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ABSTRACT

Fault tolerance (FT) is a crucial design consideration for
mission-critical distributed real-time and embedded (DRE)
systems, which combine the real-time characteristics of
embedded platforms with the dynamic characteristics of
distributed platforms. Traditional FT approaches do not
address features that are common in DRE systems, such as
scale, heterogeneity, real-time requirements, and other char-
acteristics. Most previous R&D efforts in FT have focused
on client-server object systems, whereas DRE systems are
increasingly based on component-oriented architectures,
which support more complex interaction patterns, such as
peer-to-peer. This paper describes our current applied R&D
efforts to develop FT technology for DRE systems. First,
we describe three enhanced FT techniques that support
the needs of DRE systems: a transparent approach to
mixed-mode communication, auto-configuration of dynamic
systems, and duplicate management for peer-to-peer inter-
actions. Second, we describe an integrated FT capability for
a real-world component-based DRE system that uses off-
the-shelf FT middleware integrated with our enhanced FT
techniques. We present experimental results that show that
our integrated FT capability meets the DRE system’s real-
time performance requirements for both the responsiveness
of failure recovery and the minimal amount of overhead
introduced into the fault-free case.

INTRODUCTION

Distributed Real-time Embedded (DRE)systems are a growing
class of systems that combine the strict real-time character-
istics of embedded platforms with the dynamic, unpredictable
characteristics of distributed platforms. As these DRE systems
increasingly become part of critical domains, such as defense,
aerospace, telecommunications, and healthcare,fault tolerance
(FT) becomes a critical requirement that must coexist with their
real-time performance requirements. DRE systems have several
characteristics affecting their fault tolerance:

DRE systems typically consist of many independently developed
elements, with different fault tolerance requirements.This means
that any fault tolerance approach must support mixed-mode fault
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tolerance (i.e., the coexistence of different strategies)and the
coexistence of fault tolerance infrastructure (e.g., group commu-
nication) and non-fault tolerance infrastructure (e.g., TCP/IP).

DRE systems’ stringent real-time requirementsmean that any fault
tolerance strategy must meet real-time requirements with respect
to recovery and availability of elements and the overhead imposed
by any specific fault tolerance strategy on real-time elements must
be weighed as part of the selection of a fault tolerance strategy
for those elements.

DRE applications are increasingly component-oriented,so that
fault tolerance solutions must support component infrastructure
and their patterns of interaction.

DRE applications are frequently long-lived and deployed in
highly dynamic environments.Fault tolerance solutions should be
evolvable at runtime to handle new elements.

This paper makes two major contributions. First, it describes the
particular characteristics and challenges of component-oriented
DRE systems and describes three advances we have made in the
state of the art in fault tolerance for DRE systems:

1) A new approach to communicating with replicas that
supports the coexistence of non-replicated and replicated
elements for DRE systems with varying FT requirements,
with no extra elements and no extra overhead on non-
replicated elements that only communicate with other non-
replicated elements.

2) An approach to self-configuration of replica communica-
tion, which enables replicas, non-replicas, and groups to
discover one another automatically as the number of, and
fault tolerance requirements of, elements change dynami-
cally.

3) An approach to duplicate management that supports repli-
cated clients and replicated servers, necessary to support
the complicated calling patterns of DRE applications.

A second contribution of this paper is that we demonstrate these
advances in the context of an integrated fault tolerance capability
for a real-world DRE system with strict real-time and fault toler-
ance requirements, a multi-layered resource manager (MLRM)
used in shipboard computing systems. The fault tolerance we
developed for this context utilizes off-the-shelf fault tolerance
and component middleware with the above enhancements; and
supports a mixture of fault tolerance strategies and large num-
bers of inter-operating elements, with varying degrees of fault



tolerance. We then evaluate the performance of the replicated
MLRM to meet its real-time and fault tolerance requirements
and present analysis of the performance overhead of our fault
tolerance approach.

