
Towards a Holistic Approach for Integrating Middleware
with Software Product Lines Research

Aniruddha Gokhale
ISIS, Dept. of EECS
Vanderbilt University

Nashville, TN 37235, USA
gokhale@dre.vanderbilt.edu

Akshay Dabholkar
ISIS, Dept. of EECS
Vanderbilt University

Nashville, TN 37235, USA
aky@dre.vanderbilt.edu

Sumant Tambe
ISIS, Dept. of EECS
Vanderbilt University

Nashville, TN 37235, USA
sutambe@dre.vanderbilt.edu

ABSTRACT
Prior research on software product lines (SPLs) in different do-
mains (e.g., avionics mission computing, automotive, cellular phones)
has focused primarily on managing the commonalities and variabil-
ities among product variants at the level of application functional-
ity. Despite the fact that the application-level SPL requirements
drive the specializations (i.e., customizations and optimizations) to
the middleware that host the SPL variants, middleware specializa-
tion is seldom the focus of SPL research. This results in substan-
tial and ad hoc engineering efforts to specialize middleware in ac-
cordance with the functional and quality of service (QoS) require-
ments (e.g., latency, reliability) of the product lines. To overcome
these problems, this paper highlights the need to unify middleware
specialization issues within SPL research, and argues for new re-
search directions in modularization and generative programming
techniques that can account for the deployment and runtime issues,
such as QoS and resource management. Preliminary ideas demon-
strating how feature-oriented programming and model-driven de-
velopment tools together can address these challenges are presented.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity measures, per-
formance measures

General Terms
Product Lines, Middleware Specializations, Modularizations

Keywords
Generative programming + Product lines, FOP/AOP + MDD

1. INTRODUCTION
Research on software product lines (SPLs) [7] has focused pri-

marily on managing the commonalities and variabilities [8] in appl-
ication-level functionality of product variants. Generative program-
ming [9] and modularization techniques, such as feature-oriented
programming (FOP) [20] and aspect-oriented programming (AOP)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
McGPLE GPCE ’08 Nashville, TN, USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

[12], play an important role in composing and synthesizing product
variants from modularized units called features and aspects.

Middleware is an important asset for SPLs across many domains,
such as avionics (e.g., Boeing’s Bold Stroke architecture [23]), tele-
communications (e.g., Ericsson’s family of carrier class switches
[1]) and even cell phones (e.g., Nokia or Motorola’s family of cell
phones). Middleware manages the quality of service (QoS) (e.g.,
latency, reliability, security), and resource management (e.g., band-
width, CPU, memory) issues in product variants of a SPL. SPL de-
velopers tend to rely on standardized, general-purpose middleware,
such as but not limited to J2EE, .NET Web Services, and CORBA,
since these middleware provide a reliable, robust, low cost and low
maintenance solution with the added benefit of feature-richness,
flexibility, and high degree of configurability.

Although existing research in SPLs has significantly improved
the quality of product lines, and reduced their development and
maintenance costs, these research efforts have seldom addressed
the challenges in effectively using middleware for SPLs. Address-
ing middleware challenges as part of SPL research is necessary
since the feature-richness and flexibility of general-purpose mid-
dleware often becomes a source of excessive resource consump-
tion and a lost opportunity to optimize for significant performance
gains and/or energy savings in SPLs. Moreover, it is infeasible
for general-purpose middleware to provide solutions to all possi-
ble domain-specific requirements since they are developed with the
aim of broader applicability. Developing proprietary middleware
for SPLs, however, is not a viable solution due to the excessively
high development and maintenance costs.

In the current state of the art these limitations are addressed
through significant but often ad hoc engineering efforts at special-
izing (i.e., customizing and optimizing) general-purpose middle-
ware. To overcome these deficiencies, there is a compelling need
for SPL research to consider middleware platforms as an integral
part of the SPL engineering processes and methodologies. This
in turn argues for new research directions in modularization and
generative programming techniques that account for QoS and re-
source management challenges, which are inherently deployment-
and run-time problems, while most generative/modularization tech-
niques are limited to design-time.

