
Advancing Model Driven Development Education via Collaborative Research

Aniruddha S. Gokhale
Dept. of EECS

Vanderbilt University
Nashville, TN 37235

a.gokhale (at) vanderbilt.edu

Jeff Gray
CIS Department

University of Alabama at Birmingham
Birmingham, AL 35294

gray (at) cis.uab.edu

Abstract

Rapid advances in hardware, networking and soft-
ware technologies are fostering an unprecedented growth
in a number of complex, distributed applications. Time-to-
market pressures and keeping product costs affordable are
the driving forces that seek newer ways to develop these
complex applications rapidly and inexpensively. Signifi-
cant additional challenges result from the need for longer
shelf lives of these applications, which require shield-
ing them from the constant evolution in the underlying
technologies. Model driven development (MDD) is be-
coming the key technology to address these challenges.
Therefore, it is necessary to develop tools and tech-
niques to educate and train the current and next generation
of engineers, scientists and developers in the informa-
tion technology (IT) world. This paper describes the
experience of the authors leveraging their synergistic re-
search in MDD to develop and teach courses in academia
comprising a mix of graduate and undergraduate stu-
dents. The paper also provides a gist of lessons learned
and our planned efforts to integrate MDD more effec-
tively in the curriculum.

1. Introduction

Software development processes are increasingly be-
coming demanding. For example, there is a growing need
for software development organizations to innovate rapidly,
provide capabilities that meet their customer needs, and sus-
tain their competitive advantage. Adding to these demands
are increasing time-to-market pressures, limited software
resources and the need to keep costs down, which often
force organizations to innovate by leveraging existing arti-
facts and resources rather than handcrafting software prod-
ucts from scratch. Product-line architectures (PLAs) [1]
and middleware [16] that hosts these PLAs are promis-
ing technologies for addressing these demands. However,

to meet the runtime functional and systemic (i.e., quality
of service) demands of PLAs and their product variants re-
quires optimizations to the middleware, optimal configura-
tion of the middleware, the right deployment of middleware
artifacts, and possible redeployment and reconfiguration of
the infrastructure in addition to the adaptations in the appli-
cation logic.

Addressing these issues via ad hoc techniques, such as
those based on handcrafting the solutions is tedious, error
prone and costly, while also not providing the means to for-
mally verify the correctness of these approaches. The two
most significant factors leading to these problems are:

• Level of abstraction: The level at which developers
try to address these challenges is usually at a low-level
of abstraction, such as at the level of code using non-
portable platform-specific artifacts. These techniques
not only make the task of addressing the application
concerns extremely cumbersome and error-prone, it
also affects portability and long-term maintenance.

• Crosscutting nature: The different challenges faced
by next-generation IT applications require effective
design and fine tuning, which crosscut multiple layers
of the infrastructure and the application logic. For ex-
ample, adjustments made at one layer of the infrastruc-
ture leads to unforeseen consequences at some other
layer of the infrastructure, or may adversely affect ap-
plication logic.

Therefore, it is necessary for the next-generation of en-
gineers and scientists to be made aware of these challenges
as well as to educate them about the right set of technolo-
gies that can be used to address these challenges. The same
argument holds in training the current IT personnel. Model-
driven development (MDD), which comprises a suite of
(overlapping) technologies, such as domain-specific model-
ing languages (DSMLs) [12], aspect-oriented software de-
velopment (AOSD) [5] and Generative Programming [2],
has emerged as the key technology to address many of the
crosscutting challenges of next-generation IT systems.

This paper describes how the authors have used their
synergistic research activities, which were funded in part by
the DARPA PCES program and recently by an NSF award,
to transition their research into a MDD-related curriculum.
Section 2 presents a brief overview of the synergistic re-
search activities of the authors; Section 3 describes how the
two authors have transitioned their synergistic research ac-
tivities into academia; and Section 4 provides concluding
remarks along with lessons learned and future outlook.

2. Overview of Our MDD Research Activities

This section describes the MDD-specific synergistic re-
search activities at the author’s institutions. Our research
focuses on developing model-driven development tools for
addressing the deployment and configuration-related chal-
lenges of distributed IT systems. In this context, the Van-
derbilt author and his team has developed the CoSMIC [11,
7] MDD tool suite. The University of Alabama at Birm-
ingham (UAB) author and his team has developed the
C-SAW aspect model weaving tool [17], which is used
synergistically with CoSMIC to weave deployment and
configuration-related crosscutting concerns at the modeling
level, as well as for scaling many of the CoSMIC models.
In the following we briefly describe the two tool suites.

