Middleware Specialization for Product-Lines using Feature-Oriented
Reverse Engineering

Akshay Dabholkar and Aniruddha Gokhale
Dept. of EECS, Vanderbilt University, Nashville

Abstract

Supporting the varied software feature requirements
of multiple variants of a software product-line while
promoting reuse forces product line engineers to use
general-purpose, feature-rich middleware. However,
each product wvariant now incurs memory footprint
and performance overhead due to the feature-richness
in addition to the increased cost of its testing and
maintenance. To address this tension, this paper
presents FORMS (Feature-Oriented Reverse Engi-
neering for Middleware Specialization), which is a
framework to automatically specialize gemeral-purpose
middleware for product-line variants. FORMS pro-
vides a novel model-based approach to map product-line
variant-specific feature requirements to middleware-
specific features, which in turn are used to reverse en-
gineer middleware source code and transform it to spe-
cialized forms thus resulting into vertical decomposi-
tion. Empirical results evaluating memory footprint
reductions (40%) are presented along with qualitative
evaluations of reduced maintenance efforts and point-
ers to discrepancies in middleware modularization.

Keywords: middleware, specialization, reverse en-
gineering, domain-specific modeling languages, FOP,
features, product-line

1 Introduction

Product-line architectures (PLA) have emerged to
become one of the most widely used paradigms for soft-
ware development in varied domains where common-
ality and variability plays a crucial role in determin-
ing the reusability, flexibility, adaptability, evolvability,
maintainability and quality of service (QoS) provided
by the product variants to the end users. The common-
ality is shared by different products of the product line
whereas variability manifests itself into differentiating
different product variants. The variability may mani-
fest itself in the form of differences in functionality and

configurability, among others.

To support these commonalities and variabilities,
and to maximize reuse, middleware, such as CORBA,
J2EE, and .NET, provides abstraction of complexity
and heterogeneity. These middleware are designed to
be general-purpose, highly flexible and very feature-
rich i.e., they provide rich set of capabilities along with
their configurability to support a wide range of appli-
cation classes in many domains.

Despite the benefits of general-purpose middleware
for a PLA application as a whole, individual product
variants must, however, incur the penalty of excessive
memory footprint and potentially performance over-
head due to the excessive set of features, many of which
may not be needed by the product variant. Addition-
ally, excess set of features results in unwanted testing
and maintenance costs per variant, which is detrimen-
tal to a cost-effective PLA management.

A logical solution to the above-mentioned challenge
is to automate the specialization of general-purpose
middleware for product variants of the PLA applica-
tion. PLA research to date has focused primarily on
application-level details but ignored issues at the mid-
dleware level. Prior that deal with middleware special-
ization have focused on forward engineering based on
composition and stepwise refinement, e.g., AHEAD [2],
CIDE [6], and FOMDD (7], wherein specialized mid-
dleware are built by incrementally refining the source
based on domain requirements.

These prior efforts at specialization do not apply to
contemporary middleware since these middleware are
designed and modularized usually with concern for ex-
tensible class hierarchies alone. Unfortunately, satis-
fying the requirements of product variants of a PLA
application require a modularization of code along do-
main concerns. We call the modularization according
to domain concerns as vertical middleware decomposi-
tion or specialization into feature modules. Since mid-
dleware needs to cater to multiple domains so the mid-
dleware developer focuses more on horizontal decom-

position into layers.

Domain concerns (which we call features) are often
entangled and spread beyond the module (i.e., class
and package) boundaries across multiple modules and
even middleware source. So even if a middleware pack-
ager decides to compose a specialized middleware ver-
sion based on the intended design modularity he/she
still ends up with many excessive features that are not
necessary for the target application.

A promising approach relies on reverse engineer-
ing techniques such as source code analysis since is
is not restricted by module or layer boundaries. To
realize this approach, we present the Feature-Oriented
Reverse Engineering for Middleware Specialization ap-
proach and its resulting framework (FORMS) for refac-
toring general-purpose middleware that can be com-
bined with application-level product line engineering.
FORMS reverse-engineers existing middleware source
code and synthesizes custom versions of middleware
that are composed of only the features required by the
product variants.

FORMS provides a multi-step process that (1) eval-
uates domain requirements using a wizard-driven rea-
soning that maps the platform-independent (PIM) do-
main requirements to a PIM middleware feature model,
(2) subsequently prunes the PIM middleware feature
model into the PLA or product variant specific fea-
ture model using the wizard interpreter tools, (3) deter-
mines which platform-specific (PSM) middleware fea-
tures that are to be directly and indirectly included
in the construction of the specialized middleware, (4)
uses a sophisticated algorithm to synthesize indepen-
dent feature modules corresponding to the pruned mid-
dleware feature model, (5) customizes the build system
and synthesizes libraries for the individual specialized
middleware variants corresponding to the individual
product variants.

