A Model-driven Performance Analysis and
Deployment Planning for Real-time Stream
Processing

Kyoungho An and Aniruddha Gokhale
ISIS, Dept. of EECS, Vanderbilt University, Nashville, TN 37235, USA
Email: {kyoungho.an, a.gokhale} @vanderbilt.edu

Abstract—Real-time stream processing in the cloud is gaining
significant attention for its ability to mine massive amounts of
data for a variety of applications, such as in reconnaissance mis-
sions or search-and-rescue operations. In cloud-based real-time
streaming applications, dynamic resource management mecha-
nisms are needed to support the real-time requirements of these
applications. However, for any dynamic resource management
technique to work, there is first a need to understand the
controllable properties (or parameters) of the stream processing
applications. Pinpointing these properties and separating them
from the application-specific properties that cannot be controlled
is hard and requires a scientific approach to obtain these in-
sights. This paper presents a model-driven performance analysis
approach for real-time streaming applications to pinpoint their
controllable properties. The same modeling framework then
makes deployment planning decisions, which is one dimension of
dynamic resource management. The presented research is part
of our larger effort towards a holistic framework to support
real-time and dependable cloud-based applications.

Index Terms—model-based performance analysis and deploy-
ment, real-time data processing, cloud computing.

I. INTRODUCTION

Recent trends indicate an increased demand for real-time
stream processing in the cloud involving massive amounts of
continuous streams of data. For example, in military-based
reconnaissance missions or in search-and-rescue operations,
there is a need for real-time processing of massive amounts
of continuous, incoming streams of data to identify specific
enemy targets or survivors, respectively. A number of stream
processing platforms have been developed for distributed,
real-time stream processing, such as Storm [1], S4 [2], and
Flume [3]. The design of these platforms is inspired by
Hadoop to process large-scale data sets, however, they are
developed to accomplish real-time stream processing unlike
batch processing in Hadoop.

Meeting the real-time requirements of the stream processing
tasks requires an assurance of predictable, end-to-end execu-
tion times from the infrastructure that hosts the different tasks
comprising the distributed stream processing activity, which in
turn requires effective dynamic resource management. Despite
the availability of sophisticated stream processing frameworks,
such as Storm, which aim to process data streams in real-
time by parallelizing the processing, assuring such bounds
through effective dynamic resource management is hard for
a variety of reasons. First, the task execution times depend on

the input data size, capacity of physical machines that host
these tasks, and the number of threads used in concurrent
processing. Additionally, queuing delays in the network that
hosts the distributed, communicating tasks are not predictable
causing further difficulty in bounding the end-to-end execution
times. Finally, a lack of effective mapping (i.e., deployment
or placement) for allocating the stream processing framework
components to the compute resources (e.g., virtual machines in
the cloud) gives rise to additional unpredictable performance
bottlenecks in processing the streams. All these factors degrade
latencies and throughput of the systems in unpredictable
ways, and makes it hard to design effective dynamic resource
management mechanisms.

More often than ever these problems are handled by a trial-
and-error approach. However, such an approach is inefficient,
non-scientific, not reusable, and does not provide a dependable
way to meeting the end-to-end real-time properties of the
applications. For effective dynamic resource management, it
is important to understand in what way can the application be
dynamically controlled so that the real-time properties of the
application can be met. This elicits the need to pinpoint and
separate the dynamically controllable properties of these appli-
cations from the non-controllable properties. Non controllable
properties are those that are imposed by the application logic,
which in turn dictates a specific structure to the way stream
processing blocks are composed. However, many other factors,
such as deployment decisions allocating stream processing
blocks to physical hosts and in turn the virtual machines,
tuning the infrastructure that hosts these processing blocks, and
configuring the network paths are all controllable properties.

An ad hoc approach to pinpointing the controllable proper-
ties is not a dependable solution. We surmise that a scientific
approach based on model-driven performance analysis and
deployment planning (shown in Figure 1) for distributed real-
time stream processing may provide the desired solution to
better understand these performance-related issues so that
subsequently effective dynamic resource management mecha-
nisms can be designed based on the insights gained. Model-
based performance analysis has hitherto been applied in many
domains. In our prior work [4], we applied model-driven engi-
neering (MDE) [5] for performance analysis of reconfigurable
conveyor systems in the context of variability in the physical
layouts. Moreno, et al. [6] describe a general approach for

SimEvents Simuation

Run

—)
simulation

results

Performance Engineer

Get
software/hardware
information

Application Developer

Develop and
deploy a topology

Build
a StormML i
T = : tl?:;llj:rﬂlt:d A data center where a Storm topology is deployed
0D E topology ry
: °] Get codes of ﬁ/ e\
E Wy SimEvents simulation o @ .
E ° @ and pluggable = o ? | 1
Storm scheduler o 6 6 L
StormML
Fig. 1. Model-based Process of Performance Analysis and Deployment Planning

exploiting MDE for software performance analysis. MDE is
not only applied in software analysis, but also deployment
and configuration. In our prior work [7], [8], we showed
how model-driven engineering is used to deploy and configure
distributed real-time and embedded (DRE) applications.

