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ABSTRACT

Given the diverse deployments of sensor nodes in prognostics
and health management (PHM) applications, the use of small
form-factor, low-cost and power-efficient microcontrollers
(MCUs) has become a practical option for long-term mon-
itoring and front-end data-processing. Hardware advances
have enabled small MCU devices to run light-weight machine
learning (especially deep neural networks) thereby enabling
inference tasks using tiny machine learning (Tiny ML) models
executing closer to the data source sensors. Although TinyML
like approaches have previously been proposed for some cases
in PHM, existing approaches have mainly targeted PHM appli-
cations that use single data sources and case-specific models
as opposed utilizing prediction models trained from general
machine learning frameworks and requiring fusion of multiple
distributed data sources. Unfortunately, pure MCUs lack the
capacity to conduct such analytics. This work aims to address
these limitations by using TinyML deployed at the edge in
cooperation with system-level machine learning executing in
the cloud. Specifically, we study applications in which sensor
data is collected and used to predict system health status and
perform remaining useful life regression. We also show how
edge MCU devices and cloud computing can be combined
and adapted to satisfy diverse requirements, such as latency,
power and communication. We also describe the limitations
of the current MCU-based deep learning in data-driven prog-
nostics. To the best of our knowledge, this is the first work to
systematically investigate the TinyML-Cloud cooperation for
data-driven prognostics. We target this as a vision paper and
aim to provide a high-level guideline for future PHM applica-
tion designs involving smart MCU-based decision making.

1. INTRODUCTION

With the current development of machine learning, especially
deep learning, statistical prediction models like neural net-
works have achieved state-of-the-art performance for many

Xingyu Zhou et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

tasks pertaining to cyber-physical systems including prog-
nostics and health management (PHM). Recent hardware ad-
vances have made it possible to run small but optimized ma-
chine learning models on low-power microcontrollers (MCUs),
such as Arduino or STM32, at the edge. By being closer to
the source of the data, PHM applications can be more effi-
cient. This concept is called embedded machine learning,
or TinyML (Warden & Situnayake, 2019). By providing on-
device sensor data monitoring and processing, TinyML pro-
vides promising opportunities for PHM applications in early
warning generation and smarter decision making at low-power
as well as low cost with a low-latency guarantee.

Executing edge-based machine learning models for PHM ap-
plications has been studied in the literature (Grosvenor &
Prickett, 2011). Past works usually use MCUs for condition
monitoring and set relative simple threshold strategies for early
warnings (Song, Luan, Shi, Li, & Wang, 2020). These past
works show the potential of MCU-based smart decision mak-
ing for PHM applications (Farinholt et al., 2018). At the same
time, they also show one general difficulty of using MCUs for
data-driven PHM because the prediction models are usually
case-specific and lack general applicability. Moreover, the
limited hardware capacity of the MCUs and high data volumes
of PHM applicatons makes it hard to rely on MCUs alone for
complete PHM capabilities.

Furthermore, efficiently assigning prediction or inference tasks
to TinyML devices for PHM applications is difficult due to the
following challenges:
• PHM application data sources are often from different

sensors. It is difficult to fuse sensors when we use them
as data inputs for TinyML models.

• PHM applications often involve systems with manual con-
figurations. We need to consider how these configurations
would be used as input features of TinyML models in a
proper way.

• PHM applications often make use of prediction models
with spatio-temporal considerations. Time synchroniza-
tion and sensor data transfer would become a system-level
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challenge for sensor networks with limited hardware re-
sources at the sensor end.

• Recent PHM applications involve higher data volumes
at the sensor end e.g., live video or audio data. Efficient
model training and optimization for potential TinyML
deployments has become a challenge.

To address these challenges, we propose the use of cloud
computing as a high-level support system that can work in
conjunction with TinyML deployments. In this paper, we ex-
plore potential application patterns where MCUs and cloud
computing can be adapted to different kinds of machine learn-
ing models and combined in flexible ways thereby catering
to diverse PHM application requirements. Overall our work
emphasizes the following critical aspects of TinyML-based
PHM applications where cloud computing could contribute to:

• Cloud-assisted model training and code generation for
heterogeneous hardware devices.

