive messages;
they are analogous to socket handles in traditional BSD socket
APIs. Like traditional sockets, user space programs pass an
endpoint identifier to the send and receive system calls.
Unlike traditional sockets, however, unprivileged tasks may
not arbitrarily construct endpoints that allow for inter-process
communication with other tasks; such endpoints must be
explicitly configured by a privileged task acting as a trusted
system configuration infrastructure.

Endpoints are separated into four different categories with
different restrictions on their creation and use; for the purposes
of this discussion, we will describe only the two endpoint
classes that are used for IPC:

• Local Message Endpoints (LME): Local message
endpoints are the basic method of IPC, and may
be used to send messages to other tasks hosted by
the same operating system instance. These endpoints
must be configured by trusted system configuration
infrastructure and are subject to restrictions placed by
flows and security rules.

• Remote Message Endpoints (RME): Similar to
LMEs, RMEs are a mechanism for IPC between
tasks, but may be used to communicate with tasks
hosted by different operating system instances through
a network.

2) Flows: In ST, communication is allowed between two
LME or RME endpoints if and only if there exist mutually
compatible flows on each endpoint. A flow, assigned to an
endpoint, is a connectionless association with an endpoint
owned by a designated process (in DREMS, process identifiers
are statically assigned and globally unique). This association
determines if the local endpoint is allowed to send or receive
messages with the remote endpoint.

In all cases, flow assignment between two endpoints must
be mutual in order for communication to succeed, i.e. a sender
must have an outbound flow to the recipient, and the recipient
must have a inbound flow from the sender.

B. Secure Transport Architecture

The implementation of Secure Transport in DREMS is
broadly divided into two halves, which we will call the “ST
Support” and the “ST Reactor”. The Support portion of the
ST implementation contains most of the support infrastructure,
i.e. bookkeeping data and business logic required to implement

id: EndpointID
flows : Flows
recv_ready : semaphore
queue : EndpointQueue

Endpoint

mutex : spinlock
head : Message *
tail : Message *

EndpointQueue

source : ulong
source_eid :ulong
label : octet *
message : octet *

Message

EndpointTable EndpointID 0..*

0..*

mutex : R/W semaphore
endpoints : EndpointTable

ST Support

owner : EndpointID
destinations : Destination
direction : Direction

Flows

process : ProcessID
endpoint : EndpointID

Destination

0..*

0..*

Fig. 4: Simplified ST Support Architecture

id: EndpointID
endpoint : Endpoint *
socket : SocketHandle

Socket

SocketTable EndpointID

0..*

mutex : R/W semaphore
sockets : SocketTable
work_queue : STWorkQueue

ST Reactor

mutex : spinlock
head : STWorkItem *
tail : STWorkItem *

STWorkQueue

socket : SocketHandle
STWorkItem

0..*

Fig. 5: Simplified ST Reactor Architecture

basic operation, including enforcement of flows and security
restrictions. This portion also serves as the primary point of
entry for all system calls related to ST. The Reactor contains
the data structures and business logic required to send and
receive remote messages using the underlying UDP and SCTP
protocol stacks.

1) Secure Transport Support: Access to ST Support is con-
trolled by a single read/write mutex preventing race conditions
that may occur when a privileged task attempts to update
the system endpoint/flow configuration while regular tasks are
performing unprivileged operations. This read/write mutex has
three important properties:

1) It ensures that when a write lock is requested, no
further read locks are granted; ensuring that a pending
write (typically by a high priority task) will not be
indefinitely blocked.

2) It allows multiple readers to acquire the lock at
once, reducing the possibility of a priority inversion
blocking access to high priority tasks.

3) It is a sleeping lock, meaning that if the mutex cannot
be acquired by a task, it is marked inactive and not
scheduled again until either a timeout occurs or the
lock can be obtained.

4) It prevents priority inversion by supporting priority
inheritance: when a high priority process is blocked
while trying to acquire the mutex, the priority of the
current owner(s) is boosted to that of the top priority
waiter until they release the mutex.

