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ABSTRACT
In model-driven engineering of applications, the quality of the soft-
ware architecture is realized and preserved in the successive stages
of its lifecycle through model transformations. However, limited
support for reuse in contemporary model transformation techniques
forces developers of product line architectures to reinvent trans-
formation rules for every variant of the product line, which can
adversely impact developer productivity and in turn degrade the
quality of the resulting software architecture for the variant. To
overcome these challenges, this paper presents the MTS (Model-
transformation Templatization and Specialization) generative trans-
formation process, which promotes reuse in model transformations
through parameterization and specialization of transformation rules.
MTS defines two higher order transformations to capture the vari-
ability in transformation rules and to specialize them across product
variants. The core idea behind MTS is realized within a graphical
model transformation tool in a way that is minimally intrusive to
the underlying tool’s implementation. The paper uses two product
line case studies to evaluate MTS in terms of reduction in efforts to
define model transformation rules as new variants are added to the
product line, and the overhead in executing the higher order trans-
formations. These metrics provide an indirect measure of how po-
tential degradation in the quality of software architectures of prod-
uct lines caused due to lack of reuse can be alleviated by MTS.

Categories and Subject Descriptors
D:Software [2:Software Engineering]: 2:Design Tools and Tech-
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1. INTRODUCTION
Model transformation is a key element of the Model-Driven En-

gineering (MDE) paradigm [19]. Model transformations are used
to define progressive refinements of application models from ab-
stract, high-level views into low-level, detailed views that are used
by the execution platform for different purposes, such as applica-
tion configuration, deployment, and code synthesis. They are also
used in transforming models to representations suitable for analysis
tools that check various properties, such as correctness or deadlock
free behavior. Each of these outcomes represents a different dimen-
sion of application software architecture quality.

Despite their importance, however, contemporary model trans-
formation tools and techniques [4, 8, 12, 21] have limited sup-
port for reuse, which becomes problematic for software product
lines [3] since it forces developers to reinvent the entire set of
transformation rules, and repeat the entire transformation process
despite significant commonalities among product variants of the
product line. The result is a set of negative outcomes: increased
developer effort, loss of productivity, less reuse, limitations on evo-
lution of the product line, and increased cost of maintenance. All of
these outcomes may degrade the quality of software architectures
for the product line.

Overcoming these problems requires reuse capabilities in model
transformations. Recent efforts [5, 22, 24] have applied model
transformations to product lines. Yet, the following questions re-
main to be resolved so that the quality of software architectures for
product lines can be managed effectively over their development
and maintenance lifecycle.
(a) Invariants: How can the commonalities in the transformation
process be factored out such that they can be reused by the entire
product line?
(b) Variability: How can the variabilities in the model transfor-
mation rules be decoupled from each other while maximizing the
flexibility of the transformation process?
(c) Extensibility: How can the model transformation process for a
product line be extended with new variants, with minimally inva-
sive changes to the existing transformation rules?
(d) Minimal Intrusiveness: How can contemporary transformation
tools be enhanced to provide first-class support for reuse of trans-
formations rules with minimal changes, if any, to their design and
implementation so that these tools remain backward compatible yet
be able to support reuse in product lines?

In this paper we present MTS (Model-transformation Templatiza-
tion and Specialization) to address these questions in the context of



graphical model transformation tools. MTS provides transforma-
tion developers with a simple specification language to factor out
variabilities in the transformation rules for individual product vari-
ants and form parameterized transformation rules that are decou-
pled from the transformation rules that represent the commonalities
of the product line. A sequence of two higher order transformations
(HOT) [23] 1 subsequently are used in the stepwise refinement [2]
of the base rules using the parameterized rules to generate an en-
tire set of transformation rules for individual product variants. In
our prior work, we presented preliminary ideas on reusable model
transformations [9] and demonstrated its use in the configuration of
end point devices used by insurance agents in enterprise appliaca-
tions [10]. The aim of this paper is to describe the scientific prin-
ciples and a process behind realizing reuse capabilities in model
transformations, and demonstrating how to realize them concretely
in a contemporary model transformation tool.

The rest of the paper is organized as follows: Section 2 describes
the MTS solution; Section 3 illustrates a concrete realization of
MTS within a contemporary model transformation tool and appli-
cation to a case study; Section 4 evaluates the merits of the MTS
process; Section 5 compares our work with the existing literature;
and Section 6 provides concluding remarks.

2. DESIGNING REUSE CAPABILITIES FOR
MODEL TRANSFORMATIONS

This paper focuses on the model transformations that are carried
out using model transformation tools [7, 8]. These tools conform
to a transformation process, where the model-to-model transforma-
tions are described using transformation rules in either a textual or
visual language. These rules relate elements of a source modeling
language defined by one metamodel with elements of a target mod-
eling language corresponding to the same or different metamodel.
The actual transformations are carried out on model instances of the
source modeling language, which transform it into model instances
belonging to the target language.