• Data storage and integration for heterogeneous sensor
data sources.

• Model inference computation offloading for latency,
power and communication optimization.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the potential techniques for more efficient
cooperation between cloud and TinyML models in PHM
applications; Section 3 provides empirical experiment de-
sign and evaluation results of applications on hardware plat-
forms; and Section 4 concludes the paper. Code avail-
able at: https://github.com/dustinjoe/TinyML
-with-Cloud-for-PHM.

2. METHODOLOGY

In this section we delve into the details of the underlying
methods used in our work. We first provide a general introduc-
tion to the current status of TinyML in Section 2.1. Then we
propose three methods covering aspects of cloud computing
that would help more efficient TinyML deployments in PHM
applications in Section 2.2- 2.4.

2.1. TinyML: Machine Learning Inferencing on Tiny Mi-
crocontrollers

Microcontrollers (MCUs) are low-power computation devices
with limited hardware resources. They are widely used in
almost all cyber-physical systems including for PHM appli-
cation. A typical microcontroller would have less than 500kb
of storage and less than 100kb of RAM. In order to run a
machine learning model on such a small-scale device, we need
a light-weight model execution engine for the MCU as well as
an optimized model representation. Even though in theory it is
possible to also have model training updates on MCUs (Ren,
Anicic, & Runkler, 2021), the limited amount of computation

power on MCUs can often make the model learning/updating
process on MCUs infeasible. As a result, from a practical
point of view, in this work, we focus on conducting machine
learning inference rather than learning on MCU devices.

The development of TinyML enables a systematic application
of relatively complex prediction models on MCUs (C. Ban-
bury et al., 2021). For example, the work in (Crocioni, Pau,
Delorme, & Gruosso, 2020) describes State of Health (SoH)
for battery health monitoring and presents a comparison of
different ML algorithms for estimating maximum releasable
capacity of Li-Ion batteries. These efforts formulate the
current tiny machine learning stack as consisting of sensor
fusion, data collection, model training, model optimization,
hardware-targeted model conversion and realistic hardware
deployment (C. R. Banbury et al., 2020). Moreover, although
there exists substantial heterogeneity in both software and
hardware for different levels of model training and deploy-
ment, the machine learning model training are all based on
general frameworks like Tensorflow/Keras and the deployment
of these models on MCUs often involves a hardware-targeted
model conversion and optimization procedure (David et al.,
2020; Crocioni et al., 2021).

2.2. Cloud-Assisted Model Training/Deployment

Recently, there has been a growing trend towards minimiz-
ing manual code development (Broll & Whitaker, 2017) but
rather have users utilize simple logic or drag-and-drop func-
tional blocks to realize the desired features. To design a cyber-
physical system with smarter decision making, a development
platform purporting to minimizing coding efforts should be
able to combine IoT sensing endpoints with hardware-targeted
embedded machine learning model deployment. Furthermore,
this platform should be able to automatically generate an opti-
mized model that provides optimal on-device inference perfor-
mance on custom hardware platforms. PHM applications are
typical cyber-physical system applications that would involve
a holistic workflow that requires both data collection and data
processing. As a result, we can expect more end-to-end code
generation and deployment workflows for PHM applications
involving embedded machine learning.

With more sensors connected in PHM application, an inte-
grated cloud platform would be critical for data integration as
well as infrastructure management (Vuppalapati, Ilapakurti,
Chillara, Kedari, & Mamidi, 2020). There have been some pio-
neering end-to-end solutions that have shown the prototype of
these potential scenarios. Two examples are SensiML (Chris
Knorowski, 2021) and Edge Impulse (Louis Moreau, Mihajlo
Raljic, 2021). They both have integrated TinyML development
workflows to enhance the model training and deployment on
MCU or other edge devices. This kind of public cloud service
helps lower the technical barrier to realize the workflows for
edge model applications. It incorporates functions of data
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acquisition, processing, model training&testing and actual de-
vice deployment. It also generates C code for various type of
devices including MCUs.