A write lock is obtained whenever a system call is entered
that would create, update, or modify an endpoint - such system
calls may only be used by high priority privileged tasks.
Regular system calls — e.g. send, receive, or select — acquire
the mutex with a read lock only. This allows multiple tasks of
different criticality and priority levels to be active in the ST
infrastructure at once.

Most data structures are satisfactorily protected using this
scheme: all data structures (for example, tables maintaining
endpoint configuration, flow configuration, and destination
mappings) with one exception (discussed below) are read-only
to tasks performing unprivileged ST operations.

For this reason, most of the design of the ST Support
is outside the scope of this paper. The data structures that
maintain state for endpoints, shown in Figure 4, however, merit
further discussion. Endpoints are represented in the kernel by
a data structure that contains:

• Basic properties of the endpoint, e.g. the identifier,
type, security label, and maximum allowed buffer
sizes.

• The endpoint queue, a linked list of message objects
waiting to be received.

• A spinlock used to synchronize access to the endpoint
queue.

• A mutex (sleeping lock) used to wait for receipt of
messages.

The basic properties of the endpoint are not modified by
tasks accessing the endpoint through non-privileged system
calls, and are sufficiently protected by the ST read-write mutex
described above. The endpoint queue, however, is expected to
be manipulated by these non-privileged system calls, and if
not properly protected could be a source of priority inversions
and deadlocks. In order to avoid these cases, the endpoint op-
erations use a spinlock - a low overhead busy wait mutex that
temporarily disables preemption while in its critical section,
to protect access to the endpoint queue. In the event that a
task attempts to receive a message from an empty queue, a
mutex (sleeping lock) is available so the task can yield to
lower priority tasks that may be attempting to send messages
into that queue. In order to illustrate this, we will describe
the process through which messages are sent and received for
LMEs.

a) Local Message Endpoint - Sending a Message:
When a task enters the send system call, it first acquires a read
lock on the ST mutex. After successfully acquiring the mutex,
it retrieves the endpoint structure for the sending endpoint and
checks for a valid outbound flow for the destination. Presuming
a valid flow is found, it then retrieves the endpoint structure
for the destination endpoint, and checks that a valid destination
flow exists. If both flow checks pass, the task constructs a
message object to hold the message. The task then acquires the
destination endpoint’s spinlock for only as long as required to
place the message object on the endpoint queue’s linked list,
and signals the endpoint mutex before releasing the spinlock.
Note that when the spinlock is acquired, the task cannot be
preempted until the spinlock is released.

M1
1 O1

1 O2
1

M1
2 O1

2 O2
2

M1
3 O1

3 O2
3

C1
1 T1

1 T2
1 M2

1

C1
2 T1

2 T2
2 M2

2

C1
3 T1

3 T2
3 M2

3

Task Actor Activity
M1

ModuleProxy
Inform O1 of new state

M2 Activate engine
O1

OrbitalMaintenance
Publish new state

O2 Subscribe to new state
T 1

TrajectoryP lanning
Publish new command

T 2 Subscribe to new command
C1 CommandProxy Inform T 1 of command

Fig. 6: DREMS tasks : ModuleProxy tasks control thruster activation in
Orbiter and state vector retrieval from Orbiter. OrbitalMantenance tasks track
the cluster satellites’ state vectors and disseminate them. TrajectoryPlanning
tasks control the response to commands and satellite thruster activation.
CommandProxy tasks inform the satellite of a command from the ground
network. For these tasks, the subscript represents the node ID on which the
task is deployed. The total latency of the interaction C1

1 → M2
N represents

the total emergency response latency between receiving the scatter command
and activating the thrusters. This interaction pathway is bolded.

