
Tunable Replica Consistency for Primary-Backup Replication in Distributed Soft
Real-time and Embedded Systems

Jaiganesh Balasubramanian
∗Zircon Computing

Wayne, NJ 07470, USA
Email: jai@zircomp.com

Aniruddha Gokhale
†Dept of EECS, Vanderbilt University

Nashville, TN 37235, USA
Email: a.gokhale@vanderbilt.edu

Abstract—In systems that use primary-backup replication
for fault-tolerance, maintaining system availability after fail-
ures refers not just to ensuring the liveness of application
functionality at a backup replica but also to ensuring that
the state of the promoted backup matches that of the failed
primary. Traditionally these availability criteria are realized
in middleware through sophisticated algorithms that provide a
certain level of replica state consistency, such as strong or weak.
For distributed real-time and embedded (DRE) systems, the
constant fluctuations in resource availabilities and application
workloads, however, preclude a tight coupling to any single
criteria for state consistency thereby forcing the need for new
mechanisms that can tune the replica consistency algorithms
at runtime in accordance with the operating conditions, and
DRE system timeliness and availability requirements. This
paper describes preliminary work in this space and highlights
important challenges that must be addressed.
keywords: real-time and availability, replica consistency, tun-
ability.

I. INTRODUCTION

Distributed Real-time and Embedded (DRE) systems such
as intelligence, surveillance and reconnaissance missions [1]
consist of applications that participate in different end-to-
end application flows. These systems operate in dynamic
environments where new applications get introduced, ex-
isting applications terminate, processors and/or processes
fail, and network and CPU resource availability fluctuates.
Even when operating in such unpredictable environments, it
is important to satisfy application quality-of-service (QoS)
requirements, such as high availability and satisfactory re-
sponse times of the soft real-time applications while simul-
taneously utilizing resources efficiently due to their limited
number.

Although both ACTIVE and PASSIVE (i.e., primary-
backup) replication [2] are commonly available approaches
for building fault-tolerant distributed applications that pro-
vide high availability and satisfactory response times for
DRE systems, due to its low runtime overhead, passive
replication is appealing for applications that cannot afford
the cost of maintaining active replicas.

This work is supported in part by NSF award 0915976

The requirement to provide both high availability and sat-
isfactory response times for clients in a passively replicated
environment is conflicting in many ways. For example, to
provide higher availability and strong state consistency, the
state of a backup replica must be made consistent every
time the state of the primary replica changes. This approach
reduces failure recovery time since any one of the available
backup replicas can be promoted as the new primary replica
during failure recovery, and the clients can be be quickly
redirected to the new primary replica.

However, this requirement adversely impacts response
times perceived by client applications during the non-failure
cases since the primary replica remains blocked until the
state of all the backup replicas is made consistent with the
state of the primary replica. In effect, the response times
perceived by the client applications depend on the time taken
by the primary to synchronize its state with that of the
backup replica that operates in the slowest or most loaded
physical host. Naturally, transient or delayed availability of
network and CPU resources for state synchronization will
further impact response times.

To overcome this limitation and to provide satisfactory
response times for clients, a possibility is for the backup
replica’s state to be made consistent only intermittently
or during failure recovery only, which significantly im-
proves response times and saves resources, such as network
bandwidth and CPU load, however, at the expense of a
significantly weaker consistency model.

In summary, a range of alternatives are available ranging
from strong to weak consistency to synchronize the state
of the backup replicas with that of the primary. Each
alternative can be characterized based on the response times
provided to the clients, the recovery time after failures, the
resources consumed, and the level of consistency provided
by the application. Such a set of alternatives is acceptable to
applications within the DRE system that have soft real-time
requirements.

Although a number of prior efforts on middleware for
both timeliness and availability exists, these research focus
either on active replication-based systems [3] (which DRE
systems cannot afford due to high resource overhead) or



operate with a fixed strategy for state synchronization [4],
[5] (which cannot deal with the dynamically fluctuating
operating conditions). It is important therefore to be able
to tune the consistency style of DRE systems at runtime
in accordance with the operating conditions such that the
combined requirements of system availability and client-
perceived response times are at an acceptable level for the
DRE system.

In the rest of this paper we propose the design and
implementation of a middleware framework for analyzing
and reasoning about tradeoffs that enable the tuning of
replica consistency. We first present an overview of existing
research in Section II. Following this, in Section III, we
briefly present our approach alluding to the unresolved chal-
lenges that we are addressing. Finally we present concluding
remarks in Section IV.