2.3. Integration with Database Storage

Figure 1. Sensor Data Time Series.

For health status diagnosis and prognosis, we must often deal
with continuous incoming sensor data. As a result, the model
would absorb time series data from sensors and use the data for-
mat for predictions as shown in Fig 1. In addition, MCUs can
operate as gateways to enable protocol translation and edge-to-
cloud internet connection. To cope with tremendous amount
of heterogeneous types of data, different cloud database sys-
tems have been exploited (Eyada, Saber, El Genidy, & Amer,
2020). To seek high performance in tasks like data transfor-
mation, analytics computations and data visualization, etc.,
specific database systems have been actively under develop-
ment (Amghar, Cherdal, & Mouline, 2018). With respect
to the edge-to-cloud PHM continuum presented in this pa-
per, databases that provide effective support for interaction
with ML-based data mining techniques are applicable to our
work. One example includes the INFN-CNAF computing cen-
ter (Umberto Griffo, 2019) used to launch large-scale data
mining tasks based on InfluxDB (Nasar & Kausar, 2019) to-
wards a global predictive maintenance solution. Apart from
time series data, we also must deal with non-structural data
like images, audio or even video. This adds to the necessity of
using cloud as an integrated storage solution.

2.4. Computation Offloading

Even though TinyML development has enabled the execu-
tion of light-weight prediction models on MCUs, the lim-
ited amount of hardware resources on the MCU side can-
not handle larger volumes of data from heterogeneous data
sources. To solve this issue, we need to combine the cloud
servers with MCU devices to formulate an edge-cloud comput-
ing paradigm for more adaptive computation burden offload-
ing (Satyanarayanan, 2017).

One significant concern of features from sensor data in PHM
applications is that the input data dimensions have semantic
structural relationships. The main motivation for data-driven
prognostics is that in practice we may not be able to get ac-
curate physics-based models to conduct reliable model-based
prognostics. But how to fuse information from distributed data
sources for system prognostics in a hybrid way is still a practi-

cal problem. By offering more flexible data manipulation, we
argue that the combination of TinyML and cloud computing
can play an important role in PHM applications.

As we have mentioned, in practice we must deal with various
kinds of data for PHM applications. This leads to challenges
from two inevitable aspects when we combine it with the high-
level cloud computing when we are seeking a system-level
performance evaluation. One is the presence of large volumes
of data communication between the MCU edge nodes and the
cloud server. The other is the interaction between the TinyML
model and the cloud-based ML model. These two aspects
may manifest in various forms in practical applications but we
propose a more general framework to solve these issues.

Based on the temporal dependency of the predictor input data,
we classify ML-driven PHM applications into three types:
• No Temporal: e.g, comprising discrete data input like

camera images.
• Continuous: e.g., those comprising continuous streams

from all sensor nodes. Only new coming data is updated
for storage and prediction.

• Discontinuous: e.g., those that do not need monitoring at
all times. All sensor data in the past window length of
time, however, needs to be fetched.

For the first setting without temporal dependencies, the
TinyML predictor serves as an early warning as well as a
data selector. It uses light-weight models to judge whether it is
necessary to send the current input to the cloud for further anal-
ysis. If it is not necessary then the communication bandwidth
for data transmission would be saved. This working mode
would be meaningful for data with relatively large granularity.

Both continuous and discontinuous modes put emphasis on
time series data, but the continuous mode conducts data anal-
ysis continuously and while the latter conducts analysis peri-
odically or based on other monitoring policies. Irrespective,
the general computation offloading guideline is that TinyML
can only conduct light-weight predictions using nearby sensor
data, must interact with the cloud and let the cloud server con-
duct the more systematic analysis. The discontinuous mode,
however, needs to send more data to the cloud server for one
inference cycle.

