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ABSTRACT

Traditional medical imaging studies use hierarchical data
structures (e.g., NFS file stores) or databases (e.g., COINS,
XNAT) for storage and retrieval. The resulting performance
from these approaches is, however, impeded by standard net-
work switches, since they can saturate network bandwidth
during transfer from storage to processing nodes for even
moderate-sized studies. The ecosystem of Apache Hadoop,
which is a flexible framework providing distributed, scalable,
fault tolerant storage and parallel computational modules,
and HBase, which is a NoSQL database built atop Hadoop’s
distributed file system, is a promising alternative to host and
process medical imaging data. Despite this promise, HBase’s
load distribution strategy of region split and merge is detri-
mental to the hierarchical organization of imaging data (e.g.,
project, subject, session, scan, slice).

This paper makes two contributions to address these con-
cerns by enhancing the Apache Hadoop ecosystem for med-
ical imaging applications. First, we propose a new row-key
design for HBase driven by the hierarchical organization of
imaging data. Second, we propose a novel data allocation
policy within HBase to strongly enforce colocation of hierar-
chically related imaging data. The proposed enhancements
accelerate data processing by minimizing network usage and
localizing processing to machines where the data already ex-
ist. Moreover, our approach is amenable to the traditional
scan, subject, and project-level analysis procedures, and is
compatible with standard command line/scriptable image
processing software. Experimental results for an illustrative
sample of imaging data reveals that our new HBase policy
results in a three-fold time improvement in conversion of
classic DICOM to NiFTI file formats when compared with
the default HBase region split policy, and nearly a nine-fold
improvement over a commonly available network file system
(NFS) approach even for relatively small filesets. Moreover,
file access latency is lower than network attached storage.
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1. INTRODUCTION

Traditional grid computing approaches separate data stor-
age from computation. To analyze data, each dataset must
be copied from a storage archive, submitted to an execu-
tion node, processed, synthesized to a result, and results
returned to a storage archive. This is the workflow tra-
ditionally adopted in processing medical imaging datasets.
However, when imaging datasets become massive, the bot-
tleneck associated with copying and ensuring consistency
overwhelms the benefits of increasing the number of com-
putational nodes.

Additionally, although magnetic resonance imaging (MRI)
and computed tomography (CT) have become integral to
modern medical practice, grand challenges remain in using
medical imaging data to their full potential. While vast MRI
and CT databases are accumulating in radiology archives
(at the rate of nearly 100 million examinations per year in
the U.S.), we lack the image processing, statistical, and in-
formatics tools for large-scale analysis and integration with
other clinical information (e.g., genetics and medical histo-
ries). An efficient mechanism for query, retrieval, and analy-
sis of all patient data (including imaging) would enable clin-
icians, statisticians, image scientists, and engineers to better
design, optimize, and translate systems for personalized care
into practice.

In this context, “Big data” can simply be defined as the
scale for which traditional database approaches fail, i.e., the
performance gains no longer scale with the number of com-
putational nodes, but are limited by the network. Consider,
for example, the activity of converting Digital Imaging and
Communications in Medicine (DICOM) files to NiFTI (a re-
search file format); if converting a 50 MB volume takes 15
seconds, an ideal Gigabit network ( 100M B/s) saturates
with slightly less than 30 simultaneous processes.

The infrastructure developed to support social networks
and e-commerce provides a solution to this problem, which
turns out to be simple and relatively inexpensive: one should
combine the storage and execution nodes such that each task
can be done with minimal copying of data. For example, the



Apache Hadoop ecosystem [1], which provides the Big Data
processing capabilities, has been extensively used in these
contexts.

Although big data architectures have been applied in on-
line commerce, social media, video streaming, high-energy
physics, and proprietary corporate applications, these tech-
nologies have not been widely integrated with medical imag-
ing data formats (e.g., DICOM) for medical image process-
ing. Several approaches have followed the path of general
machine learning literature and seek to implement algorithms
specifically designed to take advantage of big data architec-
ture [10, 5, 27], exploit the MapReduce framework to sift
through datasets [23], or use distributed file systems [26,
31]. While such approaches have been effective for genet-
ics studies [31, 8], they have not yet proven effective within
current medical image computing workflows.

The fundamental reason for this shortcoming is that sub-
stantial resources have been invested in creating existing al-
gorithms, software tools, and pipelines, and hence there is
a substantive (often prohibitive) cost associated with algo-
rithm re-implementation and re-design specifically for big
data medical imaging. Thus, there is a need for new ap-
proaches that will not require algorithm re-implementation
while exploit the potential of frameworks, such as Apache
Hadoop, that have shown promise in other application do-
mains.

To address these problems, we present a new data model
for use with distributed storage and computation systems
that provides practical access to distributed imaging archives,
integrates with existing data workflows, and effectively func-
tions with commodity hardware. Our approach makes spe-
cific improvements to the Apache Hadoop ecosystem, no-
tably HBase, which is a NoSQL database built atop Hadoop’s
distributed file system. Specifically, we make the following
contributions in this paper:

e New row-key design for Apache HBase: A hi-
erarchical key structure is proposed to accommodate
nested layers of priority for data-collocation.

e New RegionSplit policy: A computationally effi-
cient approach is proposed to optimally manage data
collocation in the context of the hierarchical key struc-
ture.

e Experimental results: The proposed innovations
are evaluated in the context of a routine image anal-
ysis task (file format conversion) on a typical Gigabit
research network with 12 nodes.