2.1 Problem Statement and Solution Overview
Due to limited support for reuse in contemporary model trans-

formation tools, developers of software product lines are forced to
reinvent transformation rules for every variant (as illustrated in Fig-
ure 1), which may adversely impact the quality of software archi-
tectures.
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Figure 1: Reinventing Transformation Rules

To overcome these problems, this paper presents the design prin-

1Since the transformation(s) themselves become the input and/or
output, we refer to the transformation process in MTS as higher
order transformations (HOTs).

ciples behind the MTS (Model-transformation Templatization and
Specialization) process. The core idea behind MTS is shown in
Figure 2 and explained in the rest of this section. MTS realizes
reusable model transformations in graphical model transformation
frameworks using the following four-step generative process:
1. Decoupling the variabilities from commonalities: In Step 1
of Figure 2, developers capture the variabilities in transformation
rules in terms of a simple constraint notation specification (see
Section 2.2). This step decouples the transformation rules for the
commonalities from those for the variabilities.
2. Generating variability metamodel: In this step, developers
use a higher order transformation (HOT) (i.e., transformations that
work on meta metamodels to translate source metamodel(s) to tar-
get metamodel(s)) defined in MTS to generate the variability meta-
model (VMM) for their application family (see Section 2.3). A
VMM modularizes the variability in transformation rules by pa-
rameterizing the rules and representing them in the form of a meta-
model, which is the level of abstraction understood by the underly-
ing model transformation tool.
3. Synthesizing specialization repository: Next, developers cre-
ate VMM models (a manual step), where each VMM model corre-
sponds to an instantiation of the variability captured in Step 1 for
individual family members. A collection of all the VMM models is
called a specialization repository for that family (see Section 2.4).
4. Specializing the transformation instances: Finally, as shown
in Step 4, developers use another HOT defined in MTS to create a
set of transformation rules for the desired product variant (see Sec-
tion 2.5). This step is based on the principles of stepwise refine-
ment [2] of features, which is used in product line development.
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Figure 2: MTS Approach to Reusable Model Transformations

The remainder of this section provides details of each step of
the MTS process, and describes how it supports the four desired
properties (i.e., Invariants, Variability, Extensibility, and Minimal
Intrusiveness) outlined in Section 1.

2.2 Step I: Decoupling Commonalities and Vari-
abilities in Transformation Rules

Mixins and mixin layers [20], which are realized using paramet-
ric polymorphism such as C++ templates, have been used in large-
scale refinements for product line development. Our solution in
MTS is based on a similar philosophy; specifically, we seek a gen-
erative solution to promote reuse of transformation rules through
parameterized transformation rules and their specialization. The
basic idea is that all the commonalities, which constitute the in-
variants of an application family, are separated from the variabil-
ities, and maintained as family instance-independent transforma-
tion rules that are specified in the normal way using the underlying
transformation tool, while the variabilities are captured as parame-
terized transformation rules discussed below.

Since contemporary model transformation tools often do not pro-
vide first-class support to separate the commonalities in transfor-
mation rules from the variabilities, a number of questions arise.



How is this separation achieved? What types of variabilities exist?
How are the variabilities to be captured without unduly impacting
the basic design and architecture of the model transformation tool
(which is a key objective, otherwise existing projects will no longer
be supported by the tool)?

A close scrutiny of model transformation rules for different prod-
uct variants of an application family (such as our case studies) il-
lustrates that at a minimum, variability in transformation rules is
incurred in either the type and number of structural elements that
appear in the target model, and/or the values that are assigned to
the attributes of these structural elements. We leverage this obser-
vation and define two types of variabilities for our parameterized
transformation approach:
(a) Structural variabilities, where the basic building blocks, i.e.,
model elements, or their cardinalities in every family member model
are different. Thus, the variation in family member models em-
anates from dissimilarities in their structural composition.
(b) Quantitative variabilities, where the family member models
may share model elements but the data values of their attributes are
different.

Note that other forms of variability, such as those based on be-
havior, are also possible but are not addressed in this paper. They
are part of our future investigations. The two types of variabilities
we address in this paper can be denoted as simple implication rela-
tions that can be characterized by one of the types of associations
between source (s ∈ S) and target (t ∈ T ) objects shown in Table 1,
where P1 and P2 denote patterns of source and target objects.

Table 1: Associations between Source and Target Objects
Association Definition
one-to-one injective function:

s ∈ S, t ∈ T ∃ f (s) α7−→ f (t) : i f f (s) = f (t) then s = t.

one-to-
many

s
φ7−→ t, where s ∈ S, and t = {P2(t1, t2, ..., tn) | ti=1..n ∈ T}.

many-to-
one

s
ϕ7−→ t, where t ∈ T , and s = {P1(s1,s2, ..,sm) | s j=1..m ∈ S}.

many-to-
many

s
ϕ7−→ t, where s = {P1(s1,s2, ..,sm) | s j=1..m ∈ S}, and

t = {P2(t1, t2, ..., tn) | ti=1..n ∈ T}.

In MTS, our goal was to define a simple approach to encode
these associations. To that end, we defined a special but simple
syntax called the constraint specification notation that captures the
relations outlined above for the variabilities. Recall that support-
ing any additional syntax and semantics must be minimally intru-
sive to the underlying transformation tool in which it is going to
be realized. One promising implementation choice was to use the
mechanism of tunneling, which has been used successfully in the
networking area to retrofit existing infrastructure with new ideas.
Hence, we propose the use of comment blocks supported by the un-
derlying tool to encode the metadata. Such techniques have been
used to great advantage by document generators, such as Javadoc.

Figure 3 illustrates the syntax, which codifies the implication
relations described in Table 1. The Quantitative block cap-
tures all the attributes while the Structural block captures all
the model elements that vary between family members. In the
Structural block shown, there is an association defined be-
tween source model object I1, and target model objects O1 and
O2, which implies that the composition of O1 and O2 is dependent
on I1. The presence of O7 in the Structural block implies that
the object is created in the target model irrespective of the presence
(or absence) of any specific source model object(s).