The rest of the paper is organized as follows: Sec-
tion 2 discusses the related research efforts and clas-
sifies middleware specialization techniques; Section 3
describes the FORMS approach to middleware special-
ization; Section 4 evaluates the FORMS approach by
checking correctness and calculating footprint reduc-
tion; and finally Section 5 provides concluding remarks
alluding to future research issues and lessons learned.

2 Related Work

We survey and organize related work along two dif-
ferent dimensions: forward engineering and reverse en-
gineering, and the techniques they use to realize these
processes.

Forward Engineering Approaches:

e Feature-oriented programming (FOP) for feature
module construction: Current PLA research is sup-
ported primarily through feature-oriented program-
ming (FOP) techniques as advocated by AHEAD [2],
CIDE [6], and FOMDD [7]. These are based on pro-
cesses that annotate features in source code and cre-
ates feature modules that are essentially fragments of
classes and their collaborations that belong to a fea-
ture. Some efforts in this direction stem from the
identification feature interactions, their dependencies,
granularity and their scope [1].

o Aspect-oriented programming (AOP) for modu-
larizing crosscutting concerns: AOP provides a novel
mechanism to reduce footprint by enabling crosscut-
ting concerns between software modules to be encap-
sulated into user selectable aspects. FACET [4] iden-
tifies the core functionality of a middleware framework
and then codifies all additional functionality into sepa-
rate aspects. To support functionality not found in the
base code, FACET provides a set of features that can
be enabled and combined subject to some dependency
constraints. By using AOP techniques, the code for
each of these features can be weaved at the appropri-
ate place in the base code.

Reverse Engineering Approaches:

e Design Pattern Mining from source: Substantial
research has been performed on discovering design and
architectural patterns from source code [3]. However,
most such techniques are informal and therefore lead
to ambiguity, imprecision and misunderstanding, and
can yield substandard results due to the variations in
pattern implementations. In order to specialize mid-
dleware such design mining techniques need to be well
supported by round-tripping techniques that will en-
able any specializations at design level to reflect back
into the source code.

Since forward engineering techniques focus on fea-
ture identification, static, and dynamic composition,
they rely on strong modular boundaries. However, re-
verse engineering approach like source code analysis
which is the base of FORMS can prove to be beneficial
to identification of features that span module bound-
aries and identify discrepancies in the intended logical
design of the middleware and their physical implemen-
tations.

3 The FORMS approach

This section presents the FORMS approach and the
resulting framework for middleware specialization. We
assume that middleware developers often start devel-

E [
ealare
Definitions

O]

[Middlewhiz=
Options &

[Domam>

to-PIM
Mapping

[bomam>

Features

PSM Source
Hints

m), ®

Feature
Mapper

»
»

Pruned
Middleware
PIM Feature

Model

Configuration

Closure
Computation

PIM-to-PSM
Middleware

Mapping

Specialized
Middleware

L
e
r ,

. Feature
Modules

Synthesizer

Figure 1. FORMS Middleware Specialization Process

oping module code bottom-up based on a design tem-
plate and subsequently create the corresponding build
configurations for their modules through mechanisms
such as Makefiles or Visual Studio Project files.

FORMS is based on reverse engineering and takes a
top-down approach where it identifies the feature mod-
ules within the code base, their dependencies, and then
attempts to map the domain concerns to the feature
modules. Subsequently, based on the selected domain
concerns, it composes the corresponding implementa-
tion feature modules to synthesize the specialized mid-
dleware variant.

In FORMS, we view domain concerns to represent
platform independent feature models (PIM) whereas
middleware platform features represent platform-
specific feature models (PSM). FORMS is built within
a feature-oriented software development (FOSD) envi-
ronment and has a host of associated tools that help
interpretation of these feature models, their transfor-
mations from PIM to PSM and profiling the special-
ized middleware configurations synthesized using the
FORMS tools.

Figure 1 shows an overview of the middleware spe-
cialization process that PLA developers use for their
product variants. We briefly describe the steps in the
FORMS process below:

1. Feature Specification: PLA application developer
starts the middleware specialization wizard and
begins describing the characteristics of the prod-
uct to be developed specifying the domain-level
features needed for the variant.