CHALLENGES IN PROVIDING FAULT
TOLERANCE IN DRE SYSTEMS

We first motivate our work by describing the fault-model and
general approach under which our system operates. The next three
sections introduce particular challenges with applying existing
fault tolerance solutions to the needs of DRE systems, specifi-
cally:

• Communicating with replicas in large scale, mixed mode
systems

• Handling dynamic system reconfigurations
• Handling peer-to-peer communications and replicated clients

and servers.

A. FAULT-MODEL AND FAULT-TOLERANCE AP-
PROACH

A fault model describes the types of failures we expect our system
to deal with. By being specific about our fault model, we make
clear the types of failures the system is designed to handle.

For our solution, we assume that all faults are fail-stop at
the process level. When an application process fails, it stops
communicating and does not obstruct the normal functioningof
other unrelated applications. Network and host failures can be
seen as a collection of process failures on the element that has
failed.

We tolerate faults using both active [15] and passive [3] replica-
tion strategies. In these schemes we use multiple copies of an ap-
plication, called replicas, to deal with failures of the applications.
In active replication all replicas need to be deterministicin their
message output, and each replica responds to every input message.
Our software takes care of ensuring that only one request or
response is seen regardless of how many actual replicas are used.
In passive replication oneleaderreplica responds to messages and
shares its state with any non-leader replicas so they can take the
leader’s place in case of a failure. These passive replicas do not
need to be deterministic but do need to be able to save and restore
their state when responding to a message. Using these schemes,
if a replica fails, there is another ready to act in its place and we
can replace failed replicas if or when resources allow.

B. COMMUNICATION WITH GROUPS OF REPLI-
CAS

Providing fault tolerance using replication requires a means to
communicate with groups of replicas. A common approach is
the use of a group communication system (GCS), to ensure
consistency between and among replicas. DRE systems provide
several challenges for using a GCS. DRE systems can contain
large numbers of elements with varying fault tolerance and real-
time requirements. These requirements range from not needing

FT or RT to having very strict requirements. The following
paragraphs describe approaches to group communication andits
applicability to DRE systems.

Pervasive GCS.Some approaches [11] use GCS for communica-
tion throughout the entire system. This approach provides strict
guarantees and ensures that interactions between applications and
replicas are always done in the correct manner. In very largeDRE
systems, non-replica communication can be the more common
case and using GCS everywhere can severely impact performance
(as we show in a later section).

Pervasive GCS is particularly problematic in component-oriented
systems due to features of component deployment. These deploy-
ment tools need to interact with a newly started applicationwhile
existing replica continue to run. Unfortunately, the use ofperva-
sive GCS would result in deployment messages going to existing
replicas (which were previously deployed and are not prepared for
additional deployment commands). Thus, replicating components
requires the coexistence of non-group communications (during
deployment) and group communications (once all replicas have
been fully deployed).

In general, being able to do some initial work before all the
requirements of replication are enforced is a very useful capability
and can be used in other situations such as secure bootstrapping,
registration, and other situations where initial non-replica process-
ing or communication is required at start-up time.

Gateways.Other systems [4], [12] make use of gateways on
the client-side that change interactions into GCS messages. This
limits group communication to communication with replicasand
provides the option to use non-GCS communication paths where
necessary. The gateway approach does come with tradeoffs,
however. First, it is less transparent than the pure GCS approach
because the gateway itself has a reference that has to be explic-
itly called. Second, gateways typically introduce extra overhead
(since messages need to traverse extra process boundaries before
reaching their final destination) and extra elements that need to
be made fault tolerant to avoid single points of failure. Other
gateway-like strategies [6], [16] have also been explored,similar
to the “fault-tolerance domain” specified in FT-CORBA.

Other projects [13] take a hybrid approach where GCS is only
used to communicate between replicas and not to get messagesto
the replicas. This places the gateway functionality on the server-
side of a client-server interaction, which limits the interactions
between replicated clients and replicated servers but has implica-
tions for replicating both clients and servers at the same time. It
introduces the possibility that lost messages may need to bedealt
with at the application level as they cannot use the guarantees
provided by the GCS.