The Quantitative block captures many-to-many and one-
to-one relations between source and target elements. For example,

1 Structural { Quantitative {
2 I1::O1;O2 I2:A1::O3:A1,O3:A2,O3:A3
3 O7 I3:A3::O5:A6
4 ...} O6:A7
5 ...}

Figure 3: Syntax of Constraint Specification Notation to Cap-
ture Variability.

the values of attributes A1, A2, and A3 of model object O3 are
dependent on that of the A1 attribute of object I2, as shown in
Line 2 of Quantitative block. The specification O6:A7 states
that the attribute A7 is directly mapped, i.e., it is hard-coded and is
assigned statically in the model transformation.

2.3 Step II: Generating the Variability Meta-
model from Constraint Specifications

Although the constraint specifications discussed in Step I cap-
ture the variability in the transformations, the notation used (e.g.,
comment block) is oblivious to the model transformation tool and
cannot be leveraged unless this information is presented as a first
class entity to the transformation tool. In other words, this infor-
mation must be made available to the underlying model transfor-
mation tools at the same level of abstraction as the transformation
rules supported by the tool. Transforming the constraint specifi-
cations (which are transformation rules using a special syntax that
transform objects of the source metamodel to objects of the target
metamodel) into a metamodel that is used by the transformation
tool to encode transformation rules is a form of a HOT. Therefore,
in MTS we define a HOT to transform the constraint specifications
into what we call a Variability Meta Model (VMM). A VMM es-
sentially modularizes the variabilities as parameterized transforma-
tion rules and decouples them from the model transformation rules
already specified for the commonalities.

Algorithm 1 depicts the HOT for generating the VMM. The ba-
sic idea behind the algorithm is as follows: Recall from Section 2.2
that the structural variability is concerned only with capturing the
(source and target) model objects (or their cardinalities) used in
composition of family variants. For every structural variability
block, the algorithm creates the corresponding model objects in the
VMM. The quantitative variability, on the other hand, captures the
dissimilarities in values of model object attributes. Therefore, for
these variabilities the algorithm creates model objects and their at-
tributes.

The function initializeV MM(V ) in Line 3 creates a new VMM,
V , and initializes its internal variables. This is necessary so that in
the following rules the syntax and semantics of V can be defined
in the modeling tool. Line 11 reads the source patterns that corre-
spond to every structural variability in the parameterized transfor-
mation R. Next, the types of each modeling object for the pattern
read in the previous rule are deduced by parsing the modeling lan-
guage, as shown in Line 13. This type information is used to create
appropriate modeling objects corresponding to the specified source
patterns. Similar logic is carried out for patterns in the target lan-
guage.

After the source and target objects are created in the VMM, in
Line 16 the function composeVariabilityAssociation(V) creates a
simple connection between these objects to denote their associa-
tion. In a similar fashion, VMM modeling objects are generated for
quantitative variabilities in R. Additionally, for quantitative vari-
abilities, attributes of the corresponding modeling objects are also
created. The final rule creates a new model object that contains



Algorithm 1: HOT: Constraint Specifications to VMM.
Input: source modeling language S, target modeling language T , templatized

transformation (set of its rules) R// i.e., the C++ comments encoding the constraint
specification

Output: variability metamodel V
1 begin
2 transformation rule r; constraint notation block cnb; set of constraint notation

blocks CNB; structural variability cm;set of structural variabilities CM;
quantitative variability qm;set of quantitative variabilities QM; pattern p;
modeling object ob; attribute at; modeling object type type;attribute type
atttype; integer c;

3 initializeV MM(V );
4 foreach r ∈ R do
5 if r.cnb() 6= /0 then
6 CNB← r.cnb(); // populate all constraints specifications for that rule
7 foreach cnb ∈CNB do
8 if cnb.structuralVariabilities() 6= /0 then
9 CM← cnb.structuralVariabilities();

10 foreach cm ∈CM do
11 p← cm.SRC();
12 foreach ob ∈ p do
13 parseLanguage(S,ob, type);

createSRCOb ject(V,ob, type);
14 end
15 /* Do similar steps for patterns in target */
16
17 composeVariabilityAssociation(V ); /* creates a

connection between source and target objects created
earlier */

18 end
19 if cnb.quantitativeVariabilities() 6= /0 then
20 /* Similarly, create model objects for quantitative variabilities. */
21 createContainingOb ject(V ); /* name of the containing object is a

combination of rule name, and constraint block name, each of which
must be unique */

22 end
23 CNB← /0; /* constraint blocks from previous loop are deleted, s.t. those from

the next rule can be read */
24 end
25 end

each of these source and target objects created in earlier rules, as
shown on Line 21.

2.4 Step III: Synthesizing a Specialization Repos-
itory

In the next step transformation developers use the generated VMM
to manually create VMM model instances, where each VMM model
corresponds to variabilities in a product variant. This manual step
is in the same spirit as any other model creation process where a
model instance is manually produced using the metamodel of its
modeling language. The difference here is that the VMM is a meta-
model that focuses only on the variabilities of a product variant
transforming it from its source to target modeling languages. The
variabilities of every product variant is modeled in this step using
their corresponding generated VMM to give rise to a collection of
VMM model instances which we call a specialization repository.
This step is akin to the process of providing functors in C++ tem-
plate programming (e.g., consider a parameterized C++ sort func-
tion, where programmers are required to supply explicit instantia-
tion of the ≤ operator for all the user-defined types for which the
sort function is specialized).

2.5 Step IV: Specializing the Transformation
Instances

In product line development, artifacts such as code are often syn-
thesized using stepwise refinement of base features incrementally
with additional features representing the variability. In a similar
manner, MTS generates the complete set of transformation rules
for individual product variants using the base rules that capture the

commonalities, the parameterized rules that capture variabilities,
and the specializations available in the repository.