We propose a resilient TinyML model application strategy to
solve this issue. We dive into the multi-layer structure of neural
network models. For the working mode with no temporal or
continuous dependency, the data uploaded remains unchanged.
But for the discontinuous mode, the data uploaded to the cloud
would be the latent space representation of one intermediate
layer of neural network model. With a designed network
structure, the latent space representation can have much fewer
dimensions than the original input. In this way, the first part
of the TinyML prediction model serves as an input decoder
that helps compress the transmitted data. We show an example

3



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021

Figure 2. Resilient Application of TinyML Model.

in Fig 2. The input is first sent into an encoder and encoded
as a latent representation. Then this latent representation is
further utilized for predictions. This ideology could be utilized
for both supervised and unsupervised learning models. For
example, using an identity mapping auto-encoder is a classical
unsupervised method for sparser data representations and also
anomaly detection (Crocioni et al., 2021).

Figure 3. Ensemble System-level Modeling of TinyML Sub-
models.

From the semantic structure point of view, TinyML models are
focused on data from one sensor or a small group of sensors
nearby. In this way, one model on MCU copes with data from
one sub-component of the system. To get the overall system
status prediction, we need to find a way to integrate results

from sub-components together. In machine learning this can
be defined as an ensemble as shown in Fig 5.

The strategy for an ensemble is flexible under different appli-
cation settings. For the mode without temporal dependencies
or continuous mode, this can be conducted as the process of
fusing results from different sensors. This may involve the
fusion of data as well as prediction results. For discontinuous
mode, this could be the concatenation of compact latent space
representations and then utilized together for more systematic
analysis. This can be realized in a hierarchical manner. Light-
weight models for sub-components are trained first and frozen.
Then these pre-trained models can be combined together. This
means the ’Ensemble’ operation shown in Fig 5 can either be
a relative simple operation like concatenation or some extra
neural network layers going forward towards a final systematic
result.

In summary, we discuss potential critical roles that TinyML
can play together with cloud computing in data-driven PHM
applications. We emphasize three critical functions of early
predictive warning, dynamic offloading and data compression
that TinyML can realize inc conjunction with a cloud setting.

3. EVALUATION

For demonstration purposes, we conduct two case studies
to showcase the role of TinyML under different PHM work-
ing modes. The first study is about surface crack detection
using camera images. The MCU takes pictures using on-
board cameras and use a TinyML model to detect whether
there is crack in the image. If one is detected, then it sends
the image to cloud for further analysis. The second case
study uses the widely-used C-MAPSS jet engine degrada-
tion dataset (Saxena & Goebel, 2008). We build light-weight
models for sub-components of the engine and attempt to con-
duct both continuous and discontinuous prognostics using
the TinyML techniques. It is worth pointing out that the C-
MAPSS jet engine is not a perfect example for this distributed
prognostics case study and we use it under an ideal assumption
for demonstration purposes only.

3.1. Prototypical Hardware Deployment Validation

The practical question is whether these application models
become too difficult to deploy yet need to have acceptable
performance. To validate the practicality of deploying models
on the cloud as well as on the edge, we provide a prototypical
hardware deployment of these models on a server GPU and
an edge MCU computation platform as follows:

• Cloud Hardware: The cloud inference deployment was
conducted on a workstation (server) with a 4 Core/8
Thread Intel I7-7700HQ processor, 64GB RAM and
a 2560-core NVIDIA P5000 Mobile Pascal GPU with
16GB GDDR5X VRAM.
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Figure 4. Crack analysis workflow of running binary crack detection on MCU using relative low-resolution images and further
segmentation analysis on cloud using high-resolution images.

• MCU Hardware: The edge inference deployment was
conducted on an ESP32-Cam Development Board with
WiFi BT/BLE SoC module, a low-power dual-core 32-bit
CPU with working frequencies of up to 240MHz, a built-
in 520 KB SRAM with an external 4M PSRAM. It also
supports OV2640 and OV7670 cameras with micro-sd
card read/write options.

