
Evaluating Performance of OMG DDS in Kubernetes
Container Deployment (Industry Track)

Zhuangwei Kang
Vanderbilt University
Nashville, Tennessee

zhuangwei.kang@vanderbilt.edu

Kyoungho An
Real-Time Innovations
Sunnyvale, California

kyoungho@rti.com

Aniruddha Gokhale
Vanderbilt University
Nashville, Tennessee

a.gokhale@vanderbilt.edu

Paul Pazandak
Real-Time Innovations
Sunnyvale, California

paul@rti.com

Abstract
OMG’s Data Distribution Service (DDS) is an open,
real-time publish/subscribe middleware standard, which
has been widely adopted in many latency-sensitive and
mission-critical industrial IoT applications. However,
deploying and managing large-scale distributed DDS
applications is tedious and laborious. As a successful
container orchestration platform for distributed appli-
cations in the cloud, Kubernetes (k8s) is a promising
solution for DDS-based systems. However, the feasibil-
ity of running DDS applications in a k8s environment,
and the overhead of different k8s virtualization network
architectures on DDS application performance has not
been systematically studied. To address this, we compare
the performance of DDS applications with several k8s
network solutions using a comprehensive set of exper-
iments we designed for a DDS benchmark application.
Our experimental results reveal that: (1) the overhead of
container virtualization is trivial for DDS applications;
(2) the overhead imposed by virtual networks is not sig-
nificant and there is not much performance difference
between the experimented virtual networking solutions;
(3) WeaveNet is useful for DDS discovery because it
supports IP multicast, but its multicast performance is
considerably lower than the host network.

CCS Concepts: • Software and its engineering → Publish-
subscribe / event-based architectures; • Networks →
Network measurement; • General and reference → Eval-
uation.

Keywords: Kubernetes, Container Networking, Data Dis-
tribution Service, Pub/Sub, Performance Evaluation

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Middleware ’20, Dec 7-11, 2020, Delft, The Netherlands
© 2020 Association for Computing Machinery.

1 Introduction
The Industrial Internet of Things (IIoT) is a variant
of the IoT for industrial sectors such as manufacturing,
healthcare, energy and transportation. IIoT systems col-
lect, store, and analyze fast-moving data streams gener-
ated by sensors in cloud/edge service layers for real-time
system control and remote monitoring. As the complex-
ity of IIoT tasks increases, completing an operation may
require communication between multiple sensors and
cloud/edge services, and require (sub)millisecond-level
decisions to streaming events.

OMG’s Data Distribution Service (DDS) is an open
standardized middleware for real-time and distributed
IIoT applications. DDS middleware abstracts the un-
derlying logic of data distribution and management to
simplify the development of IIoT applications. The event-
driven design of DDS enables decoupled communications
between processes by transmitting and processing events
asynchronously. DDS also supports a fully distributed
peer-to-peer communication model and uses a binary
wire format protocol. This helps it to meet real-time
performance and reliability requirements.

With the rapid growth in the scale of IIoT systems, it
has become more challenging to use traditional methods
to deploy and manage large-scale distributed applica-
tions. Container technologies have been successful in
solving scalability challenges in the cloud. Likewise, we
believe that container technologies can also be lever-
aged for IIoT applications to transform the way they
have been managed in the past. Containers enable light-
weight encapsulation and resource isolation of functional
modules, decoupling applications from the underlying
platform. Therefore, containers allow applications to
be easily tested and deployed across platforms using
standardized container image formats.

Kubernetes (k8s) is the de-facto standard for orches-
trating containerized workloads. With k8s, it is easy to
deploy, update, scale, and self-heal distributed applica-
tions. Considering the advantages of DDS and k8s in
rapid and scalable deployment of real-time applications,
companies are motivated to use k8s to manage their
DDS-based applications. However, while k8s has proven
to be an effective and successful solution for orchestrat-
ing cloud applications, its robustness and performance in



Middleware ’20, Dec 7-11, 2020, Delft, The Netherlands K. Zhuangwei et al.

managing distributed real-time embedded applications
has not yet been validated. In addition, k8s supports
a variety of pluggable virtual network solutions, and
they are implemented in different ways. Accordingly, the
performance with containers and virtual networks for
real-time middleware such as DDS is unknown.