2.1. CoSMIC MDD Tool Suite

The Component Synthesis using Model Integrated Com-
puting (CoSMIC) [6] tool suite is an integrated collection of
MDD tools that address the key lifecycle challenges of IT
systems. Figure 1 illustrates CoSMIC’s MDD tool chain.

���������

�	�
������

���������

�������

�����������

���

�

���

�

���

�
����������

���������

����������

����������

��������

��������� ���������

��������� ���������

�����������������

����������

��������

��������� ���������

��������� ���������

����������

��������

��������� ���������

��������� ���������

��
��
�
�

�
��
�
�

���������

��������� ���������

�������������

���������

���������

� �����������

�!
���
�
���

�
�
�

�"
��
��
��
��
��
��

�#���������������������

��������

	���������

�����������

��������

��������

��$%��

�&��������������

��������������'
�

��������

������

�����(��

��
��
��
���

�
�
�
�
�
�
��

�������������

�������������

�
��
�
�
��
�

���
��
��
�

�)�����������'�

����*�������

Figure 1. The CoSMIC MDD Toolsuite

CoSMIC supports modeling of IT system deployment
and configuration capabilities, their quality of service (QoS)
requirements, and adaptation policies used for IT system

QoS management, particularly the real-time systems. The
CoSMIC tools are implemented via domain-specific model-
ing languages (DSMLs) developed using the Generic Mod-
eling Environment (GME) [14], which is a configurable
toolkit for creating domain-specific modeling and program
synthesis environments. CoSMIC uses GME to define the
modeling paradigms (i.e., the syntax and semantics of a
DSML [12]) for each stage of its tool chain. CoSMIC en-
sures that the rules of construction – and the models con-
structed according to these rules – can evolve together over
time. Each CoSMIC tool synthesizes XML-based metadata
that is used by the the CIAO QoS-enabled component mid-
dleware [18].

2.2. C-SAW Aspect Modeling Tool Suite

Our approach to aspect-oriented modeling (AOM) re-
quires a domain-specific modeling weaver that processes
the structured description of a visual model, which is differ-
ent from traditional programming language weavers (e.g.,
the AspectJ weaver [13]) that support better modularization
at a lower level of abstraction by processing source code.

We have designed C-SAW to provide support for modu-
larizing crosscutting modeling concerns in the GME. This
weaver operates on the abstract syntax tree of the model.
To be effective, this weaver also requires the features of an
enhanced constraint language. Standard OCL is strictly a
declarative language for specifying assertions and proper-
ties of UML models. Our need to extend OCL is motivated
by the fact that we require an imperative language for de-
scribing the actual model transformations. We designed a
language called the Embedded Constraint Language (ECL)
to describe model transformations. ECL is an extension of
the OCL and provides many of the common features of
OCL, such as arithmetic operators, logical operators, and
numerous operators on collections (e.g., size, forAll, exists,
select). A unique feature of ECL that is not provided within
OCL, however, is a set of reflective operators for navigat-
ing the hierarchical structure of a model. These operators
can be applied to first class model objects (e.g., a container
model or primitive model element) to obtain reflective in-
formation needed in AOM.

The AOM approach that we have adopted in C-SAW can
be summarized by the diagram in Figure 2. As shown in this
figure, transformations are performed between the source
models and the target models that belong to the same meta-
model. C-SAW weaves additive changes into these source
models to generate the target models relying on transforma-
tion specifications written in ECL.

2

DefinesDefines

MetaModel

Source Model

ECL Transformation

Specifications

Target Model

aspect Start()
{declare componentTypesFolder, implementationArtifactsFoler,
packagesFolder : folder;
componentTypesFolder := rootFolder().addFolder("ComponentTypes",
"ComponentTypes");

….

Aspect

Weaving

Figure 2. C-SAW Aspect Model Weaver
Framework

3. MDD Classroom Education

This section describes how we have transitioned our re-
search on MDD into the classroom.

