
Automating Cloud Service Deployment and Management
using Model-driven Techniques

Anirban Bha�acharjee, Yogesh Barve,
Aniruddha Gokhale
Vanderbilt University

Nashville, Tennessee, USA 37235
anirban.bha�acharjee,yogesh.d.barve,a.gokhale@

vanderbilt.edu

Takayuki Kuroda
NEC Corporation

Kawasaki, Kanagawa, Japan 211-8666
t-kuroda@ax.jp.nec.com

ABSTRACT
Deployment and orchestration of services on cloud platforms is a
labor-intensive and error-prone process because of high variabili-
ties incurred in the con�guration of the virtualized environment
and meeting the so�ware dependencies for each service deployed
in these environments. Although many cloud automation and or-
chestration tools are available for deployment and management
of composite cloud services, users are o�en required to specify
low-level scripting details for service deployment and manage-
ment. Using low-level scripting capabilities incurs a steep learning
curve. With each tool adopting its own set of APIs and scripting
languages, users are o�en locked into a speci�c technology mak-
ing it hard to interoperate, deploy and manage the services across
heterogeneous cloud platforms. To address these challenges and
provide a technology- and platform-agnostic solution to cloud ser-
vice deployment, we present a cloud automation and orchestration
framework called CloudCAMP. CloudCAMP incorporates domain-
speci�c modeling so that the speci�cations and dependencies of
clouds and applications architecture are speci�ed at an intuitive,
higher level of abstraction without the need for de�ning all the low-
level domain details. �e extensible and reusable knowledge base
maintained by CloudCAMP helps to complete the partial speci�ca-
tions and generate an entirely deployable Infrastructure-as-Code
(IAC), which can be handled by the existing tools to deploy, manage
and provision the services components automatically. We validate
our approach quantitatively by showing a comparative study of
savings in manual e�ort while using CloudCAMP.

KEYWORDS
cloud services, deployment and orchestration, automation, domain-
speci�c modeling, knowledge base.

1 INTRODUCTION
Self-service application deployment, orchestration, and manage-
ment are desired for enterprises to speed up time-to-market for
their services while ensuring their reliable deployment, particularly
when the services are hosted in the cloud environment. Presently,
however, enterprises o�en tend to experience service outages and
delays that stem predominantly from the use of manual e�orts
expended in service con�guration, release integration and dealing
with platform heterogeneity, which are o�en error-prone, tedious

MODELS’18, Copenhagen, Denmark
2018. . . .$15.00
DOI:

and slow [6, 9]. Further compounding the problem is the trend
adopted by modern services that are architected as microservices,
where capabilities of the business logic are realized from a collec-
tion of loosely coupled, distributed service components. Each of the
components must be con�gured and deployed on cloud platforms –
sometimes federated – in a speci�c order, and where the entire ser-
vice is realized through the composition of these components [2, 3].

1.1 Motivating the Problem
Consider a use case of a service that is to be deployed on a cloud
platform. �e service comprises a PHP-based website application
that stores data in a relational database and is to be hosted on two
cloud provider platforms. Figure 1 shows the application topology
consisting of two connected so�ware stacks, i.e., a Web front-end
and a MySQL database backend. �e le� stack of the web server
model holds the business logic of the frontend, which needs to
be deployed on Ubuntu 16.04 server virtual machine (VM). �is
VM needs to be managed using the OpenStack cloud platform, and
product data is stored in a database as shown in the right-hand side
stack of Figure 1. �e backend database is a MySQL DBMS, which
needs to be deployed on an Ubuntu 14.04 server VM, which VM
needs to be managed on the Amazon Elastic Compute Cloud (EC2)
platform.

1.2 Problem Resolution Requirements
Based on this case study we elicit the key challenges that drive the
following requirements for the solution presented in this paper.

1.2.1 Requirement 1: Reduction in Specification Details in De-
ployment Phase and Auto-completion of Infrastructure Provisioning.
As depicted in Figure 1, to start the PHP and MySQL-based website,
�rst the VM or container should be spawned with Ubuntu server
operating Systems in the OpenStack [29] and Amazon EC2 cloud
platforms, respectively. �e PHP module requires Apache h�pd
server as a dependency. So, Apache needs to be installed and con-
�gured along with PHP and Java. On the back end server, MySQL
needs to be installed and con�gured. Besides, the web application
requires installing a PHP Database Connectivity driver to access
the database. Moreover, the database service should start before the
PHP application service to run the WebApp properly. �us, a user
requires extensive domain knowledge to provision even a simple
web application correctly. Such provisioning is done typically in a
tedious and error-prone script-centric way [8].

�is motivating scenario illustrates the need to meet di�erent
platform and technology dependencies as well as deployment order

1

MODELS’18, October 14–19, 2018, Copenhagen, Denmark A. Bha�acharjee, Y. Barve, A.Gokhale and T. Kuroda

Figure 1: A TOSCA-compliant PHP- and MySQL-based Ap-
plication Deployment Work�ow

in which service components must be connected and started. A
user is unlikely to possess the in-depth technical expertise needed
to deploy such topologies across a range of choices. �us, to im-
prove productivity, and to reduce the learning curve and the e�ort
required to provide intricate low-level details, there must be a way
for service deployers to specify only the essential application com-
ponents and their relationships intuitively. A framework with these
capabilities should then be able to transform the partially de�ned
business models to complete topologies using TOSCA-compliant
Infrastructure-as-Code (IAC) solution, which keeps it technology
and platform-agnostic and hence portable. 1

1.2.2 Requirement 2: Support for Continuous Integration, Migra-
tion, and Delivery. Now suppose that in the use case of Figure 1,
the enterprise wants to execute a management task to migrate the
web front-end to Amazon’s EC2 with the purpose of reducing the
number of cloud providers used by their services. To migrate the
frontend, the user must perform the following steps: (1) shut down
the old virtual machine on OpenStack, (2) create the new virtual
machine on Amazon EC2, (3) install the Apache HTTP server and
the other dependencies, (4) deploy the PHP based frontend, and (5)
set the database’s IP-address, username, and password in the fron-
tend’s con�guration. Moreover, migration can be stateful which
means that the current state of the application needs to be actively
replicated in a new VM and then the old VM be detached.

�is migration strategy gives rise to several issues, such as hav-
ing to deal with missing database drivers and missing con�gu-
rations of the database service. �ese problems compromise the
application’s functionality, which requires experts who possess the
1TOSCA [26] is an OASIS standard for vendor-neutral topology and orchestration
speci�cation for cloud-based applications.

knowledge to recognize these challenges in advance. As is o�en
the case, manually performing the migration task requires sheer
technical expertise about the di�erent APIs and employed technolo-
gies. Application extensibility is another issue that users o�en must
deal with, e.g., adding one database server or analytics tool with
the application, for which similar challenges arise. �is motivates
the need for the fully automated platform that can generate right
deployment plans and improve productivity and system robustness.