The performance of this new system is evaluated on small
(7 GB) to moderate-sized (530 GB) test cases to characterize
the overhead associated with this model and demonstrate
tangible gains on widely available network and computa-
tional hardware. We believe that the proposed improve-
ments to the Apache Hadoop ecosystem will greatly reduce
the technical barriers to performing high-throughput image
processing necessary to integrate imaging data into action-
able metrics for personalized medicine.

The rest of the paper is organized as follows: Section 2
compares our work with related work; Section 3 provides
background on the Apache ecosystem and describes our con-
tributions; Section 4 describes our evaluation approach and
presents experimental results; and finally Section 5 presents
concluding remarks alluding to ongoing and future work.

2. RELATED WORK

Recent trends indicate a substantial interest in adopting
the MapReduce paradigm — and thereby the Apache Hadoop
ecosystem — for medical image data processing. Several med-
ical image processing studies have encountered one or more
of the trio of computation, storage and network bandwidth
bottlenecks, and have developed optimizations to overcome
these encountered problems. In this section we focus pre-
dominantly on comparing our work with these prior works.
Additionally, we also review prior studies that are not nec-
essarily focused on medical imaging. We scope out our com-
parisons to only those prior works that have leveraged the
Apache Hadoop ecosystem.

2.1 Related Work involving Medical Imaging
Applications

A recent study [23] illustrates how transitioning the medi-
cal image processing computations to the MapReduce para-
digm and the Apache Hadoop framework pays rich dividends
over traditional processing approaches, which often are se-
quential in nature. The specific use cases for which the re-
sults are reported include (a) the use of support vector ma-
chines for optimizing the parameters for lung texture seg-
mentation, (b) content-based medical image indexing, and
(c) a 3-D directional wavelet analysis for solid texture clas-
sification. Our work differs from this prior work in that
not only is our use case different — we focus on mapping
DICOM images to NiFTI formats — but more importantly
we demonstrate new optimization strategies for the Apache
Hadoop ecosystem instead of simply leveraging the default
strategies provided by Apache Hadoop, which is the case
with most prior efforts. In fact the authors in this related
work point out the need to identify opportunities for op-
timizations, which is precisely the intent of our presented
research.

A recent prior work [19] has used the Apache Hadoop
ecosystem for content-based image retrieval where the MapRe-
duce paradigm is used to extract vector features of the im-
ages. Similar to [23], the authors in this study demonstrate
how the Apache Hadoop ecosystem can be used in medical
imaging but do not report on any optimizations.

The work reported in [25] is synergistic to our work in
that it focuses on the row- versus column-oriented storage
issues for DICOM images. The authors highlight the pros
and cons of row- versus column-oriented storage policies, and
indicate how the complex structure of the DICOM images
requires a hybrid mechanism for storage. Specifically, their
approach stores frequently used attributes of a DICOM file
into row-based layer/store, and optional/private attributes
into a column-based store so that it will reduce null values.
The motivation stems from the fact that if all DICOM at-
tributes are stored into a row-based store, then a search or
joining operation will unnecessarily involve numerous null
values thereby adversely impacting efficiency.

The SYSEO project [6] also describes a hybrid row-column
data store for DICOM images using similar criteria as in [25]
to decide between row- versus column-based storage. Their
work was motivated from the need to find alternatives to ex-
isting but prohibitively expensive solutions for medical im-
age storage. Moreover, image annotation and query retrieval
were additional dimensions that needed improvements in
performance.

For our work, we do not treat DICOM file attributes in



as much depth as in [25], i.e., we do not need to know the
details of the attributes stored in a DICOM file when we
store it to HBase; rather we simply store the entire DICOM
file to HBase. For our DICOM to NiFTI processing, the
processing operation can directly fetch the related attributes
from DICOM files and convert them into NiFTT files. It is
possible that for other forms of medical imaging applications
and data processing, such as image annotations, we may
need to incorporate these hybrid storage mechanisms along
with our optimizations. However, the current paper does
not report on such combined optimizations, which forms a
dimension of our future research.

2.2 Related Work in Other Application Do-
mains

Several prior research efforts have proposed different per-
formance optimizations to different elements of the Apache
Hadoop ecosystem for application domains beyond just med-
ical image processing. The MHBase project [21] describes a
distributed real-time query processing mechanism for mete-
orological data with the intent to provide safe storage and
efficient.

The data in Internet of Things are always large volume,

which update frequently and are inherently multi-dimensional.

The work in [22] proposes an optimization based on high up-
date throughput and query efficient index framework (UQE-
Index) including pre-splitting the HBase region for reducing
the cost of data movement. The work in [20] addresses the
problem of the HBase multidimensional (upto four-dimension)
data queries in Internet of things with better response time.

A recent work [30] demonstrates an optimized key-value
pair schema for speeding up locating data and increase cache
hit rate for biological transcriptomic data. The perfomance
is compared with relational models in MySQL cluster and
MongoDB.

Considering the features of business data, the authors
in [17] present an optimized HBase table schema focusing
on merging detailed information to fit in combination with
customer cluster and constructing an index factor scheme to
improve the calculation of strategy analysis formulas.

In summary, the above-referenced prior efforts tend to fo-
cus on optimizing the table schema, row key design for data
fast access, update and query. For our work, we not only
provide an innovative row key hierarchical design, but also
optimize the default RegionSplitPolicy which goes deep into
the HBase architecture. Our goal is to maximally collocate
relevant data on same node for further and faster group pro-
cessing.