Notice that until this step we have the transformation rules for
the commonalities, the parameterized rules for the variabilities, and
VMM instances that supply specializations for the parameterized
types. However, these are all determined in isolation. We do not
yet have a complete set of transformation rules for every variant
as should be the case if a developer manually created the rules, as
shown in Figure 1. The basic question we answer is how can model
transformation tools support such a stepwise refinement process to
generate the entire set of transformations for every variant?

To address this question requires two mechanisms: (1) a way
to combine the transformation rules representing commonalities
with the parameterized rules, and (b) specializing the parameter-
ized rules to provide concrete rules. Requirement (1) is a simple
form of additive refinement; requirement (2) calls for an ability to
weave in the specializations into the parameterized rules to create
concrete instantiations of the parameterized rules. MTS supports
these requirements through a second HOT that (1) reads the VMM
model instance for a product variant, and (2) inserts temporary ob-
jects at specialization points, which are akin to joinpoints [11]2, in
the parameterized transformation rules to enable the weaving (or
refinement) of the rules with the instantiated variability of a prod-
uct variant (corresponding to the current VMM model). Thereafter,
a combination of the commonalities and the specialized rules to-
gether form the complete set of transformation rules for the variant.

Algorithm 2 defines our second HOT. Lines 3–5 create a new
model transformation instance R′ from the input parameterized trans-
formation R, read the containing model objects in VMM V , and for
every model object ob search the corresponding rule in the trans-
formation R′.3 This rule essentially represents the location of the
variabilities contained in ob which were specified using the con-
straint specification notation described in Section 2.2. Once rule r
is known, the constraint block is deleted from this rule in function
deleteCNB(r). The function createTempOb ject(tmp,r) creates a
temporary object tmp inside this rule to represent the specializa-
tion point where weaving will take place. For every Structural
variability in the source pattern in ob, object references are read
from V , and created in tmp and in addition, their cardinalities are
assigned as shown in Line 8. Similarly, attributes in VMM that
capture Quantitative variabilities are read from V , and cre-
ated and assigned values in tmp in Line 9. The same rule is also
repeated for all target patterns in ob.

3. A CONCRETE IMPLEMENTATION AND
APPLICATION OF MTS

This section illustrates how the MTS principles are implemented
in a contemporary model transformation tool called Graph Rewrit-
ing And Transformation (GReAT) [8]. GReAT is developed us-
ing the Generic Modeling Environment (GME) [14], which pro-
vides a general-purpose editing engine and a separate model-view-
controller GUI. GME is metaprogrammable in that the same envi-
ronment used to define modeling languages is also used to build
models, which are instances of the metamodels.

Transformation rules are defined using the GReAT visual lan-
guage. First, the source and target metamodels of the domain-
specific modeling languages (DSMLs) for the transformation tool

2Joinpoints are places in the control flow of a program where a
crosscutting concern is woven in.
3For creating product variant instances, it is not necessary to cre-
ate a new instance R′, but is done only for Algorithm 2 to avoid
modification of the original parameterized transformation R.



Algorithm 2: Specializing the Model Transformation from
a VMM model.

Input: variability metamodel V , templatized transformation R
Output: specialized instance of input templatized transformation R′

1 begin
2 transformation rule r; set of model objects OB,IO; pattern p; modeling object

ob,io,tmp; attribute at; modeling object type type;attribute type atttype;
3 R′← R; OB← containingModelOb ject(V );
4 foreach ob ∈ OB do
5 r← searchRule(R′,ob jName(ob)); createTempOb ject(tmp,r);

deleteCNB(r);
6 IO← parseSRCPattern(ob);
7 foreach io ∈ IO do
8 createOb jectRe f s(io, tmp); assignCardinalities(io, tmp);
9 createAttribs(io, tmp); assignValues(io, tmp);

10 end
11 /* do similar steps for target pattern */
12 end
13 end

chain are defined. Second, the transformation developers use the
GReAT transformation language to define transformation rules in
terms of patterns4 of source and target modeling objects. Third,
a source model instance is provided to the GReAT framework. Fi-
nally, developers execute the GReAT engine (called the GR-engine)
that translates the source model using rules specified in the second
step above into the target model.

3.1 Case Study: Quality Determined by QoS
Configuration Mapping

Our case study involves an exogenous transformation [15](i.e.,
source and target modeling languages are different) which trans-
lates domain-specified quality of service (QoS) requirements5 into
the underlying middleware platform-specific QoS configuration op-
tions. Figure 4 shows the UML representation of both the source
and the target metamodels used in the QoS configuration case study.
As shown, the source metamodel contains the following Booleans
for server components: (1) fixed_priority_service_ex-
ecution that indicates whether the component changes the prior-
ity of client service invocations, and (2) multi_service_le-
vels to indicate whether the component provides multiple service
levels to its clients.

Source metamodel

Target metamodel

RealTimeConfiguration

-cmd_line_options : string
-service_conf : string

EnvironmentConf -low_range : long
-high_range : long

BandedConnections

-stacksize : long
-allow_borrowing : bool
-allow_buffering : bool
-max_buffered_requests : long
-max_buffer_size : long

ThreadPool
-static_threads : int
-lane_priority : int
-dynamic_threads : int

Lane
-priority_model : Policy
-default_priority : long

PriorityModelPolicy

+SERVER_DECLARED
+CLIENT_PROPAGATED

«enumeration»
Policy

1

0..*
10..1

1
0..1

1

0..*

1

0..1

1..*

-configuredBy 1 1

-honors 1

-fixed_priority_service_execution : bool
-multi_service_levels : bool

RTRequirement

Figure 4: UML Metamodels for Middleware QoS Configura-
tion.