3.1. Vanderbilt University Activities

This section describes how the Vanderbilt author is using
MDD in his courses. Two of the courses were dedicated to
the enhancement of MDD technology while the others have
applied MDD technology.

3.1.1. Spring 2004 and 2005: MDD Courses The Van-
derbilt author has in the past two years offered two special
topics courses related to the theory and practice in model-
driven development. Each of these courses were open to
both graduate and undergraduate students. These courses
were completely research-driven and used a format similar
to the Paideia style of teaching (www.paideia.org). In
this style of teaching, less emphasis is placed on the didac-
tic aspects of teaching; instead more emphasis is on hands-
on learning, seminar style, projects and discussions.

The Spring 2004 version of the MDD course was of-
fered at a time when the CoSMIC tool suite was in its early
stages of research and development. Our research team was
interested in understanding the deployment and configu-
ration challenges faced by IT systems that use different
kinds of standard middleware solutions like J2EE, .NET
and CORBA. The Paideia style of teaching was helpful in
addressing these challenges. The didactic aspect, which is
a small aspect of the Paideia style, dealt with introducing
the students to the state of the art in MDD. However, the
majority of the emphasis was on hands-on learning, group
projects and class discussions. For example, the students
were divided into project groups with some undergraduates
partnering with graduates. Different groups focused on ei-

ther different middleware solutions or different artifacts of
deployment and configuration for a specific middleware.

The author’s advisees who focused on investigating ad-
ditional dimensions of their research through this course fo-
cused on sharpening the DSMLs and generators in CoS-
MIC. In particular, this included (a) enhancements to the
PICML DSML used for component assembly and pack-
aging, (b) the OCML DSML for modeling the configu-
ration parameters for the middleware, and (c) the BGML
DSML used to synthesize the empirical benchmarks to test
the model-generated configurations and component assem-
blies. Other student groups focused on using the CoSMIC
DSMLs for different case studies for different middleware.
For example, a few student groups applied CoSMIC to an
inventory tracking system (ITS) comprising software com-
ponents for warehouse artifacts, such as forklifts, cranes,
belts and operators.

Throughout the course, student groups would discuss
their experiences with the rest of the class. The course
comprised an end-of-semester student demonstrations that
showcased the use of MDD for deployment and configu-
ration of applications in the context of J2EE, .NET and
CORBA Component Model. Moreover, at the end of the
semester, the student’s contributions on various aspects of
the MDD investigations combined with their research ac-
tivities resulted in four submissions to different conferences
e.g., ACM Middleware, IEEE RTAS, GPCE and OOPSLA
Workshop publications. With the exception of the Middle-
ware conference, all other submissions were accepted.

Building on the tremendous success of the Spring 2004
offering of the MDD course, the Spring 2005 course fo-
cused on investigating the use of MDD techniques for anal-
ysis and performance evaluation of IT systems. In this
course, however, the undergraduates formed their own
groups. We leveraged the Microsoft Windows Chal-
lenge worldwide competition as the means for the under-
graduates to pursue their MDD course contributions. The
graduate students focused on using model-driven analyti-
cal and simulation techniques for performance evaluation
of IT systems.

Based on student feedback from the Spring 2004
semester, in the Spring 2005 offering, the author and the
students used class time until the Spring break (about
half the semester) for hands-on learning of the differ-
ent MDD tools in class. This was very much in tune with
the principles of Paideia and active learning. The tools stud-
ied comprised the Generic Modeling Environment (GME),
Eclipse Modeling Framework (EMF) and a beta ver-
sion of Microsoft Visual Studio 2005, which comprises
the Corona DSL tool suite. In addition to the model-
ing tools, we covered various simulators, such as the NS-2
network simulator and Ptolemy environment, and per-
formance analysis tools using Markov chains, such as

3

WinMVA. The purpose of this effort was to educate the stu-
dents to use MDD tools to synthesize artifacts that can
drive the backend analysis and simulation tools.

The undergraduate student groups used the E-boxes sup-
plied by Microsoft to build custom images of the Windows
CE environment, and applied it to different networked ap-
plications, such as crime “on-site” fingerprint match and
lookup, ski area people tracking, and emergency response
systems. Our experience with undergraduates was that they
had to learn many new tools in one semester and hence
their use of modeling tools was minimal. However, they
attempted to use this collection of tools and provided a
glimpse of how MDD could be utilized in different kinds
of new emerging applications.