3. ENHANCEMENTS TO THE APACHE ECO-

SYSTEM

The task of processing medical images at scale requires
a distributed image processing architecture that is aware
of the underlying hierarchical imaging data and its meta-
data. Our system is based upon the Hadoop framework,
which was originally designed for file-system management
and distributed processing [9, 13]. We combine Hadoop
with Apache HBase, a NoSQL database which implements
Google’s BigTable [13, 7]. The specific contribution of our
work is a novel data storage mechanism that uses the hier-
archical structure of imaging studies to collocate data with
physical machines. This proposed collocation provides an

efficient processing environment in which data do not need
to be transferred between machines, thus avoiding network
overhead and saturation.

Before we introduce our contributions and to make this
paper self-contained, we first provide background informa-
tion on Apache Hadoops’ HBase. We also describe the prop-
erties of the DICOM and NiFTTI file formats used by the
medical imaging community.

3.1 Background on Apache HBase
HBase [24] uses the Hadoop Distributed File System (HDFS)

to provide distributed and replicated access to data. Zookeeper [18]

handles distributed coordination to maintain the state in

HBase cluster. It uses consensus to guarantee common shared
state; hence the recommended cluster size is an odd number

for cluster leader selection.

The key concepts from the HBase architecture are sum-
marized in Table 1. Briefly, HBase maintains tables, which
have a row key that is commonly used as an index, and
where data columns are stored with the row key. All data in
HBase is “type free,” which are essentially in the format of
a Byte Array. The table is sorted and stored based on the
row key.

The HBase tables are divided into “regions” for distributed
storage such that each region contains a continuous set of
row keys from the overall table. The data in a region is phys-
ically collocated with an HDFS data node to provide data
locality, which is performed by an operation called major
compaction. As a region size grows above a pre-set physical
size threshold, a “RegionSplitPolicy” takes effect and divides
the region into smaller pieces. The newly created regions are
automatically moved to different nodes for load balancing of
the entire cluster. The row key and RegionSplitPolicy are
integral to the performance and data retrieval of HBase and
Hadoop.

There is no standard for default row key design. Intu-
itively, the data should be placed as sparse as possible and
distributed evenly across various points of the regions in the
table. Such a strategy can avoid data congestion in a single
region, which otherwise could give rise to read/write hot-
spots and lower the speed of data updates. Because row
keys are sorted in HBase, using randomly generated keys
when input the data to HBase can help leverage the data
distribution in the table. As shown later, however, such an
approach incurs performance penalties for medical imaging
applications.

3.2 Background on DICOM and NiFTI

DICOM (Digital Imaging and Communications in Medicine)
is the international standard for medical images and related
information (ISO 12052). It defines the formats for medi-
cal images that can be exchanged with the data and quality
necessary for clinical use (http://dicom.nema.org/). It has a
hybrid structure that contains regular data (patient/clinical
information), multimedia data (images, video). Data inside
a DICOM file is formed as a group of attributes [25].

When a patient gets a Computed Tomography (CT) or
Magnetic resonance imaging (MRI) scan, for example a pa-
tient’s brain image, a group of 2-dimensional DICOM images
are generated slice by slice. A non-exhaustive set of medical
imaging DICOM attributes for the slices include: project,
subject, session, scan, where a project is a particular study,
a subject is a participant within the study, a session is a



Table 1: HBase architecture key concepts summary
| Concept | Comment |

Table / HTable

A collection of related data with a
column-based format within
HBase.

HBase Tables are divided
horizontally by row key range into
“Regions.” A region contains all
rows in the table between the
region’s start key and end key.
Store Data storage unit of HBase region.
HFile / Storefiles | The unit of Store, which is
collocated with a Hadoop
datanode and stored on HDFS.
When write data is uploaded to a
HTable, it is initially saved in a
cache as memStore. Once the
cache size exceeds a pre-defined
threshold, the memStore is flushed
to HDF'S and saved as HFile.
HBase cluster master to monitor a
RegionServer’s behavior for load
balancing.Table operator. e.g.,
create,delete and update a table.
Serves read/write I/O of all
regions in a cluster node. When
Regionservers collocate with
Hadoop datanode, it can achieve
data locality. Subsequently, most
reads are served by the
RegionServer from the local disk
and memory cache, and short
circuit reads are enabled.

A unique identifier of a row record
in table.

Columns in Apache HBase are
grouped into column families.
Column identifier | The member in column family, also
called as column qualifier.
Multiple column identifiers can be
used within one column family.

Region

memStore

HMaster

Regionserver

Rowkey

Column family

single imaging event for the subject, and a scan is a single
result from the event.

In order to study the entire brain, all 2-dimensional DI-
COM images should be collected together. Even though
medical imaging data is stored as DICOM images, a substan-
tial amount of medical image analysis software are NiFTI-

aware (e.g. FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), AFNI

(https://afninimh.nih.gov/afni/), SPM (http://www.fil.ion.

ucl.ac.uk/spm/) and Freesurfer (http://freesurfer.net/)). NiFTI

is a medical image data format, which is termed as a “short-
term measure to facilitate inter-operation of functional MRI
data analysis software package,” developed and founded by
the NiFTI Data Format Working Group (http://nifti.nimh.
nih.gov/).

Converting a large group of slices of DICOM images be-
longing to one patient into a small number of NiFTT format
images (many-to-many relationship) is a significant step in
medical imaging study. Any processing of DICOM datasets
will need to determine which CT/MRI scan that slice be-

longs to and using the Session attribute which records when
the CT/MRI scan volume is carried out. However, finding
a Session needs to first know the attribute Subject that
it belongs to. Finally, the Project attribute collects all
subjects together. Thus, for medical imaging applications
involving DICOM, the following attributes are necessary:
project — subject — session — scan — slice.