ORB-provided transports.Some service-based approaches [7]
completely remove GCS from the fault-tolerance infrastructure
and use ORB-provided transports instead, which limits themto
using passive replication.
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C. CONFIGURING FT SOLUTIONS

A recurring problem with using GCS in dynamic systems like
DRE systems is keeping track of groups, replicas, their references,
and their supporting infrastructure as elements come and go
during the life of a large system. Many existing fault tolerance
solutions make use of static configuration files or environment
variables [4], [11]. The DRE systems that we are working with
are highly dynamic, with elements and replicated groups that
can come and go and need to make runtime decisions about
things such as fault tolerance strategy, level of replication, and
replica placement. Static configuration strategies lack the flexibil-
ity needed to handle these runtime dynamics. Eternal [10] does
support dynamic fault tolerance configurations. Greater flexibility
is also available in some agent-based systems [9], but for more
common non-agent infrastructures dynamically adding additional
FT elements to a running system is not common.

D. REPLICATED CLIENT AND SERVERS AND
PEER-TO-PEER INTERACTIONS

Support for replicated servers is ubiquitous in fault tolerance
replication solutions, whereas support for replicated clients is
not as common. Many CORBA-based fault tolerant solutions
concentrate onsingle-tier replication semantics, in which an
unreplicated client calls a replicated server, which then returns
a reply to the client without making additional calls. Multi-
tiered or peer-to-peer invocations are possible but the FT-CORBA
standard does not provide sufficient guarantees or infrastructure
to ensure that failures, especially on the client-side, during these
invocations can be recovered from. A similar situation exists
in some service-based approaches [2], [7] where peer-to-peer
interactions are possible but care must be taken by developers
using the functionality.

In contrast, component-oriented applications routinely exhibit
peer-to-peer communication patterns, in which componentscan
be clients, servers, or even both simultaneously. Many emerging
DRE systems are developed based on component models and
exhibit peer-to-peer calling structure, making solutionsbased on
strict server replication of limited applicability.

Since components can be both clients and servers, component-
oriented DRE systems can have chains of nested calls, where
a client calls (or sends an event to) a server, which in turn
calls another server, and so on. This leads to a need to consider
replication of multiple tiers of servers. Research into supporting
fault-tolerance inmulti-tieredapplications is still ongoing. Some
of the most promising recent work has concentrated ontwo-
tier replication, specifically addressing applications with a non-
replicated client, a replicated server, and a replicated database
[8].

General, unrestricted calling patterns, such as asynchronous calls,
nested client-server calls, and even callbacks (where clients also
act as servers and can have messages arrive via the callback
mechanism while replies from sequential request-reply messages
are pending), present tremendous challenges for fault tolerance
solutions. This is partially due to the need for fault tolerance

to maintain message ordering, reliable delivery, and stateconsis-
tency, which is harder to do in asynchronous, multi-threaded, and
unconstrained calling patterns. It is also due to the fact that the
semantics of such calling patterns in the face of replication are
more difficult to define.

FAULT TOLERANCE SOLUTIONS TO THE
CHALLENGES FOR DRE SYSTEMS

In this section, we describe three new fault tolerance advances
that we have developed, each of which addresses one of the
challenges described in the following section. First, we describe
a Replica Communicator (RC)that enables the seamless and
transparent coexistence of group communication and non-group
communication while providing guarantees essential for consis-
tent replicas. Next, we describe a self-configuration layerfor the
RC that enables dynamic auto-discovery of new applicationsand
replicas. Finally, we describe an approach and implementation of
duplicate message management for both the client- and server-
side message handling code in order to deal with peer-to-peer
interactions.

Once we’ve described each of these solutions, we discuss howwe
integrated them with other off-the-shelf fault tolerance software
solutions to create a flexible and generally applicable fault toler-
ance solution which we then demonstrated and evaluated using a
specific DRE system.