In the case of the graduate students, one group of stu-
dents developed a DSML and generator for driving NS-
2 network simulations. Another group developed a DSML
and the associated generators to model Markov models of
systems. Yet another group of students developed MDD
tools for use in autonomic computing (in particular, for En-
terprise Java Beans).

3.1.2. Fall 2004: Applying MDD in Operating Systems
The Vanderbilt author teaches an undergraduate level op-
erating systems (OS) course. In the Fall 2004 offering of
the course, the author decided to integrate MDD principles
into the course. The author’s graduate student advisee was
working on developing a simple model-driven OS simula-
tor called VisualOS. At the time of the class offering, the Vi-
sualOS tool provided a model-driven front end that enabled
students to configure simple memory management strate-
gies, such as first fit and best fit. Virtual memory was not
available at the time. Students were given a programming
assignment that required them to set the desired memory
management strategies. The generative tools within Visua-
lOS synthesized the logic in C++ for the desired strategy.
Students were then given a choice to modify the generated
code. Our experience using VisualOS, student’s feedback
and its object-oriented design will be showcased as a poster
and a demo [10] in the ACM OOPSLA Educator Sympo-
sium in Fall 2005.

3.1.3. Fall 2005: Applying MDD in Computer Networks
With the successful offering of the special topics courses
and the experimentation with using VisualOS in the OS
class, the author plans to use more MDD-related tools and
techniques in teaching computer networks in Fall 2005.
He plans to use the OPNET IT Guru Academic Edition
(www.opnet.com) to use a model-driven simulation en-
gine to teach the fundamental ideas in computer network-
ing. The OPNET IT Guru Edition provides a modeling front
end comprising an embedded DSML that allows users to
configure the type of the network and the desired topolo-
gies. A number of parameters are available to fine tune the

topology, the properties of the synthesized discrete event
simulator, and the result types and their visualization. The
built-in DSML ensures a “correct-by-construction” network
topology and the resulting simulator.

The Vanderbilt author plans to use an active learning ap-
proach by using half of the class time in didactic teaching
of the networking concepts. In the remainder of the time, he
will let students build simulations of the concepts taught in
class and let them make different adjustments to the mod-
els, which will enable them to observe different traits in
computer networking. The author is convinced that this ap-
proach will be very beneficial to understand systems and
networking concepts that are the hallmark of current and
next-generation distributed IT systems. It is expected that
by the time of the symposium, the author will be able to
share his experience using MDD techniques in the network-
ing class. One additional outcome of this approach will en-
able the author to understand the crosscutting concerns that
possibly pervade the realm of networking and network mod-
eling. This will in turn help both the authors refine their
R&D focus.

3.2. Univ. of Alabama at Birmingham Activities

At UAB, principles of MDD have been introduced to
both undergraduate and graduate students. At the under-
graduate level, Honors students have been mentored in a
special course that provides a research experience through-
out the academic year. At the graduate level, Masters and
PhD students have the opportunity to take a course on re-
flective and adaptive software systems to explore concepts
of meta-modeling and DSMLs. The following subsections
describe these two efforts to introduce MDD techniques into
the curriculum at UAB, as well as a description of a future
goal of teaching basic modeling ideas to high school stu-
dents.

3.2.1. Mentoring Honors Undergraduates in MDD Re-
search Over the past two years, the UAB author has men-
tored four Honors undergraduate students in self-directed
research projects that are focused on MDD. In each case,
a pair of students were accepted into a summer research
program sponsored by the National Science Foundation (in
the USA, these are called NSF Research Experiences for
Undergraduates - REUs). These REUs were held on other
university campuses and the research performed during the
summer was not related to modeling. When the students
returned to the UAB campus for the academic year, they
were asked to integrate MDD techniques with the summer
projects.