As motivated in Section 1, traditional grid computing
approaches separate DICOM data storage from computa-
tion. To complete a DICOM to NiFTI conversion, DICOM
datasets must be copied from a storage archive, submitted to
an execution node, processed, synthesized to a result, and re-
sults returned to a storage archive. When imaging datasets
become massive, the bottleneck associated with copying and
ensuring consistency overwhelms the benefits of increasing
the number of computational nodes.

Despite using Big data architectures, such as Apache Hadoop,

a number of challenges present themselves. For instance, the
original DICOM file name is a unique identifier called Global
Unique identifier [16]. If the task of interest is storing slice-
wise DICOM data within HBase, a naive approach would be
to use the DICOM GUID. Since the GUID is a hash of the
data, it will not collocate data together and thus will satu-
rate the network at the time of doing retrieval all DICOM
images of a scan volumes. Further, the standard Region-
SplitPolicy will randomly assign files with hashed DICOM
GUID file name as row keys to regions based on the key and
the convenient split point based on region size.

3.3 Modified Row Key Design

To address the challenges explained earlier, we propose a
novel row key design for HBase based on the row key design
requirements that it must maintain the structure of DICOM
comprising the project, subject, session, scan. To main-
tain this structure, we propose using < ProjectID > _ <
SubjectlD > _ < SessionID > _ < ScanID > as the iden-
tifier with other optional characteristics such as the “slice”
appended to this identifier. This is how our collection of im-
ages are named in the hierarchical manner. For example, a

row key is like Projl_Subj2_Session3_Scan4d_Sliceb_example.dcm,

where “.dem” is the filename extension for DICOM. Since
HBase organizes data linearly based on row key, this new
strategy will maintain data within a project that is split
with a minimal, or just one more than the minimal number
of splits across regions as possible, when used in conjunction
with the default RegionSplitPolicy supported by HBase.

3.4 Modified RegionSplitPolicy for Medical Imag-

mng

The default RegionSplitPolicy does not have knowledge of
the structure of medical imaging studies. Thus, it may split
the regions non-ideally such as within a scan or between ses-
sions for a particular subject. These splits cause increased
processing time when data needs to be transferred between
machines. To overcome these bottlenecks, we propose a
novel RegionSpliyPolicy, which has knowledge of the modi-
fied row key structure, thus maximizing data co-localization.

In practice, users always select a cohort (set of subjects,
sessions) to do the processing. The data under the same
subjects or sessions are always processed together, not in-
dividually. Specifically, for DICOM conversion, the unit of
processing is scan volumes. Thus, it is important to maxi-
mally collocate relevant image data under the same level for
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Figure 1: Comparison of the standard RegionSplitPolicy and our custom RegionSplitPolicy. The standard
policy splits the data within a region equally based on the data in the region. The custom policy considers
the projects, subjects, sessions and scans in the region and makes a split to maximize data co-locality.

further group retrieval and processing/analysis, while reduc-
ing the data movement in MapReduce operations pertain-
ing to the DICOM to NiFTT conversion. The details of the
MapReduce operation is discussed in Section 4.4.1.

Our new RegionSplitPolicy first considers all row keys in
a region. If multiple projects exist in the region, it splits
the projects into separate regions. If the region is homoge-
neously a single project, it finds the highest available level
(project, subject, session, scan) in the region on which it can
split and balance the data between the new regions. This
proposed regionsplit policy relies on the row key design de-
scribed in Section 3.3. Figure 1 compares the operation of
the standard RegionSplitPolicy and the custom one we have
developed and evaluated.

In detail, when a region split is triggered, the RegionServer
first finds the largest files in the largest stores. The default
RegionSplitPolicy defined in HBase finds the first row key
of the largest data block in each storefile. This key is called
the “midkey” of a region and is decided based on region mid
size. Thus, this split point can separate an existing associ-
ated imaging dataset into two regions without considering
what row keys values in the split region. The newly created
two regions will move through the whole cluster for storage
balancing.

The challenge for our optimized RegionSplitPolicy is to
find a split point based on all row keys of a Region. HBase
provides a client API to retrieve data called scan (here, we
refer to it as simple_scan). A use can customize the scan
to define the range of row keys with which the column fam-
ily and identifiers need to be retrieved. Users can also set
customized filters to refine the query scan. A region has in-
ternal attributes that record the value of the start row key
and end row key of the region. Since there are no attributes
of records for any other row keys in a region except start /
end row key, we need to use external ways to retrieve all row
keys of a region.

In order to get all keys in a region, two potential ways can
be used in traditional HBase: (1) According to start/end key
of region, a user specifies a column to scan. The scan is first

executed on the entire table, finds the right RegionServer
that hosts region from Zookeeper quorum, and retrieves the
row key; (2) Use HBase default RowKey filter to customize
the scan. However, both approaches are slower compared to
our approach described below.

As shown in Figure 1, we are capable of locating the
largest storefiles. In this way, we can apply another more
advanced HBase scan API (called “Region Internal scan”),
which we have found to be 163 times faster than simple_scan
on average in our tests to find all hierarchy row keys in-
volved in the region. The Internal scan can directly operate
on storefiles located on HDFS without starting a scan from
entire table. This gives us all the row keys of a split region.
Next, the split point is selected according to the following
conditions: (1) it ensures that the maximum related data is
collocated in hierarchy, and (2) once we have identified the
level of structure which will be the potential point to split,
we traverse the candidates and return the point that can
most evenly balance the size of two new regions in order to
avoid the overhead of so many small regions emerging.