1.3 Limitations of Existing Approaches
�e DevOps community today leverages orchestration solutions
such as Cloudify, Apache Brooklyn, and Kubernetes, among others
in conjunction with automation tools such as Ansible, Puppet, and
Chef, among others. �is state of the art (i.e., the extensive choices
available to the developer) is re�ected in Figure 2. Although IAC
helps mask the heterogeneity stemming from the di�erences in
the cloud platforms and their resource types, it requires elaborate
speci�cation of service topologies comprising requirements, func-
tionalities, dependencies and relationships of the components. For
instance, depending on the technology used such as MySQL versus
PostgreSQL or PHP versus Node.js, the script must include the
appropriate drivers. Moreover, additional dimensions of variability
(i.e., addressing application’s compatibility and cloud providers’
incompatible APIs) as depicted in Box 1 of Figure 2 further ampli-
�es the manual e�ort which is daunting, tedious and error-prone.
Finally, existing approaches do not account for pre-deployment
validation to check if the end-user requirements and so�ware de-
pendencies are met.

1.4 Solution Approach
To address these challenges (depicted in Box 1 of Figure 2) and meet
the requirements of the desired solution, we propose a model-driven
and scalable, rapid provisioning framework called CloudCAMP that
signi�cantly reduces the burden on the service providers to deploy
and manage their applications. CloudCAMP abstracts the appli-
cation component speci�cations and cloud provider speci�cations
into intuitive representations as depicted in Box 2 of Figure 2. Cloud-
CAMP complies with Topology and Orchestration Speci�cation for
Cloud Applications (TOSCA) speci�cation [26], which enables the
creation of portable and interoperable cloud applications. TOSCA
de�nes an XML-based modeling speci�cation [28] that formalizes
the topology and management tasks of an application in the form
of a plans-as-a-service template separating the application from
the cloud provider-speci�c API [6, 27].

In this context, we make three contributions as follows:
(1) Masking the low-level details of service speci�cation and

variability in tools and platforms: We present an extensible
metamodel for a domain-speci�c modeling language (DSML) of
CloudCAMP that captures the commonalities and variabilities
in the application component speci�cations, as well as operat-
ing systems, and cloud providers endpoint speci�cations. We
also obtain the dependencies and intrinsic relationships among
application components. Finally, the metamodel also captures
the scaling and replication capabilities.

(2) Model-to-Infrastructure-as-code (IAC)Transformationus-
ing a Knowledge Base: We describe the generative aspects of

2

Automating Cloud Service Deployment and Management
using Model-driven Techniques MODELS’18, October 14–19, 2018, Copenhagen, Denmark

Figure 2: Box 1 (blue color) depicts the responsibilities of service deployment team, which is to de�ne the low-level scripts so
that existing automation tools can con�gure the application components and orchestration tools can provision the infrastruc-
ture for application components and execute them on heterogeneous cloud environments. Box 2 depicts the contributions of
this paper which introduces a self-service framework and automates whole infrastructure design solutions for these tools.

CloudCAMP DSML that synthesizes a full-blown deployment
IAC model using an underlying extensible knowledge base,
which ensures the correct execution order of application com-
ponents by checking the relationships among the application
components of the business model. It is integrated with known
constraint checking capabilities to verify the correctness of the
model.

(3) Concrete implementation and validation: We implement
our approach in a cloud-based model-driven engineering (MDE)
environment called WebGME [24]. �e generative capabilities
of our approach are applied as a WebGME plugin which gen-
erates IAC code based on the TOSCA standard. �ese TOSCA-
compliant IAC solutions are executed by our plugin to deploy,
(re)start, stop the application components and manage the cloud
services. We present a concrete implementation of CloudCAMP
and evaluate its capabilities for representative case studies.

1.5 Organization of the paper
�e rest of the paper is organized as follows: Section 2 presents a
brief survey of existing solutions in the literature and compares to
our solution; Section 3 presents the design of CloudCAMP; Section 4
evaluates our metamodel for a prototypical case study and presents
a user survey; and �nally, Section 5 concludes the paper alluding
to future directions.

2 RELATEDWORK
�e problem of deployment and management abstraction has been
explored in the area of cloud automation and orchestration. In this
section, we compare existing e�orts in the literature with our work.
A preliminary version of CloudCAMP appears in [5].

Cloud orchestration tools like Apache Scalr (h�ps://scalr-wiki.
atlassian.net/wiki/display/docs/Apache), CloudFoundry (h�ps://
www.cloudfoundry.org/), Cloudify (h�p://getcloudify.org/) are ex-
cellent toolchains to deploy and manage applications on any cloud
providers. �ey provide sophisticated techniques to monitor the
health of the application and to migrate between the cloud providers
using standardized approaches. However, they all su�er from the
same limitations of requiring the users to de�ne the complete and
correct deployable model with all the functionalities and features.

�e use of these toolchains adds the burden of con�guring the ap-
plication components and integrating pre-deployment veri�cation
on application developers.

Although script-centric DevOps community provides toolchains
for eliminating the disconnect between developers and operations
providers [20], these tools still incur limitations in providing a self-
service provisioning platform. In this context, Alien4Cloud [10]
proposes a visual way to generate TOSCA topology model, which
can be orchestrated by Apache Brooklyn. CHOReOS [22] also
supports large-scale service deployment in the cloud. However,
building the proper topology even using an MDE approach com-
bined with the TOSCA speci�cation needs domain expertise. �is
is precisely where CloudCAMP abstracts all the application and
cloud-speci�c details in metamodel of its DSML and transforms
the business model to TOSCA-compliant IAC using an extensible
knowledge base comprising application-related dependencies.

Several pa�erns-based approaches are proposed to reduce the
complexity of service deployment [14, 15, 23]. �ey di�erentiate
between business logic and the deployment of service-oriented
architecture platform. Each pa�ern o�ers a set of capabilities, and
characteristics. Likewise, model-based pa�erns of proven solutions
for the functional and non-functional properties of application
service deployment in cloud infrastructures [19] are also proposed.
For instance, MODAClouds (MOdel-Driven Approach for the design
and execution of applications on multiple Clouds) [1, 13] allows
users to design, develop and re-design application components to
operate and manage in multi-cloud environments using a Decision
Support System. Similar to CloudCAMP, they also support reuse
and role-based iterative re�nement in a component-based approach.
However, their deployment plan generation lacks veri�cation and
extensibility. �ey also did not consider distributing application
components in a heterogeneous cloud environment.

