
Automated Redeployment of Real-Time Systems Informed by User-Provided
Workflows

James Edmondson, Aniruddha Gokhale, Sandeep Neema
Dept of EECS, Vanderbilt University

Nashville, TN 37212, USA
{james.r.edmondson,a.gokhale,sandeep.neema}@vanderbilt.edu

Abstract—Distributed, real-time and embedded (DRE) sys-
tems are a subset of computing applications that require
stringent quality-of-service despite operating in environments
with scarce CPU, memory, or network resources. A general lack
of automated tools for redeploying DRE systems in a timely
manner upon incurring failures or degradation in QoS have
required an engineer or developer to reboot the system and
redeploy the important components manually. Whether this
type of delay is acceptable to users of the DRE system depends
on the context of the application usage, but for mission-critical
applications, such outages and delays can result in loss of
money and lives. In this paper, we discuss our efforts and
elaborate on the challenges in the area of middleware to
faciliate dynamic redeployment of continuously available and
potentially mission-critical DRE systems.

Keywords-redeployment, constraint satisfaction, optimiza-
tion, quality of service, cyberphysical systems

I. INTRODUCTION

One of the major difficulties with pervasive distributed,
real-time and embedded systems (DRE) is that they are
continuous systems that require solutions to active problems
within time constraints that cannot be determined offline
because timing is absolutely critical—often at the expense of
money or lives. It is within this context that we are develop-
ing middleware solutions into the Multi-Agent Distributed
Adaptive Resource Allocation (MADARA) framework, an
open source toolkit for DRE system developers. Our current
work in progress involves the timely redeployment of dis-
tributed applications optimized in accordance to user-defined
constraints and workflows.

To concretely describe our work, consider a motivating
scenario shown in Figure 1. The context of Figure 1 could
be a disaster recovery scenario, e.g., an earthquake-ravaged
metropolitan area where thousands of ground-based drones
have been deployed to search for survivors and gas leaks.
Because of the destruction, controllers of the drones are
restricted to satellite connections and the bandwidth avail-
able over this limited network resource is only enough for a
handful of dedicated sessions. Consequently, the controllers
can only maintain communication with a limited subset of
the drones.

An application workflow is specified which allows these
special drones to serve as collection points for the impor-

Figure 1. Example Deployment Workflow of Four Drones Broadcasting
in and Collecting from Dynamic Groupings

tant sensor readings, images, and audio from the disaster
zone as well as the communication point to human-based
controllers. As the drones move around the area, an earlier
optimal deployment of these special drones may become
out-of-date, and a redeployment of the specialized collection
and controller communication logic may be necessary in
order for the special drones to be in range of their group
within the workflow. The drones are also battery-powered
so any unnecessary computation or communication should
be minimized to reserve power.

Consequently, this DRE scenario imposes the following
requirements for a (re)deployment solution:

1) Users must be able to define a flexible deployment
workflow for thousands of drones

2) Algorithms for approximating the workflow against
the current network conditions must be able to execute
quickly (sub-second runtime is preferred). Failure to
do so may result in loss of drones or inability to find
survivors.

3) The middleware should also be able to detect failure
or success of a running application as this may effect
the deployment. In fact, if a program fails (e.g., a ra-
dioactivity detecting sensor fails or reports dangerous
levels), the deployment may need to change so that the



drone groups keep their distance from contaminated
sectors, as losing a drone would result in potentially
finding less survivors and shorter system uptime.

4) In addition to being able to specify a workflow, DRE
system integrators may also want to specify con-
straints on or between nodes. For instance, the special
collecting drones may have a deployment constraint
that specifies that the drone must have more than
20% battery power remaining or else the deployment
must change immediately (unless all other drones are
operating at 20% or less power).

5) This motivating scenario does not mirror an area
coverage problem and actually reflects an optimization
problem on top of the subgraph isomorphic problem
(an NP complete problem) where subgraphs may not
communicate directly at all. The subgraphs are also
arbitrarily defined by the user according to the re-
quirements of their distributed applications, and we
consider the ”optimal deployment” to be the one
that minimizes total latency along the edges of all
subgraphs.