To this end, this paper 1) provides a guide for de-
ploying DDS applications in a k8s cluster; 2) develops
an automated benchmark tool for evaluating the perfor-
mance of DDS applications under various workloads and
DDS QoS configurations; and, 3) carries out a system-
atic set of experiments to quantitatively demonstrate
the performance differences of DDS applications with
k8s.

2 Background on Underlying Technologies
2.1 OMG DDS
OMG’s DDS standard defines a data-centric, publish/-
subscribe (pub/sub) connectivity framework for real-
time and embedded systems. DDS is designed to meet
the performance, scalability, fault-tolerance, and security
requirements of real-time and embedded systems. DDS
has been adopted in mission critical applications across
a range of vertical domains including healthcare, energy,
transportation, aerospace and defense, such as ROS[14],
FACE[7], OpenFMB[12], etc.

The DDS pub/sub interaction model promotes loose
coupling between applications with respect to time (i.e.,
the applications need not be present at the same time)
and space (i.e., applications may be located anywhere).
The core concept of DDS is data-centricity. With a data-
centric middleware, the means of interaction is data.
The middleware understands the structure of the data
it manages and it is aware of the contents (i.e., values).
This enables DDS to extensively optimize performance.

DDS also provides configurable Quality of Service
(QoS) policies. DDS QoS is a concept that is used to
specify the non-functional behavior of an application
(e.g. reliable transmissions and persisting historical data).
With configurable QoS policies, developers can easily
define and update desired behaviors of applications.

2.2 Kubernetes
Kubernetes (k8s) is the de-facto standard orchestration
platform for containerized applications. An orchestration
platform is a set of system services that deploy and
manage distributed applications. Specifically, it helps
manage the applications by scaling them up and down,
performing updates and rollbacks, self-healing, etc.

The deployable unit of k8s is a pod. A pod is a col-
lection of one or more containers with shared storage
and network. Containers in a pod share an IP address

and they can communicate with each other over shared
memory or localhost interface.

2.3 DDS in the Context of Kubernetes Networking
k8s uses Docker as a default container engine, but its
approach to networking is different from what Docker
does by default. In a k8s cluster, every pod gets its own
directly accessible IP address, and therefore it does not
require users to deal with mapping ports between con-
tainers. The k8s networking model[3] creates a clean,
backward-compatible model where pods can be treated
much like physical hosts. The model imposes the fol-
lowing fundamental requirements: (1) all containers can
communicate with all other containers without Network
Address Translation (NAT); (2) all nodes can communi-
cate with all containers (and vice-versa) without NAT;
(3) the IP that a container sees itself is the same IP that
others see.

The k8s networking model is a better fit for DDS than
Docker alone. DDS participants exchange their IP ad-
dresses for peer-to-peer communications, and therefore
DDS works better over a network without NAT. DDS
can help pods discover each other. Pods have unreli-
able IP addresses, as their addresses are dynamically
assigned when created. Because of that, pods are typ-
ically stitched to a k8s service that has a reliable IP
address and a DNS name. Then, a k8s service load bal-
ances network traffic for the stitched backend pods. With
the DDS discovery service, pods can discover and estab-
lish connections with each other by topics, abstracting
IP-based communications. This allows DDS pods to dis-
cover and communicate without a k8s service, resolving
the IP unreliability issue. DDS uses multicast for the
discovery service. If a k8s networking plugin supports
multicast, DDS discovery can work without an external
discovery service such as RTI Cloud Discovery Service
(CDS)[10].

2.4 Kubernetes Virtual Networking Solutions
k8s provides a plug-in networking interface called Con-
tainer Network Interface (CNI), which supports a variety
of virtual networking technologies. The most popular
ones are Calico, Flannel, WeaveNet, and Cilium. Vir-
tual networks provide benefits such as network traffic
isolation, dynamic segmenting and routing, and rapid
deployment and update. However, this flexibility comes
at a cost – added overhead.