Several e�orts come close to the CloudCAMP idea. For instance,
Con�gAssure [25] is a requirement solver to synthesize infrastruc-
ture con�guration in a declarative fashion. All the requirements
are expressed as constraints on the con�guration by the developer,
and the provider prede�nes a con�guration database containing
variables as a deployment model. Kodkod [30] is a relational model
�nder which takes these arguments as a �rst-order logic constraint

3

https://scalr-wiki.atlassian.net/wiki/display/docs/Apache
https://scalr-wiki.atlassian.net/wiki/display/docs/Apache
https://www.cloudfoundry.org/
https://www.cloudfoundry.org/
 http://getcloudify.org/

MODELS’18, October 14–19, 2018, Copenhagen, Denmark A. Bha�acharjee, Y. Barve, A.Gokhale and T. Kuroda

Figure 3: �e CloudCAMPWork�ow

in the �nite domains. Engage [16] deploys and manages the appli-
cation from a partial speci�cation using a constraint-based algo-
rithm. Aeolus Blender [11] comprises the con�guration optimizer
Zephyrus [12], the ad-hoc planner Metis [21], and deployment
engine Arnomic. Zephyrus automatically generates an abstract
con�guration of desired system based on partial description. �ey
guarantee meeting all the end-user requirements for so�ware de-
pendencies and provide an optimal solution for a given number
of active virtual machines. In contrast to the use of knowledge
base in CloudCAMP, these e�orts use a CSP solver to transform the
business model. CSP solvers, however, can take signi�cant time to
execute, and moreover, de�ning constraints on the con�gurations
requires expert knowledge of the system.

Similar to CloudCAMP, Hirmer et al. [18] focus on producing
complete TOSCA-compliant topology from users’ partial business
relevant topology. Users have to specify the requirements directly
using de�nitions of the corresponding node types or are added
manually for re�nement. �eir completion engine compares this
speci�cation with target models and combines the missing compo-
nents to make it a fully deployable model, and then the service com-
ponents can be executed in the right order using an OpenTOSCA
toolchain [7]. CELAR [17] combines MDE and TOSCA speci�cation
to automate deployment cloud applications, where topology com-
pletion is ful�lled by requirement and capability analysis on node
template. Unlike these e�orts, the model transformation in Cloud-
CAMP is based on querying the knowledge base and idempotent
infrastructure code generation.

3 CLOUDCAMP DESIGN
�is section delves into the design of CloudCAMP (Figure 3) show-
ing how it meets the requirements discussed in Section 1.2.

3.1 System Architecture and Implementation
To be�er appreciate the CloudCAMP solution presented below,
consider the fundamental requirements outlined earlier where a

deployer needs only specify the application components, such as a
Web App as shown in Figure 4, using intuitive notations provided by
a DSML, and have the DSML transform it into deployable artifacts.
�us, the �rst step is for the user to utilize an intuitive, higher-level
modeling framework that simpli�es the modeling of business logic
and automatically takes care of non-business centric deployment
and management artifacts.

Figure 4: Desired Level of Abstraction for a WebApp Busi-
ness Model

To that end, we have architected CloudCAMP’s cloud-based
service provisioning work�ow as depicted in Figure 3. Below we
explain the roles of the di�erent actors involved:
(1) Business User Modeling: A business application is modeled as

a compendium of di�erent application components where the
user has to select appropriate application component types
from the CloudCAMP application pane to deploy the associated
application code. �e user needs to specify the host types and
the cloud provider on which they want to deploy the application
components, e.g., components in Figure 4.

(2) Con�gurator: �is actor is responsible for transforming each
abstract application component to a cloud automation task (e.g.,
Ansible-speci�c), which is an abstract deployable model for
each application component. A user is required to specify key

4

Automating Cloud Service Deployment and Management
using Model-driven Techniques MODELS’18, October 14–19, 2018, Copenhagen, Denmark

Figure 5: A Partial MOF model of CloudCAMP DSML and Platform

variability points in the model (e.g., the orchestration and con-
�guration tool used). Given such an abstract description of
a cloud application model as an input, the Con�gurator real-
izes the operational mapping between the speci�ed application
components and their a�ributes. �en it uses the work�ow gen-
eration Algorithm 1 from Section 3.3 to query the knowledge
base and �nds all the required dependencies that are needed
based on the selected host type.

(3) Enactor : It generates the infrastructure design work�ow of IAC
solutions by abiding by the business rules and cloud infrastruc-
ture speci�cations. �e orchestration tools execute all the tasks
in proper order to deploy and run the business applications
correctly across cloud providers.

(4) Knowledge Base: A knowledge base is needed for auto-completing
the partially speci�ed deployment models. To that end, we pre-
de�ne the so�ware dependencies for application components in
relational tables and maintain a normalized form with indexing
to make the database easier to use. All the so�ware packages
needed for a particular application component are listed in the
tables, and it is dependent on operating system and its version.
For new application component types, the application devel-
oper needs to populate the tables with all so�ware dependencies
during application development phase.

�e CloudCAMP DSML shown in Figure 5 is developed using
the WebGME MDE framework (www.webgme.org). WebGME is

a cloud-based framework that o�ers an environment for DSML
developers to de�ne their language and create model parsers that
can serve as generators of code artifacts. �e CloudCAMP runtime
platform uses a microservices architecture comprising three ser-
vices: (a) the modeling infrastructure, i.e., the WebGME UI, and
orchestration and automation frameworks forming one service, (b)
the WebGME modeling details are stored in a MongoDB NoSQL
database, and (c) the knowledge base is hosted as a MySQL data-
base service. �e microservices are connected through the API
endpoints and placed behind a HAproxy (h�p://www.haproxy.org/)
load balancer. �us, all the services can independently scale to
support parallel spawning and con�guration of multiple VMs or
containers in the cloud platform.

3.2 CloudCAMP Domain-speci�c Modeling
Language (DSML) Design

�e CloudCAMP DSML abstracts the design complexities by sep-
arating the application from deployment and infrastructure tech-
nologies according to TOSCA speci�cation as described in Require-
ment 1.2.1.

DesignRationale for CloudCAMPDSMLMetamodels: DSMLs
are realized through one or more interrelated metamodels that cap-
ture the DSML’s syntax and semantics. In our case, to transform the
business model to a full-blown deployment model, we needed to
capture various facets of the application and cloud speci�cations in

5

www.webgme.org
http://www.haproxy.org/

MODELS’18, October 14–19, 2018, Copenhagen, Denmark A. Bha�acharjee, Y. Barve, A.Gokhale and T. Kuroda

our metamodel. CloudCAMP’s deployment modeling automation
metamodel was developed by harnessing a combination of (1) re-
verse engineering, (2) dependency mapping across heterogeneous
clouds, (3) dependency mapping across di�erent operating systems
and their versions, (4) semantic mapping, (5) business policy, and
(6) prototyping. Capturing this variability helped to enrich the
expressive power, multi-cloud tool support and interoperability
of the platform. Prototyping and reverse engineering helped to
identify the di�erent application components, cloud and operating
system speci�c endpoints. �e dependent so�ware packages, their
relationship mapping and con�guration templates were realized in
the metamodel by querying the knowledge base. �e set of avail-
able building blocks, requirements, policies, and other information
concerning the implementation of the services and all other known
constraints are pre-de�ned in the high-level application metamodel.