II. RELATED RESEARCH

Related research that focus on the tradeoffs between appli-
cation performance, application fault-tolerance, and resource
management are described below.

The real-time primary backup replication service [6] uses
well-known scheduling algorithms, such as the rate mono-
tonic scheduling algorithm [7], to schedule update tasks on
the physical hosts deploying primary and backup replicas.
Although powerful, a limitation of this approach is that the
update schedule must be determined and fixed offline.

The scalable services architecture [8] organizes replicas
in a chain. The head of the chain serves update requests,
while the remaining replicas serve client read requests. All
replicas except the head use gossip-based protocols to make
their state consistent with the state of the replica at the
head. However, all the replicas except the head, provide
good performance by serving read requests rapidly for those
clients that can tolerate weaker consistency.

AQuA [3] organizes the available replicas into two groups.
The primary group is used for processing client update
requests. The secondary group is used for processing client
read requests. One of the replicas in the primary group lazily
propagates its state to one or more of the replicas in the
secondary group. Since different replicas in the secondary
group might have different state, clients get weaker consis-
tency assurances for their read requests. However, the read
performance is good, as the replicas in the secondary group
do not wait for the updates to be sequentially propagated
from the primary group before processing client requests.

MEAD [9] employs a versatile dependability framework
to change replication styles to vary the consistency as-
surances given for applications. For example, when more
resources are available, active replication is used, and when
resource availability is scarce, passive replication is used.
Both MEAD and AQuA make runtime tradeoffs, however,
state consistency mechanisms are not tunable.

IFLOW [10] uses passive replication with failure predic-
tion techniques to determine the checkpointing frequency at
which updates need to be propagated to the backup replicas.
If the probability of the failure of the primary replica is high,
the checkpoint frequency is also high. Under normal op-
erating conditions, these optimizations reduce unnecessary
checkpointing thereby improving application performance.

Our prior work on real-time fault-tolerant middleware
also contains significant gaps. For example, Fault-tolerant,
Load-aware and Adaptive middlewaRe (FLARe) [5] main-
tains service availability and soft real-time performance in
dynamic environments. FLARe provides online failover in
dynamic environments by changing the failover order of
replicas according to the monitored utilization of resources
and also provides overload management. However, FLARe
assumes a fixed replica state update mechanism.

III. TUNABLE ADAPTIVE CONSISTENCY FOR DRE
SYSTEMS

To address the limitations of existing research in the
field of optimizing resource usage for DRE systems while
balancing response time and consistency, we are developing
algorithms and mechanisms for a tunable and adaptive
replica consistency management middleware. Our middle-
ware schedules state update tasks depending on the available
resources leading to different consistency levels for different
applications.

A. System Model and Assumptions

RnP R1 R3R2

State sync requests

acknowledgments 

Re
qu
es
t

Re
sp
on
se

Figure 1. State Updates in Primary-Backup Replication

In this paper we assume that applications can specify the
range of acceptable response times for their requests as part
of their requirements. The goal of our adaptive fault-tolerant
middleware is to execute the request in the primary replica,
synchronize the modified state with the backup replicas, and
send response to the clients within the acceptable response
time bounds. We recognize that extra time is being spent
in synchronizing the state of the primary replica with the
backup replicas, and to satisfy the demands on response
time, we can configure the number of replicas whose state
is being synchronized.

To quantify this time, we propose to view state synchro-
nization of the backup replicas from the primary replica as
a sequence of end-to-end tasks [11], where the task chain



starts at the primary replica, and ends at the last available
backup replica as shown in Figure 1.

Each sub-task of the end-to-end task has a valid execution
time, which is the time taken to set the state of the backup
replica. The period of each sub-task is the same as the period
of the main task which is the task that processes the client
request.

B. Tunable Consistency Algorithm

Our tunable consistency algorithm is based on adjustments
along two dimensions: (1) consistency depth, where we can
adjust the number of replicas that will be made consistent
with the primary on a state update request, and (2) update
frequency, where the middleware decides how often the state
of the primary should be made consistent with the backups.