In this paper, we discuss ongoing work in this problem
in applying a heuristic called the Comparison-based Iter-
ation by Degree (CID) heuristic to approximate optimal
redeployments, and augmenting deployment middleware to
inform the participants of the deployment (the drones) that
a redeployment is necessary. The remainder of this paper
is organized as follows. In Section II, we look at related
work in deployment frameworks and constraint satisfaction
problem solving. In Section III, we discuss our solution
approach involving knowledge and reasoning, advanced AI
and heuristics, and deployment middleware. Section IV
highlights ongoing challenges in our work that are actively
being researched and addressed. Finally, Section V discusses
the contributions of the paper as well as future work.

II. RELATED WORK

A. Deployment and Testing

Most networked deployment and testing infrastructures
[1], [2] use centralized controllers to instrument, control,
and sequence deployment entities. None of them appear
to support real-time redeployment and these centralized
controllers are a bottleneck and central point-of-failure that
may result in loss of connectivity and control of the real-
time system until it is rebooted. This is an unacceptable risk
for DRE systems.

B. Constraint Satisfaction Problem Solving

The drone deployment problem requires approximations
of a constraint satisfaction problem involving thousands of
nodes within a timely manner. Constraint satisfaction solvers
[3], [4] have managed to scale approximations and optimal
solutions to hundreds and even thousands of features and
nodes. Unfortunately, these solutions take time (generally

hundreds to thousands of seconds—afterall, CSPs are NP
complete problems).

Other research has gone into local searches like genetic
algorithms [5] and combinations of neural networks [6] or
knowledge and reasoning [7] to help the local searches con-
verge to optimal solutions quickly. However, these solutions
still take hundreds of seconds and may even take longer than
some of the CSP solutions noted earlier.

C. Area Coverage and Sensor Networks

Sensor networks are a widely studied technique for
building routing networks for information in a resource-
constrained environment. In general, these sensor networks
target deployments of a single application topology in such
a way that routing is accomplished across an entire network
(solving the Area Coverage problem) via potential fields [8],
quorums [9], and other techniques. The main difference
between these sensor network solutions and ours is that
we’re targeting a different type of deployment problem.
Our scenario does not need full area coverage, which is
not NP complete and easier to solve. The motivating sce-
nario requires a drone cloud that is separated by controller
according to an arbitrary data flow that may not allow or
encourage communication between disparate subgraphs. It’s
important to stress that each subgraph could be hierarchical
or cyclic structure and Figure 1 is meant as a simplified
example, but it’s also not an area coverage problem. Further,
the subgraphs may involve secondary functions–like sensing
radiation versus thermal imaging–that are orthogonal to the
function of searching for survivors.

III. SOLUTION APPROACH

In this section we outline our approach that is integrated
into the Multi-Agent Distributed Adaptive Resource Alloca-
tion (MADARA) suite of C++ tools to tackle the problems
of redeployment in online DRE systems. Section III-A
highlights our progress in heuristics and genetic algorithms
which can approximate optimal application deployments in
milliseconds. In Section III-B, we describe our distributed
knowledge and reasoning system which allows deployments
to be approached from a host-agnostic, knowledge-centric
perspective. In Section III-C, we outline our static deploy-
ment tools for one shot initial configurations of processes.
We plan to integrate the heuristics into our existing mid-
dleware to facilitate real-time redeployments in continuous
systems.

A. Approximating Optimal Workflows

Recently, the MADARA suite has adopted the
Comparison-based Iteration By Degree (CID) heuristic [10]
for approximating networks of processes according to a
user-provided workflow. This tool is the basis of our efforts
in approximating a distributed application, and we have
further optimized this heuristic by reducing its runtime



Table I
WORKFLOW DESCRIPTION FOR FOUR SPECIAL DRONES, EACH
COLLECTING FROM A QUARTER OF THE DRONE POPULATION

12 0 → [size/4)
size/4 → [size/4, size/2)
size/2 → [size/2, 3*size/4)

3*size/4 → [3*size/4, size)

footprint from seconds to tens of milliseconds for tens of
thousands of processes, compared to hundreds of seconds
to hours with traditional CSP solvers and local search
techniques.

The CID heuristic works by analyzing a deployment (an
example of which is shown in Table I and optimizing the net-
work according to the degree (essentially, the connectivity)
of nodes in the associated graph. The higher the degree of
the node in the graph, the more stress that a bad deployment
choice affects the rest of the deployment because the user has
indicated that this node is important and is communicating
with others. For our motivating scenario, each node is a
drone in the deployment.