HBase provides PrefixSplitKeyPolicy as one of the default
split policy which is designed for grouping rows sharing a
fixed length of keys [2]. However, compared to our custom
policy, it cannot dynamically group the subjects based on
the order of project, subject, session etc based on highest
available level (project,subject, session, scan). Namely if
there are many projects of a region, we should split rows
by < ProjectID >; if all row keys start with same project,
and there is not only one subject, we should split rows by
< ProjectID > _ < SubjectI D, so on so forth. So we can-
not defined which is the appropriate fixed length for Pre-
fixSplitKeyPolicy.

Another policy we introduce, evaluate and compare with
is IncreasingToUpperBoundRegionSplitPolicy [2], which splits
a region from a small threshold; with the number of regions
increased in a Regionserver, the split size threshold are in-
creasing. It is size-based policy without knowledge of what
key values are in a split region.

The observed average run time range to determine one



split point using our custom split policy is 28.22-58 ms, and
1.43-1.64 ms for the default HBase split policy with similar
CPU usage (19.39% vs. 19.81%), which means the proposed
split policy does not involve any substantial overhead when
compared with the default one. The increased time in our
policy is due to the need to retrieve and analysis all row keys
of a region. Despite this one-time initial cost, as we show
in our experimental results, the performance improvements
are substantial.

3.5 Putting the Pieces Together

Figure 2 presents the overall structure of our modified
Apache Hadoop ecosystem focusing particularly on the HBase
modifications. HBase resides upon HDF'S. Zookeeper mon-
itors the health status of RegionServer. When users create
a HBase table, they need to pinpoint the RegionSplitPol-
icy to HMaster, and the pre-set split policy is automatically
triggered once when a Table region needs to be split. Our
custom split policy is made the default split policy. The
input DICOM is de-identified (for privacy preservation pur-
poses) and is normalized to the hierarchy structure by a local
row key generator before storing into HBase.

HBase

HMaster(s)
RegionSplitPolicy _ Local
; |||U|:;|I|\4ﬂ| DICOM
RegionServer(s) Custom split policy gener!;lor
Default split policy

Zookeeper

Figure 2: Overall structure of Hadoop / HBase /
Zookeeper cluster with proposed custom row key
and custom region split policy

4. EVALUATIONAL METHODOLOGY AND
EXPERIMENTAL RESULTS

This section presents results of evaluating our Apache
Hadoop/HBase modifications and comparing them with de-
fault strategies.

4.1 Testing Scenarios

To investigate the performance of our HBase modifica-
tions, we evaluated the standard DICOM to NiFTI file for-
mat conversion using three test scenarios using HBase and
Hadoop and one with Network Attached Storage (NAS) as
follows.

1. Scenario: “Naive HBase” — The MD5 hash was
used in place of the DICOM GUID because GUIDs
were removed during the de-identification process asso-
ciated with data retrieval. Using MD5 hash key value
meets original intentional HBase key design for reduce
hot-spot of table read/write. The DICOM files are
distributed to all HBase regions, and we use an addi-
tional table to record the hierarchy structure of a scan
dataset. We test using a random key, and MD5 hash of
the data, as the key in HBase. With this comparison,

we test the native capabilities of Hadoop and HBase
without any of our proposed advances.

2. Scenario: “Custom Key/Default Split HBase” —
This scenario evaluates the custom key grouping and
ordering of the DICOM file logically and physically
in HBase by our custom key value prefix. When a
HBase region exceeds a pre-defined size, we use the
default split policy to split a region into two child re-
gions without considering the key values of the split
region as introduced in Section 3.3. In this case, the
files belonging to the same project, subject, session,
scan are distributed into two different regions. The
two regions may move to different cluster nodes, and
the replication of both regions may also be placed on
random Hadoop datanodes. When retrieving all files
of a cohort (i.e., a set of scan volumes) for further
processing, MapReduce job dispatches computations
to nodes that contain the datasets of interest. When
no single node contains all requested data for a sin-
gle job (either due to a large request or local storage
scarcity), the minimal necessary data will be retrieved
over network. So we test our proposed row key with
the default RegionSplitPolicy.

3. Scenario: “Custom Key/Custom Split HBase”
— Our custom RegionSplitPolicy has the capabilities to
maximally collocate relevant data in the same group,
with the order of project, subject, session and scans.
We test our complete design with our proposed row
key and custom RegionSplitPolicy and compare it with
Custom Key/Default Split HBase to see how data re-
trieval matters in MapReduce. Theoretically, this ap-
proach involves less data collection and movement via
the network than the other two HBase methods and
makes processing faster.

4. Scenario: “Grid Engine NAS” — Traditional grid
computing approaches separate data storage from com-
putation. As a comparative method, we use a tradi-
tional Sun grid engine (SGE) to distribute portable
bash script (PBS) jobs to computational nodes access-
ing data from a Network Attached Storage (NAS) de-
vice.

4.2 Hardware

Twelve physical machines were used consisting of 108 cores
of AMD Operon 4184 processors, 40 cores of Intel Xeon E5-
2630 processors and 8 cores of Intel Xeon W3550 proces-
sors running Ubuntu 14.04.1 LTS (64 bit). At least 2 GB
RAM was available per core. In total, 190 GB of storage
was allocated to HDFS and a Gigabit network connected all
of machines. Each machine was used as a Hadoop Datan-
ode and HBase RegionServer for data locality. All machines
were also configured using the Sun Grid Engine (Ubuntu
Package: gridengine-* with a common master node). NAS
was provided via CIFS using a Drobo 5N storage device
(www.droboworks.com) with a 12 TB RAIDG array.