1. Model-driven generation of Robotics Control Code:
During Summer 2003, two female UAB students were ac-
cepted into a special summer internship at Vanderbilt to

4

learn about techniques to improve the development of em-
bedded systems. Specifically, the students programmed
Lego Mindstorms robots to accomplish various em-
bedded control tasks. When the students returned to
UAB, they were asked to apply advanced modeling tech-
niques to model and synthesize embedded systems.
The motivating problem for the research was the real-
ization that hard-coded software for real-time embed-
ded robotics control systems requires manual adaptation
for each new configuration. In particular, the students de-
veloped domain-specific models that describe the config-
uration and layout of a hazardous environment, which is
symbolically represented as an area contaminated with haz-
ardous materials (e.g., land mines), as well as objects to be
rescued (e.g., babies). The motivation was to model a dis-
aster site that is too dangerous for humans to search for sur-
vivors. From the visual model specifications, model com-
pilers were created to generate the embedded code to
control two robots. The mission of the robots was to tra-
verse the hostile terrain and locate the surviving ba-
bies.

2. Tailoring Mobile Devices from Models: During Sum-
mer 2004, a UAB student served as a summer intern on a
project that investigated application tailoring of mobile de-
vices. Specifically, the student project enabled a restaura-
teur to create an online menu for use on several different
mobile devices. For the summer project, configuration for
the various types of mobile devices was performed through
XML configuration files. However, the XML files were te-
dious to modify and the lower-level of abstraction was a
source of error because domain experts (e.g., the restau-
rant owner) were not comfortable with XML. This project
was a perfect fit for applying MDD to enable platform inde-
pendent specification of the mobile application, with differ-
ent model compilers generating the code needed to execute
the application on different devices. The Honors research
project created a meta-model for specifying application tai-
lorability, as well as necessary model compilers. This pro-
vided a domain-specific modeling environment that allowed
the restaurant owner to specify the essential details that they
wanted to capture in their mobile menu, but in a way that re-
moved them from the accidental complexities of mobile tai-
loring.

This mentoring relation resulted in a grant from the
Computing Research Association for research supporting
women (e.g., the CRA Research Experience for Women
CREW). Two regional conference papers were produced
by these undergraduates at the ACM Southeast Confer-
ence, ACM’s longest running conference (please see [4, 3]).
Additionally, two different students were awarded a top
prize for their presentation of this work at the ACM Mid-
Southeast Conference.

3.2.2. Integrating MIC into a Graduate Course on Re-
flection and Metaprogramming Over the past three years,
the UAB author has taught a graduate level course on adap-
tive and reflective software. A focus of the course is on tech-
niques that support adaptation of software either at compile
or design time (static adaptation), and run-time (dynamic
adaptation). The course covers implementation issues such
as meta-programming, reflection, and AOSD.

After introducing reflection and metaprogramming, the
students are taught modeling issues concerning metamodel-
ing and development of associated model compilers. As a
project for the course, students are provided with a descrip-
tion of a domain and asked to create a DSML for the do-
main, as well as the associated model compilers. Example
projects in the past include: a domain for modeling a finite-
state machine and a Java code generator; a domain for mod-
eling extensions to Petri Nets and an associated C++ code
generator; an entity-relationship modeling tool, along with
a model compiler to generate database definition language
statements.

After the students have constructed a DSML and asso-
ciated instances, the concepts of aspect modeling are pre-
sented along with several examples using C-SAW. As a re-
sult of this course, five doctoral students have chosen MDD-
themed dissertation topics. A Masters thesis has already
been completed as an extension of the modeling ideas cov-
ered in the course.

3.2.3. Future Educational Opportunity: High School
Students and MDD During Summer 2004, the UAB au-
thor sponsored a 7-week summer robotics camp where
high school students programmed Lego Mindstorms Robots
using Java (details are available at http://www.cis.
uab.edu/heritage). This camp was expanded in Sum-
mer 2005 to support six students from the top magnet school
in Alabama (this school was recently ranked by Newsweek
magazine as the fourth best public high school in the USA).
A goal of this outreach is to mentor the high school stu-
dents throughout the year to prepare them for science fair
projects. Through continued mentorship, the students will
be introduced to modeling concepts and asked to adopt a
model-driven approach to their robot project. This will be
similar to the undergraduate Honors experience, but at a
level appropriate for high school students. An experience re-
port will be prepared later to document the ability of these
students to grasp modeling tasks.

