
Supporting Systems QoS Design and Evolution
through Model Transformations ∗

Amogh Kavimandan and Aniruddha Gokhale
Dept. of EECS, Vanderbilt University
{amoghk,gokhale}@dre.vanderbilt.edu

Abstract
We describe Quality of service pICKER (QUICKER), a
model- driven QoS mapping toolchain for supporting the
QoS design and evolution of systems software. QUICKER
automates the mapping of QoS requirements onto middleware-
specific QoS configuration options by (1) choosing appro-
priate subset of QoS options for given QoS policies and
(2) assigning values to each of these selected QoS options.
QUICKER also provides support for validating the gener-
ated QoS configurations and resolving any dependencies
between them using model checking.

Categories and Subject Descriptors D.1.2 [Automatic
Programming]: Program Transformation

General Terms Middleware, Configuration, Design

Keywords Model-driven development, model tansforma-
tions, component middleware, web services, SOA, CCM

1. Introduction
Service Oriented Archictures (SOA), such as Web Services
(WS), and component middleware technologies, such as En-
terprise Java Beans (EJB) and CORBA Component Model
(CCM), have raised the level of abstraction for the applica-
tion developers by separating functional and non-functional
aspects during the application software development lifecy-
cle. In an effort to support a wider range of target appli-
cation domains, these systems software technologies have
evolved into a highly configurable and customizable systems
software platforms that provide a number of configuration
mechanisms to satisfy non-functional requirements of ap-

∗ This work is sponsored by grant from Lockheed Martin Advanced Tech-
nology Laboratories.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA ’07 October 21-25, 2007, Montreal, Canada.
Copyright c© 2007 ACM 978-1-59593-786-5/07/0010. . . $5.00.

plications in each of these target domains. Owing to such
a flexibility, however, the size of the system software con-
figuration space (i.e., the configuration options suited for an
application and their appropriate value set) becomes large. A
comprehensive knowledge of various configuration options,
their inter-dependencies, and how they impact application-
level requirements is critical to correctly configure the sys-
tems platform. Failure to correctly map policies to low-level
configuration options will lead to a sub-optimal (or wrong)
system software configuration degrading the overall appli-
cation performance, or worst run-time errors that are costly
and difficult to debug.

This poses a significant challenge for application devel-
opers who are seldom experts at performing optimal config-
uration of the systems platform for their application.
Our Solution. We have developed QUality of Service pIC-
KER (QUICKER) [1], a model-driven engineering (MDE)
QoS mapping toolchain to support QoS design of the imple-
mentation systems software(s). QUICKER provides a sys-
tem composition language to enable application develop-
ers to annotate applications with QoS policies i.e., QoS re-
quirements of applications. The current implementation of
QUICKER supports QoS configuration of applications im-
plemented using CCM and WS systems software platforms.
It also defines model transformations to automatically map
these QoS policies to a set of platform-specific QoS config-
uration options that are required to satisfy the specified QoS
policies. Finally, QUICKER uses generative techniques to
synthesize model-checking input for the application to ver-
ify various QoS options generated through model transfor-
mations.

2. Model-driven QoS mapping for Systems
Software Platform

Figure 1 shows the model-driven QUICKER toolchain. We
discuss its capabilities in this section.
Challenge 1: Capturing QoS policies. Application devel-
opers are domain experts with a thorough understanding of
the application business logic but often lack the knowledge
about the QoS configuration space of the systems platform
to optimally configure the systems platform for their appli-

Legend

Systems Composition Language

QoS Policy

Meta-Model

Assembly

Meta-Model

Package

Meta-Model

Model

Transformation

Analysis Tools

Application Developer

CQML

QoS

Configuration

Meta-Model

A
p

p
lic

a
ti
o

n
 C

o
n

fi
g

u
ra

ti
o

n
 E

v
o

lu
ti
o

n

GReAT

Graph Rewriting Rules

G G’

G G’

G G’

G G’ G G’ G G’