A. THE REPLICA COMMUNICATOR

Limiting the use of group communication provides a way to
separate concerns and limit resource usage and complexity in
a large system. Where group communication is necessary for
maintaining consistent replicas it needs to be available. In other
areas, where group communication is not needed, we want to
remove it. This separation allows us to not disturb the delicate
tuning necessary for real-time applications when group commu-
nication is not needed. Analysis of our replication schemesshows
that the only places where GCS communication is necessary is
when interacting with a replica. That is, only replicas and those
components that interact directly with them need the guarantees
provided by group communication. Other applications can use
TCP without having to unnecessarily accept the consequences of
using group communication.

There are several advantages to limiting the use of GCS. The first
reason is that GCS introduces a certain amount of extra latency,
overhead, and message traffic that is undesirable in the non-
replica case and, in fact, can jeopardize real-time requirements.
Second, many off-the-shelf GCS packages, such as Spread [1],
have built-in limits on their scalability and simply do not work
with the large-scale DRE systems that we are targeting. Finally, as
described earlier, many of the components of our targeted DRE
systems are developed independently. Since the non-replicated
case is the prevalent one (most components are not replicated),
retrofitting these components onto GCS, with the subsequent
testing and verification, would be a tremendous extra added effort
for no perceived benefit.
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Therefore, we developed a new capability, called a Replica
Communicator, with the following benefits:

• The RC supports the seamless co-existence of mixed mode
communications, i.e., group communication and non-group
communication.

• It introduces no new elements in the system.
• It can be implemented in a manner transparent to applica-

tions.

The RC can be seen as the introduction of a newrole in an ap-
plication, along with the corresponding code and functionality to
support it. That is, the application now has three communication
patterns:

1) Replica to replica communication, which uses GCS
2) Non-replica to non-replica communication, which uses TCP
3) Replica to non-replica communication, in which the replica

always uses GCS and the non-replicas make use of an RC
to route the communication to a replica over GCS while
using TCP for communicating with other non-replicas

Fig. 1. Generalized pattern of the Replica Communicator

An abstract view of the RC is illustrated in Fig. 1. Its basic
functionality consists of the following pieces:

• Interception of client calls (In this case calls used to send
messages formatted using CORBA IIOP)

• A lookup table to hold references to replicas and to non-
replicas

• A decision branch that determines whether a call is destined
for a non-replica or a replica and treats it accordingly

• A means to send a message to all replicas, e.g., using
multicast, looping over all replica references, or using GCS

• A default behavior, treating a message by default as one of
the branches

• A configuration interface to add references to new servers,
to add new replicas to an existing group, or to remove a
replica (if it has failed)

Documented in the above pattern, the RC can be realized with
multiple implementations, from application specific implemen-
tations to easier to integrate solutions using standard insertion
techniques and library code.

The RC functionality resides in the same process space as the
application. This improves over traditional gateway approaches,
because it introduces no extra elements into the system. Notice
that the RC does not need to be made fault tolerant, since it is

only used by non-replicas.

We have realized a prototype of the RC pattern in the system
described in the next section and have implemented it using the
MEAD framework [11] and its system call interception layer,as
illustrated in Fig. 2. CORBA calls are intercepted by MEAD. The
RC code maintains a lookup table associating IP addresses and
port numbers with the appropriate transport and group name if
GCS is used. The default transport is TCP; if there is no entryin
the lookup table, the destination is assumed to be a non-replicated
entity. For replicated entities, the RC sends the request using the
Spread GCS, which provides totally-ordered reliable multicasting.
For replies, the RC remembers the transport used for the call, and
returns the reply in the same manner.

Fig. 2. The Replica Communicator instantiated at the systemcall layer

The Replica Communicator was crucial for resolving the problem
outlined previously, namely that the CCM deployment infras-
tructure needs a way to communicate with exactly one replica
during bootstrapping so that start-up messages are not sentto
already running and processing replicas. We used the RC with
our CCM-based active and passive replicas to allow a replicato
be bootstrapped while not disturbing the existing replicas.