The target metamodel defines a language to represent real-time
4Here, pattern refers to a valid structural composition using model
objects in the source (target) DSML.
5These could be considered policies but we choose to refer to them
as requirements.

CORBA [16] middleware configurations and defines the following
elements: (1) Lane, which is a logical set of threads, each one
of which runs at lane_priority priority level. It is possible
to configure static threads (i.e., those that remain active until the
system is running) and dynamic threads (i.e., those threads that are
created and destroyed as required); (2) ThreadPool, which con-
trols different settings of Lane elements, such as, stacksize of
threads, whether borrowing of threads across lanes is allowed to
minimize priority inversions, and maximum resources assigned to
buffer requests that cannot be immediately serviced; (3) Prio-
rityModelPolicy, which controls the ThreadPool policy
model (i.e., whether to serve the request at the client-specified or
server-declared priority); and (4) BandedConnections, which
defines separate connections for individual (client) service invoca-
tions to minimize priority inversions.

Transformations for middleware QoS configuration are applica-
ble across a number of application domains. The individual config-
urations generated using the model transformation determine the
quality of the software architecture. Such transformations should
easily be customizable for slight variations in QoS requirements for
these domains. Thus, the case study has the following requirements
for the generated middleware QoS configurations: (1) the Pr-
iorityModelPolicy object along with its attributes are trans-
formed from the fixed_priority_service_execution so-
urce attribute; (2) ThreadPool and Lane objects, and their at-
tributes are transformed from the multi_service_levels so-
urce attribute. Multiple levels of service indicate multiple priorities
that must be handled, which means that a ThreadPool has mul-
tiple Lane objects, and that the cardinality and the exact values
of their attributes will vary based on QoS requirements. For ex-
ample, borrowing makes sense for ThreadPool only if multiple
lanes exist within a thread pool; and (3) whether to configure Ba-
ndedConnections or not may be determined by the developer
based on the multi_service_levels source attribute.

Figure 5 illustrates a sample transformation project for our QoS
configuration case study.6 The entire transformation is composed
of a sequence of transformation rule blocks, which themselves can
be nested. At the lowest level, a rule block comprises a pattern that
describes how one or more elements from the source metamodel are
mapped to one or more elements of the target metamodel. Ports are
used to pass objects from one rule block to another block. Rules
that cannot be captured in visual form can be embedded as C++
code in an AttributeMapping block as shown in the figure.

3.2 Impediments to Transformation Reuse in
GReAT

For our case study, a number of transformations are feasible de-
pending on the variability in the QoS requirements. Using GReAT,
a complex set of transformation rules (e.g., sequence of rule blocks)
must be developed for each such variation. For example, the ele-
ment BandedConnections may be present or absent, and the
number of Lane objects and the priority levels they handle can
vary, among other artifacts. However, there exist other transforma-
tions that remain invariant. For example, a ThreadPool object
must always be available and by default implicitly always contains
one Lane.

Due to limited reuse capabilities in GReAT, the sequence of rule
blocks shown in Figure 5 will have to be created for each variant
and follow all the transformation steps imposed by the tool. For
example, execution of GReAT’s GR-engine execution on a model

6The purpose of the screenshot is simply to illustrate the user view
of GReAT. Details inside the models and transformation rules are
not important.
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Figure 5: Model Transformation for QoS Mapping in GReAT
(callouts depict various features in GReAT)

instance, such as a model of QoS configuration in the source mod-
eling language, involves the following steps: (1) execute the master
interpreter to generate the necessary intermediate files containing
all the rules in the current transformation, (2) compile these inter-
mediate files, if not done already, and (3) run the generated exe-
cutable to obtain the transformed model instance in the target lan-
guage. The consequence of having to repeat the transformations for
every variant is that the master interpreter must be executed every
time any change is made to any rule. This will require recompi-
lation of the generated source code and executing it on the source
models. These limitations make a compelling case for reusable
model transformations.

3.3 Realizing MTS in GReAT
We now show how the four steps of the MTS process are realized

in GReAT. We use our QoS configuration case study as a guiding
example to describe the implementation.

3.3.1 Step I: Decoupling the Commonalities from the
Variabilities

In GReAT, we supported the constraint specification notation by
exploiting the C++ code embedding feature (see Attribute Mapping
block feature in Figure 5). In particular, we use C++ comments
within the embedded code as a means to capture variability. Be-
cause these are comments, it has no impact on the execution of the
GR-engine; in other words, our approach satisfies the requirement
of remaining minimally intrusive.

Figure 6 shows an excerpt of the parameterized transformation
rules for the QoS configuration case study. Notice how the Struc-
tural block notation captures the structural variability in a transfor-
mation rule from the source element, i.e., RTRequirement:mu-
lti_service_level, to the target element, i.e., BandedCo-
nnection. What this specification implies is that a BandedCo-
nnection is to be introduced in the final transformation rules for
this variant only if the RTRequirement includes multi_serv-
ice_levels. The Lane and Threadpool (not shown) are in-
cluded in the parameterized rule because they demonstrate variabil-
ity in the values as discussed below. Otherwise, they would have
been part of the transformation rules that reflect the commonalities.