To that end, CloudCAMP provides di�erent node types, which
are application components such as WebApplication, DatabaseAp-
plication, DataAnalyticsApplication, etc., and various cloud providers
such as OpenStack, Amazon, etc. �e goal then is to concretize
the abstract node type by matching the application developers’ de-
sired speci�cation with the pre-de�ned functionalities captured in
the CloudCAMP metamodel. Concretized node templates are then
bound to speci�c cloud provider types, and their VMs and operating
system to create a dependency graph that has to be executed to
deploy the application on the desired target machine.

Snippets of the metamodels for CloudCAMP are shown in the
M1 and M2 level of Figure 5, which are based on the Meta-Object
Facility (MOF) standard provided by Object Management Group
(OMG)2. Using our DSML, the application deployer can con�gure
the node in de�ned cloud platform or particular target system
without providing any deployment or implementation artifacts that
contain code or logic. 3 �e CloudCAMP metamodels are extensible
and reusable, so new component types and platforms can be added
as required in the CloudCAMP metamodel.

Metamodel for the Cloud Platforms: In designing the meta-
model for cloud platforms, we observed (i.e., reverse engineered)
the process of hosting applications across di�erent cloud environ-
ments, and captured all the commonalities and variabilities. �e
speci�cations for di�erent cloud platforms (OpenStack, Amazon
EC2, and Azure) for provisioning virtual machines (VMs) with dif-
ferent operating systems (OS) are captured as the variability. �e
deployer can select a pre-de�ned VM �avor, available networks,
and the available images, all of which are obtained by querying the
speci�c cloud platform to populate our metamodel. �e deployers
can then choose their desired OS images to spawn the VMs/contain-
ers. �ey also must specify their environment �le, the secret key
for the selected cloud host type, which are the endpoints to bind
to a particular cloud provider. Optionally, a pre-deployed machine
can be speci�ed by providing the IP address and OS.

Metamodel for Application Components: For cloud-hosted
services, CloudCAMP provides di�erent node types, which are
application components such as WebApplication, DatabaseAppli-
cation, DataAnalyticsApplication, among others. For instance, the
metamodel enables a deployer to choose the web server a�ribute
2 h�p://www.omg.org/
3Due to space constraints, we do not show detailed screenshots of each metamodel.
�e interested reader can �nd these details in [4].

(e.g., Apache web server), language for the code (e.g., nodeJS or
PHP), and the database server a�ribute (e.g., MySQL or Redis data-
base) from the provided dropdown list. Reverse engineering the
application deployment process, we have captured and included
these metamodeling concepts. �e metamodel has been designed
for extensibility so that in future we can add more application node
types, e.g., stream processing operators that execute on systems
such as Apache Ka�a (h�ps://ka�a.apache.org/).

As an example, we will walk through the speci�cations needed
to be captured for the WebApplication and DBApplication compo-
nent types. As shown in the M0 level of Figure 5, the HTTP servers
for the webEngines are captured in WebApplication component
type, and that is related to the node template for a WebApplica-
tion. �e development languages and frameworks (Node.js, PHP,
Django, etc.) of the webApplication is taken as a�ributes in the
so�ware property as depicted in the M1 level of Figure 5, which is
derived from Application type of M2 level, and our modeling tools
metamodel is shown in M3 level. Similarly, as shown in the M0
level of Figure 5, the so�ware for the database types are captured
in DBApplication component type, and that is related to the node
template for the Database Application. Related features, such as
the user id, password, speci�c binding port number of the Database
application, etc. are stated as a�ributes, which is captured in the
M1 level of the MOF.

De�ning the Relationship among Components: Four rela-
tionship types bind the node types in the metamodel as follows:
(1) ‘hostedOn’ relationship type implies the source node type is

required to be deployed on the destination node type, e.g., Web-
server is hosted on Ubuntu 16.04 in OpenStack.

(2) ‘connectsTo’ relationship type is used for deployment ordering
to relate the source node type’s endpoint to the required target
node type endpoint if they are dependent on each other. �e
node types linked by ‘connectsTo’ can be con�gured in parallel,
but the service at the source node needs to deploy only a�er
starting the target node.

(3) ‘deleteFrom’ connection type de�nes the source node type is
required to be removed from the end node type.

(4) ‘migrateTo’ connection type de�nes the source node type that
is to be migrated to the end node type. �e ’migrateTo’ relation
type cannot be de�ned without a ’deleteFrom’ connection type
to assure correctness of the business model.

Figure 6: �e Entity-Relation(ER) Diagram of CloudCAMP
knowledge base

6

https://kafka.apache.org/

Automating Cloud Service Deployment and Management
using Model-driven Techniques MODELS’18, October 14–19, 2018, Copenhagen, Denmark

3.3 Generative Capabilities of CloudCAMP
DSML

CloudCAMP DSML provides generative capabilities for an IAC
solution by interpreting the instances of models for which it in-
corporates a built-in knowledge base. �e CloudCAMP DSML in
WebGME is built using JavaScript, NodeJS, and a MySQL database.

Knowledge Base for Generation of Infrastructure-as-code
Solution for Deployment: �e ER diagram of the knowledge base
is depicted in Figure 6, and it re�ects the artifact sets stored in the
knowledge base. We have structured it as four tables: os pkg mgr,
os-dependency, packages and swdependency to build the knowledge
base. We store all the operating systems, their distributions, and ver-
sions in the os pkg manager table, and all available application com-
ponent types, e.g., PHP based web application, MySQL based DB
applications, etc. are stored in swdependency table. All the so�ware
packages needed for a particular application type is found using
reverse engineering and stored in the packages table. For exam-
ple, to install the scikit-learn package (h�p://scikit-learn.org), one
needs to install python, python-dev, python-pip, python-numpy,
etc. using apt-manager package, and then the scikit-learn package
can be installed from the pip package manager. In a relational table
called os dependency, we map the so�ware packages and their
versions with operating systems and their versions and store it as
a key-value pair. For instance, to install java8 on Ubuntu 16.04, we
need di�erent packages than to install java8 on Ubuntu14.04. We
build the lookup table manually to handle these variability points.
For new application component types, the application developer
needs to populate the tables with all so�ware dependencies.