This paper proposes an integrated SPL methodology that incor-
porates capabilities for middleware specialization. Specialization
is a process that manipulates general-purpose middleware in ac-
cordance with the commonalities and variabilities of an SPL by
(a) adding custom features supplied by the application, (b) prun-
ing unwanted features, and (c) optimizing the resulting middleware
to address QoS and resource requirements of SPLs. Our approach
is based on exploiting a hitherto before untapped algebraic struc-
ture of middleware by synergistically integrating (a) Origami ma-

trices [4], which provide a formal representation for feature com-
position, interaction and refactoring [14], (b) Aspects [12], which
modularize software that exhibits crosscutting characteristics into
reusable features, and (c) Generative programming [9], which pro-
motes automation in middleware specialization.

The remainder of this paper is organized to portray our vision
of middleware specialization shown in Figure 1. Section 2 deter-
mines the problem space for middleware specialization; Section 3
describes the details of our holistic approach to combining mid-
dleware specializations with SPL research; and Section 4 provides
concluding remarks and discusses open research issues.

General-purpose middleware

Platform

independent

Highly flexible

& configurable

Multilayered &

feature-rich

Design Forces

portability
Wide

applicability reusability

Design Forces

Platform-

specific

mapping

Highly

Optimized Compact

Middleware for product lines

Specific

Features

Multiple

QoS
Footprint

Constraints

Figure 1: Middleware Specializations for SPLs

2. THE PROBLEM SPACE FOR MIDDLE-
WARE SPECIALIZATION

This section helps to define the problem space for middleware
specialization in the context of SPLs.

2.1 Middleware System Model
The concept of middleware was born with the aim to shield ap-

plications from variabilities in lower-level artifacts, such as hard-
ware, networks and compilers of programming languages. Years
of middleware research resulted in a middleware model approxi-
mated by Figure 2. Middleware is made up of layers of software
targeted to perform specific activities. At the bottom, the host in-
frastructure layer (e.g., a Java virtual machine or the ACE [21]
middleware) shields developers from the differences in operating
systems and hardware. Next, the distribution layer (e.g., CORBA
or Java RMI) provides features for location transparency, request
processing, and data marshaling, among others. The common ser-
vices (e.g., CORBA Naming or the UDDI discovery service) in-
clude features, such as naming, transaction, fault tolerance and real-
timeliness, etc. At the top, the domain-specific middleware layer is
tailored to a particular domain, such as avionics.

Figure 2: System Model for Middleware Specialization.

