Demo Abstract: A Monocular Vision-based Obstacle
Avoidance Android/Linux Middleware for the
Visually Impaired

Xiaoyang Qiu”
qiux@kean.com
Dept of CS, Wenzhou-Kean University
Wenzhou, Zhejiang, China

Abstract

Increasing maturity in Fog/Edge computing has enabled
many latency-sensitive Internet of Things (IoT) applications
to achieve better performance and shorter response times.
Our work on the URMILA middleware [1] proposed a perfor-
mance and mobility-aware Fog/Edge resource management
solution to support cognitive assistance to the visually im-
paired. However, URMILA was evaluated only in lab-based
emulated scenarios. We overcome this limitation by present-
ing an affordable, unobtrusive and simple-to-use solution for
the visually impaired. Alongside the long cane or the guide
dog, our application aims to provide the visually impaired
with a more detailed description of their environment. Using
a single-camera on the Sony SmartEyeglass SED-E1 as the
only sensor and an Android/Linux application, we were able
to perform both per-pixel depth prediction and object de-
tection on each image frame. By combining the information
from these two sources, we provide users with a descriptive
audio feedback assisting them in avoiding obstacles and thus
better situational awareness. URMILA is used as before to
manage the fog and edge resources in the system. We show
the effectiveness of obstacle detection and recognition by
creating both an outdoor and indoor scenario.

CCS Concepts + Human-centered computing — Dis-
plays and imagers; - Computing methodologies — Ob-
ject detection; Distributed algorithms;

Keywords visually impaired, obstacle detection, monocular
vision, real-time, assistive technology

“Work performed by first three authors as a summer undergraduate intern-
ship research team at Vanderbilt University during summer 2019

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

Middleware ’19, December 9-13, 2019, Davis, CA, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7042-4/19/12.
https://doi.org/10.1145/3366627.3368113

25

Arjun Keerthi, Teppei Kotake
Aniruddha Gokhale

{arjun.b.keerthi,teppei.kotake,a.gokhale}@vanderbilt.edu

Dept of EECS, Vanderbilt University
Nashville, Tennessee, USA

ACM Reference Format:

Xiaoyang Qiu, Arjun Keerthi, Teppei Kotake, and Aniruddha Gokhale.
2019. Demo Abstract: A Monocular Vision-based Obstacle Avoid-
ance Android/Linux Middleware for the Visually Impaired. In Mid-
dleware °19: International Middleware Conference Demos and Posters,
December 9—13, 2019, Davis, CA, USA. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3366627.3368113

1 Problem Motivation

Mobility assistance, particularly obstacle detection and avoid-
ance, offers the possibility for increased navigational confi-
dence and awareness to the visually impaired. However, the
complexity and accessibility of technical assistance remains
one of the major hurdles to broader adoption. Although many
assistive solutions for navigation or obstacle detection for
the visually impaired exist [2, 3], these approaches do not
address both the accessibility and affordability for those with
special needs. Therefore, this research presents a solution to
create an affordable, unobtrusive and simple-to-use obstacle
avoidance solution for the visually impaired.

To that end we leverage the URMILA middleware [1]
which is our performance and mobility-aware Fog/Edge re-
source management solution to support cognitive assistance
to the visually impaired. The URMILA solution was, however,
evaluated in lab-based emulated scenarios only. In this work,
we have designed a real application to exploit URMILA. The
proposed system is not a replacement for the long cane or
guide dog; rather it provides situational awareness to the
visually impaired. In the rest of this paper, we describe our
solution and results from experimentation.

2 Technical Approach

We have used the Sony SmartEyeglass SED-E1 with a built-
in camera as our sensor, which streams real-time images to
a connected smartphone carried by the user. Our obstacle
detection solution is more flexible and directional because
of the orientation of the built-in camera in accordance with
the head movement but it can also work with the built-in
camera on the phone or any image source as input.


https://doi.org/10.1145/3366627.3368113
https://doi.org/10.1145/3366627.3368113

Middleware *19, December 9-13, 2019, Davis, CA, USA

2.1 System Architecture

The architecture of our proposed system consists of five ma-
jor components as shown in Figure 1. The Sony SmartEye-
glass is connected to an edge device (an Android smartphone)
using Bluetooth, where images captured by the eye glass are
streamed to the edge device. URMILA manages dynamic
adaptation of image processing between fog and edge nodes
to reduce the latency and conserve edge resources. Both edge
(Android) and fog (Linux) nodes can perform object detection
by processing the image stream and identify obstacles.

R Clobal Manager (GM)

[-— Centralized Data Center

processing process

1
1
1
1

Fog Nodes :

Local Manager (LM) at Micro

Data Center to manage the image H
1
1
1
1
1

LM1
URMILA Middleware
Resource management whichmakes | _ _ _ _ _ _ _ ______.
effective tradeoffs between using fog

{ E and edge resources to minimize latency

Edge Devi Sony SmartEyeglass SED-E1
Android applcation for @) Communicate wih the appication,
the visually impaired to L= = and continuously send image back
avoid obstacles to the Edge Device

Figure 1. Proposed System Architecture.