Algorithm 1 CID Heuristic
1: for all i ∈ deployment graph do
2: if degree (i) > 0 then
3: solution[i] ← best candidate (utilities[degree(i)])
4: end if
5: end for
6: for all i ∈ deployment graph do
7: if degree (i) > 0 then
8: for j ∈ connections(deployment graph, i) ∧ j /∈

solved(solution) do
9: solution[j] ← best candidate (latencies[i])

10: end for
11: end if
12: end for
13: for all i ∈ deployment graph ∧ i /∈ solved(solution) do
14: solution[i] ← best candidate (utilities[size])
15: end for

The CID Heuristic shown in Algorithm 1 begins by
iterating over the deployment and placing candidates based
on lowest latency for the degree. We place our lowest total
latency candidates on the nodes with the highest connectivity
(lines 1-5) and then iteratively fill in their closest neighbors
when possible on lines 6-12 (i.e., when it does not conflict
with other high degreed nodes in the DRE application
workflow). The final phase of the CID (lines 13-15) deals
with nodes that are not connected to the rest of the DRE
application workflow, e.g., for worker drones that do not
communicate with the drone collector and serve as sentries,
data analyzers, or passive entities whose results can be
processed or collected offline (non-mission critical).

The algorithm produces optimal solutions for deployments

with disjoint subgraphs, as is the case with our motivating
scenario, and does so in less than 20 milliseconds for
deployments of 10,000 drones or components using modern
PC architectures. For drone hardware operating in the mhz
range, this may take up to a second, but the number of
supported drones is unlikely to be so high if we’re doing
computation on a drone processor. It does not produce
optimal deployment in all cases because that would require
a solution that solves the subgraph isomorphic problem, a
known NP Complete problem [11].

A large portion of our current investigations are special-
ized in finding out what deployments result in poorer per-
formance and the modifications we can make to correct this
(e.g., changes to the heuristic or pairing the heuristic with
local search techniques or backtracking and randomization).
The goal of producing our heuristics is to not only to solve
the motivating scenario but redeployment of DRE systems
in the general case.

B. Informing Processes of Change

The MADARA suite of tools includes a distributed
Knowledge and Reasoning Language (KaRL) engine that
facilitates a host-agnostic method of data processing that is
ideal for informing the drones that a redeployment is nec-
essary. This engine was developed for real-time, continuous
systems and is capable of processing knowledge rules in mhz
on ghz processors and khz on Atom-based drone processors.
It also enforces temporal, priority, and update consistencies
for knowledge that is disseminated across the network,
which makes it ideal for dealing with faults, failures, and
unreliable networks.

C. Deployment Configuration

The MADARA suite includes a flexible deployment and
testing suite of tools called the KaRL-Automated Testing
Suite (KATS) which provides decentralized, portable process
management to DRE developers. KATS presents a simple
XML-based interface for specifying executables, command
lines, kill times and signals, input and output redirection, and
various other operating system-neutral configuration settings
for each process in the deployment. This allows DRE system
developers in our motivating scenario to define the actions
required during a deployment and redeployment, the logic
that a collector drone or a sensing drone must execute, and
the order in which drone services must launch, including
timing delays or dependencies with other drones in the
deployment.

Embedded into the KATS tool set is a fine-grained process
life cycle that allows for dynamic sequencing with microsec-
ond precision (dependent on network transports available).
The lifecycle allows for the drones to barrier on subgraphs
to become available or establish preconditions specific to
their subgraph.



IV. REMAINING CHALLENGES

A. Custom Constraints

Within MADARA and the CID heuristic, we currently
have no way to specify custom constraints which may be
very important to the appropriate redeployment solution for
a DRE system. For instance, if the battery power of a drone
is too low to allow it to serve as a special collection drone,
then it should not be eligible for a node specified in the
deployment as having a high degree.

Once we have a system in place, we will have to incorpo-
rate constraint checking mechanisms into Algorithm 1 and
local searches in a way that is both robust and efficient.
Additionally, we are working on mechanisms to incorporate
constraints and workflows into the KATS XML-based input
for processes.