For this paper we have focused on the Storm [1] stream
processing framework. Our approach is based on profiling
several different Storm-based stream applications with differ-
ent topologies, where a topology in Storm parlance is the
structural composition of Storm processing blocks each of
which performs some stream processing task. In this context,
our MDE-based solution comprises the following artifacts:
first, a domain-specific modeling language (DSML) [9] de-
fined for Storm provides intuitive abstractions to performance
engineers to run simulations and to deploy their proposed
topologies. Second, using the models defined in the DSML,
performance details such as bottleneck points, throughput, and
latency of each software component, and end-to-end latency of
streams are analyzed by automating the execution of a discrete
event simulation and obtaining the insights. Third, generative
capabilities of the DSML are used to automate the overall
analysis and the deployment process.

The rest of the paper is organized as follows: Section II
describes our model-based performance analysis approach;
and Section III offers concluding remarks alluding to future
work.

II. MODEL-BASED ANALYSIS FOR STORM

This section describes our model-based process for analyz-
ing the performance bottlenecks in real-time stream processing
applications implemented in Storm.

A. Background of Storm

For our research we have used the Storm stream processing
framework. Applications in Storm use two specific building

blocks or Executors called Spouts — which are the source of
data streams, and Bolts — which process the data streams,
may perform operations such as filtering and join, and may
produce other streams. Spouts and Bolts can be composed in
various configurations to form Storm application topologies.
The connections between Spouts and Bolts can be defined
based on grouping strategies. A topology can be arbitrarily
complex. These logical abstractions must be deployed on
hardware resources called a Storm cluster, which is made
up of two kinds of hardware nodes: Nimbus (master node)
and Supervisor (worker node). Nimbus is responsible for
distributing code as well as assigning tasks to Supervisors.
Supervisors execute software components of a topology.
Because performance of a Topology can be affected by
hardware specifications, each Supervisor contains its hardware
specifications as attributes such as the number of CPUs,
memory size, and network bandwidth. Each Supervisor in-
cludes Slots where worker processes execute. Each Slot is
differentiated by its port number. A worker process executes a
subset of a specific topology and runs one or more executors.

B. StormML: MDE Framework for Storm

Figure 1 shows the overall process of performance bottle-
neck analysis and deployment planning for Storm applications
using our MDE framework called StormML. First, an appli-
cation developer develops a Storm-based application, which is
then deployed in a Storm cluster by the Storm’s default sched-
uler. The Storm’s default scheduler uniformly uses resources
by ordering supervisors in terms of available slots. Note that
this default deployment may not necessarily provide the best
performance. Next, to conduct performance analysis, a Storm
model is built using our DSML using data from performance
profiling of the test execution. Once the Storm model is built,
a performance engineer generates a Simulink SimEvent model

from the original model to run discrete event simulations
generated by the GME interpreter. Once the SimEvent sim-
ulation completes, it identifies the software components that
are bottlenecks, and overall application’s throughput and end-
to-end latency. Based on the simulation result, the performance
engineer can suggest a new deployment plan to improve
performance and run another simulation. Through an iterative
process, if an optimal deployment plan is determined, a Storm
topology is resubmitted to a cluster to run.

The Generic Modeling Environment (GME) [10] is used to
develop the DSML named StormML and generative capabil-
ities for StormML. Figure 2 illustrates the StormML meta-
model, which is at the heart of the DSML. The StormML
meta-model consists of the first class concepts of Storm
cluster for hardware components and Storm Topology for
software components. For analyzing a topology, we have
defined profiler performance metrics such as the number of
tasks, average execution time, average input size, average
input rate are defined as attributes in the Executor model. In
the Connection models, a grouping is defined as an attribute
because Storm provides several grouping mechanisms for
routing output streams differently.