b) Local Message Endpoint - Receiving a Message:
When a task enters the receive system call, it first acquires
a read lock on the ST mutex. After successfully acquiring
the mutex, it retrieves the endpoint structure for the receiving
endpoint. The task acquires the spinlock on this endpoint
structure and attempts to remove a message from the linked
list. If no message exists, it releases the spinlock and performs
a timed sleep on the mutex. Once awakened (either through
a signal from a sender or through timeout), it re-acquires the
spinlock and attempts again to dequeue a message.

c) Synchronization Analysis: In the tasks outlined
above, two tasks of different priority levels can execute most
of the tasks of sending or receiving a message without con-
tending for a mutex. Most of the computationally intensive
work required for sending or receiving a message happens
while holding only the ST R/W mutex and executes at their
respective priority levels. The only place where such tasks may
contend is when inserting or removing an item in a linked list,
a very fast O(1) operation. Since that preemption is disabled
once the lock is acquired, we ensure that a higher priority task
cannot preempt this operation and prevent it from completing.

2) Secure Transport Reactor: The Reactor portion of the
ST architecture, a simplified version of which is shown in
Figure 5, consists of the data structures and business logic
required to send messages to tasks on other nodes. Similar
to the ST Support, the ST Reactor has a read/write mutex to
synchronize access to its internal data structures. Unlike the
ST Support, however, there is no requirement for per-endpoint
synchronization. Also unlike the ST Support the ST Reactor

is not entirely driven by threads from user level tasks. The ST
Reactor maintains a pool of kernel threads that handle receipt
of messages from the network stack and deliver messages to
their destination endpoint queues. To illustrate this, we will
describe sending and receiving a message on RMEs.

a) Remote Message Endpoint - Sending a Message:
Sending a message on RME is similar to sending a message
on a LME until the sending side flow check has succeeded.
At that point the task constructs the message object and enters
the ST Reactor. Then the task acquires a read lock on the ST
Reactor mutex and retrieves the necessary data structure (e.g.
socket handle) needed to send a message, using non-blocking
semantics, to the desired destination address. Finally the task
releases both the Support and Reactor mutexs and attempts to
send the message.

b) Remote Message Endpoint - Receiving a Message:
When a message arrives from the network stack, the ST
Reactor is notified via callback that a message has arrived.
When this occurs, an item containing the socket handle is
enqueued on a work queue serviced by the ST Reactor thread
pool. When one of the members of this thread pool accepts
the work item, it allocates a buffer and retrieves the data from
the network stack. This buffer is then immediately delievered
onto the endpoint queue of the recipient endpoint (requiring
only that the reactor thread hold the queue-specific spinlock)
and wakes any processes that may be blocked on receive
or select. When a process elects to receive the message, the
message is decoded and flows and security labels are checked
in the context of that process, using its default priority.

c) Synchronization Analysis: Tasks sending messages
need only contend for read locks on both the Support and
Reactor portions of the ST infrastructure. Therefore such tasks
will not interfere with other higher priority tasks trying to
send or receive. Receipt of messages by the Reactor kernel
threads merits some further discussion: the priority and scope
of these threads must be carefully chosen so as to not interfere
with the operation of any critical tasks. Several tasks must be
accomplished to correctly deliver messages: buffers must be
allocated to hold the message content, metadata attached to the
message must be demarshalled, finally flow and label checks
must be conducted. Performing all of these tasks early (i.e.
in the scope of the reactor thread pool) ensures that kernel
memory is not wasted on messages that might fail any one of
these stages and not be delivered. If these threads are scheduled
as real-time tasks, high levels of network traffic, e.g. a denial
of service attack, would starve any tasks of lower priority. For
this reason, we have elected to defer most of these activities
to actual receipt of a message by a process: the reactor thread
simply allocates a buffer to hold the message and enqueues it
on the appropriate endpoint queue. Thus, it is safer to run these
threads at maximum priority, and the computationaly intensive
parts of message delivery run at the actual process priority
when they are received.