For the MCU hardware, we choose the ESP32 Wifi MCU fam-
ily chip for our experiments. The ESP32 is a low-cost, low-
power system on a chip series of microcontrollers integrated
with Wi-Fi and Bluetooth capabilities. ESP32 uses a IoT-
targeted architecture powered by a dual-core Tensilica Xtensa
LX6 microprocessor, which is more specific than ARM-Cortex
series processors. ESP32 development is also officially sup-
ported by the popular MCU development tool of Arduino IDE
so that many existing packages can be used on ESP32 without
any barrier. Compared to Arduino MCUs, ESP32 has more
hardware resources and communication methods embedded so
it has become a popular choice for state-of-the-art IoT project
development.

As we are only demonstrating the applicability of TinyML
deployment on the device, we use the USB cord to power the
device. But it is worth pointing out, in practice the low power
consumption of these MCUs enable the possibility of working
in totally wireless mode using solar power (Priambodo &
Nugroho, 2021).

3.2. Case 1: Surface Crack Analysis

3.2.1. Problem Description

Crack occurrence and propagation are critical factors that af-
fect the reliability of solid structures. Correspondingly, crack
analysis plays a vital role in health monitoring and inspection
of structures like buildings/bridges/roads/equipment. Tradi-

tional inspection on cracks require heavy manual load, and
image processing and computer techniques help formulate
automatic analysis pipelines (Mohan & Poobal, 2018).

We consider a crack analysis pipeline consisting of two phases
of detection and segmentation (Zou et al., 2018). Crack detec-
tion judges whether there exists cracks in the region of a given
structural image (L. Zhang, Yang, Zhang, & Zhu, 2016). Given
an input image with likely damage, crack segmentation further
detects crack locations on images in a more detailed and accu-
rate manner (X. Zhang, Rajan, & Story, 2019). For our study,
the detection model training and evaluation is conducted using
the Concrete Crack Images for Classification Dataset (Özgenel
& Sorguç, 2018). The segmentation model training and evalu-
ation is conducted using the Crack500 Dataset (X. Zhang et
al., 2019).

3.2.2. System Model

Although past efforts have shows reliable analysis from static
images, with the development of TinyML, we can imagine a
more flexible deployment of crack detector such as on a MCU-
assisted structure patrol robot and provide detection feedback
as early warnings in a real-time manner and send images with
potential cracks to the cloud for further analysis.

In order to realize the working pipeline proposed above, we
need to allocate different computation burdens to suitable
devices as shown in Fig 4. We propose the device workflow
of running binary crack detection on MCU using relative low-
resolution (32, 32, 3) RGB images and segmentation analysis
on cloud using high-resolution (224, 224, 3) RGB images.

3.2.3. Results

These years’ development of deep learning has shown the
success of convolutional neural networks (Özgenel & Sorguç,

5



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021

Model Size Precision Input Type Output Type Latency Performance
MCU Detection 584.9 kb INT8 (32,32,3) RGB Yes/No 479 ms Accuracy: 99.5%
Cloud Detection 22.4 mb Float32 (224,224,3) RGB Yes/No 2.4 ms Accuracy: 99.7%

Cloud Segmentation 40.8 mb Float32 (224.224.3) RGB Segmentation Mask 7.3 ms mIOU: 0.5075

Table 1. Crack analysis performance on devices. MCU side runs a quantized model for this binary detection inference task. It
gains good classification accuracy performance with only about 1/40 model size. In contrast, segmentation has high computation
burden and can only be deployed on the cloud.

2018). Both the cloud and MCU side models are used for com-
puter vision tasks and we make use of mature convolutional
neural network(CNN) architectures for these tasks.