The overall pipeline for this navigational system involves
the phone sending images streamed from the Sony SmartEye-
glass to the fog node, where depth prediction and object de-
tection are run on the image. This information is sent back to
the phone, where the beeps and messages are played to the
user. When a server is not available, the application switches
to only executing object detection on the phone.

2.2 Data Analysis and User Feedback

We used the image stream from a single camera. On this
stream, we performed per-pixel ground-truth depth data pre-
diction using Monodepth2 [4] and object detection using
TensorFlow and PyTorch. To “translate” per-pixel depth data
and object detection results into descriptive acoustical feed-
back, we needed to first find a suitable way to convert the
scaled depth values (between 0 and 1) outputted from the
depth prediction system into information that reasonably
describes the environment. Because the depth prediction
model was trained on a camera with a different focal length
and image ratio from our setup, calculating ground-truth
depth directly is unreliable. To address this issue, we divided
the scaled depth image into a 3x4 grid. This was achieved
by averaging the scaled depth values for the pixels in the
corresponding section of the image. Subsequently, we can
decide whether objects are close and should be notified to the
user by finding the sum of values in different areas (“ahead”,
“left”, “right”) of the grid and classifying that area with a
danger level. Finally, we inform the user of danger areas
by reading the area direction once and sounding repeated
beeps that increase in frequency as the danger level changes.
Detected objects are also read to the user when the environ-
ment changes sufficiently. Details on the algorithm are not
provided due to space limitations.

26

Xiaoyang, Arjun, Teppei and Aniruddha

3 Implementation and Experimental
Results

Our edge device was a Samsung Galaxy S7 (SM-G930U) with
the Snapdragon 820 chipset. We modified the Monodepth2
software to fit the depth data prediction requirements of
our application. An SSD Mobilenet v2 object detection im-
plementation optimized for the NVIDIA Jetson Nano was
used for the server-side computation [5]. The phone-based
computation utilized TensorFlow Lite’s Object Detection
API. We tested using different devices for implementing the
fog nodes including the NVIDIA Jetson Nano and NVIDIA
GeForce GTX 960M. The average processing speed for each
frame on different devices is listed below.

Table 1. Test Result under Different Scenarios.

Device Average Frames Average Process-
Per Second (fps) ing Time Per
Frame (s)
Edge Node Samsung Galaxy ~ 3.590 0.278
S7
Fog Node NVIDIA Jetson 6.706 0.149
Nano
NVIDIA GeForce 18.516 0.054
GTX 960M

4 Conclusions

This paper describes an edge computing system comprising
computer vision application that exploits a fog/edge resource
management middleware to enable cognitive navigational
assistance to the visually impaired.

Acknowledgments

This research was supported in part by NSF REU funds on
US Ignite CNS 1531079, AFOSR DDDAS FA9550-13-1-0227
& VUSE SUGRE Program. All views presented are those of
the authors and do not reflect the views of sponsors.

References

[1] Shashank Shekhar, Ajay Chhokra, Hongyang Sun, Aniruddha Gokhale,
Abhishek Dubey, and Xenofon Koutsoukos. 2019. URMILA: A Per-
formance and Mobility-Aware Fog/Edge Resource Management Mid-
dleware. In 2019 IEEE 22nd International Symposium on Real-Time Dis-
tributed Computing (ISORC). IEEE, 118-125.

Ayat A Nada, Mahmoud A Fakhr, and Ahmed F Seddik. 2015. Assistive
infrared sensor based smart stick for blind people. In 2015 Science and
Information Conference (SAI). IEEE, 1149-1154.

Florbela Pereira, Jodo C Ponte-e Sousa, Rui PS Fartaria, Vasco DB Bonifa-
cio, Paulina Mata, Joao Aires-de Sousa, and Ana M Lobo. 2013. Sonified
infrared spectra and their interpretation by blind and visually impaired
students. Journal of Chemical Education 90, 8 (2013), 1028-1031.
Clément Godard, Oisin Mac Aodha, Michael Firman, and Gabriel Bros-
tow. 2018. Digging into self-supervised monocular depth estimation.
arXiv preprint arXiv:1806.01260 (2018).

AastaNV. 2019. TensorRT Python Sample for Object Detection. https:
//github.com/AastaNV/TRT_object_detection

[2

—

3

=

[4

flaar)

[5

—


https://github.com/AastaNV/TRT_object_detection
https://github.com/AastaNV/TRT_object_detection

	Abstract
	1 Problem Motivation
	2 Technical Approach
	2.1 System Architecture
	2.2 Data Analysis and User Feedback

	3 Implementation and Experimental Results
	4 Conclusions
	References