B. A SELF-CONFIGURING REPLICA COMMUNI-
CATOR

Populating the table distinguishing GCS and TCP endpoints can
be done in multiple ways. One way is to set all the values
statically at application start-up time using configuration files.
However, this leads to static configurations in which groupsare
defined a priori and supporting dynamic groups and configura-
tions is difficult and error prone. To better support the dynamic
characteristics of DRE systems and to simplify configuration and
replica component deployment, we developed a self-configuring
capability for the RC.

When a GCS-using element (i.e., a replica or non-replica RC)
is started, we have it join a group used solely for distributing
reference information. The new element announces itself tothe
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other members of the system, which add an entry to their lookup
table for the new element. An existing member, chosen and made
fault-tolerant in the same way that a leader is chosen in warm-
passive replication, responds to this notification with a complete
list of system elements in the form of an RC lookup table. The
new element blocks until the start-up information is received,
to ensure that the necessary information is available when a
connection needs to be established (i.e., when the element makes
a call). Since GCS-using elements always register and are blocked
at start-up until they are finished registering, the RC will always
have all the information it needs to initiate any connection. If
there is no entry for a given endpoint it means that TCP should
be used for that connection.

One complexity that does not affect users, but needs to be taken
into account while developing the self-configuring RC, is that
the relationships between elements are not necessarily transitive.
Simply becauseRC1 interacts with replicaR via GCS and
R also interacts withRC2 via GCS, this does not mean that
RC1 should use GCS to interact withRC2. In the case of
manual configuration this is handled by having a configuration
specific for each application. However, in our automated solution
it is necessary to do more than note that a given endpoint can
be contacted via a given GCS group name. We also need to
distinguish the circumstances where GCS is necessary and those
where it is not. We accomplish this by noting whether a reference
refers to a replica or non-replica. Given that interacting with a
replica or being a replica are the only two times GCS is necessary,
an RC knows to use GCS when it is interacting with a replica
(and TCP elsewhere) and replicas always use GCS.

C. CLIENT- AND SERVER-SIDE DUPLICATE MAN-
AGEMENT

One step towards a solution for replication in multi-tieredsystems
is the ability for each side of an interaction to perform bothclient
and server roles, at the same time. They also need to detect and
suppress duplicate messages while allowing nested calls tobe
made. All this needs to be done without locking up an entire tier
waiting for a response, which can guarantee consistency, but is
very limiting.

Fig. 3. Duplicate management during peer-to-peer interactions

One characteristic necessary to support duplicate management is
that messages need to be globally distinguishable, both within
an interaction and between multiple interactions. When multiple

senders independently interact with a shared receiver, it is impor-
tant to differentiate messages based not only on message ID,but
to use a combination of message ID and source. In Fig. 3 both A
(replicated as A-1 and A-2) and C use sequence number 1 to send
a message to B, but since suppression uses both the sequence
number and the sender there is no confusion. A-2’s duplicate
message is suppressed while C’s non-duplicate is allowed.

Our solution enables duplicate management in the highly dy-
namic situations typical of DRE and component-based software.
Requests and replies can be dealt with in parallel and are
unaffected by failures that could reset application-levelsequence
numbers. We replace the ORB supplied request ID with a unique
and consistent value for each request or reply and distinguish
messages upon receipt using both the ID as well as the sending
group. This allows replicas to come and go without introducing
any extra messages at the application layer.

IMPLEMENTATION OF AN INTEGRATED FT
CAPABILITY

As part of a case study we performed on providing fault tolerance
in a real-world DRE system with stringent real-time requirements
[14], we implemented a fault tolerance architecture integrating
the techniques described previously with other off-the-shelf fault
tolerance software to make a pre-existing software base called
the Multi-Layer Resource Manager (MLRM) fault tolerant. The
MLRM is a critical piece of system functionality because it
deploys mission-critical applications and enables them tocontinue
functioning after failures by redeploying them.