Systems Compisition Language

QoS Policy
Meta-Model

Assembly
Meta-Model

Package
Meta-Model

in
s
ta

n
c
e
o
f

CQML

QoS
Configuration
Meta-Model

CQML

Models

in
s
ta

n
c
e
o

f

QUICKER Meta-models

Existing Composition

Meta-models

Application-

level QoS

requirements

Application

Models

Figure 1. QUICKER Toolchain

cations.
Solution: Domain-specific QoS policy specification us-
ing QUICKER. We have developed a QoS Policy domain-
specific modeling language (DSML) that allows specifica-
tion of desired QoS policies. The QoS Policy DSML meta-
model shown in Figure 1 has the semantics of systems QoS
requirements. By focusing on what is expected from the ap-
plication (i.e., systems QoS requirements) rather than how
the QoS may be achieved (i.e., low-level platform-specific
QoS options), QUICKER enables easier and intuitive QoS
specification.
Challenge 2: Identifying the set of platform-specific QoS
options from application policies. Once systems QoS poli-
cies are captured using the QoS Policy DSML, these policies
still need to be mapped onto the correct platform-specific
QoS options. Current solutions to resolve this challenge are
ad-hoc, i.e., manually identifying the QoS options from the
given systems QoS policies. An application typically goes
through several iterations during its software development
cycle (and possibly, during its maintenance cycle, in order
to incorporate new requirements). Without automated tool
support, particularly for large-scale applications, it is time
consuming, error prone and in some cases infeasible for ap-
plication developers to correctly configure the systems soft-
ware for a given QoS policy set.
Solution: Automated QoS policy mapping through model
transformations. We have defined transformation algo-
rithms using the GReAT toolchain that translate the QoS
policies into detailed, platform-specific QoS configuration
options. QUICKER model transformations define rules that
perform the following activities: (1) choosing an appropriate
subset of QoS options that high-level systems QoS policies
map to, and (2) choosing valid values for each of these QoS
options to perform QoS configuration of the systems plat-
form. As shown in Figure 1, transformations are defined
in terms of meta-models, and thus can be used repeatedly
for any application models that conform to the QoS Policy
DSML. The generated QoS options are themselves models
that are amenable to further analysis/transformations.

Challenge 3: Validating platform-specific QoS options.
QoS options for an application may be associated at vari-
ous levels of granularity of the systems platform. For exam-
ple, RT-CCM configuration options have component-level
associations, RT event channel service options have asyn-
chronous connection-level associations, and WS Reliable
Messaging options have port-level (i.e., event source and/or
event sink) associations. Depending on their associations,
QoS options are often dependent on each other and hence a
change in value of one QoS option may affect many other
QoS options. Thus, such dependencies must be resolved
before the application can be prepared for deployment for
which manual approaches to resolve these challenges have
significant limitations.
Solution: Model-checking to validate (generated) QoS
options. QUICKER extends the Bogor Input Representation
(BIR) [2] with new constructs that enable specification and
model-checking of system properties more closely to the do-
main of implementation platform. Using these extensions,
a systems platform-based application can be expressed in
terms of BIR and the properties of the application(i.e., QoS
options) can be validated using the model-checking frame-
work. QUICKER uses generative techniques on the models
of QoS options in order to synthesize: (1) input to the Bo-
gor model-checking framework in order to model-check the
QoS options, and (2) descriptors in middleware-specific for-
mat that are required to configure application QoS before
deployment.

3. Concluding Remarks
In this paper we discussed QUICKER, a model-to-model
transformation toolchain that provides an automated, scal-
able, and reusable approach to resolve the QoS mapping
challenge. QUICKER provides intuitive modeling abstrac-
tions to facilitate application QoS policy specification and
model transformation algorithms that map these QoS poli-
cies to the platform-specific QoS options that will ultimately
achieve the desired application QoS. QUICKER is available
as open-source from www.dre.vanderbilt.edu/Co-
SMIC/.

References
[1] Amogh Kavimandan, Krishnakumar Balasubramanian, Nis-

hanth Shankaran, Aniruddha Gokhale, and Douglas C. Schmidt.
QUICKER: A Model-driven QoS Mapping Tool for QoS-
enabled Component Middleware. In Proceedings of the 10th
IEEE International Symposium on Object/Component/Service-
oriented Real-time Distributed Computing, Santorini Island,
Greece, May 2007.

[2] Robby, Matthew Dwyer, and John Hatcliff. Bogor: An
Extensible and Highly-Modular Model Checking Framework. In
Proceedings of the 4th Joint Meeting of the European Software
Engineering Conference and ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE 2003),
Helsinki, Finland, September 2003.