2. Feature Mapping Wizard: The Feature Map-
ping wizard performs maps the PIM product-
line domain concerns to PIM middleware fea-
tures. The wizard asks questions about the con-
figuration characteristics and options of the prod-
uct for which middleware is to be developed.
These characteristics include distribution features

such as client/server, concurrency features such as
single/multi-threaded, in that order. The selected
features are also configured along the way as they
are selected for composition. The wizard can ask
further fine-grained questions within each individ-
ual coarse-grained feature that is being selected to
exactly configure that feature. The PLA developer
response determines the next question that will be
asked.

Build Configuration: The wizard then creates
build configuration files that contain hints as to
what source files to include in the middleware
build. These files basically identify the starting
points for creating the closure sets of source file
dependencies where no file within a closure has
dependencies on files outside the closure set.
Closure Computation/Feature Module Composi-
tion: Once the hints are obtained they are used to
create closure sets using an algorithm that system-
atically composes the source code and files that are
associated with each feature into a feature module
Product Variant Composition: The feature mod-
ules are then composed into product variants
which map to domain concerns directly.

Build Configuration Specialization: The build con-
figuration is specialized by adding source files from
individual feature modules to the build descriptor
and thereby generating the build configuration file,
such as a Makefile. For our evaluations, FORMS
generates the Make Project Creator (MPC) file
(www.ociweb.com/products/MPC). This MPC file
represents the part of the specialized middleware
that is to be built for the product variant.
Specialized Middleware Synthesis: This MPC file
is then used to create platform-specific make files
using the MPC scripts. The platform-specific
make files are then used to build specialized mid-

dleware for the product line or product variant.

Notice that this process is entirely repeatable and
reusable. A repository of requirements for product
variants can be maintained. There is no need to main-
tain the customized version of the middleware. In the
rest of the section we focus on some of the important
building blocks of FORMS.

3.1 Design of Feature Mapping Wizard

In the PLA development process, FORMS is appli-
cable in the packaging and assembly phases where the
PLA application and variant along with its middleware
is configured and packaged. The requirements reason-
ing wizard performs the difficult job of mapping the
PIM product-line domain concerns to PSM middleware
features.

Domain concerns describe the characteristics of the
product being developed. These characteristics may
include functional concerns as well as non-functional
(QoS) concerns. Functional concerns describe the way
a particular application/product behaves and its con-
figuration. Non-functional concerns usually describe
the way a product is supposed to perform which include
dimensions of concurrency, event processing, protocols,
etc.

Normally, domain concerns and middleware features
manifest themselves into a hierarchial representation.
In order to create a systematic mapping, this wiz-
ard makes use of model transformations to navigate
through the concern and feature hierarchies. Interest-
ingly, both the functional and non-functional concerns
can map within the same middleware feature model.

Feature models of general-purpose middleware as
shown in figure 2 tend to be very complex and huge
and hence very cumbersome to analyze for modular-
ity. Fortunately, the product variants feature sets are
limited, which makes the concerns mapping tangible
within the middleware feature set. This helps us map
known domain concerns to the middleware features in
advance resulting in a m : n correspondence between
the concern model and middleware feature model.

After performing this mapping the pruned middle-
ware PIM feature set is generated that is used to syn-
thesize the specialized middleware for the particular
product variant. We assume that the platform-specific
middleware features to source code mapping is already
performed beforehand by the middleware developer
at design time enabling us to directly determine the
source code that implements the middleware feature
set and hence the domain concerns. The wizard out-
puts the source code hints that act as the starting point
of the closure computation algorithm.

3.2 Discovering Closure Sets

Once the source code hints that directly implement
the domain concerns are determined, their dependen-
cies on other code within the middleware need to be
determined. All such code that is interdependent on
each other is what implements the domain concern.
We call such a set of source files as a closure set in
which there are no source file dependencies going out
of the closure set.

However opening each file on-the-fly and checking
the dependencies is inefficient. Instead we run an ex-
ternal dependency walker tool like Doxygen or Red-
hat Source Navigator to extract out the dependency
tree. We have designed a recursive closure compu-
tation algorithm that walks through the source code
dependency tree and collates the source that is depen-
dent on the feature. We differentiate between feature
definition and feature implementation files. Feature
definition makes it easier to identify and annotate fea-
tures where as feature implementations may differ from
one middleware implementation to another depending
upon the language of implementation.