Virtual networking solutions can be implemented at
Layer 2 (L2) or Layer 3 (L3). Flannel and WeaveNet
are realized at L2, Calico is implemented at L3, and
Cilium supports both. L2 solutions are usually based on
VXLAN tunnel technology that creates virtual bridges
between containers and the physical host. The virtual



DDS Kubernetes Evaluation Middleware ’20, Dec 7-11, 2020, Delft, The Netherlands

bridge realizes cross-L3 container network connectiv-
ity by encapsulating L2 Ethernet frames in L3 UDP
datagrams. Therefore, encapsulation is conceptually the
primary overhead of L2 class solutions.

Flannel is the simplest L2 solution. It creates an over-
lay network in a k8s cluster and assigns a subnet to each
physical node. Each pod running in the physical node
has a globally unique virtual IP address, which results
in a flat network space where pods can directly com-
municate with each other without needs to map ports
between containers and hosts. VXLAN encapsulation is
handled by a virtual bridge called flannel0. An essential
component of the Flannel network stack is the flanneld
process, which uses etcd (a distributed key-value store)
to 1) manage available IP address resources, 2) monitor
the real IP address of each pod, and 3) establish the pod-
to-node routing table in memory. The egress traffic of a
pod is forwarded from cni0 to flanneld through flannel0,
where cni0 is a bridge maintained by k8s through CNI.
Flanneld then encapsulates and propagates packets to
target flanneld processes through the physical network.

WeaveNet fully emulates a L2 network whose topology
is built by application-level routers located on each host.
WeaveNet routers establish TCP connections with each
other for protocol handshakes and exchanging topol-
ogy information. Like Flannel, the routers encapsulate
Ethernet frames in L3 UDP datagrams for cross-L3 com-
munication. In contrast to the centralized node discovery
strategy adopted by Flannel, spanning tree and gossip
protocols are used to share routing information among
routers. WeaveNet also creates a bridge on the host to
which workload containers and WeaveNet routers con-
nect. WeaveNet supports multicast, and therefore does
not require an external discovery service for k8s-based
DDS applications. Also, in multi-subscriber scenarios,
WeaveNet can provide higher throughput because data
can be delivered to multiple subscribers with no addi-
tional overhead on the publisher’s side.

Calico is a L3 solution that avoids VXLAN encapsu-
lation overhead using Border Gateway Protocol (BGP).
A Linux kernel-based virtual router is provided on each
physical node, which learns the topology of the con-
tainer network by exchanging routing and accessibility
information with other endpoints in the domain. BGP
solves the problem of exponential growth in routing
rules with growing cluster size by reducing the size of
the routing table (route aggregation) and number of
connections among endpoints (route reflection). Calico
also provides IP-in-IP tunnel mode for container com-
munication across subnets, which encapsulates the L3
data packet into another IP packet. Encapsulation and
decapsulation are performed by a newly created tunl0
interface, which resembles the veth interface in VXLAN.

Cilium supports both L2 and L3 networking modes,
and performs packet filtering in kernel space using ex-
tensible Berkeley Packet Filter (eBPF) programs, which
are generated by the bytecode injected from user space
and attached to specific kernel areas. Compared with the
iptables-based packet filtering in kube-proxy, BPF elimi-
nates the overhead of (1) copying unexpected traffic into
memory and executing high-level protocols, (2) travers-
ing and modifying iptables when pods are created or
destroyed, which significantly improves the scalability of
the Cilium network. Moreover, using eBPF, Cilium can
perform fine-grained layer 7 filtering, which can poten-
tially support DDS topic-based/content-based filtering
at the virtual network layer for better performance.

3 Evaluating DDS Performance in
Kubernetes

In this section, we benchmark DDS applications in a k8s
cluster with the purpose to understand the performance
overhead introduced by containers and virtual networks.
We first compare the performance between DDS appli-
cations running directly on bare metal and by running
in containers using the host network. This provides a
baseline for subsequent experiments and shows the over-
head of container virtualization. Then, we measure the
throughput and latency of DDS applications with host
network, Calico, Flannel, WeaveNet, and Cilium in uni-
cast mode. We also compare the multicast performance
of DDS using WeaveNet and the host network.