2.2 Survey of Related Research
Now we survey and organize related work along different dimen-

sions that we observe to be prevalent in middleware specialization

research.
• Eliminating overhead of object-orientation: Lohmann et. al. [15]
argue that the development of fine-grained and resource-efficient
system software product lines requires a means for separation of
concerns [25] that does not lead to extra overhead in terms of mem-
ory and performance. The overhead of object-oriented program-
ming (OOP), e.g., due to dynamic binding and method dispatch, is
not acceptable for some embedded systems. Aspect-oriented pro-
gramming (AOP) [12] is shown to eliminate this overhead. As-
pects are modularized pieces of code that traditionally are scattered
across application code.
• Aspects for footprint reduction: AOP provides a novel mech-
anism to reduce footprint by enabling crosscutting concerns be-
tween software modules to be encapsulated into user selectable as-
pects. FACET [11] identifies the core functionality of a middleware
framework and then codifies all additional functionality into sepa-
rate aspects. To support functionality not found in the base code,
FACET provides a set of features that can be enabled and combined
subject to some dependency constraints. By using AOP techniques,
the code for each of these features can be weaved at the appropriate
place in the base code.
• Combining modeling and aspects for refinement: the Model-
ware [27] methodology adopts both the model-driven architecture
(MDA) [17] and AOP. Borrowing terms from subject-oriented pro-
gramming [10], the authors use the term intrinsic to characterize
middleware architectural elements that are essential, invariant, and
repeatedly used despite the variations in the application domains.
They use the term extrinsic to denote elements that are vulnerable
to refinements or can become optional when the application do-
mains change. Modelware advocates the use of models and views
to separate intrinsic functionalities of middleware from extrinsic
ones. Modelware considerably reduces coding efforts in supporting
the functional evolution of middleware along different application
domains.
• Combining computational reflection and aspects: computational
reflection is an efficient and simple way of inserting new function-
ality into reflective middleware, such as LOpenOrb [5]. It uses a
meta-object protocol to abstract away the implementation details so
that it is necessary only to know the components and interfaces. To
conserve resources and provide dynamic adaptation, AOP can be
used to specialize the reflective middleware. Aspects that are not
in the application code can be dynamically inserted using a meta-
object protocol.
• Layer collapsing and bypassing: In a typical middleware plat-
form every request passes through each layer, whether or not the
services provided by that layer are needed for that specific request.
This rigid layered processing can lower overall system throughput,
and reduce availability and/or increase vulnerability to security at-
tacks [19]. For use cases where the response is a simple function of
the request input parameters, bypassing middleware layers may be
permissible and highly advantageous. Devanbu et. al [26, 19] have
shown how AOP can be used to bypass middleware layers.
• Importance of lifecycle stages: Traditionally, performance prob-
lems in middleware layers have been addressed by optimizing the
source code and data structures. Edicts [6] is an approach that
shows how optimizations are also feasible at other application life-
cycle stages, such as deployment- and run-time. Just-in-time mid-
dleware customization [28] shows how middleware can be cus-
tomized after application characteristics are known. These efforts
discover the configuration of the target environment and compose
only the necessary modules that are best suited among alternatives
and configure them in the most optimal way.

3. INTEGRATING MIDDLEWARE SPECIAL-
IZATIONS WITH SPL METHODOLOGIES

We now describe our proposed approach to integrate middleware
specialization with SPL methodologies.

3.1 A Middleware Case Study
To make the description of our proposed approach concrete we

use a middleware case study. Figure 3 illustrates the CORBA mid-
dleware architecture, which is compliant with our layered middle-
ware system model. Also shown in the figure are CORBA services,
real-time CORBA (RTCORBA) [18] enhancements, and component-
based abstractions. CORBA is used here only for illustration pur-
pose, however, our approach is general.

NOTIFICATIONS

A/V STREAMING

SECURITY

TRANSACTIONS

DYNAMIC/STATIC

SCHEDULING

FT-CORBA

& LOAD

BALANCING

Real-time CORBA 1.0

Figure 3: CORBA Architecture

The different RTCORBA features are shown in Figure 4. RTC-
ORBA defines standard interfaces and QoS policies that allow ap-
plications to configure and control (1) processor resources via thread
pools, priority mechanisms, intra-process mutexes, and a global
scheduling service, (2) communication resources via protocol prop-
erties and explicit bindings, and (3) memory resources via buffering
requests in queues and bounding the size of thread pools. Appli-
cations typically specify these real-time QoS policies along with
other policies when they call standard CORBA operations, such as
create_POA or validate_connection. For example, the
priority at which requests must be handled can be propagated from
the client to the server (the CLIENT_PROPAGATED model) or de-
clared by the server (the SERVER_DECLARED model).

3.2 Uncovering the Algebraic Structure of Mid-
dleware

Despite a rich repertoire of features, specializations including
feature additions, pruning or customizations to general-purpose mid-
dleware is a hard problem due to the following challenges posed by
their design and implementation:

a. fundamental restrictions and limited flexibility of program-
ming languages such as C++ or Java do not allow intercep-
tion of the control flow at arbitrary points in the control flow
graph to inject required application-specific functionality or
remove certain unnecessary functionality. This is currently
feasible only at limited points in the code known as intercep-
tion points, which is often not sufficient.

b. although object-oriented designs help develop modular mid-
dleware code, this modularity incurs a performance penalty.