Since the attribute values for Lane and Threadpoolmay vary,

/* 
Quantitative { 

RTRequirement:
multi_service_levels::

Lane:static_threads,        
Lane:dynamic_threads,
Lane:lane_priority;
ThreadPool:max_buffer_size,
ThreadPool:

max_buffered_requests,
ThreadPool:allow_buffering,
ThreadPool:allow_borrowing

}
*/

/* variability specified as 
comments in embedded C++ code

Structural {
RTRequirement:

multi_service_levels::
BandedConnections

}  */

Figure 6: Parametrized Transformation Rule in QoS Configu-
ration Case Study.

they are captured separately in the form of a Quantitative block
notation, which indicates what all attributes and their values can
vary. Since the constraint specification is simply a parameterization
step, the concrete values for these attributes are not mentioned in
this step. Instead, they are supplied at the time of specialization as
shown in Section 2.4.

3.3.2 Step II: Generating Variability Metamodels
Recall that the constraint specification notation used to capture

the variability is not understood by the GReAT tool. A conversion
process is therefore needed to transform the specification into a first
class entity supported by GReAT, which essentially happens to be
a model or metamodel in GME. We applied Algorithm 1 to the
parameterized model transformation of our QoS configuration case
study to automatically generate a VMM. Figure 7 shows a screen-
shot in GReAT/GME of an excerpt of the generated VMM.

Generated VMM has elements from 
both source and target that are 

associated according to the variability 
defined in the constraint specification

Indicates whether 
contained model objects 

capture structural or 
quantitative variability

Figure 7: Excerpt of Generated VMM for QoS Configuration
Study.

In this figure, SourcePattern and TargetPattern de-
note, respectively, the source and target language patterns. The
variabilities are modeled as pairs of SourcePattern and Ta-
rgetPattern, and annotated by whether they are Structur-
al or Quantitative using Boolean attributes. The figure cor-
responds to the Quantitative variability rule of Figure 6 in
that the attributes of a Lane are dependent on the multi_se-
rvice_levels attribute of RTRequirement. The Thread-
Pool attribute values can vary among each configuration and are
generated in the VMM. The BandedConnection element cor-
responding to the structural variability will be introduced in the



VMM in a similar manner using Algorithm 1. In effect, what we
have achieved is a representation of the parameterized transforma-
tion in a form that the model transformation tool can understand.

3.3.3 Step III: Synthesizing the Repository
In our QoS configuration case study, the specialization reposi-

tory contains a distinct VMM model for every configuration. The
aggregate of all the VMM models collectively contain variabili-
ties of all the family members. Developers will create VMM mod-
els for all known variants of the product line. Figure 8 shows a
sample VMM model that instantiates the quantitative variability
in terms of exact values of the RTRequirement and Lane at-
tributes. Note that because the exact values are now specified as
VMM model instances rather than being encoded in terms of trans-
formation rules, it is considerably easier to modify these values
without affecting the transformation rules. This step enables creat-
ing as many model instances as the structural and quantitative vari-
abilities permit without having to modify the rules. The significant
benefit for transformation tools like GReAT is that the transforma-
tion logic need not be re-compiled and linked into a new executable
since the rules themselves do not change – only the model instances
supplied change.

Exact values of attributes of 
RTRequirement and Lane 

elements can now be modified 
in VMM models. Variability is 
thus in models and not in the 

transformation rules

Figure 8: A VMM Model Instance for a Variant of QoS Con-
figuration Case Study.

3.3.4 Step IV: Specializing the Parametrized Rules
We applied Algorithm 2 to our QoS configuration example. One

of the rules in this case study assigns specific data values to the
attributes of Lane (target) depending on whether or not the mu-
lti_service_levels (source) value is set to TRUE. Further,
as identified earlier in Section 2.2, there is a quantitative variability
involving these two elements. The same variability is also given
in Figure 9 for reference. The attributes in tempObject are as-
signed values from the corresponding attribute in the VMM model.
Similarly, for the structural variability, the model object references
are also created by parsing and reading the VMM model. Thus,
the rule service_levels_attribute_mapping (and in ef-
fect, the model transformation itself) need not change, when some
of these data values/model object cardinalities have to be altered.
This is because the modifications can now be done simply by mod-
ifying the appropriate VMM model instance.

4. EVALUATING MERITS OF MTS
Because MTS was developed to enhance reusability, this sec-

tion describes its merits in terms of the reduction in effort to write
the transformation rules, which is an indirect measure of the soft-
ware quality because there exists a potential for degradation in the
quality due to the tedium involved in reinventing the steps without

bool multi =     
tempObject.multi_service_levels ();
int static tempObject.static_threads ();
int dyna  = tempObject.dynamic_threads ();
int prio tempObject.lane_priority ();
if (multi ==  RTRequirement.

multi_service_levels ()) {
Lane.static_threads () = static;
Lane.dynamic_threads () = dyna;
Lane.lane_priority () = prio;

}

Figure 9: Specialization of a QoS configuration rule using
MTS.

support for reuse. Second, since MTS provides higher order trans-
formations, we also discuss the overhead incurred by the higher
order transformations. Our second evaluation is important from the
perspective of acceptance as a tool in production environments.

Our evaluations are based on rules for two case studies imple-
mented in GReAT. One of the case studies involved the QoS config-
uration mapping described in Section 3.1. The second case study [10]
involves the creation of dialogs for a set of communication end-
points from workflow decision points in an insurance company.
Since the employees in an insurance company may potentially be
using several endpoints (i.e., communication devices), an important
consideration in delivering information content from the workflows
to the employees is the customization of communication dialogs for
individual endpoints, which is accomplished using model transfor-
mations.

The prototype implementation of MTS is part of the CoSMIC7

tool suite. All of our experiments are based on CoSMIC version
0.5.7, with GME version 6.11.9 and GReAT version 1.6.0. All the
overhead measurement experiments were run on a Windows XP
SP2 workstation with 2.66 GHz Intel Xeon dual processor and 2
GB physical memory.