Algorithm 1 Algorithm for Computing Closure Set
for a product variant

1: M, : Mapping of PSM middleware features to source

: F, : Feature Set for Product Variant p

Cp : Closure set for product p € F),

F4 : Set of features dependent on each feature in F'

Cy : Closure set for feature f € F),

Cy : Closure set for source hint s € Mg

P; : Pending set of feature implementations whose closure set
needs to be calculated

8: Input: F,, M,
9: Output: C, (Initially empty)

10: begin

11: Cp =10

12: for each feature f € F}, do

13: s := FIND source hint from Mj for feature f

14: Cf =

15: Cs:=10

16: Cs := COMPUTE closure for source hint s

17: Cf = Cf U Cy

18: Fy := FIND features dependent on f € Cy

19: P; := FIND new feature implementation files for each feature
in Fd

20: while P;isnotempty do

21: Cy:=0

22: Cs := COMPUTE closure for implementation file i € P;

23: Cy:=CyUCs

24: P; := FIND new feature implementation files for new

source files that were found in the closure computation
25: end while
26: Cp :=Cp,UCy
27: end for
28: return C)
29: end

1. Lines (1-7): The middleware developer provides
the mapping from the PSM middleware features to
the feature definition files in which the features are

Connaction
Management

Request
Demultiplexing

Middleware

| Data Delivery || Communication || Discovery

>

| | Lookup
A

= 3 A Deft
Reactor égﬁ:g{%[| I Mive | | F'arfeu‘t/l:laﬂlng || Synchronous | jf \ jr‘ \
P S i
[TPReactor]| F\Fhlacmr | [TkReacter | ,a‘/ \\‘ /‘, \\‘ j’/ — 7 \\‘ ,"/ A
[callback Model | [Poller Model |

| XiReactor HFGJ(REaCtDF| | QtReactor |

Figure 2. Middleware PIM Feature Model

mapped. Since this is a coarse-grained mapping it
is simpler to designate a set of files for a feature
definition.

2. Lines (10-17): Once these source code hints are
obtained the algorithm computes the closure set
for each of the source code hints. This step pro-
duces even more dependent feature definition files
which automatically form part of the closure set.
Their closure need not be recalculated.

3. Line (18): The previous step gave rise to po-
tentially more dependent feature sets that are not
directly used by the product-line variant. The al-
gorithm identifies the implementation files for the
features in dependent feature sets.

4. Line (19): However the closure for the corre-
sponding feature implementation files may need
to be calculated. These new files form the pend-
ing implementation set and are added to the list of
pending files whose closure needs to be calculated.

5. Lines (20-26): Now the algorithm iteratively cal-
culates closure sets for each feature implementa-
tion file until all the pending implementation files
are accounted for. The closure computation will
always give rise to more feature implementation
files as described in the 2nd step.

3.3 Middleware Composition Synthesis through
Build Specialization

Different middleware use sophisticated techniques to
compile its source code into shared libraries. Some of
these techniques rely on straightforward scripting e.g.,
shell script, batch files, perl scripts, ANT scripts, etc.
while some of them rely on descriptor files such as make
file system, advanced cross-compiler build facilities like
MPC (Make Project Creator), etc. We leverage the
MPC cross-compiler facility since it supports multiple
compilers and IDEs and is therefore more generic and
widely applicable for synthesizing middleware shared
libraries written in different programming languages.

The MPC projects of the general-purpose middle-

ware do not necessarily represent the feature modular-
ization per se. The closure sets are converted into MPC
files for synthesis of the specialized middleware repre-
sented by the closure sets through the respective lan-
guage tools. These MPC files are specialized versions of
the combination of the original MPC files of the general
purpose middleware and are the real representation of
feature modularization in terms of product-line variant
requirements.

4 Evaluation & Future Work

We evaluate FORMS by modeling a product-line
of networked logging applications based on contem-
porary, widely used communication middleware such
as ACE [5]. ACE is a free, open-source, platform-
independent, highly configurable, object-oriented (OO)
framework that implements many core patterns for
concurrent communication software. It enables devel-
oping product variants using various types of com-
munication paradigms such as client-server, peer-to-
peer, event-based, publish-subscribe, etc. Within each
paradigm it supports various models of computation
(MoC) which are highly configurable for different QoS
requirements.

The candidate product-line we have chosen is based
on the client-server paradigm with individual mod-
els conforming to various MoCs including simple, it-
erative, reactive, Thread-per-connection (TPC), real-
time thread-per-connection (RT-TPC) and process-
per-connection (PPC). Each product variant may in
turn have different QoS requirements for event demul-
tiplexing and event handler dispatching, signal han-
dling, service initialization, interprocess communica-
tion, shared memory management, message routing,
dynamic (re)configuration of distributed services, con-
current execution and synchronization.