VI. EXPERIMENT: A 3-NODE CLUSTER

To demonstrate the DREMS platform, a multi-computing
node experiment was created on a cluster of fanless computing
nodes with a 1.6 GHz Atom N270 processor and 1 GB of RAM
each. On these nodes, a cluster of three satellites was emulated

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

La
te

n
cy

 (
s)

Cluster Emergency Response Latency

Satellite 1

Satellite 2

Satellite 3

SCENARIO 1
Hyperperperiod = 250 ms
Application code utilization < 100 %
Sat 1 Latency : (𝜇 =37.2,𝜎2 =0.19) ms
Sat 2 Latency : (𝜇 =34.6, 𝜎2 =0.18) ms
Sat 3 Latency : (𝜇 =33.9, 𝜎2 =0.18) ms

SCENARIO 2
Hyperperperiod = 250 ms
Application code utilization = 100 %
Sat 1 Latency : (𝜇 =39.1, 𝜎2 =0.14) ms
Sat 2 Latency : (𝜇 =37.9, 𝜎2 =0.16) ms
Sat 3 Latency : (𝜇 =37.4, 𝜎2 =0.16) ms

SCENARIO 3
Hyperperperiod = 100 ms
Application code utilization = 100 %
Sat 1 Latency : (𝜇 =36.3, 𝜎2 =0.14) ms
Sat 2 Latency : (𝜇 =36.5, 𝜎2 =0.14) ms
Sat 3 Latency : (𝜇 =36.5, 𝜎2 =0.14) ms

(a) This is the time between reception of the scatter command by satellite 1 and the activation of the thrusters on each satellite,
corresponding to interactions C1

1 → M2
N of Figure 6. The three regions of the plot indicate the three scenarios: (1) image

processing application has limited use of its partitions and has a hyperperiod of 250 ms, (2) image processing application has
full use of its partitions and has a hyperperiod of 250 ms, and (3) image processing application has full use of its partitions and
has a hyperperiod of 100 ms. The averages and variances for the satellites’ latencies are shown for each of the three scenarios.

(b) The engine activation following reception of a scatter command is annotated for the relevant actors for scenario 2 shown
above. The scatter command causes the TrajectoryPlanning to request ModuleProxy to activate the thrusters for 500 ms. Notice
that the image processing does not run while the mission-critical tasks are executing - without halting the partition scheduling.
Also note that the context switching during the execution of the critical tasks is the execution of the secure transport kernel
thread. Only the application tasks are shown in the log; the kernel threads and other background processes are left out for clarity.

Fig. 7: DREMS Mixed Criticality Demo

and each satellite ran the example applications described in
Section I. We use these example applications to show that
the performance of mission-critical tasks is not affected by
application tasks. Because the performance of the cluster flight
control application is of interest, we explain the interactions
between its actors below.

The mission-critical cluster flight application (CFA) con-
sists of four actors: OrbitalMaintenance, TrajectoryPlanning,
CommandProxy, and ModuleProxy. ModuleProxy connects to
the Orbiter space flight simulator (http://orbit.medphys.ucl.ac.
uk/) that simulates the satellite hardware and orbital mechanics
for the three satellites flying in low Earth orbit. CommandProxy
receives commands from the ground network. OrbitalMain-

tenance keeps track of every satellite’s position and updates
the cluster with its current position. This is done by a group
publish subcribe interaction between all Orbital Maintenance
actors across all nodes. These CFA tasks and their interactions
are further explained in Figure 6.

Additionally, four image processing application (IPA) ac-
tors (1 actor per application instance) are deployed as applica-
tion tasks. These IPAs were written so that we can configure
the percentage of CPU cycles consumed by them. The four
IPAs are assigned to two partitions, such that each partition
contains two IPA actors. There is a third, shorter, partition in
which runs the OrbitalMaintenance actor, since it is a periodic
task - it updates the satellite state every second - and is not

critical in an emergency.