Thread Pool

Lane
Prio = 100

Lane
Prio = 200

Thread Pool

ORB CORE

Card

buffering

CLIENT
ORB CORE

P1-5 P10-20 P21-100

SERVER
ORB CORE

_bind_priority_band()

P1-5 P10-20 P21-100

_bind_priority_band()

CLIENT
ORB CORE

P1-5 P10-20 P21-100

SERVER
ORB CORE

_bind_priority_band()

P1-5 P10-20 P21-100

_bind_priority_band()

Client

Object Adapter

ORB CORE

ATM Link16IIOP IIOPVME

Server

OBJ

REF

Link16

Figure 4: RTCORBA Features

Maintaining the modular design, which promotes longevity
of the software, is desirable yet obtaining optimal perfor-
mance is also required. There is a need to decouple special-
izations from the modular design, which is a hard problem.

c. the combinatorial complexity of the feature compositions ma-
kes it hard to find valid configurations manually because of
the large number of middleware configuration options and
complex semantic relationships between them.

d. deployment- and run-time specializations are even harder be-
cause feature removal and additions need to be considered
simultaneously, systematically and in a semantically consis-
tent and coordinated manner such that domain-specified re-
quirements on performance and footprint are satisfied.

In Section 2.2 we discussed how Aspect-oriented programming
(AOP) [12] is extensively used for middleware specialization (e.g.,
[11, 27, 19]). AOP, however, does not support any architectural
model to define transformations to the structure of programs, par-
ticularly the ability to encapsulate new classes, which limits its suit-
ability for middleware specialization. Feature-oriented program-
ming (FOP) [20] on the other hand can represent single aspects
or collections of aspects, and also can complement model-based
development since both paradigms stress the importance of trans-
formations in automated program development [3]. Moreover, FOP
has better support to provide bounded (i.e., selective) quantification
for feature manipulation in contrast to AOP techniques which often
result in unbounded quantification.

FOP is thus a candidate approach for middleware specializations
since it involves manipulation of middleware features. FOP is best
suited when the underlying construct on which it operates displays
a well-defined algebraic structure. FOP for middleware specializa-
tions is not straightforward, however, due to a lack of an explicit
algebraic structure in the middleware design as explained above.
We therefore ask ourselves whether it is possible to impose an al-
gebraic structure on the middleware. A closer scrutiny of the mid-
dleware design reveals that if we raise the level of abstraction [24]
to the level of features the middleware offers instead of focusing
on source code-level details, then a strong algebraic structure un-
folds wherein features can be manipulated using the FOP paradigm
subject to some constraints.

We have therefore chosen the principles of AHEAD (Algebraic
Hierarchical Equations for Application Design) [4], which is an
implementation of FOP that uses stepwise refinement to synthe-
size application product lines, as the basis of the proposed ap-
proach. The notion of a feature in AHEAD is tied to basic object-
oriented programming concepts, such as classes and methods. Al-

though middleware also often uses object-oriented design princi-
ples, our notion of features is at a higher level of abstraction in-
volving patterns and frameworks that provide properties, such as
real-timeliness and fault tolerance.

AHEAD starts with a small set of base capabilities and refines
them by incrementally adding features. In contrast our middle-
ware specializations start with a much larger software base pruning
unwanted features and customizing the needed ones with domain-
specific properties. Our goal is to enhance AHEAD and similar
research to support design, deployment and run-time feature ma-
nipulation.

3.3 Exploiting the Algebraic Structure of Mid-
dleware

We now lay down our initial ideas on our proposed approach to
middleware specializations based on recursive algebraic approaches
such as AHEAD, however, by operating at a level of abstraction for
features that is closer to patterns and frameworks, and across all
stages of the application lifecycle.