4.1 Reduction in Development Effort
Recall from Section 2 that to create a target model from a source

model using GReAT, developers need to execute the GR-engine
that executes all the translation rules of that model transformation.
More specifically, developers must first specify all the rules that
transform the elements of the source model to the target model.
Thereafter, the GR-engine execution involves the following steps:
(1) executing the master interpreter that generates the necessary
intermediate files containing all the rules in the current transforma-
tion, (2) compile these intermediate files, if not done already, and
(3) run the generated executable.

Without MTS, Steps 1 and 2 above have to be re-executed each
time a new type of family instance (e.g., addition of a new commu-
nication endpoint in insurance enterprise case study) has to be sup-
ported by the model transformations. Additionally, even for a sin-
gle family instance, modifying a particular mapping (e.g., changing
the values of Lane attributes, for a particular multi_servic-
e_levels value in QoS configuration case study), requires the
re-execution of the first two steps above. In contrast, in MTS the
first two steps have to be executed only once when the model trans-
formation is being executed for the first time. Since all the instance-

7CoSMIC is a MDE toolsuite used in the design and deployment
of applications for QoS-enabled middleware. It is available from
http://www.dre.vanderbilt.edu/cosmic/.



specific customizations/changes are done in the corresponding VMM
model instance, the developers only need to execute Step 3 after
each change to produce the output of the transformation (i.e., a new
family instance). For our two case studies, as shown in Table 2, us-
ing MTS leads to savings of up to 90% in the time taken for a single
transformation run, over non-parameterized approaches. We evalu-
ate these qualities of MTS in the context of two situations common
in managing quality product line software architectures.

Table 2: Time Taken in Executing the Two Model Transforma-
tions in GReAT.

Case Master GR-engine
Study Interpreter Compile & execute Execute

Insurance
Enterprise 16 sec. 64 sec. 8 sec.

QoS
Configuration 16 sec. 104 sec. 12 sec.

Case 1: Newly added variant is subsumed by existing constraint
specifications: The existing constraint specification for the prod-
uct line may be sufficient to capture all the variabilities of a newly
introduced product variant. Thus, the developers can create a new
variant simply by re-executing the same model transformation with
the VMM model instance of the variant as one of the inputs to the
transformation. Note that the first two steps of GReAT have to
be performed only once when the model transformation is being
executed for the first time. Because all the instance-specific cus-
tomizations/changes are done in the corresponding VMM model,
developers only need to execute Step 3 after each change to pro-
duce output of the transformation (i.e., a new family instance).

In contrast, the traditional approach of one model transformation
per single (subset of) family instance(s) will require maintenance of
I ∗Rn rules, where I is the number of family instances, and Rn is the
average number of rules per instance. With MTS, assuming that the
average number of rules do not change, the total number of rules to
be maintained reduces by a fraction of I−1

I .
Case 2: New variant requiring additional constraint specifica-
tions: If the variabilities of a new product variant are not com-
pletely captured by existing constraint specification for the prod-
uct variant, MTS requires enhancements to the constraint specifi-
cation itself. Such a change necessitates executing the first two
steps above, but only once to generate a new VMM which can be
used to model variabilities in the new variant. Note that despite
this change, the VMM model instances corresponding to the exist-
ing variants will still be valid provided the changes in constraint
specification (because of a new product variant) are orthogonal to
the existing commonalities and variabilities.

4.2 Measuring Performance Overhead
The rationale behind these experiments is to quantify the over-

head placed by the higher order transformations in Algorithms 1
and 2 when the number of structural and quantitative variabilities
are increased. The performance overhead was calculated in terms
of the time taken by each of these algorithms when used in the con-
text of each of the two case studies.

In all we identified (a maximum of) fifteen variabilities for the
insurance enterprise case study, and eleven variabilities for the QoS
configuration case study. The performance overhead was measured
by increasing the variabilities in each case study from a minimum
value of two to the maximum values above. The sizes of both the
metamodels are given in Table 3. Table 4 shows the distribution
of variabilities across the quantitative and structural dimensions for
these case studies.

Table 3: The Size of the Metamodels
Metamodel # of # of # of

modeling elmts. attribs. conns.
Insurance
Enterprise
SRC/TRGT 8 14 0

QoS
Configuration

SRC 3 2 2
TRGT 8 14 4

Table 4: Distribution of Variabilities
Data Point Insurance Enterprise QoS Configuration

Quantitative Structural Quantitative Structural
1 2 0 2 0
2 2 2 4 0
3 3 4 5 0
4 3 6 5 2
5 5 6 6 3
6 6 7 8 3
7 6 9 n.a. n.a.

Figures 10 and 11 show the overhead involved in using MTS to
generate VMM (MTS Step 2), and specialize the transformation
(MTS Step 4), for the insurance and QoS configuration case stud-
ies, respectively. In general, the algorithms take slightly more time
for QoS configuration than the insurance enterprise for the same
number of variabilities, which is attributed to the larger combined
size of the source and target metamodels of the QoS case study.
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Figure 10: Insurance enterprise case study

For a variation of {Q=4, S=9} in the insurance enterprise case
study, where Q and S denote the total variation in quantitative and
structural variabilities, respectively, the time complexity of Algo-
rithm 1 increased by 350% from an initial value of 6 seconds, while
that of Algorithm 2 increased by 380% from an initial value of 5
seconds. For the QoS configuration case study, with a total vari-
ation of {Q=6, S=3}, the increase was ∼136% and ∼300%, for
Algorithms 1 and 2, respectively.