To ensure the cluster safety, the latency between the recep-
tion of the command from the ground station and the activation
of the satellites’ thrusters should be minimized, i.e. regardless
of other applications, the latency of the interaction C1

1 →M2
N ,

described in Figure 6, should remain as small as possible.
Note: since only the cluster leader (node 1) receives the scatter
command, CommandProxy and command publish on nodes 2
and 3 are not active. These latencies were calculated from
time-stamped messages. Using NTP (http://www.ntp.org), all
nodes’ clocks were synchronized to within 10 µs.

Figures 7a and 7b show the results from three different
scenarios: 1) hyperperiod of 250 ms, with IPA consuming less
than 50 percent CPU. 2) hyperperiod of 250 ms, with IPA
consuming 100 percent CPU and 3) hyperperiod of 100 ms,
with IPA consuming 100 percent CPU. As shown in figure 7a,
the emergency response latency over the three nodes was quite
low with very little variance, and did not correlate with either
the image application’s CPU utilization or the application’s
partition schedule. Since we show that the emergency response
has very low latency with little variance between different
application loads on the system, we provide a stable platform
for deterministic and reliable emergency response. As such,
the satellite cluster running the DREMS infrastructure is able
to quickly respond to emergency situations despite high appli-
cation CPU load and without altering the partition scheduling.
Figure 7b and demonstrates the proper preemption of the image
processing tasks by the critical CFA tasks for scenario 2.

VII. CONCLUSIONS AND FUTURE WORK

This paper propounds the notion of managed distributed
real-time and embedded (DRE) systems that are deployed
in mobile computing environments. These systems must be
managed due to the presence of mixed criticality task sets
that operate at different temporal and spatial scales, and share
the resources of the DRE system. The timing constraints and
resource sharing require effective mechanisms that can assure
both performance isolation and secure communications for
their correct application operation. To address these require-
ments, this paper describes the design and implementation of
a distributed operating system called DREMS OS focusing
on two key mechanisms: the scheduler and secure transport
mechanism that work synergistically. DREMS OS is part of a
larger project comprising both design-time and run-time tools.

We have verified the behavioral properties of the OS
scheduler, focusing on temporal and spatial process isolation,
safe operation with mixed criticality, precise control of process
CPU utilization and dynamic partition schedule reconfigura-
tion. We have also analyzed the scheduler and network level
properties of a distributed application built entirely using this
platform and hosted on an emulated cluster of satellites show-
casing the usefulness of model-driven design-time tools with
support for model checking and code generation significantly
reducing the complexity for the developer.

To extend this work further, we are working on the
response-time analysis on the task level and on design-
time analysis and verification tools for the component-level
scheduler, which operates within each component scheduling
the component’s operations. Additionally, such complex net-
worked systems with mission-critical tasks distributed among

many nodes require guarantees about the network Quality of
Service (QoS) for each task needing access to the network.
However the temporal partitioning of the application tasks
significantly affects task access both to the CPU and to network
resources. Finally, a more comprehensive fault diagnostics and
response infrastructure is needed for robust cluster perfor-
mance in adverse situations.

Acknowledgments: This work was supported by the
DARPA System F6 Program under contract NNA11AC08C.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
reflect the views of DARPA. The authors thank Olin Sibert of
Oxford Systems and all the team members of our project for
their invaluable input and contributions to this effort.

REFERENCES

[1] Document No. 653: Avionics Application Software Standard Inteface
(Draft 15), ARINC Incorporated, Annapolis, Maryland, USA, Jan. 1997.

[2] A. Dubey, W. Emfinger, A. Gokhale, G. Karsai, W. Otte, J. Parsons,
C. Szabo, A. Coglio, E. Smith, and P. Bose, “A Software Platform
for Fractionated Spacecraft,” in Proceedings of the IEEE Aerospace
Conference, 2012. Big Sky, MT, USA: IEEE, Mar. 2012, pp. 1–20.