4.3 Data and Processing

To evaluate the test scenarios, 9,910,000 DICOM files
from clinical computed tomography scanners correspond-
ing to 410 subjects and 8120 scan volumes were retrieved
in de-identified form under IRB approval from a study on



traumatic brain injury. The processing system for each scan
applied a command line program to retrieve the data from
storage (see test scenarios in Section 4.1) and convert the DI-
COM files to NiF'TT using dem2nii (https://www.nitrc.org-
/projects/dcm2nii/). We performed tests with the subsets
of the data with different number of scans (See Table 2) to
assess the scalability of each proposed system and relative
overhead versus processing load.

Table 2: DICOM datasets size info

Datasets | Total Scan
size (GB)

104 7.16

186 10.93

294 19.05

407 27.55

497 34.12

606 41

718 47.14

812 53.01

1624 106.02

2436 159.03

3248 212.04

4060 265.05

4872 318.06

5684 371.07

6496 424.08

7308 477.09

8120 530.1

4.4 Apache Hadoop/HBase Experimental Setup

In our experimental setup, the Sun grid engine does the
balancing and makes sure that the jobs ran as soon as space
was available within the specified node list when processing
is executed on a traditional grid [12]. For Hadoop scenar-
ios, MapReduce is a programming model and an associated
implementation for processing large datasets in the Hadoop
ecosystem [9]. YARN is used for resource (CPU/Memory)
allocation and MapReduce job scheduling [28]. We use the
default YARN capacity FIFO (First in First Out) sched-
uler, which aims at maximizing the throughput of cluster
with capacity guarantees when the cluster is being shared
with multi-tenant.

The software tools to generate row keys from DICOM
data were implemented in open source. The custom region
split policy was implemented as a Hadoop extension class.
All software is made available in open source at NITRC
project Hadoop for data collocation (http://www.nitrc.org/
projects/hadoop_2016/). Manual inspection of region stores
was used to verify data collocation under multiple configura-
tions of Hadoop Datanodes to ensure that the desired data
collocation and region splits were occurring.

4.4.1 MapReduce Setup for HBase approach

The MapReduce model should complete two main tasks:
data retrieval from HBase and data processing (DICOM to

NIFTI conversion). The Map phase always tries to ensure
that the computation tasks are dispatched where data re-
sides, and those tasks are vividly called data-local maps. A
compromise scenario is when data is not on the local node
where the running map task is located, but at least the data
are on the same rack, and those maps are rack-local maps.
In the Reduce phase, the output,< key, value > pairs from
Map phase are to be shuffled/sorted and sent to random
cluster nodes.

If data retrieval is done in the Map phase while process-
ing in the Reduce phase, then the computation and data
can be on different nodes. A potential way to execute the
processing is remote access (i.e. SSH) where data originally
locates and applies processing. SSH limitation may occur,
however, and block further connection, and as a result the
processing cannot be fully completed. If both data retrieval
and processing occurs in the Reduce phase, namely, each
reduce task collects all row keys related with one scan vol-
ume, then downloads and collect DICOM files from HBase
according to the keys, and finally executes the conversion in
Reduce phase. In this way, network congestion occurs when
the node that holds the Reduce task may not have all needed
DICOM files. Since those DICOM files are aggregated in a
same Region / node owing to proposed custom split policy,
so Reduce task has to retrive all datasets through network
and leads to congestion.

Thus, these approaches break our main goal for data col-
location with Hadoop and HBase with minimum data move-
ment. As a result, for good use our proposed Hadoop en-
hancements with data collocation in the context of the hi-
erarchical key structure, data retrieval and processing occur
in the Map phase and the Reduce phase is a no-op for our
application.

In a traditional “word count” example, the input of MapRe-
duce is a HDFS folder. The input folder is split into sev-
eral pieces based on the files in the selected folder. Then
each piece starts a map task with < key,value > pair, the
input Map Key is file names and input Map value is file
content. However, this approach is not practical in HBase.
The HBase region has a corresponding folder on HDF'S, and
all data stores/hfiles in this region are placed in the region.
When the region collocates to a Hadoop datanode to achieve
data locality, all data store/hfiles are compacted to a giant
file, which means that a traditional MapReduce like word-
count strategy cannot split a input HBase folder for further
processing.

Figure 3 shows the modified work-flow. HBase provides
a default API for running HBase-oriented MapReduce. The
input of the MapReduce is a HBase-scan, which represents
an interval of consecutive table row key values of a selected
column. The HBase-scan is split based on relevant regions,
and the input < key,value > pairs are values about row
keys of a region and the content of the specified column.
In short, if the input HBase-scan occurs across n regions,
then only n map tasks are generated. The challenge for
traditional HBase-oriented MapReduce for DICOM is there
are usually more than one datasets of DICOM files under
the same scan in a region. So we refined the above approach
to specify input of MapReduce to be a selected cohort of
scan volumes, and the number of Map tasks is based on the
number of scans. The Map Phase first retrieves the data
from HBase and stores DICOM files to local node. Once
done, it converts the DICOM files to NiFTT using dcm?2nii as



presented in Figure 3. For fair comparison between Hadoop
methods and approach on NAS, additional steps such as
uploading the NiFTI result to HBase is not launched.