We now explain the intuition behind our tunable algo-
rithm. If the sum of the execution times of all the sub-
tasks and the execution time of the client task at the
primary replica is less than the response time deadline
expected by the client, then our system can provide both
high performance as well as high availability assurances for
the applications. If the sum is more, then we reduce the
length of the chain of the end-to-end tasks. This means that
some of the backup replicas are not being synchronized with
the state of the primary replica.

To determine how to bootstrap the system at deployment
time, we apply the time-demand analysis to determine the
maximum consistency level that can be provided for each of
the applications given a deployment of primary and backup
replicas on a set of physical hosts with some resource
availabilities.

We realize that such a heuristic could try to provide
maximum assurances for certain applications while starving
some other applications. So we optimize this process by
starting with a minimum end-to-end task length for all the
applications. This means that initially all the applications
are given a base consistency level. If all the applications are
able to achieve that level, the consistency levels are slowly
increased starting with the most important (i.e., highest pri-
ority) application to the least important (i.e., lowest priority)
application in the entire DRE system.

C. Middleware Design

Our current work involves realizing the tunable replica
consistency algorithm within a middleware that can work
closely with the applications to determine when the state of
the primary replica changes. Applications inform the consis-
tency management middleware whenever the application’s
state changes. The consistency management middleware is
armed with the consistency-related information computed
from the time-demand analysis. Based on that information,
the consistency management middleware knows how many
backup replicas can be synchronized before the response
needs to be sent back to the clients.

The consistency management middleware is integrated
with the middleware replication manager of the FLARe
middleware [5] so that it can obtain the references of the
backup replicas and synchronizes their state. Finally, we also
leverage the load utlization monitors provided in FLARe to
determine how to adapt the consistency assurances provided
to the applications depending on resource availabilities and
workload fluctuations. This algorithm is shown in Figure 2.

Figure 2. Runtime Adaptations of Replica Consistency

D. Unresolved Challenges

Many challenges remain unresolved when combining the
strengths of our earlier work on FLARe with the new
requirement of tunable consistency as explained below.
1. Conflicts between ranked list and synchronization
order. Recall that FLARe defines a failover order of replicas
based on the loads on the hosts. An interesting scenario
may likely arise wherein the ranked list order computed
by FLARe may not be the same order in which synchro-
nization update requests may be feasible. For example, a
ranked list for a primary P may be the tuple of replicas:
< A,B,C,D,E > in that order. However, it might be
the case that it is not feasible to synchronize with B and
C (because they cannot schedule their update tasks in a
way that will meet response times) thereby leading us to
a synchronization tuple of < A,D,E >, i.e., a consistency
depth of 3/5, which also has replicas in a order different
from FLARe’s ranked list.

Our proposed solution to address this challenge depends
on obtaining additional hints from applications, through
design-time tools such as model-driven tools.
2. Upper bound on consistency depth: Since consistency
depth may vary over time, a natural question is what is
the upper bound on the consistency depth our algorithm
can provide to the client? Notice that our response time
analysis is entirely driven by the dynamics of the system
at that instant in time when a new task dynamically arrives
in the system. We may find that 3 of the 5 replicas can
be synchronized. Over time, due to changing loads in the



system, we may be able to do at most 2 or even 1 replica.
At other times we may be able to synchronize with 4 or
even 5 replicas.

A proposed solution we are investigating involves definin-
ing design-time service level agreements (SLAs) with ap-
plications depending on their priorities. Naturally, these
SLAs must be honored throughout the lifecycle of the
application. Intuitively, if the rank list computed by FLARe
is < A,B,C,D,E > and a max consistency depth of 3/5
is agreed upon, then our middleware will ensure that state
of the primary will be synchronized with anything from one
replica < A > to the tuple < A,B,C > depending on
existing loads.
3. Failures and/or significant changes to ranked list:
Consider a 3/5 consistency depth for a ranked list of
< A,B,C,D,E >. Thus, after a state update, A, B and
C will have latest synchronized state. Now assume that due
to changing dynamics, FLARe were to compute a new rank
list that looks like < D,E,C,A,B >. At this point even if
there is no failure, our depth of 3 will ensure that state is
transmitted to < D,E,C >. Both D and E, however, had
stale state since they were not in the preferred 3/5. If state
is only incrementally updated as opposed to a full update,
D and E are not the right choices to synchronize with since
they cannot update their state.