Table 1 depicts our attempt to capture the algebraic structure
of RTCORBA capabilities as features within an Origami matrix
as proposed by the AHEAD approach [4] with the difference that
our level of abstraction for features is different and we consider
all stages of application lifecycle. Origami is a generalization of
binary decision matrices, where matrix axes define different sets
of features, and matrix entries define feature interactions. Origami
matrices possess a special property in that they allow folding along
the rows or columns or both. We discuss how this property will be
used.

PPPPPBase
RT BasicRT Priority Conc Synch

ORB RTORB PriMapper TPReactor
POA RTPOA
Xport ExtXport BandConn

ReqHndl CLI_PROP TPLane MUTEX

Table 1: Origami Matrix for RTCORBA

We use rows to denote the basic CORBA features, such as the
object request broker (ORB) that mediates requests and manages
resources; the portable object adapter (POA) that manages object
lifecycle; the Transport (shown as Xport) which handles communi-
cation; and ReqHandling which provides the data marshaling and
handling of requests. The columns denote the real-time features
that refine the basic features of CORBA with real-time capabili-
ties. For example, BasicRT indicates the base capabilities that in-
troduce real-time properties; Priority indicates the priority handling
mechanisms; Concurrency and Synchronization are classical dis-
tributed computing properties and describe the RTCORBA mecha-
nisms that support these.

The individual cells illustrate the feature interaction across the
row and column. For example, the CLI_PROP cell indicates the
priority model to be used in request handling. We assume that
the RTORB shown in the top-left cell is the constant required by
AHEAD. In reality, however, a single cell such as RTORB can
itself be formed by its own nested Origami matrix where differ-
ent features are composed to realize the notion of an RTORB. An
empty cell indicates a composition identity, which does not change
anything to the feature on which it is composed.

Now imagine a stepwise folding of columns onto each other,
which in turn folds individual cells onto each other for all the rows.
This cell-wise folding results in the composition of features of the
folded cells. Table 2 depicts the folding of the third and fourth

column in the original matrix. Continuing this folding along all
columns and then rows (order does not matter) gives rise to a com-
position of features that constitutes the overall RTCORBA middle-
ware and can be represented by Equation 1. Features are composed
with each other using the composition operator •.

PPPPPBase
RT BasicRT Priority • Conc Synch

ORB RTORB PriMapper • TPReactor
POA RTPOA
Xport ExtXport BandConn

ReqHndl CLI_PROP • TPLane MUTEX

Table 2: Folded Matrix for RTCORBA

RTCORBA = MUT EX •T PLane•CLI_PROP•BandConn

•ExtX port •T PReactor •PriMapper •RT POA•RTORB (1)

Now let us explore how such equations will help us. Our previ-
ous work [13] on handcrafted middleware specialization has showed
how the RTCORBA middleware stack characterized by Equation 1,
forces the software components of our avionics mission computing
scenario to use all the features, many of which are sources of ex-
cess generality. We claim that an approach to prune unwanted fea-
tures can follow a similar folding operations of the Origami matrix
that produces an equation of features to be pruned (e.g., bypass-
ing the request demultiplexing logic) and customized (e.g., caching
requests). This can be attempted by the application developer or
middleware developers who are given the requirements by domain
experts. The algebraic difference between the RTCORBA equation
and the equation describing the excess generality provides a formal
approach to specializing middleware.

Notice how this proposed approach is no longer ad hoc unlike
handcrafted specializations. This desired property stems from the
significant benefit of an Origami matrix in that it can realize only
valid compositions of features. Notice that erroneous compositions
(e.g. folding along the diagonal) or differences are impossible due
to the constraints imposed by the folding capability of the Origami
matrix. A model-based tool can provide an approach to collect
all the domain requirements, which then can be used to drive the
Origami folding and synthesis of the different equations.