CloudCAMP’s generative capabilities are enabled via a WebGME
plugin, which is invoked by a user a�er the modeling process. It
generates and executes IAC as described in Algorithm 1. �e VMs
are spawned in the speci�ed cloud platform based on the destina-
tion of ‘HostedOn’ connection [Lines 8-14]. Wherever possible,
CloudCAMP will ensure that scripts speci�c to provisioning run in
parallel to provide faster deployment. Once the VMs are spawned,
GenerateCon�g() queries the knowledge base to populate appModel
[line17]. Based on the user’s business model speci�cations, Cloud-
CAMP fetches the desired results. �en, the Con�gurator compo-
nent �lls application-speci�c prede�ned con�guration templates
and generates infrastructure code, e.g., Ansible, for speci�c appli-
cation components [line 29-34]. A similar approach is taken to
con�gure the service-speci�c containers.

A sample of the automated SQL script used to query the knowl-
edge base for deployment script generation is shown below:
SELECT pkg . pkg name FROM packages pkg , swdependency dep WHERE
pkg . app id = dep . id AND pkg . apptype = <LANGUAGE> AND pkg . sw id IN
(SELECT app sw id FROM os dependency WHERE o s i d IN
(SELECT id FROM os pkg mgr WHERE
Concat (os type , o s v e r s i o n)=<OS>,<VERSION>))

Determining the Order of Deployment and Execution: �e
Enactor component, which is a NodeJS script, builds the dependency
tree for the application types de�ned in the metamodel and feeds
it to the orchestration work�ow engine. We generate scripts for
automation tools (e.g., Ansible playbooks) for di�erent component
types, and these tools can in turn dispatch tasks to multiple hosts
in parallel. If there is a ‘connectsTo’ relationship in the model, we
let the dependent script complete �rst by de�ning the dependency

Algorithm 1: Deployment Script Generation
1 cloudModel ← Objects to store cloud specs
2 appModel ← Objects to store app specs
3
4 Procedure GenerateIAC()
5 if ConectionType == ‘HostedOn’ then
6 cloudType ← the destination node of connection
7 appType ← the source node of connection
8 if cloudType == ‘Desired Cloud Platform’ then
9 while !cloudModel.empty() do
10 Traverse the cloudModel
11 Fill ‘cloudType’ speci�c API Template
12 Generate ’cloudType’ speci�c work�ow script
13 Execute script to spwan VMs
14 end
15 end
16 IPAddress (es) ← IP Address of target machine
17 GenerateCon�g(IPAddress(es),appType)
18 Check Connection Type among app components
19 if ConectionType == ‘connectsTo’ then
20 Find the source and destination application type
21 Prepare work�ow script to execute destination

script(s) �rst and source script later
22 end
23 end
24
25 Procedure GenerateCon�g()

Input: IPAddress(es) of Application Component Type
26 Create empty Ansible Tree Structure
27 Fill ‘hosts’ with IPAddress(es) of App Component Location
28 if appComponent == ‘Desired Application Type’ then
29 while !appModel.empty() do
30 Traverse the appModel
31 �ery dataBase for appType = ‘appComponent’
32 Fill ‘appType’ speci�c API Templates
33 Create complete Ansible Tree Structure
34 end
35 end
36 Wait for SSH to be enabled in target machine(s)
37 Run work�ow script to execute tasks in parallel

chain [Line 19-22]. All the ‘HostedOn’ dependent building blocks
run in a linear fashion. �us, the Enactor remotely connects to
the deployment hosts and deploys the application in proper order.
�e application deployer can deploy a prede�ned application using
our tool without writing a single line of code and without any
signi�cant domain expertise.

Generation of Infrastructure-as-code for Migration: �e al-
gorithm for generating a migration work�ow (Requirement 1.2.2) is
portrayed in Algorithm 2. �e ‘deleteTo’ connection type speci�es
from where the user wants to move the application components
and a�aches a ‘migrateTo’ connection type to indicate the desti-
nation. �e migrationType (stateless or stateful) must be selected,
and depending on that, CloudCAMP decides to checkpoint applica-
tion state or not before terminating the old VMs/containers [Line
17-23]. �e ‘migrateTo’ relation type cannot be de�ned without
‘deleteFrom’ connection type to ensure correctness of the model.

Although actions are taken for live migration, an application
component from one VM to another depends on the application

7

 http://scikit-learn.org

MODELS’18, October 14–19, 2018, Copenhagen, Denmark A. Bha�acharjee, Y. Barve, A.Gokhale and T. Kuroda

Algorithm 2: Migration Script Generation
1 cloudModel ← Objects to store cloud specs
2 appModel ← Objects to store app specs
3
4 Procedure MigrationIAC()
5 if ConectionType == ‘ deleteFrom’ then
6 cloudType ← the destination node of connection
7 appType ← the source node of connection
8 IPAddress (es) ← IP Address of target machine
9 if cloudType == ‘Desired Cloud Platform’ then
10 Generate ’cloudType’ speci�c work�ow script
11 Execute script to terminate VMs
12 end
13 end
14 if ConectionType == ‘migrateTo’ then
15 GenerateIAC()
16 end
17 if miдrationType == ‘stateless’ then
18 Execute deletion and migration scripts in parallel
19 end
20 else if miдrationType == ‘stateful’ then
21 Checkpoint current application state on old machine
22 Restore checkpoint on the current machine
23 Execute deletion and migration scripts in parallel
24 end

component type, which is a hard problem. For example, live mi-
gration of DBApplication needs two-phase commit protocol, and
consensus algorithm to make it reliable. For the sake of simplicity,
in the Algorithm 2 we generalize our approach. Our future work
will consider more complicated scenarios of live migration and
application consistency and availability issues.

According to Algorithm 2, it will spawn a new VM with the
new operating system for the ‘migrateTo’ destination node. For
Stateful migration, our platform creates a manager node with a load
balancer, and deploy the application on the current node. From
that point of time, load balancer redirects all the new request to
the current node, and it checkpoints the current state of the old
node and restores it in the current node. Finally, it detaches the
load balancer node. �us, it produces the full infrastructure-as-
code solution along with the related con�guration �les. All of
these complete the Ansible layout tree structure helps to migrate
application components from one node to another node.

Additionally, CloudCAMP can also handle continuous delivery
and component addition/deletion, which is just a ma�er of updating
the model with addition or removal of a component. For instance,
to add a new database server, a user extends the model with a
DBApplication node type and ‘connectsTo’ relationships from the
webserver to the database server. CloudCAMP will generate IAC
for the newly added component and executes it to deploy added
component without hampering availability of the existing applica-
tion. Since Ansible is idempotent, it always sets same con�guration
in target environment regardless of their current state.