There are three distinct hierarchical layers of the MLRM, each
corresponding to a physical division:

• Node: Provides services (such asStart Applicationor Stop
Application) for a specific node. One of this layer’s tasks is
to start execution of applications. There are many (hundreds
to thousands) nodes in the system.

• Pool: Provides services and an abstraction layer for phys-
ically clustered groups of nodes called pools. One of this
layer’s responsibilities is to designate nodes for applications
to run on.

• Infrastructure: Provides the control interface to operators and
coordinates the pool-layer services. One of this layer’s tasks
is to designate pools for applications to run in.

The MLRM is implemented using a number of base technologies
including DAnCE [5]; CIAO,which is a C++ implementation of
CCM; a real-time CORBA ORB, TAO; and JacORB, a Java ORB.

The MLRM takes care of the fault tolerance of individual ap-
plications, by restarting them if they fail (on a different node if
the cause of the failure is a node failure). However, our design
requirements state that pool failures (entire clusters of nodes) are
a possibility. Since the infrastructure-level componentsare hosted
on nodes within one of the pools, the failure of an arbitrary
pool could lead to the failure of the infrastructure-level compo-
nents, rendering the entire system unusable. Therefore, our fault
tolerance focus is on the availability of the infrastructure-level
MLRM components and recovery from catastrophic pool failures.
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The goal was to have an instance of the infrastructure-level
components in every pool, so that the failure of any pool would
not bring down the infrastructure layer MLRM functionality.

MLRM is representative of classic DRE systems, and exhibits
many of the characteristics outlined previously, including the
following:

• The infrastructure layer functionality, since it is critical
functionality, needs to be nearly continuously available,
motivating fault masking or very rapid recovery.

• The MLRM has to deploy many hundreds or thousands of
application components, and there are hundreds or thousands
of node level service components, most of which do not need
to be fault tolerant to the same degree. Yet some of these
need to communicate with the infrastructure layer compo-
nents. Existing off-the-shelf fault tolerance software used
GCS systems for the group management; reliable, ordered
multicasting; and consistency guarantees that we needed.
However, they did not handle mixed-mode communications
and re-hosting the entire system over GCS was out of the
question due to scalability and performance concerns. This
motivated using the RC approach described earlier.

• The infrastructure components are implemented as CCM
components, many of which are both clients and servers,
and with multiple tiers needing replication. Because of
this, we needed both client-side and server-side duplicate
management, as described earlier.

• The infrastructure components differed in their amount of
state and their use of non-determinism. Despite our need for
continuous availability, some components simply could not
be actively replicated. We had to use mixed-mode replica-
tion, with active and passive schemes applied where they met
the requirements and matched the component characteristics.

PA−1

RA−1

PRSS−1NA−1.1

NA−1.2
RA−2

PA−2

PRSS−2

NA−2.2

IA

BBDB

GRSSBB

NA−2.1
Infrastructure Pool 2Pool 1

Fig. 4. Target system architecture

The relevant MLRM components and their communications paths
are shown in Fig. 4. Replicated components are shown in boxes,
non-replicated components are ellipses. Communication paths
that need to go over GCS are shown as dotted lines, and TCP
connections are shown as solid lines.

The Infrastructure Allocator (IA) component makes top-level
application deployment decisions. This component has significant
state, but is largely deterministic. We determined thatactive
replication was most appropriate for this component. Active
replication provides fault masking, so that there is alwaysa replica
available for processing messages, and allows us to avoid state
transfers, which in the case of the IA (with significant state, but
infrequent message traffic) reduced the impact of fault tolerance
on system performance.