On the MCU side, we make use of the Edge Impulse cloud
platform (Louis Moreau, Mihajlo Raljic, 2021) to train a crack
detection model. This model training is using transfer learning
based on a pre-trained Mobilenet (Howard et al., 2017) for
computer vision tasks. The training process takes less than 10
minutes with 6000 training images and 2000 testing images
with a resolution of 32∗32. The cloud platform also generated
C code for MCU deployments.1

On the cloud side, we use the Nvidia GPU for model training.
The segmentation model is based on the U-Net (Ronneberger,
Fischer, & Brox, 2015) architecture. It takes in high-resolution
surface images and returns segmentation masks to show the
exact location and shape of cracks in the region.

We summarize experimental results in Table 1. We can see
that for this binary detection task, the TinyML model on the
MCU achieves as good classification accuracy as the cloud
model with only about 1/40th of model size. One thing worth
noticing is that the model on the MCU side is an optimized
compressed version with 8-bit integer weight/activation quanti-
zation (Han, Mao, & Dally, 2015). Compared to full-precision
32-bit floating point representations, 8-bit representations save
significantly on model size. The segmentation models need to
compute and output the actual crack region. The computation
burden and file read/write size is much higher than the binary
detection. MCUs have neither enough computation power
nor storage space for further segmentation analysis. Thus,
it is necessary to put the segmentation model on the cloud
side. The evaluation metric of this segmentation task is called
Mean Intersection-Over-Union (mIOU), which refers to the
average prediction bounding box overlapping for classes of
objects (X. Zhang et al., 2019). Our implementation is based
on the work presented in (Chen, Liu, & Chen, 2019) and has
achieved normal performance on this segmentation task.

3.3. Case 2: CMAPSS Jet Engine Prognostics

3.3.1. Problem Description

The C-MAPSS dataset (Saxena & Goebel, 2008) is a dataset
for data-driven remaining useful life (RUL) prediction gener-

1Project publicly available on EdgeImpulse: https://studio
.edgeimpulse.com/public/32815/latest

ated from detailed simulations of jet turbofan engines. The
data trace for an engine starts from a degrading time point
and ends (RUL=0) at the end of the running cycle. Apart
from time label, there are 24 features for each data point as
shown in Table 2. The first three are the three operational
settings that have a global impact on engine performance.The
remaining ones represent the 21 sensor values from different
sub-components of the engine system.

No. Parameter Detail Group
1 C1 Control input 1 1
2 C2 Control input 2 1
3 C3 Control input 3 1
4 T2 Total temperature at fan inlet 2
5 T24 Total temperature at LPC outlet 2
6 T30 Total temperature at HPC outlet 3
7 T50 Total temperature at LPT outlet 4
8 P2 Pressure at fan inlet 2
9 P15 Total pressure in bypass-duct 2
10 P30 Total pressure at HPC outlet 3
11 Nf Physical fan speed 2
12 Nc Physical core speed 4
13 epr Engine pressure ratio (P50/P2) 1
14 Ps30 Static pressure at HPC outlet 3
15 phi Ratio of fuel flow to Ps30 3
16 NRf Corrected fan speed 2
17 NRc Corrected core speed 4
18 BPR Bypass Ratio 2
19 farB Burner fuel-air ratio 4
20 htBleed Bleed Enthalpy 1
21 Nf dmd Demanded fan speed 2
22 PCNfR dmd Demanded corrected fan speed 2
23 W31 HPT coolant bleed 4
24 W32 LPT coolant bleed 4

Table 2. Sensor feature grouping according to their semantic
structural contexts. Different groups refer to different sub-
components of the system.

For demonstration purpose, we only choose the first set
FD001 for our experiments here. Data preparation steps
are conducted on this dataset including all zero value feature
removal and normalization into the 0.0-1.0 value range using
MinMax (Patro & Sahu, 2015). The remaining 17 features
can be divided into 4 groups based on their semantic structural
locations.