Constraints checking of Business Models: We also validate
the business model by checking for constraint violations thereby
ensuring that the models are “correct-by-construction.” We verify
the correctness of the endpoint con�gurations for application com-
ponent types, the relationship types, cloud-speci�c types, etc., and

the business model as a whole before generating any infrastructure
code. Examples of some of the constraints are shown below:

• ∀ Applications ∈WebApplication ∃! WebEngine
• ∀ Applications ∈ DBApplication ∃! DBEngine
• ∀ Platform ∈ Openstack ∃! imageName
• ∀ Applications ∈ DataAnalyticsApp ∃ processEngine etc.

�us, we validate the business model by satisfying the con-
straints and notify the user if there are any discrepancies in their
business model.

4 VALIDATION AND EVALUATION OF
CLOUDCAMP PLATFORM

�is section describes results comparing the time and e�ort incurred
in deploying application use cases using (a) manual e�orts, where
the operator must log into each machine and type the commands to
install packages and deploy the applications, (b) manually writing
scripts to deploy these applications, and (c) using the CloudCAMP
framework.

4.1 Case Study 1: LAMP-based Web Service
Deployment User Study

Use Case: prototypical three-tier Linux, Apache, MySQL, and PHP
(LAMP)-based microservice architecture deployment is similar to
the motivating example described in Section 1.1. Figure 7 shows
application topology that illustrates the modeling e�ort in Cloud-
CAMP, where the PHP-based web application needs to be ‘Hoste-
dOn’ on OpenStack platform on Ubuntu 16.04 VM, and the database
service will be deployed on another OpenStack platform on Ubuntu
14.04 VM, and these two tiers must have ‘ConnectsTo’ relationship
between them.

Figure 7: Sample LAMP Application Model

In addition to the structural model as shown, a user must also
supply appropriate parameters to the di�erent model elements. For
instance, for the WebApplication node type, the language for source
code (e.g., PHP) has to be speci�ed as shown in Figure 8a along
with the web server so�ware to be used (e.g., Apache). Likewise,
for the DBApplication node type, a�ributes such as database name,
location, port, user, password, etc. need to be speci�ed as shown
in Figure 8b along with the database system used (e.g., MySQL).
Since we reverse engineer the applications, all endpoints and all
constraints are prede�ned and speci�ed in the metamodel.

8

Automating Cloud Service Deployment and Management
using Model-driven Techniques MODELS’18, October 14–19, 2018, Copenhagen, Denmark

Manual E�ort Rationale : In contrast to CloudCAMP, in a
fully manual e�ort, the users will need to con�gure the �les, create
the handlers to specify the deployment order in the desired host,
log into each host where the application components are deployed
and manually install the packages, con�gure the so�ware packages
and �nally start the di�erent components in the correct order. In
the manual scripting case, the user will �rst incur a signi�cant
learning curve for Automation and Orchestration tools. We expect
that despite improving automation via these tools, the user will still
su�er trial-and-error, which is likely to be ampli�ed for complex
deployment scenarios and hence decrease the productivity.

�antitative Evaluation based on a User Study. We con-
ducted a small user study in a Cloud Computing course for case
study 1 involving sixteen teams of three students each. We measure
both the time taken, and e�orts (a) for a fully manual e�ort, (b)
for writing scripts in Ansible and executing these manually and (c)
using the CloudCAMP framework to deploy the scenario. �es-
tionnaire as shown in Table 1 was created to conduct the survey.
For each question, the students were asked to evaluate on a scale
of 1–10 where 1 is easiest and 10 is hardest.

Table 1: Survey�estionnaire: For Q1–Q3, rate on a scale of
(1-10), where 1 is easiest, 10 is hardest.

Num �estion
Q1 How easy is it to deploy PHPMySQL application manually?
Q2 How easy is it to deploy PHPMySQL using DevOps tool like Ansible?
Q3 How easy is it to deploy PHPMySQL using CloudCAMP?
Q4 How much time and e�ort did you require to deploy the application

manually (in minutes)?
Q5 How much time and e�ort is required in deploying the application using

DevOps tool like Ansible (in minutes)?
Q6 How much time and e�ort is required deploying the application using

CloudCAMP (in minutes)?
Q7 How likely are you to use the CloudCAMP platform to deploy applications

in future?

Responses to Q1, Q2, and Q3: Ease of use: As seen from Fig-
ure 9a, the “ease of use” rating for the CloudCAMP platform is
much higher compared to manual and scripting e�orts. �e me-
dian di�culty in the manual e�ort is rated as 72.2%, and median

(a) (b)

Figure 8: (a) speci�cations related to WebApplication type
and (b) speci�cations related to DBApplication type

di�culty in scripting e�ort is rated as 71.6%, while the median
di�culty rating for CloudCAMP use is 30.9%. �e visual drag and
drop environment helps users to quickly deploy various scenarios
of business application topology in distributed systems.

(a) (b)

Figure 9: (a) Comparing di�culty percentages to deploy ser-
vices in di�erent approaches, (b) Likeliness of using Cloud-
CAMP for future cloud services deployment

Responses to Q4, Q5, and Q6: Time to complete the whole de-
ployment: �e LAMP stack deployment with the provided source
code comprises installing and con�guring PHP, Apache HTTP
server, and MySQL RDBMS. �e average time the students took to
complete the entire deployment process manually is 171 minutes,
and the average time is 516 minutes to script and debug Ansible
code correctly, whereas our rough estimates for students using the
CloudCAMP-based topology creation and deployment will be only
15-20 minutes for the �rst time users. �e average line of code
wri�en for the deployment process is 315 lines as per the survey as
shown in Table 2.

Table 2: For Q5–Q6, median and mean±std.dev for deploy-
ment time, Lines of code written for deployment, migration
time and Lines of code written for migration.

Deployment
Time(mins)

Lines to
Deploy

Migration
Time(mins)

Lines to
Migrate

median 510 300 720 550
mean ±

std.dev
516±244 315±47 653±231 553±142

Response to Q7:As shown in Figure 9b, 65% of the respon-
dents agreed to use CloudCAMP tool to deploy cloud applications
in future, whereas 30% are still unsure. Results from our user
study strengthen our belief that the CloudCAMP platform will be a
very resourceful tool for business application deployers. We have
also conducted a user study specifying to create Docker Contain-
ers[h�ps://www.docker.com/] and deploy the LAMP architecture
inside it using scripting tools and found very similar results. �ere-
fore, the bene�ts of the automation accrued using CloudCAMP can
easily be understood for these use cases.

4.2 Case Study 2: Application Component
Migration for LAMP-based Web Service

CloudCAMP platform also supports application component migra-
tion with ease for which we have two connection types ‘deleteFrom’

9

https://www.docker.com/

MODELS’18, October 14–19, 2018, Copenhagen, Denmark A. Bha�acharjee, Y. Barve, A.Gokhale and T. Kuroda

and ‘migrateTo’. As described in Scenario 1.2.2, suppose the user
wants to migrate the database application component from one
machine to another machine, which resides on di�erent OpenStack
platform. �is assignment was to migrate the ‘stateful’ MySQL
database service from one node to another node, and the students
are asked to add load balancer node to make the service available all
the time. CloudCAMP generates a new work�ow structure based
on the changed user speci�cations as described in Algorithm 2.