3.4 Feature Manipulations across Application
Lifecycle Stages

The composition operator • is part of a well-defined algebra [2],
which to our knowledge works only for design-time feature compo-
sition. AHEAD (and hence Origami) does not support deployment-
and run-time feature manipulation. We argue for new research
in enhancing existing SPL research, such as AHEAD, to include
deployment- and run-time phases of application lifecycle. Apply-
ing AHEAD principles to cover all the stages of application life-
cycle is hard however because the level of abstraction it operates
at (e.g., code level) is not suitable for feature manipulations in the
deployment- and run-time stages, and it is conceivable that the ex-
isting feature algebra will be incompatible at these stages.

We make an initial attempt to enhance this theory. Imagine a
third dimension added to Table 1, which defines the deployment
dimension. We can visualize this scenario as comprising multi-
ple planes each having its own Table 1, where each table corre-
sponds to the middleware specialization for the hosted component
of the product variant. Suppose that the deployment of the prod-
uct variant must ensure that the middleware is specialized for the
CLIENT_PROPAGATED priority model. Now suppose that one

such table uses a SERVER_DECLARED priority model for re-
quest handling instead. We need an approach by which the folding
operation along the third dimension should throw an exception due
to a misconfiguration in one of the matrices. Run-time issues such
as adding features for, say, a coordination layer for fault manage-
ment can be handled by extending the Origami matrix in the fourth
dimension to cover these run-time issues.

3.5 Feature Interactions across Application Li-
fecycle Stages

Our discussions so far have assumed that features are indepen-
dent of each other and that they can be seamlessly added or pruned.
However, we cannot make such simplified assumptions in all cases.
For example, Narasimhan et. al. [16] have illustrated how real-time
and fault-tolerance properties of applications conflict with each other
thereby requiring tradeoffs.

Figures 5 and 6 illustrates how features can interact [14] with
each other at the framework level (which is our level of abstraction
for features). We show two design possibilities for an RTORB that
supports thread pools with lanes. The thread pool serves as an ad-
ditive refinement to the RTORB (i.e., an Introduction). However,
as shown in Figures 5 and 6, the request handling strategy inter-
acts with the RTORB in different ways each with its benefits and
consequences on performance.

Figure 5: Queue-per-lane Design for Threadpool-with-Lane

Figure 6: Reactor-per-lane Design for Threadpool-with-Lane

In the queue_per_lane strategy, a separate thread listens for
requests over the network and hands over the request to a worker
thread, which is the Half-Sync/Half-Async architectural pattern [22].

This model simplifies the design but incurs message queuing and
thread synchronization overhead. In the reactor_per_lane
approach, the thread that receives the request also handles the re-
quest, which is the Leader-Follower architectural pattern [22]. This
model is difficult to implement and debug for race conditions.

We showed design-time feature interactions above, which is a
hard problem since our features represent patterns and frameworks.
Feature interactions at other lifecycle stages are even harder to ad-
dress. Simple foldings of Origami columns and rows may not suf-
fice since the foldings have no capabilities to tradeoff one feature
over the other as in the case of fault tolerance and real-time. Tradi-
tionally the tradeoff problems have been mapped to combinatorial
optimization problems where heuristics are developed to find near-
optimal solutions.

4. CONCLUDING REMARKS AND OPEN
ISSUES

Middleware is an important asset of SPLs that operate in a dis-
tributed computing environment. In this paper we argued for ex-
tending SPL research to incorporate middleware specializations.
We showed how an algebraic structure can be imposed on the mid-
dleware which in turn makes it suitable for feature manipulation.
We then explored the use of generative programming and modular-
ization techniques based on AHEAD for middleware specialization
outlining how they can be extended to address deployment- and
run-time issues in middleware.

A number of open issues remain unresolved as explained below.