StormML
<<Model>>

[K]
o 7]
Cluster Topology
<<Model>> <<Model>>
ot ot
Nimbus Executor
<<Model>> <<Atom>>
host_name : field 1D field
zookeeper_server : field num_tasks : field
o ? arg_exe_time : field
arg_input_size : field
Supervisor arg_input_rate : field
<<Model>>
nimbus_host : field
zookeeper_server : field
num._cpus : flowd Spout Bolt % BoltToBolt
mem_size et <<Atom>> |00 o 0." | <<ptom>> |° _-| <<Connection>> |0J*
net_bw : field sc Y ast 0.*
o ? a5t grouping : field
Slot
<<Model>> SpoutToBolt
<< ti > | 0.0
port - field Connection>:
grouping - field

SpoutRef BoltRef
0.0 << ce!

Fig. 2. Meta-model of StormML

To find an optimal deployment, the StormML provides
modeling components describing how software is mapped to
hardware. We used the GME Reference feature to refer entities
defined in one model to be referred in another. Spout and Bolt-
based software topologies have reference components, and the
reference components are contained in Slots under Supervisors
as it is referred as working slots. Our StormML runs a Storm
topology which is deployed by Storm’s default scheduler and
retrieves information defined in the meta-model.

Figure 3 shows a model of a topology defined using Stor-

mML for a canonical example of word counting that executes
in a Storm cluster. In the example, input streams flow into the
topology via a Spout named WordReader. Next, output streams
of the Spout flow in two Bolts named WordNormalizers, where
sentence streams are split into words. A Shuffle grouping (i.e.
which is a routing strategy) is used for the stream to balance
the stream into multiple Bolts. After the word normalizing
process, output streams of each WordNormalizer are sent to
the next Bolts named WordCounters, which finally count the

words.

WordNormalizer WordCounter

o

"

WordReader
_—

WordNormalizer WordCounter

Fig. 3. StormML for Word Count

Figure 4 illustrates the generated SimEvents model for
the Word Count example. In the generated model, the Wor-
dReader generates a stream periodically by a defined interval.
OutputSwitch distributes a stream into two input queues of
WordNormalizers in a round robin fashion. Each Bolt has
its own FIFO queue. WordNormalizers contain OutputSwitch
because processed tuples should be sent to multiple Bolts. In
our model, OutputSwitch also distributes tuples in a round
robin fashion. Such a distribution may be changed in the
SimEvent model depending on what is the grouping strategy
used (e.g., Shuffle or Field are one of many groupings provided
by Storm that defined how streams are routed in a topology).
The total throughput and end-to-end latency can be computed
using timer components: StartTimer and ReadTimer. More-
over, to find bottleneck Bolts, server and queue components
offer statistical data.

III. CONCLUDING REMARKS

The paper described a model-driven tool for analyzing and
deploying real-time stream processing applications so that
performance bottlenecks can be pinpointed, and subsequently
dynamic resource management solutions can be defined. In the
current state, the overall process and meta-model of the tool
has been developed. Our ongoing work is implementing GME
interpreters to generate SimEvents models from StormML
and implementations of Storm’s pluggable schedulers from
StormML. Currently, StormML and SimEvents models are
manually created. If interpreters are completed, hardware and
software models for StormML are automatically generated by
the interpreters from results of test operations. Moreover, the
interpreters will transform the StormML into a SimEvents
model to run discrete event simulation. As a result, through

A~
in Z

Total Number of Jobs

~

in Z
3 #d Turnaround Time
OUT B3 1N et

5 - ,oum INUSF
111 ouT 3| IN ouTE-B|IN o) - S ouTR-B|in ouT P33 IN
ouTt ,J» our2 : ouTp-»(in @
@ ouTp-3{in outhelin E FIFD Queue WordNormalizer | Output Switchi Path Combiner FIFO Queue2 ‘WordCounter | Fead Timer
- out2 Entity Sink
WordRearder Start Timer Dutput Switch »1» L ,oun Nt SF '
i I ouTP-AIN OUTP-BIIN - :DUTQ 171 outp-n(in ouT-3|IN ouTp-3|in ouThp-3lin @
FIFO Queuel ‘WordNormalizer Output Switch2 Path Combiner1 FIFD Queve3 ‘WordCounter2 Read Timer1 Entity Sink1
Fig. 4. SimEvents Model for Word Count
performance evaluation by simulations, an optimal deploy- National Science Foundation.
ment plan is decided by performance engineers and a Java
P y P & REFERENCES

implementation of a pluggable scheduler is made based on
the determined deployment plan.

Once the GME interpreters are implemented, we need to
refine generated SimEvents models to make it more realistic to
actual running Storm applications. In Storm, there are various
groupings in Storm such as All grouping, Global grouping,
Fields grouping, and Shuffle grouping. In the word count
example, only Fields grouping and Shuffle grouping are used,
and our current model does not consider that the number
of tuples sent to multiple executors is different because of
different word frequency. Statistical data of input sizes and
input arrival rate for each Bolts should be collected from test
operations and applied as parameters in simulation models to
refine simulation results.