[3] A. Dubey, A. Gokhale, G. Karsai, W. Otte, and J. Willemsen, “A Model-
Driven Software Component Framework for Fractionated Spacecraft,”
in Proceedings of the 5th International Conference on Spacecraft
Formation Flying Missions and Technologies (SFFMT). Munich,
Germany: IEEE, May 2013.

[4] W. R. Otte, A. Dubey, S. Pradhan, P. Patil, A. Gokhale, G. Karsai, and
J. Willemsen, “F6COM: A Component Model for Resource-Constrained
and Dynamic Space-Based Computing Environment,” in Proceedings of
the 16th IEEE International Symposium on Object-oriented Real-time
Distributed Computing (ISORC ’13), Paderborn, Germany, Jun. 2013.

[5] S. Vestal, “Preemptive Scheduling of Multi-Criticality Systems with
Varying Degrees of Execution Time Assurance,” in Proc. of 28th IEEE
Real-Time Systems Symposium, Tucson, AZ, Dec. 2007, pp. 239–243.

[6] S. Baruah, A. Burns, and R. Davis, “Response-Time Analysis for
Mixed-Criticality Systems,” in Proceedings of the 2011 32nd IEEE
Real-Time Systems Symposium, Vienna, Austria, Nov. 2011, pp. 34–43.

[7] A. Burns and R. Davis, “Mixed Criticality Systems – A Review,”
Department of Computer Science, University of York, Tech. Rep., 2013.
[Online]. Available: http://www-users.cs.york.ac.uk/~burns/review.pdf

[8] LynuxWorks, “RTOS for Software Certification: LynxOS-178.”
[Online]. Available: http://www.lynuxworks.com/rtos/rtos-178.php

[9] Autosar GbR, “AUTomotive Open System ARchitecture.” [Online].
Available: http://www.autosar.org/

[10] R. Obermaisser, P. Peti, B. Huber, and C. E. Salloum, “DECOS:
An Integrated Time-Triggered Architecture,” e&i journal (Journal of
the Austrian Professional Institution for Electrical and Information
Engineering), vol. 123, no. 3, pp. 83–95, Mar. 2006.

[11] B. Leiner, M. Schlager, R. Obermaisser, and B. Huber, “A Comparison
of Partitioning Operating Systems for Integrated Systems,” in Computer
Safety, Reliability and Security, ser. Lecture Notes in Computer Science.
Springer, 2007, vol. 4680/2007, pp. 342–355.

[12] K. Lakshmanan and R. Rajkumar, “Distributed Resource Kernels: OS
Suppport for End-To-End Resource Isolation ,” in Proceedings of the
2008 IEEE Real-Time and Embedded Technology and Applications
Symposium, St. Louis, MO, Apr. 2008, pp. 195–204.

[13] W. Mauerer, Professional Linux Kernel Architecture, ser. Wrox
professional guides. Wiley, 2008. [Online]. Available: http://books.
google.com/books?id=4eCr9dr0uaYC

[14] A. Dubey, G. Karsai, and N. Mahadevan, “A Component Model for
Hard Real-time Systems: CCM with ARINC-653,” Software: Practice
and Experience, vol. 41, no. 12, pp. 1517–1550, 2011.

[15] L. Almeida and P. Pedreiras, “Scheduling within Temporal Partitions:
Response-time Analysis and Server Design,” in Proc. of the 4th ACM
Int Conf on Embedded Software, Pisa, Italy, Sep. 2004, pp. 95–103.

[16] G. Lipari and E. Bini, “A Methodology for Designing Hierarchical
Scheduling Systems,” Journal of Embedded Computing, vol. 1, no. 2,
pp. 257–269, Apr. 2005.

[17] D. E. Bell and L. J. LaPadula, “Secure computer systems: Mathematical
foundations,” MITRE, Technical Report 2547, Volume I, 1973.

[18] O. Sibert, “Multiple-domain labels,” 2011, presented at the F6 Security
Kickoff.