• Mapping higher-level feature abstractions to code: Since the
algebraic structure we consider is at a higher level of abstrac-
tion, we require a mappping from the high level artifacts to
low level details such as code. Naturally, such a mapping
cannot break existing code. Hence we will need out-of-band
mechanisms such as source code annotations including those
we developed in our preliminary work [13] or aspect defini-
tions to refactor existing middleware into the algebraic form
we require.

• Semantics of the composition and difference operator for de-
ployment- and run-time phases of the application lifecycle:
Is a single equation feasible that can capture the specializa-
tions to middleware by accounting all three phases of appli-
cation lifecycle. An important open issue points to the al-
gebra of these operators across the lifecycle. A number of
questions must be answered: What is the associativity and
precedence relationship of the operators along the lifecycle
stages? Do the semantics of Origami folding change in dif-
ferent lifecycle stages? How are features represented at the
other lifecycle stages? How can Origami folding handle dis-
tributed coordination at run-time? Can Origami capture sys-
tem schedulability and performance optimizations?

• Runtime Tradeoffs via Origami foldings: Adaptive systems
must make runtime tradeoffs among inherently conflicting
system properties such as real-timeliness and fault-tolerance.
Many questions must be answered if Origami abstractions
are used to solve these challenges: Do individual cells en-
code constraints? Do foldings give rise to cost functions?
How do constraints get refined during folding? What does
the final equation represent? Does the composition operator
encode a heuristic to solve the optimization problem? How
can feature manipulations be considered simultaneously, sys-
tematically and in a semantically consistent and coordinated
manner such that domain-specified requirements on QoS and
footprint are satisfied?

5. REFERENCES
[1] G. Ahlforn and E. Örnulf. Ericsson’s Family of Carrier-class

Technologies. Ericsson Review, 4:190–195, Apr. 2001.
[2] S. Apel, C. Lengauer, B. Möller, and C. Kästner. An Algebra

for Features and Feature Composition. In Proceedings of the
International Conference on Algebraic Methodology and
Software Technology (AMAST), pages 36–50. LNCS vol.
5140, Springer-Verlag, 2008.

[3] D. Batory. Using Modern Mathematics as an FOSD
Modeling Language. In To Appear in the Proceedings of the
Generative Programming and Component Engineering
(GPCE 08), New York, NY, USA, 2008. ACM.

[4] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE Transactions on Software
Engineering, 30(6):355–371, 2004.

[5] G. S. Blair, G. Coulson, P. Robin, and M. Papathomas. An
Architecture for Next Generation Middleware. In
Proceedings of the IFIP International Conference on
Distributed Systems Platforms and Open Distributed
Processing, pages 191–206, London, 1998. Springer-Verlag.

[6] V. Chakravarthy, J. Regehr, and E. Eide. Edicts:
Implementing Features with Flexible Binding Times. In
AOSD ’08: Proceedings of the 7th International Conference
on Aspect-oriented Software Development, pages 108–119,
New York, NY, USA, 2008. ACM.

[7] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, Boston, 2002.

[8] J. Coplien, D. Hoffman, and D. Weiss. Commonality and
Variability in Software Engineering. IEEE Software, 15(6),
November/December 1998.

[9] K. Czarnecki and U. W. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, Reading, Massachusetts, 2000.

[10] W. Harrison and H. Ossher. Subject-oriented Programming:
A Critique of Pure Objects. In OOPSLA ’93: Proceedings of
the eighth annual conference on Object-oriented
programming systems, languages, and applications, pages
411–428, New York, NY, USA, 1993. ACM.

[11] F. Hunleth and R. K. Cytron. Footprint and Feature
Management Using Aspect-oriented Programming
Techniques. In Proceedings of the Joint Conference on
Languages, Compilers and Tools for Embedded Systems
(LCTES 02), pages 38–45. ACM Press, 2002.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In Proceedings of the 11th European
Conference on Object-Oriented Programming, pages
220–242, June 1997.