3.1 Experimental Setup and Configurations
Figure 1 represents the deployment setup for our experi-
ments. The k8s cluster for our experiments is composed
of one master node and two worker nodes. Each node is
equipped with an Intel i7-5557U dual-core 3.10 GHz pro-
cessor, 16GB RAM, and Intel I128-V Gigabit Ethernet
device. All nodes have Ubuntu 16.04 (64bit) installed
and are connected via a 1 Gbps LAN. We use the default
MTU size (1500 bytes) of each network device.

Our experiment automation apparatus comprises a
manager application executing on the k8s master node
that interacts with the k8s cluster through k8s API and
controls the execution progress of the overall testing
plan. At the beginning of an experiment, the manager
runs a k8s deployment of RTI’s Cloud Discovery Ser-
vice (CDS) for discovery and creates a corresponding
ClusterIP Service to enable the DDS publisher and sub-
scriber to discover each other via a configured DNS name
(e.g., rti-clouddiscoveryservice:7400). Once RTI CDS is
running, the manager deploys DDS performance testing
applications in k8s pods (see Figure 1).



Middleware ’20, Dec 7-11, 2020, Delft, The Netherlands K. Zhuangwei et al.

Figure 1. Setup for Performance Experiments

We use RTI’s benchmarking tool called PerfTest[9],
which is a command-line application that can be config-
ured as a publisher or subscriber. It is used to measure
the latency and throughput of configurable scenarios
using RTI’s DDS implementation called Connext DDS.

PerfTest has two operational modes: Latency Test
and Throughput Test. Throughput is calculated by the
subscriber by counting the number of received bytes and
samples. PerfTest behaves differently in the Latency Test
mode: all samples are marked as latency samples, and
samples are exchanged in a ping-pong manner. The pub-
lisher is blocked until being acknowledged by a replied
latency sample. Once the publisher receives a replied
latency sample, it calculates the one-way latency from
the measured round trip time. The primary advantage
of this measurement method is that it is not subjected
to system clock jitters across different machines.

We optimized the OS network performance based
on recommended OS configurations from the RTI com-
munity1. The DDS reliability protocol automatically
applies back-pressure to the publisher when the sub-
scriber cannot keep up. Back-pressure happens when the
sendQueueSize is filled with unacknowledged samples.
When the sendQueueSize is larger, less back-pressure
occurs, which leads the publisher to send samples faster
than the subscriber can keep up. We found that the
default sendQueueSize adversely impacts the through-
put performance of virtual networks as most packets
are dropped at the subscriber side’s network bridge. To
resolve the issue, we reduced the sendQueueSize to 20
to slow down the publisher sooner when the subscriber
cannot keep up. In addition, batching is enabled for the
throughput test and disabled for the latency test. If the
data length is less than 8192 bytes, the data is padded
to maintain the batch size at 8192 bytes, otherwise it is
equal to the data length.

1 https://github.com/rticommunity/rtiperftest/blob/master/srcDoc
/tuning_os.rst

3.2 Experimental Results
3.2.1 Container Performance. We measured through-
put and latency on bare metal and containers to under-
stand the potential overhead introduced by container
virtualization. For the host network case, we run k8s
pods using the host network interface directly to avoid
virtualization for the container network. Figure 2 shows
that a container introduces some overhead for DDS ap-
plications, which is more pronounced for small messages.

Work [11] illustrates that a container consumes more
CPU cycles for I/O operations than native Linux by two
times due to the interference of the Linux network bridge.
The publication rate is unlimited, so it is controlled
by the back-pressure incurred by the subscriber side.
The test with small messages is more CPU-intensive,
which explains the higher performance degradation at 64
bytes compared to other cases. But overall, throughput
overhead is less than 3% on average.