B. Better Approximation

The CID heuristic does not necessarily always find an
optimal solution (the lowest total aggregated latency across
all edges of all subgraphs). The problem we are working
on is actually a type of subgraph isomorphism problem—
defined as a computational task in which two graphs are
given as input and one must determine if one of the graphs
is a subgraph (in this case the user-defined workflow is the
subgraph) [11].

We are currently working on genetic algorithms and time-
limited backtracking to take over the work of approximating
the user-provided workflow after being seeded with the
results of the CID heuristic and variations of that heuristic.
We’ve had some success with this approach, but more
work is needed with local search techniques like genetic
algorithms to produce better approximations faster.

C. Addressing Continuous Semantics

Inside of our deployment framework, we need to add
mechanisms to address redeployment issues. For instance,
what if the process that is being redeployed had side
effects—e.g., a database? How do we provide developers
with tools to fine-tune how the redeployment behaves?

We are working on enhancements to the KaRL engine to
support file transfer to meet the challenge of side effects,
and we are investigating extending the process lifecycle of
KATS to support new phases like on success, on failure,
and on redeploy to allow for changes in deployment logic,
constraints, and workflow information into the XML-based
input files to provide a more robust solution.

V. CONCLUSIONS

In this paper we have outlined the need for tools and
techniques to facilitate dynamic redeployments of failing
or out-of-date DRE applications. Our ongoing work with
tailoring the MADARA suite (open source and download-
able from madara.googlecode.com) seeks to address this
need via effective knowledge and reasoning, heuristics, and

deployment technologies targeted at continuous, mission-
critical DRE systems. Our approach is generic enough to
address most types of DRE applications, and fast enough
to provide optimized solutions in sub-second time. Though
we have made progress toward our goals and pushed the
state-of-the-art in this regard, we still have ongoing work
in providing custom constraints, better approximations, and
mechanisms to address continuous semantics.

REFERENCES

[1] C. Dumitrescu, I. Raicu, M. Ripeanu, and I. Foster, “Diperf:
An automated distributed performance testing framework,” in
in 5th International Workshop in Grid Computing. IEEE
Computer Society, 2004, pp. 289–296.

[2] T. Li and T. Bollinger, “T.: Distributed and parallel data
mining on the grid,” in Proc. 7th Workshop Parallel Systems
and Algorithms, 2003.

[3] P.-E. Hladik, H. Cambazard, A.-M. Daplanche, and
N. Jussien, “Solving a real-time allocation problem
with constraint programming,” Journal of Systems
and Software, vol. 81, no. 1, pp. 132–149, 2008.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0164121207000672

[4] J. White, D. Schmidt, D. Benavides, P. Trinidad, and A. Ruiz-
Cortes, “Automated diagnosis of product-line configuration
errors in feature models,” in Software Product Line Confer-
ence, 2008. SPLC ’08. 12th International, sept. 2008, pp.
225–234.

[5] L. Ingber and B. Rosen, “Genetic algorithms and very
fast simulated reannealing: A comparison,” Mathematical
and Computer Modelling, vol. 16, no. 11, pp. 87 –
100, 1992. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/089571779290108W

[6] A. Javadi, R. Farmani, and T. Tan, “A hybrid intelligent ge-
netic algorithm,” Advanced Engineering Informatics, vol. 19,
no. 4, pp. 255 – 262, 2005.

[7] Y. Hu and S. Yang, “A knowledge based genetic algorithm for
path planning of a mobile robot,” in Robotics and Automa-
tion, 2004. Proceedings. ICRA ’04. 2004 IEEE International
Conference on, vol. 5, april-1 may 2004, pp. 4350–4355.

[8] A. Howard, M. J. Mataric, and G. S. Sukhatme, “Mobile sen-
sor network deployment using potential fields: A distributed,
scalable solution to the area coverage problem,” 2002, pp.
299–308.

[9] G. Wang, G. Cao, T. L. Porta, and W. Zhang, “Sensor
relocation in mobile sensor networks,” in In Proc. of IEEE
INFOCOM, 2005, pp. 2302–2312.

[10] J. Edmondson and D. Schmidt, “Multi-agent distributed adap-
tive resource allocation (madara),” International Journal of
Communication Networks and Distributed Systems, Special
Issue on: Grid Computing, vol. 5, no. 3, pp. 229–245, 2010.

[11] M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness. New York, NY,
USA: W. H. Freeman & Co., 1979.