[13] A. Krishna, A. Gokhale, D. C. Schmidt, J. Hatcliff, and
V. Ranganath. Context-Specific Middleware Specialization
Techniques for Optimizing Software Product-line
Architectures. In Proceedings of EuroSys 2006, pages
205–218, Leuven, Belgium, Apr. 2006.

[14] J. Liu, D. Batory, and C. Lengauer. Feature Oriented
Refactoring of Legacy Applications. In Proceedings of the
International Conference on Software Engineering, pages
112–121. ACM Press New York, NY, USA, 2006.

[15] D. Lohmann, O. Spinczyk, and W. Schröder-Preikschat.

Lean and Efficient System Software Product Lines: Where
Aspects Beat Objects. Transactions on AOSD II,
4242:227–255, 2006.

[16] P. Narasimhan. Trade-Offs Between Real-Time and Fault
Tolerance for Middleware Applications. Workshop on
Foundations of Middleware Technologies, Nov. 2002.

[17] Object Management Group. Model Driven Architecture
(MDA), OMG Document ormsc/2001-07-01 edition, July
2001.

[18] Object Management Group. Real-time CORBA Specification,
1.2 edition, Jan. 2005.

[19] Ömer Erdem Demir, P. Dévanbu, E. Wohlstadter, and S. Tai.
An Aspect-oriented Approach to Bypassing Middleware
Layers. In AOSD ’07: Proceedings of the 6th international
conference on Aspect-oriented software development, pages
25–35, New York, NY, USA, 2007. ACM Press.

[20] C. Prehofer. Feature-Oriented Programming: A Fresh Look
at Objects. In M. Aksit and S. Matsuoka, editors,
ECOOP’97—Object-Oriented Programming, 11th European
Conference, volume 1241, pages 419–443, Jyväskylä,
Finland, 9–13 1997. Springer.

[21] D. C. Schmidt. The ADAPTIVE Communication
Environment: An Object-Oriented Network Programming
Toolkit for Developing Communication Software. In
Proceedings of the 12th Annual Sun Users Group
Conference, pages 214–225, San Jose, CA, Dec. 1993. SUG.

[22] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects, Volume 2. Wiley &
Sons, New York, 2000.

[23] D. C. Sharp. Reducing Avionics Software Cost Through
Component Based Product Line Development. In Software
Product Lines: Experience and Research Directions, volume
576, pages 353–370, Aug 2000.

[24] J. A. Stankovic, P. Nagaraddi, Z. Yu, Z. He, and B. Ellis.
Exploiting Prescriptive Aspects: A Design time Capability.
In EMSOFT ’04: Proceedings of the 4th ACM International
Conference on Embedded Software, pages 165–174, New
York, NY, USA, 2004. ACM Press.

[25] P. Tarr, H. Ossher, W. Harrison, and J. Stanley M. Sutton. N
Degrees of Separation: Multi-Dimensional Separation of
Concerns. In ICSE ’99: Proceedings of the International
Conference on Software Engineering, pages 107–119, May
1999.

[26] E. Wohlstadler, S. Jackson, and P. Devanbu. DADO:
Enhancing Middleware to Support Crosscutting Features in
Distributed, Heterogeneous Systems . In Proceedings of the
International Conference on Software Engineering, Portland,
OR, May 2003.

[27] C. Zhang, D. Gao, and H.-A. Jacobsen. Generic Middleware
Substrate Through Modelware. In Proceedings of the 6th
International ACM/IFIP/USENIX Middleware Conference,
pages 314–333, Grenoble, France, 2005.

[28] C. Zhang, D. Gao, and H.-A. Jacobsen. Towards Just-in-time
Middleware Architectures. In AOSD ’05: Proceedings of the
4th international conference on Aspect-oriented software
development, pages 63–74, New York, NY, USA, 2005.
ACM Press.