On the other hand, there is little or no difference in
latency performance. The reason is that PerfTest uses
ping-pong to test end-to-end network latency and batch
processing is disabled by default. Therefore, there is no
data backlog in the DDS waiting queue and socket buffer
of the container and bare metal. The time difference on
processing a single message is trivial. For 99 percentile
latency, it is increased by 8-25 microseconds.

3.2.2 Virtual Networking Performance. In the follow-
ing set of experiments, we measured throughput and la-
tency on the host network and a set of virtual networks to
measure the overhead introduced by k8s virtual network-
ing. It should be noted that we use the default settings
of each virtual network solution because our purpose is
to present performance of each for general use cases. As
shown in figure 3, there is not much performance differ-
ence among virtual networks. Calico performed slightly
better than others in terms of throughput. Throughput
overhead ranged from 2% to 7%. Flannel gained the best
throughput performance for a small message sizes (3%
overhead). Calico performed the best for large message
sizes (2% throughput overhead). Cilium did not work
reliably for large samples. For small messages, latency
increased from 37 to 69 microseconds for median and
47-74 microseconds for 99 percentile. Calico performed
the best (increased by only 37 microseconds for median).
For large messages, latency increased from 59-255 mi-
croseconds for median and 0-235 microseconds for 99
percentile. Cilium performed the best (increased by 59
microseconds for median).

3.2.3 Multicast Performance. Multicast is beneficial to
pub/sub applications since messages can be delivered to
multiple receivers simultaneously, thereby significantly

https://github.com/rticommunity/rtiperftest/blob/master/srcDoc/tuning_os.rst
https://github.com/rticommunity/rtiperftest/blob/master/srcDoc/tuning_os.rst


DDS Kubernetes Evaluation Middleware ’20, Dec 7-11, 2020, Delft, The Netherlands

(a) Throughput (Mbps)

(b) Median Latency in Microseconds

(c) 99-percentile Latency in Microseconds

Figure 2. Bare Metal vs. Container: One Publisher and
One Subscriber with Unlimited Publication Rate. Each
test was run for 60 seconds and repeated 3 times.

improving throughput and system scalability. Only Weav-
eNet supports IP multicast. Figure 4 demonstrates mul-
ticast performance of a host network vs WeaveNet. For
messages smaller than 16KB, compared with unicast, the
throughput of host network and WeaveNet in the multi-
cast degrades 0.8%-13.4% and 66.8%-67.5%, respectively,
while their median latency increases 30.8%-41.8% and
36.3%-50.2%, respectively. The throughput of WeaveNet
multicast climbs from 260 Mbps to 304 Mbps as the

(a) Throughput(mbps)

(b) Median Latency in Microseconds

(c) 99-percentile Latency in Micoseconds

Figure 3. Host Network vs. Virtual Networks: One Pub-
lisher and One Subscriber with Unlimited Publication
Rate. Each test was run for 60 seconds and repeated 3
times.

message size increases from 64B to 16KB, then suddenly
drops to 0 when message size is 63000 bytes. Compar-
ing to host network, WeaveNet multicast suffers severe
performance degradation due to VXLAN encapsulation.

3.3 Discussion
Based on the results of our experiments, we summarize
our findings:



Middleware ’20, Dec 7-11, 2020, Delft, The Netherlands K. Zhuangwei et al.

(a) Throughput(mbps)

(b) Median Latency in Microseconds

Figure 4. Multicast Performance Comparison: One Pub-
lisher and Two Subscriber with Unlimited Publication
Rate. Each test was run for 60 seconds and repeated 3
times.

1. In general, the overhead of container virtualization
is minimal for DDS applications, but it is non-
negligible when the application is CPU-intensive;

2. In unicast-based pub/sub scenarios, the perfor-
mance overhead by virtual networks is not sig-
nificant, and there is not much difference among
them. Among virtual networks, we recommend us-
ing Flannel for small messages; Calico is a reliable
choice when publishing large messages.

3. As WeaveNet supports multicast, it can be useful
for DDS discovery. However, its multicast perfor-
mance is significantly lower than the host network.
If the underlying network supports a large MTU,
performance can be potentially improved by in-
creasing the MTU size[4]. However, if multicast
performance is critical and there are no strict secu-
rity requirements to isolate container traffic, using
the host network for multicast is recommended.