Responses to Q4, Q5, and Q6: Time to complete the whole
migration: �e average time the students took to write the scripts
to complete the entire migration process is 653 minutes, with the
median of 720 minutes as shown in Table 2. Whereas our rough
estimates for students, using the CloudCAMP-based topology mi-
gration will be only 10-15 minutes for the �rst time users. �e
average lines of code wri�en for the migration process are 553 lines
as per the survey as shown in Table 2. According to the survey
results, it is reasonable to claim that using CloudCAMP platform
will signi�cantly increase the productivity and e�ciency of the
application deployment and management team.

4.3 Case Study 3: Video Streaming Service
Deployment and Management in
Heterogeneous Environment

Our CloudCAMP GUI environment is capable of provisioning hun-
dreds of machines in parallel based on the user-speci�ed depen-
dency and can deploy, manage, and monitor all the resources by se-
lecting proper application components from the Application panel.

Figure 10: A Realworld Movie Service Provider’s Applica-
tion Components Stack

As a complicated application case study, in Fig. 10, we illustrate
a scenario to aid Video Streaming Service deployment in the het-
erogeneous cloud environment. �e frontend MovieAPIs needs to

be hosted on Amazon EC2, and there will be di�erent databases,
which is MySQL databases, where all data regarding movies, their
genres will be stored in storage hardware, and based on end user’s
selection, a video will be streamed. A load balancer is needed for
the frontends to handle the number of user requests, and the en-
tire user search pa�ern, their likes, and dislikes will be streamed
to a database using stream processing system, e.g., Apache Ka�a.
�e analytics VM needs to be hosted in private OpenStack cloud
for privacy issues. �en from the data store in data analytics VM,
recommendation models need to be trained online using Machine
Learning toolkit, e.g., Apache Spark MlLib and provide a list of rec-
ommended movies to the user. Hosting such a grouped architecture
is complicated, and service providers have to write thousands of
lines of script to do that and to handle the replication strategy more
machines need to deployed which is hidden from Fig. 10 for sim-
plicity. CloudCAMP provides the capability to build infrastructure
through declarative GUI based templates rather than writing thou-
sands of lines of scripts and �guring of the so�ware dependencies.

Moreover, continuous deployment of application components is
relatively straight-forward in ClodCAMP. Suppose, if scikit-learn
so�ware toolkit needs to be deployed for the analytics, the user
needs to drag the application component and specify the location of
the host where he/she wants to deploy the application component.
Migration and deletion are also supported similarly. Based on ball-
park estimation, to architect Video Streaming Service deployment,
IAC will be approx. 500-600 lines of code for each node and an hour
e�ort even for expert users, which can be handled by CloudCAMP
in an automated ‘correct-by-construction’ fashion.

5 CONCLUSIONS
�is paper presented a model-driven approach for an automated,
deployment and management platform for cloud applications. It
aids the application deployer in modeling the service provision-
ing at a higher level of abstraction, and deploy its code without
requiring signi�cant domain expertise and requiring only mini-
mal modeling e�ort and no low-level scripting. Using WebGME
to de�ne the CloudCAMP framework enables us to decouple its
metamodel(s) and knowledge base from the generative aspects and
allows extensibility.

Our future work will involve improving the soundness and ro-
bustness of the models using CSP solvers. We will also add re�ection
features to our framework so that the dynamic changes happen-
ing at the system level will be re�ected back into the design view
level, incremental deployment artifacts can be generated, and sys-
tem changes e�ected. We will perform more user studies on more
complicated scenarios to substantiate our claims.

CloudCAMP is available in open source from h�ps://doc-vu.
github.io/DeploymentAutomation/.

ACKNOWLEDGMENT
�is work was supported in part by NEC Corporation, Kanagawa, Japan
and NSF US Ignite CNS 1531079. Any opinions, �ndings, and conclusions
or recommendations expressed in this material are those of the author(s)
and do not necessarily re�ect views of NEC or NSF.

10

https://doc-vu.github.io/DeploymentAutomation/.
https://doc-vu.github.io/DeploymentAutomation/.

Automating Cloud Service Deployment and Management
using Model-driven Techniques MODELS’18, October 14–19, 2018, Copenhagen, Denmark

REFERENCES
[1] Danilo Ardagna, Elisabe�a Di Ni�o, Giuliano Casale, Dana Petcu, Parastoo

Mohagheghi, Sébastien Mosser, Peter Ma�hews, Anke Gericke, Cyril Ballagny,
Francesco D’Andria, and others. 2012. Modaclouds: A model-driven approach
for the design and execution of applications on multiple clouds. In Proceedings of
the 4th International Workshop on Modeling in So�ware Engineering. IEEE Press,
50–56.

[2] Yogesh Barve, Prithviraj Patil, Anirban Bha�acharjee, and Aniruddha Gokhale.
2017. PADS: Design and Implementation of a Cloud-based, Immersive Learning
Environment for Distributed Systems Algorithms. IEEE Transactions on Emerging
Topics in Computing (2017).

[3] Anirban Bha�acharjee. 2017. MDE-based Automated Provisioning and Manage-
ment of Cloud Applications. (2017).

[4] Anirban Bha�acharjee, Yogesh Barve, Aniruddha Gokhale, and Takayuki Kuroda.
2017. CloudCAMP: A Model-driven Generative Approach for Automating Cloud Ap-
plication Deployment and Management. Technical Report ISIS-17-105. Vanderbilt
University, Nashville, TN, USA.

[5] Anirban Bha�acharjee, Yogesh Barve, Aniruddha Gokhale, and Takayuki Kuroda.
2018. CloudCAMP: A Model-driven Generative Approach for Automating Cloud
Application Deployment and Management. In To Appear in IEEE Services Com-
puting Conference, Work-in-Progress Session.

[6] Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann. 2014. TOSCA:
portable automated deployment and management of cloud applications. In
Advanced Web Services. Springer, 527–549.

[7] Uwe Breitenbucher, Tobias Binz, Kálmán Képes, Oliver Kopp, Frank Leymann,
and Johannes We�inger. 2014. Combining declarative and imperative cloud
application provisioning based on TOSCA. In Cloud Engineering (IC2E), 2014
IEEE International Conference on. IEEE, 87–96.

[8] Uwe Breitenbücher, Tobias Binz, Oliver Kopp, Frank Leymann, and Johannes
We�inger. 2013. Integrated cloud application provisioning: interconnecting
service-centric and script-centric management technologies. In OTM Confed-
erated International Conferences” On the Move to Meaningful Internet Systems”.
Springer, 130–148.