1. Global: 1, 2, 20

2. Fan+Splitter: 11, 16, 5, 9, 18

3. HPC+Fuel: 6, 10, 14, 15

4. Burner+HPT+LPT+CoreNozzle: 7, 23, 24, 12, 17

We regard sensors of these different groups as spatially sepa-
rated and have MCUs deployed in groups of 2, 3, 4 and explore
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the cooperation of tiny prognostics models on MCUs and the
holistic prediction model on the cloud. It is worth pointing
out that this distributed prognostics system setting is based on
several ideal assumptions. First of all, we regard these sensors
as separable into distributed groups and can be connected to
MCUs separately. In addition, we do not consider the extreme
condition (like high temperature or pressure in the engine)
working applicability of MCUs. Moreover, the experiments
are conducted on stable Wifi connections. Overall, we re-
gard this as a use case for demonstrating a scenario that aims
to explore potential settings for distributed prognostics from
different sensors (installed on sub-components) in a sensor
network. We are using this dataset partly due to the fact that
we failed to find a better dataset for flexible demonstration of
use cases under diverse data division settings.

3.3.2. System Model

Based on the overall problem discussed above, we build mod-
els on both MCUs and cloud servers to conduct prognostics.
From the functionality point of view, TinyML on-device prog-
nostics provides the early warning from the sub-component
level and the cloud prognostics provides the more accurate
system-level analysis. Here we use TFLite-Micro (Tensorflow
Development Team, 2021) from Tensorflow team to transform
machine learning models and execute models on MCUs with
C-based interpreters (Simone, 2020).

For this RUL value regression problem, we use a relatively
simple network architecture on the MCU side. We use a three-
layer multilayer perceptron (Goodfellow, Bengio, & Courville,
2016) with 16, 32, 16 neurons in intermediate layers. This
simple model structure is also shown in Fig 2. This specific
network refers to the model architecture of MCU2, which
absorbs data from Group2. The input of the model is flattened
into one dimension and sent into the model for forward infer-
ence computations. The input of dimension 40 is first sent
into an encoder model and encoded as a latent representation
of dimension 32. Then this latent representation is further
utilized for remaining useful life regression prediction and
outputs one floating point value as the final result.

One thing worth mentioning is that the input data we are
dealing with belong to time series values so it would be a
more optimal choice to use network models with temporal
considerations like LSTM (Hochreiter & Schmidhuber, 1997)
in recurrent neural networks. Unfortunately, these recurrent
neural networks have not been supported as kernel operations
in current TFLite-Micro (Tensorflow Development Team,
2021) yet.

For the continuous working mode, all sensor data updates are
sent to the cloud server. We build a standard MySQL server as
the cloud database to store these incoming time series data. On
the cloud side with full machine learning framework support,
a more standard LSTM network is built for more accurate

prognostics. Here the LSTM model has two layers with 100
and 50 units. Moreover, the output of the second LSTM layer
is connected to one fully-connected neuron to output one final
prediction value.

Figure 5. Model ensemble paradigm for the incontinuous
working mode. Here we show the concatenation of latent
space representations from three MCU submodels.

For the discontinuous working mode, we need to fetch a batch
of data from a set window length of time to conduct prog-
nostics tasks. We propose a submodel ensemble paradigm
as shown in Fig 5. We first train MCU submodels for sub-
components with different groups of sensor data. We then
concatenate outputs of these tiny models but freeze parameter
values in these tiny models. The global impact features are
only used in the high-level holistic model. In this way, we
retrain this holistic model for an overall prediction. One key
point in the submodel is that we are only concatenating the
outputs of the first half of the ’Input Encoder’ of the Fig 2. In
this way, we are only transmitting the latent space representa-
tion values with fewer dimensions than the model input and
the communication bandwidth can be saved.

