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Abstract

Increasing maturity in Fog/Edge computing has enabled
many latency-sensitive Internet of Things (IoT) applications
to achieve better performance and shorter response times.
Our work on the URMILA middleware [1] proposed a perfor-
mance and mobility-aware Fog/Edge resource management
solution to support cognitive assistance to the visually im-
paired. However, URMILA was evaluated only in lab-based
emulated scenarios. We overcome this limitation by present-
ing an affordable, unobtrusive and simple-to-use solution for
the visually impaired. Alongside the long cane or the guide
dog, our application aims to provide the visually impaired
with a more detailed description of their environment. Using
a single-camera on the Sony SmartEyeglass SED-E1 as the
only sensor and an Android/Linux application, we were able
to perform both per-pixel depth prediction and object de-
tection on each image frame. By combining the information
from these two sources, we provide users with a descriptive
audio feedback assisting them in avoiding obstacles and thus
better situational awareness. URMILA is used as before to
manage the fog and edge resources in the system. We show
the effectiveness of obstacle detection and recognition by
creating both an outdoor and indoor scenario.

CCS Concepts + Human-centered computing — Dis-
plays and imagers; - Computing methodologies — Ob-
ject detection; Distributed algorithms;
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1 Problem Motivation

Mobility assistance, particularly obstacle detection and avoid-
ance, offers the possibility for increased navigational confi-
dence and awareness to the visually impaired. However, the
complexity and accessibility of technical assistance remains
one of the major hurdles to broader adoption. Although many
assistive solutions for navigation or obstacle detection for
the visually impaired exist [2, 3], these approaches do not
address both the accessibility and affordability for those with
special needs. Therefore, this research presents a solution to
create an affordable, unobtrusive and simple-to-use obstacle
avoidance solution for the visually impaired.

To that end we leverage the URMILA middleware [1]
which is our performance and mobility-aware Fog/Edge re-
source management solution to support cognitive assistance
to the visually impaired. The URMILA solution was, however,
evaluated in lab-based emulated scenarios only. In this work,
we have designed a real application to exploit URMILA. The
proposed system is not a replacement for the long cane or
guide dog; rather it provides situational awareness to the
visually impaired. In the rest of this paper, we describe our
solution and results from experimentation.

2 Technical Approach

We have used the Sony SmartEyeglass SED-E1 with a built-
in camera as our sensor, which streams real-time images to
a connected smartphone carried by the user. Our obstacle
detection solution is more flexible and directional because
of the orientation of the built-in camera in accordance with
the head movement but it can also work with the built-in
camera on the phone or any image source as input.
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2.1 System Architecture

The architecture of our proposed system consists of five ma-
jor components as shown in Figure 1. The Sony SmartEye-
glass is connected to an edge device (an Android smartphone)
using Bluetooth, where images captured by the eye glass are
streamed to the edge device. URMILA manages dynamic
adaptation of image processing between fog and edge nodes
to reduce the latency and conserve edge resources. Both edge
(Android) and fog (Linux) nodes can perform object detection
by processing the image stream and identify obstacles.
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Figure 1. Proposed System Architecture.

The overall pipeline for this navigational system involves
the phone sending images streamed from the Sony SmartEye-
glass to the fog node, where depth prediction and object de-
tection are run on the image. This information is sent back to
the phone, where the beeps and messages are played to the
user. When a server is not available, the application switches
to only executing object detection on the phone.

2.2 Data Analysis and User Feedback

We used the image stream from a single camera. On this
stream, we performed per-pixel ground-truth depth data pre-
diction using Monodepth2 [4] and object detection using
TensorFlow and PyTorch. To “translate” per-pixel depth data
and object detection results into descriptive acoustical feed-
back, we needed to first find a suitable way to convert the
scaled depth values (between 0 and 1) outputted from the
depth prediction system into information that reasonably
describes the environment. Because the depth prediction
model was trained on a camera with a different focal length
and image ratio from our setup, calculating ground-truth
depth directly is unreliable. To address this issue, we divided
the scaled depth image into a 3x4 grid. This was achieved
by averaging the scaled depth values for the pixels in the
corresponding section of the image. Subsequently, we can
decide whether objects are close and should be notified to the
user by finding the sum of values in different areas (“ahead”,
“left”, “right”) of the grid and classifying that area with a
danger level. Finally, we inform the user of danger areas
by reading the area direction once and sounding repeated
beeps that increase in frequency as the danger level changes.
Detected objects are also read to the user when the environ-
ment changes sufficiently. Details on the algorithm are not
provided due to space limitations.
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3 Implementation and Experimental
Results

Our edge device was a Samsung Galaxy S7 (SM-G930U) with
the Snapdragon 820 chipset. We modified the Monodepth2
software to fit the depth data prediction requirements of
our application. An SSD Mobilenet v2 object detection im-
plementation optimized for the NVIDIA Jetson Nano was
used for the server-side computation [5]. The phone-based
computation utilized TensorFlow Lite’s Object Detection
API. We tested using different devices for implementing the
fog nodes including the NVIDIA Jetson Nano and NVIDIA
GeForce GTX 960M. The average processing speed for each
frame on different devices is listed below.

Table 1. Test Result under Different Scenarios.

Device Average Frames Average Process-
Per Second (fps) ing Time Per
Frame (s)
Edge Node Samsung Galaxy ~ 3.590 0.278
S7
Fog Node NVIDIA Jetson 6.706 0.149
Nano
NVIDIA GeForce 18.516 0.054
GTX 960M

4 Conclusions

This paper describes an edge computing system comprising
computer vision application that exploits a fog/edge resource
management middleware to enable cognitive navigational
assistance to the visually impaired.
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