Thus, if the new family variant is already subsumed by the no-
tation as discussed in case 1 in Section 4.1, the developers incur
an additional overhead in using MTS only for the first time when
each of these algorithms have to be applied (i.e., once for gener-
ating VMM, and once for creating temporary objects in the model
transformation). Thus, the cost of using MTS is amortized over the
total number of transformation runs during the development cycle
of that application family. Since application development often un-
dergoes multiple iterations of improvement, we believe the use of
MTS is beneficial to the developers.
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Figure 11: QoS configuration case study

For the remaining cases, if the variabilities of the new variant
are not captured by the existing specification, the two steps listed
in Section 4.1 have to be executed once after modifications in the
specification have been made according to the variabilities of the
new variant.

5. RELATED WORK
Existing model transformation tools [4, 7, 18] support some form

of HOTs. PROGRES and ATL allow specification of type param-
eters while VIATRA allows development of meta transformations,
i.e., HOTs that can manipulate transformation rules and hence model
transformations. Unlike MTS, however, these tools do not provide
mechanisms for separation of variabilities from model transforma-
tions to facilitate automated development of application families.

A related work synergistic to MTS appears in [5]. In this work
the authors propose (1) transformation factorization to extract com-
mon parts of two or more transformation definitions into a reusable,
base transformation, and (2) composing transformation definitions
mapping from a single source metamodel to multiple target meta-
models, each representing a specific concern in the system being
transformed. MTS differs from [5] in that we focus on composing
the common (base) transformation by using the constraint notation
(as opposed to factoring out commonalities from existing transfor-
mations), and automating the entire process of transformation spe-
cialization (i.e., creating instances of transformations).

The Model-Driven Architecture (MDA) development process is
centered around defining application platform-independent models
and applying (typed, and attribute augmented) transformations to
these models to obtain application platform-specific models. In
the context of MDA, requirements and challenges in generating
specialized transformations from generic transformations are dis-
cussed in [13].

Reflective Model-Driven Engineering [7] proposes a two-dimens-
ional MDA process by expressing model transformations in a tool-
or platform-independent way and transforming expressions into ac-
tual tool- or platform-specific model transformation expressions.
There is return on investment (ROI) associated with developing
and maintaining mappings from platform-independent transforma-
tions to platform-specific transformations in terms of reuse, compo-
sition, customization, and maintenance. Although reflective MDE
focuses on having durable transformation expressions that naturally
facilitate technological evolution and development of tool-agnostic
transformation projects, the mappings still have to be evolved with
a change in platform-specific technologies. In contrast, the MTS
ideas are implemented directly in the underlying tool.

Asset variation points discussed in [17] deal with expressing
variability in models of product lines [3]. A variation point is iden-
tified by several characteristics (e.g., point reference, and context,
use and rationale of the variation point) that uniquely identify that
point in the product lines. These asset variation points capture vari-
ation rules of implementation components of a product line mem-
ber. Azanza et. al. [1] discuss an approach to model refinement for
product lines by adding model deltas through endogenous trans-
formations. MTS has similar goals but focuses on refinements of
model transformations.

An aspect-oriented approach to managing transformation vari-
ability is discussed in [24] that relies on capturing variability in
terms of models and code generators. Another approach is model
weaving [6], which is used in the composition of separate mod-
els that together define the system as a whole. Using the aspect-
oriented approach requires developers to learn a new modeling lan-
guage for creating aspect models for their product line. In contrast,
the VMM models generated by MTS use modeling objects that are
part of the source (or target) modeling languages requiring no ad-
ditional learning curve.

6. CONCLUSIONS
This paper presented MTS (Model-transformation Templatiza-

tion and Specialization) that seamlessly integrates with an existing
model transformation tool to support reusable model transforma-
tions for product lines. This approach is important to manage and
improve the quality of product line software architectures at differ-
ent stages of the development lifecycle where MDE techniques are
used. MTS defines parameterized transformations to factor out the
variabilities from commonalities in the transformation rules, and
uses the notion of a generated variability metamodel to capture
the variabilities in the transformation process across variants of a
product line. MTS defines two higher order transformations to spe-
cialize the transformations for different variants. Currently, MTS
is implemented for the GReAT model transformation tool and our
ongoing work is investigating its feasibility for the ATL tool.

The results of evaluating MTS for our two case studies indicate
that developer efforts are minimized when new variants are added
to the product line, which otherwise require transformation rules to
be reinvented in traditional approaches. Although our case studies
are small, we believe the results are a good indicator of the savings
in general. MTS is available in open source as part of the CoSMIC
MDE tool suite from www.dre.vanderbilt.edu/cosmic.

Discussion and Lessons Learned
The goals of MTS center around providing a capability that will
significantly reduce the need to repeat and codify entire transfor-
mation rules for each variant of a product line. These benefits are
more evident for transformation tools that employ visual languages
to encode the transformation rules. By no means does MTS elim-
inate the need to encode the actual transformation rules; it simply
lessens the need to redo them for every variant. We surmise that the
benefits accrued using MTS will thus provide an indirect measure
of the quality of software architecture. For example, MTS will be
beneficial if model-driven engineering is heavily used in the devel-
opment and maintenance of software architectures. The generative
power of the MTS process derived through the higher order trans-
formations enables a seamless composition of the rules represent-
ing the commonalities with the variabilities representing individual
variants to result in a complete set of transformation rules. Our
future work will investigate more user studies to understand the
benefits. We are also working to showcase the MTS capabilities in
ATL, which is a widely used model transformation tool.
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