4. Conclusions

This paper describes our synergistic research activities
and how we have transitioned them into courses at Vander-
bilt University and the University of Alabama at Birming-
ham. Moreover, our experience using the MDD approach

5

and the tools we developed has helped to explore new di-
mensions of research. In the remainder of this section, we
outline some of the lessons learned over the last two years
teaching MDD and related concepts while conducting re-
search in this area.

4.1. Lessons Learned

After offering the MDD courses and through his R&D
on the CoSMIC MDD tools, the Vanderbilt author came to
the conclusion that students were very happy with the style
of the course offering. However, one thing that became evi-
dent was the wide range of tools available and the learning
curve involved in mastering these tools within one semester.
The result was that it became difficult for some groups (e.g.,
those who did not have prior expertise on the MDD con-
cept) to accomplish major goals.

We have found that students may experience an initial
learning curve with respect to grasping the concepts of
metamodeling. For those students who have enrolled in a
database course prior to the modeling courses, it is easier
to introduce the idea by relating to the correspondence be-
tween a database schema definition (which corresponds to a
metamodel) and the specific extension of the database rep-
resenting the values in database tables at a specific moment
in time (which corresponds to instances of a metamodel).
For those students who have not been exposed to the dis-
tinction between a schema definition and its instances, we
have found it helpful to introduce such students to very sim-
ple metamodels, along with example instances and associ-
ated model interpreters.

For example, the first DSML that we introduce in a
course is a very simple finite state machine (FSM). A sim-
ple FSM metamodel contains less than 5 modeling ele-
ments. From the FSM model, we ask the students to con-
struct an FSM instance representing an automated teller ma-
chine. The FSM example can progress toward an introduc-
tion of model interpreters. During the first introduction, we
typically provide a complete model interpreter for the FSM
example. From this simple example, the students can then
be taught how to use OCL constraints on a metamodel (in
the GME, constraints are evaluated during model construc-
tion). After the students have mastered this simple DSML,
we show them more complex examples representing a Petri
Net and a network configuration modeling language.

¿From the UAB author’s experience, the benefits of
MDD can be better understood by students if they have been
asked first to accomplish similar tasks in a manual manner.
By understanding the accidental complexities that emerge
in configuring and maintaining applications, the benefits of
MDD can be appreciated. This was observed in the Hon-
ors research projects at UAB: students were asked to hard-
code robotics control code and mobile device tailoring and

then make changes to the platform configuration; the ad-
vantage of MDD was more evident when the same students
had a modeling tool to make the same changes rapidly us-
ing a DSML.

The UAB author has also found great benefit from
those graduate students who have enrolled in the model-
ing classes, but have different research areas. Many of the
accidental complexities that are eased by a modeling ap-
proach can also be applied to research problems beyond
the traditional software engineering context. As an ex-
ample, two of the students who attended the adaptive
systems class were from the high performance and sci-
entific computing lab at UAB. They have applied the
modeling techniques from the course into their own dis-
sertation topics, resulting in two journal papers [9, 8]. The
lesson learned from this observance is to realize the bene-
fits in cultivating the collaboration among the students in
other research labs.

At Vanderbilt University, there already is a graduate level
course on Model Integrated Computing (MIC), which is a
form of MDD. Students learn the concept of DSMLs and
model interpreters in the context of the GME environment.
Our recommendation is to teach some of these capabili-
ties at the undergraduate level. As MDD becomes more in-
grained in the development of IT systems, the authors envi-
sion that the concepts of DSMLs and MDD in general will
have to be taught early on in the same spirit as the students
are introduced to programming languages, such as Java.

In the Vanderbilt author’s research, his team faced a
number of challenges dealing with the crosscutting nature
of changes that need to be made at the modeling level and
also numerous challenges related to model scalability. The
synergies between CoSMIC and C-SAW have alleviated
these problems to a large extent.

4.2. Future Outlook

We are working towards broader dissemination of our
experiences and the MDD technologies we have developed
via forums, such as conference tutorials and demos. In con-
junction with another collaborator (Dr. Swapna Gokhale of
the University of Connecticut), we are exploring the use of
MDD technologies for design-time performance analysis of
composable middleware. We have recently been awarded
a one year NSF grant to pursue this research agenda and
are considering the possibility of summer exchange of stu-
dents. As an initial investigation into this new area, we have
developed a DSML that allows a user to model a system us-
ing stochastic reward nets (SRNs) [15] to conduct perfor-
mance analysis of computer systems.