Even if it is a full state update, things will go wrong on
a failure. For example, consider a primary P dying and the
ranked list changing to < D,E,C > in the meantime. The
first failover target < D > does not have the most recent
state and is useless to serve client requests (unless state can
automatically be reconstructed).

A potential solution to resolve this dilemma is to
let FLARe compute a ranked list that looks like: <
A,D,E,C,B >. In other words, we modify FLARe’s
failover target selection from using the original "least
loaded" principle to something that is a weighted mean of
loads and the ability to schedule an update task. Despite
a somewhat degraded performance by the newly chosen
failover target, we rely on this weighted scheme since it
provides more stronger forms of consistency. Note that
we want to keep this strategy tunable on a per-application
basis. Thus, the weights we use to compute the ranked list
themselves can vary dynamically.

IV. CONCLUDING REMARKS

This paper described the need for tunable replica con-
sistency as a necessary mechanism in middleware that pro-
vide both real-time and high availability to DRE systems.
Many challenges remain to be resolved and our ongoing
work is addressing these challenges. Although the tunable
replica consistency approach builds upon our earlier work on
FLARe (presented in RTAS 2009), the approach is general
enough to be applicable to systems that employ passive
replication schemes. In particular, we are exploring applying

these solutions in our work on intelligent transportation
systems.

REFERENCES

[1] P. K. Sharma, J. P. Loyall, G. T. Heineman, R. E. Schantz,
R. Shapiro, and G. Duzan, “Component-based dynamic qos
adaptations in distributed real-time and embedded systems,”
in CoopIS/DOA/ODBASE (2). Agia Napa, Cyprus: Springer,
2004, pp. 1208–1224.

[2] R. Guerraoui and A. Schiper, “Software-Based Replication for
Fault Tolerance,” IEEE Computer, vol. 30, no. 4, pp. 68–74,
Apr. 1997.

[3] S. Krishnamurthy, W. H. Sanders, and M. Cukier, “An Adap-
tive Quality of Service Aware Middleware for Replicated
Services,” IEEE Transactions on Parallel and Distributed
Systems, vol. 14, no. 11, pp. 1112–1125, 2003.

[4] R. van Renesse and F. B. Schneider, “Chain replication for
supporting high throughput and availability,” in OSDI’04:
Proceedings of the 6th conference on Symposium on Opeart-
ing Systems Design & Implementation. Berkeley, CA, USA:
USENIX Association, 2004, pp. 7–7.

[5] J. Balasubramanian, S. Tambe, C. Lu, A. Gokhale, C. Gill,
and D. C. Schmidt, “Adaptive Failover for Real-time Middle-
ware with Passive Replication,” in Proceedings of the 15th
Real-time and Embedded Applications Symposium (RTAS
’09), San Francisco, CA, Apr. 2009, pp. 118–127.

[6] H. Zou and F. Jahanian, “A Real-time Primary-backup
Replication Service,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 10, no. 6, pp. 533–548, 1999.

[7] C. Liu and J. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard-Real-time Environment,” JACM, vol. 20,
no. 1, pp. 46–61, Jan. 1973.

[8] T. Marian, K. Birman, and R. van Renesse, “A scalable
services architecture,” in SRDS ’06: Proceedings of the 25th
IEEE Symposium on Reliable Distributed Systems (SRDS’06).
Washington, DC, USA: IEEE Computer Society, 2006, pp.
289–300.

[9] P. Narasimhan, R. Rajkumar, G. Thaker, and P. Lardieri,
“A versatile, proactive dependability approach to handling
unanticipated events in distributed systems,” in IPDPS ’05:
Proceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’05) - Workshop
2. Washington, DC, USA: IEEE Computer Society, 2005,
p. 136.1.

[10] Z. Cai, V. Kumar, B. F. Cooper, G. Eisenhauer, K. Schwan,
and R. E. Strom, “Utility-Driven Proactive Management of
Availability in Enterprise-Scale Information Flows.” in Pro-
ceedings of ACM/Usenix/IFIP Middleware, 2006, pp. 382–
403.

[11] X. Wang, C. Lu, and X. Koutsoukos, “Enhancing the Robust-
ness of Distributed Real-Time Middleware via End-to-End
Utilization Control,” in RTSS ’05: Proceedings of the 26th
IEEE International Real-Time Systems Symposium. Wash-
ington, DC, USA: IEEE Computer Society, 2005, pp. 189–
199.