— scans > Map 1 Ll
volume 1 | il i
scans | || Map 2 H’ fﬁf on L
Select volume 2 I Il |
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volumes scans | Map 3 [ Retieval L r
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volume n
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Figure 3: Custom HBase oriented MapReduce bas-
ing on input selected groups of scan volumes

4.4.2 Guidelines used for Scaling Hadoop / HBase
Cluster

Scalability is one of the most important properties for
Cloud usage. We test and scale our clusters for studying
intrinsic scalability performance. The following summarizes
how we scaled the Hadoop / HBase cluster step by step.

e For scaling down, RegionServer should first be grace-
fully stopped [2], and relationship of data collocation
between Datanode and RegionServer are no longer ex-
ists. Then major compaction on the affected data from
stopped RegionServer must be applied to collocate to
the rest of the cluster [2]. When all data-locality is
achieved again, decommission the Datanode and re-
balancing of the cluster is performed. If decommis-
sion order is reversed, redundant replications are to be
stored into HDFS which exponentially decreases the
available size of the Hadoop cluster.

e For scaling up, a new Hadoop Datanode must be com-
missioned first and then a new HBase RegionServer is
added, followed by a major compaction to achieve data
locality. If there is no Datanode, adding a new Region-
Server can collocate to nothing, which makes reverse
commissioning order no sense.

4.5 Results of Data Transfer Latency

First, we evaluated the latency in retrieving imaging data
in each of the four scenarios. Table 3 shows average latency
for all datasets. For naive Hadoop, we retrieved data to a
random node since the data were not collocated. For custom
key / standard split, we retrieved the data to the machine
which contained the first element in the scan. For custom
key / custom split, we retrieved the data to the machine
where the data were located entirely. For Grid Engine NAS,
we retrieved the data from the NAS to a local machine se-
rially (i.e., with one core in use).

The naive Hadoop strategy performed markedly worse
than the other methods because it needs to open and close
connections with multiple other machines in order to down-

load the data, and the initialization and setup of each ZooKeeper

connection involves overhead. Using the NAS with a single

Table 3: Latency results in seconds for each of the

four test scenarios.
Custom Custom
Gr}d Naive key/ key/
Approach || Engine HBase Standard || Custom
NAS split split
HBase HBase
Latency(s) 4.76 19.02 3.29 2.56

connection is relatively effective since the data are coming
from one fixed location and there is low overhead in open-
ing and closing connections. In comparing the default split
policy to our proposed policy, we see an improvement in
average performance. Any increase comes from the cases
where scans are split between machines and thus data needs
to be retrieved from other locations on the network.

4.6 Data Processing Throughput for DICOM
to NiFTI Conversion

Each of the four scenarios executed a DICOM to NiFTI
conversion as described in Section 4.3. Figure 4A presents
an analysis of throughput. The Grid Engine NAS performed
the worst (fewest datasets per minute, longest run times)
across all dataset sizes. In all scenarios, the NAS device sat-
urated at 20 MB/s (approximately 18 datasets per minute)
throughput despite the gigabit network access. This was
likely due to numerous small files that are generated with
“classic” DICOM scanning as direct read/write to the NAS
device demonstrated substantively higher performance.
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Figure 4: Throughput analysis for each of the test
scenarios. (A) presents the number of datasets pro-
cessed per minute by each of the scenarios as a func-
tion of the number of datasets selected for process-
ing. (B) shows the fraction of time spent on over-
head relative to the number of datasets.

The naive HBase approach scaled better than the NAS
approach with a throughput ranging from 31 MB/s (with
104 datasets) to 58 MB/s (with 718-812 datasets). The per-
formance leveled off at 52 datasets/minute for a factor of
almost three-fold improvement over NFS. The custom key /
default policy HBase approach performed even better with
a throughput of 34 MB/s (with 104 datasets) to 94 MB/s
(with 718-812 datasets). The custom key / custom policy
HBase approach further increased throughput performance
from 37 MB/s (with 104 datasets) to 114 MB/s (with 812
datasets).

The naive method’s performance increases flatly because



of uncertainty in the placement of data loading. It performs
better than processing on the NAS device because not all
data needs to be retrieved from other node; some of the files
are placed on same node with Map computation in most
cases. On the other hand, the custom key / custom policy
HBase involves smaller data movement with better perfor-
mance rather than the custom key / default policy HBase,
both of whose processing are executed within most data-
local map and a few rack-local map according to YARN
allocation.

4.6.1 Throughput Upper-bound

Figure 4-A illustrates the processing on NAS device, which
saturates the Gigabit network. The HBase approach does
not incur as much network congestion because most map
tasks are data-local or rack-local. Thus, we were not able
to observe any perceived network-imposed limitations even
until 812 datasets. The upper limit on the throughput stems
from other overheads in the framework, which we address in
the paper. This is further verified in Section 4.7.

Consequently, to identify the upper limit on the through-
put of our system, we tested our system for more number
of datasets. Figure 5 presents the result of processing scans
per minute with more datasets according to Table 2. Our
proposed methods performs better than custom key / de-
fault policy HBase initially (with 407-4,060 datasets, 34.12—
265.05 GB, respectively), and it reaches its throughput up-
per bound with 124.5 MB/s (with 4,060 datasets). There-
after, both approaches perform basically the same. The
throughput upper bound for custom key / default policy
HBase is 120.5 MB/s (with 4,872 datasets). Since network is
not a factor, we conclude that to obtain even higher through-
put, we will need to scale the hardware by adding more cores
since the number of cores is the limitation factor.
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Figure 5: Throughput analysis for finding upper-
bound of scenarios custom key / default policy
HBase and custom key / custom policy HBase

4.6.2 Overhead Considerations with the Hadoop Frame-

work

The computing grid had 108 cores available. Therefore,
up to 108 jobs could run simultaneously in any of the test
scenarios. With the three Hadoop scenarios, we have logs of
both the time spent within each job on the compute node
(including time to establish data connection, retrieve the
data, and clean up the connection) and the actual wall time.