By creating specialized variants of ACE, FORMS
profiling tools estimate the memory footprint savings,
dependent features, source files that implement the fea-
tures, and exercise unit tests to determine whether
the expected performance is met. We showcase the

Networked Logging Applications PLA Outcome of Closure Computations Synthesized Middleware
Product Variant # of Middleware # of Middleware Size of Closure Static Footprint
(described in Domain Concerns) PIM Features PSM Features Set (PSM files) (KB)
Simple (Iterative) Logging 9 177 502 1,456
Reactive Logging 12 295 502 1,456
Thread Per Connection Logging 11 213 502 1,456
Real-Time Thread Per 12 215 502 1,456
Connection Logging

Process Per Connection Logging 12 193 508 1,500

Table 1. Outcome of applying FORMS to a Product-line of Networked Logging Applications

compile-time metrics that result from middleware spe-
cialization. Our experiments provide interesting in-
sights about the relationship between the number of
middleware features being used and the footprint of the
synthesized middleware. The ACE middleware core to
be specialized is implemented in 1388 source files which
result into a footprint of 2,456 KB. Table 1 shows that
FORMS has achieved significant optimizations - a 64%
reduction in the number of middleware source files used
and a 41% reduction in the middleware footprint. Ta-
ble 1 also shows that the PLA variants share many mid-
dleware PIM features as verified by the almost similar
footprint measurements.

However, the implementing middleware PSM fea-
tures that are being used have substantial variations.
This means general-purpose middleware even though
designed in a modular way, the modularity does not
manifest exactly in the same way in their implementa-
tions in the middleware layers. Since each layer needs
to cater to multiple domains so the middleware devel-
oper focusses more on horizontal decomposition (lay-
ers) rather than vertical decomposition (feature mod-
ules). More specifically after inspecting the individual
product variant generated MPC build configuration,
there were some unused PSM features that percolated
into the feature modules of a product variant.

FORMS can advise middleware developers to cor-
rect their implementation mistakes by breaking un-
wanted dependencies with the middleware modules.
This will help reduce the coupling between the modules
within the middleware layers and minimize the perco-
lation of unused features in feature modules. However
this will not automatically decompose the middleware
along domain concerns. The FORMS will be required
to perform vertical decomposition of the middleware.

Furthermore, the lack of fine granularity of modu-
larization in their design make general-purpose mid-
dleware heavyweight solutions and are a performance
overhead. FORMS needs to tackle the fine-grained
modularity by automatically annotating code and gen-
erating the middleware specialization directives. We
intend to investigate such issues in our future work
by further improving the FORMS tools based on the
anomalies and discrepancies that FORMS can discover.

5 Concluding Remarks

Forward engineering, though systematic and ele-
gant techniques for synthesizing specialized middle-
ware, does not modularize middleware implementa-
tions along domain concerns that are often entangled
and span the conventional modularization boundaries
in middleware. FORMS has shown that reverse engi-
neering techniques based on source code analysis offer a
promising and viable alternative to modularize domain
concerns within middleware code.

Source code analysis techniques tend to be coarse
grained at their best but can provide crucial pointers
to the lack of proper implementation methods by show-
casing the difference between the intended module de-
signs (PSM) and their code implementations (PIM).

References

[1] S. Apel, T. Leich, and G. Saake. Aspectual feature
modules. Software Engineering, IEEE Transactions on,
34(2):162-180, March-April 2008.

[2] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE Transactions on Software
Engineering, 30(6):355-371, 2004.

[3] J. Dong, Y. Zhao, and T. Peng. Architecture and de-
sign pattern discovery techniques - a review. In H. R.
Arabnia and H. Reza, editors, Software Engineering
Research and Practice, pages 621-627. CSREA Press,
2007.

[4] F. Hunleth and R. K. Cytron. Footprint and Fea-
ture Management Using Aspect-oriented Programming
Techniques. In Proceedings of the Joint Conference
on Languages, Compilers and Tools for Embedded Sys-
tems (LCTES 02), pages 38-45, Berlin, Germany, 2002.
ACM Press.

[5] Institute for Software Integrated Systems. The
ADAPTIVE Communication Environment (ACE).
www.dre.vanderbilt.edu/ACE/, Vanderbilt University.

[6] C. Kastner, S. Apel, and M. Kuhlemann. Granularity
in Software Product Lines. In Proceedings of the 30th
international conference on Software engineering, ICSE
08, pages 311-320, New York, NY, USA, 2008. ACM.

[7] S. Trujillo, D. Batory, and O. Diaz. Feature oriented
model driven development: A case study for portlets.
In ICSE ’07: Proceedings of the 29th international con-
ference on Software Engineering, pages 44-53, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