4 Related Work
Several efforts have studied the performance of DDS and
k8s separately. Related to DDS, existing efforts usually
compare DDS with other IIoT middleware horizontally.
For instance, [6] compares the latency, bandwidth con-
sumption and packet loss of DDS, MQTT, CoAP and a
custom UDP application under a constrained wireless
access network. Likewise, [2] includes more middleware
protocols, such as MQTTSN, AMQP, and XMPP. This
work [8] surveys multiple middleware protocols including
DDS based on their primary characteristics and poten-
tial performance issues including throughput, latency,
and energy consumption. Similarly, [13] focused on DDS,
ROS, OPC UA, and MQTT, and measured the round
trip time of messages in different system states: idle,
high CPU load, and high network load.

Longitudinal studies, such as [16] investigated three
popular DDS implementations comparing their archi-
tectures and performance. In [15], authors explored the
overhead and side-effects of a variety of VM-based vir-
tualization methods for distributed systems using DDS.

Related to k8s, [1] evaluated the performance of k8s
virtual network plugins with multiple transport proto-
cols (TCP, UDP, FTP, HTTP, and SCP) in terms of
MTU auto-detection, throughput, memory and CPU
utilization. They used iperf32 for the testing application.
The authors in [17] measured and evaluated the per-
formance of Flannel, Swarm Overlay and Calico. Their
latency, and TCP and UDP throughput results reveal
that Calico has the highest performance, and its TCP
throughput is close to host network. The purpose of [5] is
similar to ours; they analyzed the performance overhead
of OVN, Flannel, WeaveNet, and Calico on CoAP and
FTP applications, while we focused on real-time DDS
applications, and conducted multicast testing.

5 Conclusion
In this paper, we validated the feasibility of deploying
DDS applications with k8s and explained the k8s com-
ponents and operations through a workflow. Second,
we qualitatively analyzed the overhead of four main-
stream k8s network plug-ins: Flannel, Calico, WeaveNet
and Cilium. Finally, we demonstrated their performance
(throughput and latency) differences quantitatively by
executing a systematic set of DDS benchmarking tests
under a variety of workload patterns.

Our future work includes: (1) extending our experi-
ments to advanced network functions supported by k8s
network plugins and more complex DDS QoS configu-
rations, and (2) applying k8s network policies to DDS
applications to implement network-level packet filtering
for discovery scalability.
2 https://iperf.fr/

https://iperf.fr/


DDS Kubernetes Evaluation Middleware ’20, Dec 7-11, 2020, Delft, The Netherlands

References
[1] Ducastel Alexis. 2019. Benchmark results of Kubernetes

network plugins (CNI) over 10Gbit/s network. https:
//itnext.io/benchmark-results-of-kubernetes-network-plugins-
cni-over-10gbit-s-network-updated-april-2019-4a9886efe9c4.

[2] M Anusha, E Suresh Babu, LS Mahesh Reddy, AV Krishna,
and B Bhagyasree. 2017. Performance analysis of data proto-
cols of internet of things: a qualitative review. International
Journal of Pure and Applied Mathematics 115, 6 (2017), 37–
47.

[3] The Kubernetes Authors. 2020. Kubernetes Cluster Network-
ing. https://kubernetes.io/docs/concepts/cluster-administrati
on/networking/#the-kubernetes-network-model.

[4] Bryan Borham. 2015. Weave Networking Performance with
the New Fast Data Path. https://www.weave.works/blog/w
eave-docker-networking-performance-fast-data-path/.

[5] Alina Buzachis, Antonino Galletta, Lorenzo Carnevale, Anto-
nio Celesti, Maria Fazio, and Massimo Villari. 2018. Towards
osmotic computing: Analyzing overlay network solutions to
optimize the deployment of container-based microservices in
fog, edge and iot environments. In 2018 IEEE 2nd Inter-
national Conference on Fog and Edge Computing (ICFEC).
IEEE, 1–10.