While active replication would seem the appropriate choiceto

use wherever possible, the characteristics of other MLRM com-
ponents made it infeasible. TheGlobal Resource Status Service
(GRSS)(which monitors resource usage and system health) and
Bandwidth Broker (BB)(which manages bandwidth allocation)
elements were written in Java and used JacORB. The fact
that JacORB is inherently multi-threaded and the fact that the
application logic uses internal timers means that the GRSS and
BB elements are non-deterministic. The GRSS has a very small
amount of state, and the BB element is stateless (it uses a
back-end database to store all state). We determined thatpassive
replication was the best choice for the GRSS and BB elements,
as long as we could implement the passive recovery within our
real-time requirements (the next section shows that we did).
The performance trade-off is favorable. With passive replication,
overhead on ordinary message traffic is lower, but periodic state
transfers are necessary. The state being transferred for these two
elements was much smaller (when compared to the state of the
IA), but the GRSS receives frequent messages reporting on the
health of nodes, processes, and pools.

We used the MEAD fault tolerance framework [11], extended
with our new Replica Communicator and client-side duplicate
suppression, and the Spread GCS to implement our active and
passive fault tolerance. Spread provides group membershipman-
agement and total ordered, reliable multicast of messages to group
members. We used Spread’s group membership features to detect
failures.

While the GRSS element used a standard passive replication
scheme that broadcasts the primary’s state on every state change,
the BB element used a custom passive scheme. The BB element
kept all its state within a MySQL database. We used MySQL’s
clustering mechanisms (with some customizations by our collab-
orators from Telcordia) to achieve a replicated database. Since
the BB element itself had no state, and the MySQL back-end
replicated itself using the built-in clustering mechanisms, we were
able to use an optimized passive scheme for the BB element that
did not transfer state from the primaries to the secondaries.

None of the pool-level components are replicated, but several
must communicate with replicated infrastructure-level compo-
nents, and therefore use the RC pattern (i.e., PA-1, RA-1, and
PRSS-1). Note also that the Node Application (NA) components
are not replicated, and use regular TCP connections to commu-
nicate with the Resource Allocator (RA) component.

EVALUATION OF THE INTEGRATED FT
SOLUTION

We measured the performance of our fault tolerance solutionboth
in terms of meeting the real-time recovery requirements andin
terms of the impact of the solution on the fault-free performance
of the system.

First, we measured the failure recovery time (i.e., downtime
during a failure) using two failure scenarios. Second, we measured
the fault-free overhead (i.e., the extra latency during normal oper-
ation introduced by our fault tolerance software) by comparing the
“raw TCP” performance of a simple client-server configuration
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against the same client-server using our fault tolerant software.

A. SINGLE POOL FAILURE SCENARIO

For our first scenario, we considered a single pool failure, in
which a whole pool fails instantaneously. This kind of failure
might result from a major power failure or destruction of a hosting
facility. We simulated this failure by creating a network partition
so that packets sent to the failed pool would be dropped at a router.
This is an accurate simulation of failure and has the advantage
that we are able to determine the time the failure occurred tothe
millisecond.

The experiment evaluated two things, (1) that the mission-critical
functionality (i.e., the infrastructure layer MLRM) couldrecover
from the failure and (2) the speed of recovery, with the goal
being that a failure should not inhibit processing for more than
one second. We measured the recovery times for the actively
replicated and passively replicated elements using instrumentation
we inserted in the fault tolerance software. We measured the
recovery time for the database replication using a program that
made constant (as fast as possible) queries on the databases. When
the database failover occurs, there is a slight increase in the time it
takes to do the query, since the database blocks until it determines
that one of the replicated instances is gone (and is never coming
back).

As illustrated in Fig. 5A, the MLRM recovered all its functionality
well within our real-time requirement. The MLRM elements
made fault tolerant using MEAD, Spread, and our enhancements
recovered on average in under 130 ms, with a worst case recovery
in less than 140 ms. The database, made fault tolerant using
MySQL’s clustering technique, recovered on average within140
ms, with a worst case recovery time under 170 ms.