[9] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. 2009. Cloud computing and emerging IT platforms: Vision, hype, and
reality for delivering computing as the 5th utility. Future Generation computer
systems 25, 6 (2009), 599–616.

[10] Jose Carrasco, Javier Cubo, Francisco Durán, and Ernesto Pimentel. 2016. Bidi-
mensional cross-cloud management with TOSCA and Brooklyn. In Cloud Com-
puting (CLOUD), 2016 IEEE 9th International Conference on. IEEE.

[11] Roberto Di Cosmo, Antoine Eiche, Jacopo Mauro, Stefano Zacchiroli, Gianluigi
Zava�aro, and Jakub Zwolakowski. 2015. Automatic Deployment of Services
in the Cloud with Aeolus Blender. In Service-Oriented Computing. Springer,
397–411.

[12] Roberto Di Cosmo, Michael Lienhardt, Ralf Treinen, Stefano Zacchiroli, Jakub
Zwolakowski, Antoine Eiche, and Alexis Agahi. 2014. Automated synthesis
and deployment of cloud applications. In Proceedings of the 29th ACM/IEEE
international conference on Automated so�ware engineering. ACM, 211–222.

[13] Elisabe�a Di Ni�o, Marcos Aurelio Almeida da Silva, Danilo Ardagna, Giuliano
Casale, Ciprian Dorin Craciun, Nicolas Ferry, Victor Muntes, and Arnor Solberg.
2013. Supporting the development and operation of multi-cloud applications:
�e modaclouds approach. In Symbolic and Numeric Algorithms for Scienti�c
Computing (SYNASC), 2013 15th International Symposium on. IEEE, 417–423.

[14] Tamar Eilam, Michael Elder, Alexander V Konstantinou, and Ed Snible. 2011.
Pa�ern-based composite application deployment. In Integrated Network Manage-
ment (IM), 2011 IFIP/IEEE International Symposium on. IEEE, 217–224.

[15] Christoph Fehling, Frank Leymann, Ralph Re�er, David Schumm, and Walter
Schupeck. 2011. An architectural pa�ern language of cloud-based applications.
In Proceedings of the 18th Conference on Pa�ern Languages of Programs. ACM, 2.

[16] Je�rey Fischer, Rupak Majumdar, and Shahram Esmaeilsabzali. 2012. Engage:
a deployment management system. In ACM SIGPLAN Notices, Vol. 47. ACM,
263–274.

[17] Ioannis Giannakopoulos, Nikolaos Papailiou, Christos Mantas, Ioannis Kon-
stantinou, Dimitrios Tsoumakos, and Nectarios Koziris. 2014. CELAR: automated
application elasticity platform. In Big Data (Big Data), 2014 IEEE International
Conference on. IEEE, 23–25.

[18] Pascal Hirmer, Uwe Breitenbücher, Tobias Binz, Frank Leymann, and others.
2014. Automatic Topology Completion of TOSCA-based Cloud Applications.. In
GI-Jahrestagung. 247–258.

[19] Alex Homer, John Sharp, Larry Brader, Masashi Narumoto, and Trent Swanson.
2014. Cloud Design Pa�erns: Prescriptive Architecture Guidance for Cloud
Applications. (2014).

[20] Jez Humble and Joanne Molesky. 2011. Why enterprises must adopt devops to
enable continuous delivery. Cu�er IT Journal 24, 8 (2011), 6.

[21] Tudor A Lascu, Jacopo Mauro, and Gianluigi Zava�aro. 2013. A planning tool sup-
porting the deployment of cloud applications. In Tools with Arti�cial Intelligence
(ICTAI), 2013 IEEE 25th International Conference on. IEEE, 213–220.

[22] Leonardo Leite, Carlos Eduardo Moreira, Daniel Cordeiro, Marco Aurélio Gerosa,
and Fabio Kon. 2014. Deploying large-scale service compositions on the cloud
with the CHOReOS Enactment Engine. In Network Computing and Applications
(NCA), 2014 IEEE 13th International Symposium on. IEEE, 121–128.

[23] Hongbin Lu, Mark Shtern, Bradley Simmons, Meint Smit, and Marin Litoiu.
2013. Pa�ern-based deployment service for next generation clouds. In Services
(SERVICES), 2013 IEEE Ninth World Congress on. IEEE, 464–471.

[24] Miklós Maróti, Tamás Kecskés, Róbert Kereskényi, Brian Broll, Péter Völgyesi,
László Jurácz, Tihamer Levendovszky, and Ákos Lédeczi. 2014. Next Genera-
tion (Meta) Modeling: Web-and Cloud-based Collaborative Tool Infrastructure.
MPM@ MoDELS 1237 (2014), 41–60.

[25] Sanjai Narain, Gary Levin, Sharad Malik, and Vikram Kaul. 2008. Declarative
infrastructure con�guration synthesis and debugging. Journal of Network and
Systems Management 16, 3 (2008), 235–258.

[26] OASIS. 2013. Topology and orchestration speci�cation for cloud applications.
h�p://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf. (2013). OASIS
Standard.

[27] OASIS. 2013. Topology and Orchestration Speci�cation for Cloud Applications
(TOSCA) Primer Version 1.0. h�p://docs.oasis-open.org/tosca/tosca-primer/v1.
0/tosca-primer-v1.0.html. (2013). OASIS.

[28] OASIS. 2013. TOSCA XML schema de�nition. h�p://docs.oasis-open.org/tosca/
TOSCA/v1.0/os/schemas/TOSCA-v1.0.xsd. (2013). OASIS.

[29] Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. 2012. OpenStack:
toward an open-source solution for cloud computing. International Journal of
Computer Applications 55, 3 (2012).

[30] Emina Torlak and Daniel Jackson. 2007. Kodkod: A relational model �nder.
In Tools and Algorithms for the Construction and Analysis of Systems. Springer,
632–647.

11

http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.html
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/schemas/TOSCA-v1.0.xsd
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/schemas/TOSCA-v1.0.xsd

	Abstract
	1 Introduction
	1.1 Motivating the Problem
	1.2 Problem Resolution Requirements
	1.3 Limitations of Existing Approaches
	1.4 Solution Approach
	1.5 Organization of the paper

	2 Related Work
	3 CloudCAMP Design
	3.1 System Architecture and Implementation
	3.2 CloudCAMP Domain-specific Modeling Language (DSML) Design
	3.3 Generative Capabilities of CloudCAMP DSML

	4 VALIDATION AND EVALUATION OF CloudCAMP PLATFORM
	4.1 Case Study 1: LAMP-based Web Service Deployment User Study
	4.2 Case Study 2: Application Component Migration for LAMP-based Web Service
	4.3 Case Study 3: Video Streaming Service Deployment and Management in Heterogeneous Environment

	5 Conclusions
	References