6

References

[1] P. Clements and L. Northrop. Software Product Lines: Prac-
tices and Patterns. Addison-Wesley, Boston, 2002.

[2] K. Czarnecki and U. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, Boston,
2000.

[3] V. Davis, J. Gray, and J. Jones. Generative approaches for ap-
plication tailoring of mobile devices. In Proceedings of the
43rd ACM Southeast Conference, volume 2, pages 237–241,
Kennesaw, GA, March 2005.

[4] R. Dennison, B. Shah, and J. Gray. A model-driven ap-
proach for generating embedded robot navigation control
software. In Proceedings of the 42nd ACM Southeast Con-
ference, pages 332–335, Huntsville, AL, April 2004.

[5] R. Filman, T. Elrad, M. Aksit, and S. Clarke. Aspect-
Oriented Software Development. Addison-Wesley, Reading,
Massachusetts, 2004.

[6] A. Gokhale, K. Balasubramanian, J. Balasubramanian, A. S.
Krishna, G. T. Edwards, G. Deng, E. Turkay, J. Parsons, and
D. C. Schmidt. Model Driven Middleware: A New Paradigm
for Deploying and Provisioning Distributed Real-time and
Embedded Applications. The Journal of Science of Com-
puter Programming: Special Issue on Model Driven Archi-
tecture, 2005.

[7] A. Gokhale, D. C. Schmidt, B. Natarajan, J. Gray, and
N. Wang. Model Driven Middleware. In Q. Mahmoud, edi-
tor, Middleware for Communications, pages 163–187. Wiley
and Sons, New York, 2004.

[8] Z. Guan, F. Hernandez, P. Bangalore, J. Gray, A. Skjellum,
V. Velusamy, and Y. Liu. Grid-flow: A grid-enabled scien-
tific workflow system with a petri net-based interface. Grid
Workflow Special Issue of Concurrency and Computation:
Practice and Experience, 2005.

[9] F. Hernandez, P. Bangalore, J. Gray, Z. Guan, and K. Reilly.
Gauge: Grid automation and generative environment. Grid
Workflow Special Issue of Concurrency and Computation:
Practice and Experience, 2005.

[10] J. H. Hill and A. S. Gokhale. Visual os: An object-oriented
approach to teaching operating system concepts. In ACM
OOPSLA Educator Symposium Poster and Demo Presenta-
tion, San Diego, CA, Oct 2005.

[11] Institute for Software Integrated Systems. Compo-
nent Synthesis using Model Integrated Computing (CoS-
MIC). www.dre.vanderbilt.edu/cosmic, Vanderbilt Univer-
sity, Nashville, TN.

[12] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-
Integrated Development of Embedded Software. Proceed-
ings of the IEEE, 91(1):145–164, Jan. 2003.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented Pro-
gramming. In Proceedings of the 11th European Con-
ference on Object-Oriented Programming, pages 220–242,
June 1997.

[14] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom,
J. Sprinkle, and G. Karsai. Composing Domain-Specific De-
sign Environments. IEEE Computer, pages 44–51, Novem-
ber 2001.

[15] J. Muppala, G. Ciardo, and K. S. Trivedi. Stochastic reward
nets for reliability prediction. Communications in Reliability,
Maintainability and Serviceability: An International Journal
Published by SAE Internationa, 1(2):9–20, July 1994.

[16] R. E. Schantz and D. C. Schmidt. Middleware for Distributed
Systems: Evolving the Common Structure for Network-
centric Applications. In J. Marciniak and G. Telecki, edi-
tors, Encyclopedia of Software Engineering. Wiley & Sons,
New York, 2001.

[17] Software Composition and Modeling (Softcom) Labora-
tory. Constraint-Specification Aspect Weaver (C-SAW).
www.cis.uab.edu/gray/Research/C-SAW, University of Al-
abama at Birmingham, Birmingham, AL.

[18] N. Wang, D. C. Schmidt, A. Gokhale, C. Rodrigues,
B. Natarajan, J. P. Loyall, R. E. Schantz, and C. D. Gill.
QoS-enabled Middleware. In Q. Mahmoud, editor, Middle-
ware for Communications, pages 131–162. Wiley and Sons,
New York, 2004.

7