 100

 110

 120

 130

 140

 150

 160

 170

BB-DBBB-frontendIAGRSS

T
im

e 
fr

om
 F

ai
lu

re
 to

 R
ec

ov
er

y 
(m

s)

Max
Avg
Min

 240

 250

 260

 270

 280

 290

 300

 310

 320

 330

BB-DBBB-frontendIAGRSS

T
im

e 
fr

om
 F

ai
lu

re
 to

 R
ec

ov
er

y 
(m

s)

Max
Avg
Min

(A) (B)

Fig. 5. Experimental Results for Scenarios A and B

B. TWO CASCADING FAILURES SCENARIO

Our second scenario evaluated that the fault tolerant MLRM
could recover from cascading failures. We used three pools and
induced failure on one pool. Before the recovery was complete,
we induced a failure on another pool.

As with the single-pool failure’s results, the mission-critical
MLRM functionality survived the cascading failures. Also,as
expected, the recovery times (from the time of the first failure)
are about twice those of the single failure, but still well within a
few hundreds of milliseconds, as shown in Fig. 5B. The recovery
times are higher than for the first scenario because we induced

the second (cascading) fault when recovery was nearly complete,
the worst possible time with respect to recovery from the first
failure.

C. OVERHEAD OF THE FAULT TOLERANT SOFT-
WARE

We measured the fault-free overhead of C++/TAO and
Java/JacORB versions of our fault-tolerance. These tests did not
involve the MRLM system, but instead used a simple client-server
configuration.

Our goal was to compare the latency of using CORBA with raw
TCP against the latency of using CORBA with our fault-tolerant
middleware.
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Fig. 6. Latency of Transport Mechanisms

The results shown in Fig. 6 show that our fault tolerance software
adds approximately a factor of two to the latency compared to
CORBA over TCP. However, if we didn’t need replicated servers,
then we wouldn’t use anything but regular TCP (the whole point
of the Replica Communicator). So we also ran the same tests, but
with an actively replicated server. To implement the replicated
server in the TCP version, we constructed a simple sequential
invocation scheme where in order to make a single logical call the
client would make serial invocations on each server instance. The
results from two and three replicas are shown in Fig. 7. While
this implementation may be simplistic in terms of not making
parallel invocations, it also does not deal with multi-phase commit
protocols which would be used to provide guarantees needed for
replicas and is a reasonable first-order stand-in for such protocols.

In the two replica case, the results show that the fault tolerance
software using GCS performs nearly as well as TCP, introducing
very little extra latency for its total order and consensus capa-
bilities. In the three replica case, the fault tolerance with GCS
performs better than raw TCP.

D. ANALYSIS OF EXPERIMENTAL EVALUATION

Our results indicate that our FT solution enables fast recovery
both in a single failure and cascaded failure scenarios.

The fault-free overhead experiments highlight the importance of
the Replica Communicator. If every component in the system
was required to use our fault tolerance software, the cumulative
effect would adversely affect the real-time applications in our
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Fig. 7. Latency of Transport Mechanisms with 2(A) and 3(B) replicas

system. This supports our claim that only components that require
fault tolerance infrastructure (i.e., replicas and components that
communicate with replicas) should use it, and using the RC
to limit the fault tolerance infrastructure to where it is needed
improves real-time performance, while at the same time enabling
total ordered messages, consistency among replicas and group
management.

The experimentation we have done gives us confidence that
our software fault tolerance solution handles failures sufficiently
rapidly and within acceptable overhead parameters for soft-
real time systems as exemplified by the requirements for our
evaluation context. However, this may prove insufficient where
hard real-time guarantees are needed.

CONCLUSIONS

This paper has described advances we have made in software
support for fault tolerance for DRE systems. Our approach – very
successful in this project – was to utilize off-the-shelf fault toler-
ance software where it was applicable for our needs, customize
it where necessary, and develop new reusable capabilities where
none existed.

The three techniques that we presented in this paper – the Replica
Communicator, self-configuration for replica communication, and
client- and server-side duplicate management – extend existing
fault tolerance techniques to make them suitable for component-
oriented DRE applications. Yet, they are complementary to,and
interoperable with, other existing fault tolerance services. To
illustrate this, we have instantiated them and applied themto a
real-world DRE example application. Our experiments show that
these solutions provide suitable real-time performance inboth
failure recovery and fault-free cases.
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