For each of the Hadoop scenarios, we computed the average
actual time spent executing the processing (including data
retrieval), which ranged from 22 s to 35 s. For each of the
data submission tasks, we can identify the minimum number
of jobs that would need to run in serial by dividing the num-
ber of scan volumes by the number of cores. The fastest time
that the Hadoop scheduler could run the jobs is the length
of the serial queue times the job length, but in all cases the
actual wall time exceeded this value. We define the overhead
time as the difference between the actual wall time and the
theoretical minimum time.

The ratio of overhead time to total time is shown in Fig-
ure 4B. Fitting a linear analysis to each of the three sce-
narios, shows that the naive HBase strategy had a marginal
penalty of 1,003 ms per additional dataset. The custom key
/ default split policy reduced the overhead penalty to 547
ms per additional dataset. Finally, the custom key / custom
split policy resulted in 398 ms per additional dataset.

4.6.3 Overhead lower-bound

Similar to Section 4.6, the overhead of Hadoop scenarios
have not reached the bottom line within 812 datasets. Fig-
ure 6 shows ratio of overhead in total processing time with
multi-datasets. Both overhead values linearly decrease and
then become steady at 33%. Finally, the Custom key / de-
fault split policy reaches in 159 ms as lower-bound and the
Custom key / default split policy performs a bit better with
138 ms. When the size of datasets is small, the time for es-
tablishing data connection, retrieving the data, and cleaning
up the connection dominates total time compared with data
processing. When the framework reaches the upper limit of
cluster cores treating processing capability, the overhead is
balanced.
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Figure 6: The fraction of time spent on overhead
relative to the number of datasets for finding lower-
bound of scenarios custom key / default policy
HBase and custom key / custom policy HBase

4.7 Evaluating the Scalability of the Frame-
work

We wanted to understand how does the scale of the clus-
ter impact performance. Thus, we experimented by linearly
decreasing the size of the cluster and observe if the perfor-
mance decreased in similar manner. In our experiments,
each machine acted as a Hadoop Datanode and HBase Re-
gionServer for data locality as introduced in Section 4.2. The



order of decommisioning of Datanode and RegionServer is
important when scaling the size of the cluster. Custom key
with default and custom split policy are compared on scaled
cluster (5-10 Hadoop/HBase nodes). Decreasing the size of
the cluster can linearly increase the total time with pro-
cessing 5,684 datasets, which is presented in the trends of
Figure 7.
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Figure 7: Throughput analysis for Hadoop scenarios
with different size of cluster

Based on the previous discussion, we can conclude that the
Hadoop scenario performance is not limited by the network
bandwidth but by the total available CPU cores and mem-
ory. Thus, scaling up the size of cluster can increase high
performance computing capability for medical imaging pro-
cessing in an affordable local/cloud-based commodity grid.

5.  CONCLUSIONS

Big data in medical imaging offer an opportunity to study
specific control populations (age / sex / demographics / ge-
netics) and identify substantive homogeneous sub-cohorts
so that one may understand the role that individual fac-
tors play in treatment response. Billions of magnetic reso-
nance imaging (MRI) and computed tomography (CT) im-
ages on millions of individuals are currently stored in radi-
ology archives [3]. These imaging data files are estimated to
constitute one-third of the global storage demand [11], but
are effectively trapped on storage media.

The medical image computing community has heavily in-
vested in algorithms, software, and expertise in technolo-
gies that assume that imaging volumes can be accessed in
their entirety as needed (and without substantial penalty).
Despite the promise of big data, traditional MapReduce
and distributed machine learning frameworks (e.g., Apache
Spark) are not often considered appropriate for “traditional”

/ “simple” parallelization. Herein, we demonstrate that Hadoop

MapReduce can be used in place of a PBS cluster (e.g., Sun
Grid Engine). Moreover, with our approach even a naive
application of HBase results in improved performance over
NAS using the same computation and network infrastruc-
ture.

We present a row key architecture that mirrors the com-
monly applied Project / Subject / Session / Scan hierar-
chy in medical imaging. This row key architecture improves
throughput by 60% and reduces latency by 577% over the

naive approach. The custom split policy strongly enforces
data collocation to further increase throughput by 21% and
reduce latency by 29%. With these innovations, Apache
Hadoop and HBase can readily be deployed on commodity
network to address the needs of high throughput medical
image computing.

As implied by the trends in Figure-4, the benefits of dis-

tributing computation with storage increase with larger datasets.

Exploration of the asymptotic performance limits is of great
interest, but beyond the scope of this initial presentation
that illustrates meaningful gains on problems of widely ap-
plicable scale. The optimization of characterization of these
approaches on heterogeneous grid is an area of great possi-
bility. In particular, the Apache Hadoop YARN scheduler
could be further optimized to exploit intrinsic relationships
in medical imaging data.

Several broader domains have the capability to apply our
proposed work. Gene data have many different styles with
diverse attributes. Genes with similar expression patterns
must be collocated for group analysis since genes that behave
similarly might have a coordinated transcriptional response,
possibly inferring a common function or regulatory elements
[4]. Thus, genes data group/hierarchy storage, retrieval and
analysis is applicable by our framework.

Another scenario where our work is applicable includes
Satellite data/image processing on data about earth surface,
weather, climate, geographic areas, vegetation, and natural
phenomenon [15], which can be studied according to day-
based, multiple-day-based, or seasonal-based [14]. As a re-
sult, time-oriented hierarchical structure can help group the
data from the satellite for further processing. similarly, In-
ternet of things collect data from various facilities like sen-
sors. According to the sensors’ supervision area, a compo-
nent hierarchy-based data collection can be implemented.
For instance, high-speed train fault and repair prediction is
applied before a train runs [29]. Analyzing mass historical
data from a group of Electric Multiple Unit (EMU) of a
train’s components has potential to be implemented in our
framework.
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