3.3.3. Results

Even though we are focused on the tiny machine learning
model deployments on MCUs, current 32-bit MCUs like
ESP32 can actually be used in more flexible ways. For this use
case, the ESP32 MCU serves as a simple but multi-functional
server. Fig 6 shows an example of such a simple server run-
ning on MCU. It can support TinyML prediction along with
data visualizations. It stores sensor data for a past certain
length of time. When new data comes in, it would post these
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Model Size Precision #Params Latency /µs Regression MAE Data Transmission
MCU1 57.9 kb Float32 1905 638 26.29 fp32*6
MCU2 54.0 kb Float32 1745 588 27.47 fp32*5
MCU3 58.0 kb Float32 1905 647 25.15 fp32*6
Cloud 1005.6 kb Float32 35251 94.2 24.02 fp32*17

Table 3. RUL Predictions Under Continuous Mode

Model Size
/kb

Model
Precision #Params Latency

/ µs
Regression

MAE
Data Transmission

Uncompressed
Data Transmission

Compressed
Bandwidth

Save
MCU1 40.5+20.3 Float32 1360+545 531+152 26.29 fp32*50 fp32*32 36%
MCU2 36.5+20.3 Float32 1200+545 487+155 27.47 fp32*40 fp32*32 20%
MCU3 39.6+20.3 Float32 1360+545 522+161 25.15 fp32*50 fp32*32 36%
Cloud 168.4 Float32 9137 104 24.7 fp32*17*10 fp32*(96+30) 25.90%

Table 4. RUL Predictions Under Incontinuous Mode

Figure 6. A tiny prognostics server deployed on MCU. It can
support TinyML prediction along with data visualizations.

data to the cloud server to make global RUL prediction us-
ing a more holistic model. But on the ESP32 itself it runs a
lightweight RUL prognostics model for on-device inference,
so if it reaches a threshold it should actively send alarm to the
client user. Making use of these tiny MCU prognostics servers,
we gather data and run models with these data.

We show experiment results from the continuous mode in Ta-
ble 3. For value regressions, we cannot use quantized models
to save model size. But still these tiny prediction models can
run on low-power MCUs with low-latency. The metric of
mean absolute deviation (MAE) is used for evaluation of the
model performance.

Similarly, we show experiment results from the discontinuous
mode in Table 4. As we have mentioned, to get access to the
intermediate latent space representation, we divide the original
predictor into the input encoder and the output predictor. The
total number of model parameters remain the same. But some
storage cost has been induced to store more model structural
information. With the latent space representation, the data
transmission size can be greatly reduced. Again, we get an
overall better system-level prediction with the information
from all submodels and the global features.

4. CONCLUSION

Large scales and big data volumes in practice call for more
resilient data-driven models in health management and prog-
nostics scenarios. Development of current machine learning,
especially deep learning enables the execution of prediction
models on different levels of computation devices. This pa-
per serves as a vision paper for the novel field of TinyML
opportunities on MCU devices in PHM application scenarios.
We not only emphasize the potential of TinyML but also the
significance of combining it with high-level cloud computing
from a more systematic point of view. We explore the question
of how cloud platform can help build efficient TinyML models.
We show the significance of inducing cloud resources for data
storage and integration. Furthermore, we investigate the possi-
ble application patterns for more adaptive computation burden
offloading from the edge MCU to the cloud. Our discussions
and experimental implementations on two case studies cover
the most typical settings in PHM applications. These general
settings would help formalize the system resilience testing in
more scenarios.

Our future work is focused on the following three aspects.
First, our current investigation is based on the Wifi network
as the communication method. Practical PHM application
scenarios may be more complex for such a universal wireless
connection. We may need to further investigate the impact
of unreliable data communication on TinyML deployments.
Secondly, we demonstrate the possibility of using machine
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learning model for data analysis and use the latent space
representation as the data compression to save bandwidth.
But there are other methods that are also worth exploring
like PCA and clustering. In addition, due to lack of support
for RNNs in current TFLite-Micro (Tensorflow Development
Team, 2021), we have not achieved ideal performances on
time series data. This also limited us from exploring unsuper-
vised models like LSTM Autoencoders (Crocioni et al., 2021).
Thirdly, even though our system-level ensemble framework
has shown promising performance on test settings, the strat-
egy of model ensemble is still under manual configuration.
Therefore, we need to find out ways to search for more flexible
model ensemble strategies.
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