[6] Yuang Chen and Thomas Kunz. 2016. Performance evalu-
ation of IoT protocols under a constrained wireless access
network. In 2016 International Conference on Selected Topics
in Mobile & Wireless Networking (MoWNeT). IEEE, 1–7.

[7] The Open Group Future Airborne Capability Environment
Consortium. 2020. Future Airborne Capability Environment
(FACE™). https://www.opengroup.org/face.

[8] Jasenka Dizdarević, Francisco Carpio, Admela Jukan, and
Xavi Masip-Bruin. 2019. A survey of communication protocols
for internet of things and related challenges of fog and cloud
computing integration. ACM Computing Surveys (CSUR)
51, 6 (2019), 1–29.

[9] Real-Time Innovations. 2019. RTI_Perftest 3.0 documenta-
tion. https://community.rti.com/static/documentation/perftes
t/3.0/index.html.

[10] Real-Time Innovations. 2020. DDS Discovery in Cloud-Based
Environment. https://www.rti.com/developers/rti-labs/disco
ver-data-in-cloud-services-with-cloud-discovery-service.

[11] Kyungwoon Lee, Youngpil Kim, and Chuck Yoo. 2018. The
impact of container virtualization on network performance of
IoT devices. Mobile Information Systems 2018 (2018).

[12] Open Field Message Bus (OpenFMB). 2020. OpenFMB.
https://openfmb.ucaiug.org/.

[13] Stefan Profanter, Ayhun Tekat, Kirill Dorofeev, Markus Rick-
ert, and Alois Knoll. 2019. OPC UA versus ROS, DDS, and
MQTT: performance evaluation of industry 4.0 protocols. In
Proceedings of the IEEE International Conference on Indus-
trial Technology (ICIT).

[14] The Robot Operating System (ROS). 2020. ROS.org. https:
//www.ros.org/.

[15] Rosbel Serrano-Torres, Marisol García-Valls, and Pablo
Basanta-Val. 2014. Performance evaluation of virtualized
DDS Middleware. In Simposio de tiempo real, Madrid. 18–
19.

[16] Ming Xiong, Jeff Parsons, James Edmondson, Hieu Nguyen,
and Douglas C Schmidt. 2010. Evaluating the performance
of publish/subscribe platforms for information management
in distributed real-time and embedded systems. omgwiki.
org/dds (2010).

[17] Hao Zeng, Baosheng Wang, Wenping Deng, and Weiqi Zhang.
2017. Measurement and evaluation for docker container net-
working. In 2017 International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery (CyberC).
IEEE, 105–108.

https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-updated-april-2019-4a9886efe9c4
https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-updated-april-2019-4a9886efe9c4
https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-updated-april-2019-4a9886efe9c4
https://kubernetes.io/docs/concepts/cluster-administration/networking/#the-kubernetes-network-model
https://kubernetes.io/docs/concepts/cluster-administration/networking/#the-kubernetes-network-model
https://www.weave.works/blog/weave-docker-networking-performance-fast-data-path/
https://www.weave.works/blog/weave-docker-networking-performance-fast-data-path/
https://www.opengroup.org/face
https://community.rti.com/static/documentation/perftest/3.0/index.html
https://community.rti.com/static/documentation/perftest/3.0/index.html
https://www.rti.com/developers/rti-labs/discover-data-in-cloud-services-with-cloud-discovery-service
https://www.rti.com/developers/rti-labs/discover-data-in-cloud-services-with-cloud-discovery-service
https://openfmb.ucaiug.org/
https://openfmb.ucaiug.org/
https://www.ros.org/
https://www.ros.org/

	Abstract
	1 Introduction
	2 Background on Underlying Technologies
	2.1 OMG DDS
	2.2 Kubernetes
	2.3 DDS in the Context of Kubernetes Networking
	2.4 Kubernetes Virtual Networking Solutions

	3 Evaluating DDS Performance in Kubernetes
	3.1 Experimental Setup and Configurations
	3.2 Experimental Results
	3.3 Discussion

	4 Related Work
	5 Conclusion
	References