Moreover, we would like to improve our modeling appli-
cation to automatically find out an optimal deployment plan
for users instead of manual analysis. There have been vari-
ous research conducted in deployment optimization problem
with diverse techniques like genetic algorithms and constraint
satisfaction problems (CSP) [11], [12]. In our prior work, we
applied a hybrid algorithm that combines worst-fit bin packing
with evolutionary algorithms (genetic and particle swarm opti-
mization) for maximizing service uptime of smartphone-based
DRE systems [13]. In the work, we extended a framework for
spatial deployment algorithm called ScatterD [14]. Likewise,
we can extend and apply existing solving techniques and
frameworks to find an optimal hardware/software mapping for
real-time stream processing.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation NSF SHF/CNS Award CNS 0915976 and NSF
CAREER CNS 0845789. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the

[1]
[2]

[3]
[4]

[5]
[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

(14]

[15]

“Storm,” https://github.com/nathanmarz/storm/wiki.
L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
stream computing platform,” in Data Mining Workshops (ICDMW), 2010

IEEE International Conference on. IEEE, 2010, pp. 170-177.
“Apache Flume,” http:/flume.apache.org.

K. An, A. Trewyn, A. Gokhale, and S. Sastry, “Model-driven Perfor-
mance Analysis of Reconfigurable Conveyor Systems used in Material
Handling Applications,” in Second IEEE/ACM International Conference
on Cyber Physical Systems (ICCPS 2011). Chicago, IL, USA: IEEE,
Apr. 2011, pp. 141-150.

D. C. Schmidt, “Model-Driven Engineering,” IEEE Computer, vol. 39,
no. 2, pp. 25-31, 2006.

G. Moreno and P. Merson, “Model-driven performance analysis,” Qual-
ity of Software Architectures. Models and Architectures, pp. 135-151,
2008.

A. Gokhale, B. Natarajan, D. C. Schmidt, A. Nechypurenko, J. Gray,
N. Wang, S. Neema, T. Bapty, and J. Parsons, “CoSMIC: An MDA
Generative Tool for Distributed Real-time and Embedded Component
Middleware and Applications,” in Proceedings of the OOPSLA 2002
Workshop on Generative Techniques in the Context of Model Driven
Architecture. Seattle, WA: ACM, Nov. 2002.

T. Lu, E. Turkay, A. Gokhale, and D. C. Schmidt, “CoSMIC: An
MDA Tool suite for Application Deployment and Configuration,” in
Proceedings of the OOPSLA 2003 Workshop on Generative Techniques
in the Context of Model Driven Architecture. Anaheim, CA: ACM,
Oct. 2003.

M. Mernik, J. Heering, and A. M. Sloane, “When and How to Develop
Domain-specific Languages,” ACM Computing Surveys, vol. 37, no. 4,
pp. 316-344, 2005.

A. Lédeczi, A. Bakay, M. Mardti, P. Volgyesi, G. Nordstrom, J. Sprinkle,
and G. Karsai, “Composing Domain-Specific Design Environments,”
Computer, vol. 34, no. 11, pp. 44-51, 2001.

D. Saha, R. Mitra, and A. Basu, “Hardware software partitioning
using genetic algorithm,” in VLSI Design, 1997. Proceedings., Tenth
International Conference on. 1EEE, 1997, pp. 155-160.

Y. Vanrompay, P. Rigole, and Y. Berbers, “Genetic algorithm-based
optimization of service composition and deployment,” in Proceedings
of the 3rd international workshop on Services integration in pervasive
environments. ACM, 2008, pp. 13-18.

A. Shah, K. An, A. Gokhale, and J. White, “Maximizing service uptime
of smartphone-based distributed real-time and embedded systems,” in
Object/Component/Service-Oriented Real-Time Distributed Computing
(ISORC), 2011 14th IEEE International Symposium on. 1EEE, 2011,
pp. 3-10.

J. White, B. Dougherty, C. Thompson, and D. C. Schmidt, “Scatterd:
Spatial deployment optimization with hybrid heuristic/evolutionary al-
gorithms,” ACM Transactions on Autonomous and Adaptive Systems
(TAAS), vol. 6, no. 3, p. 18, 2011.

K. An, S. Pradhan, F. Caglar, and A. Gokhale, “A publish/subscribe
middleware for dependable and real-time resource monitoring in the
cloud,” in Proceedings of the Workshop on Secure and Dependable
Middleware for Cloud Monitoring and Management. ACM, 2012, p. 3.

