
Design of a Scalable Reasoning Engine for
Distributed, Real-time and Embedded Systems

James Edmondson1 and Aniruddha Gokhale1

Dept. of EECS, Vanderbilt University, Nashville, TN 37212, USA
Email: {james.r.edmondson,a.gokhale}@vanderbilt.edu

Abstract. Effective and efficient knowledge dissemination and reason-
ing in distributed, real-time, and embedded (DRE) systems remains a
hard problem due to the need for tight time constraints on evaluation
of rules and scalability in dissemination of knowledge events. Limita-
tions in satisfying the tight timing properties stem from the fact that
most knowledge reasoning engines continue to be developed in managed
languages like Java and Lisp, which incur performance overhead in their
interpreters due to wasted precious clock cycles on managed features like
garbage collection and indirection. Limitations in scalable dissemination
stem from the presence of ontologies and blocking network communi-
cations involving connected reasoning agents. This paper addresses the
existing problems with timeliness and scalability in knowledge reasoning
and dissemination by presenting a C++-based knowledge reasoning so-
lution that operates over a distributed and anonymous publish/subscribe
transport mechanism provided by the OMG’s Data Distribution Service
(DDS). Experimental results evaluating the performance of the C++-
based reasoning solution illustrate microsecond-level evaluation laten-
cies, while the use of the DDS publish/subscribe transport illustrates
significant scalability in dissemination of knowledge events while also
tolerating joining and leaving of system entities.
keywords: knowledge reasoning and dissemination; mission-critical sys-
tems; fault tolerance; scalability

1 Introduction

Distributed, real-time and embedded systems (DRE) are characterized by scarce
resources and high demands on what is available. More often than not, DRE sys-
tems are mission-critical systems where decisions on what to disseminate to other
entities in the network must be done within hard deadlines (often in microsec-
onds). Additionally, a deployed DRE system may feature components or agents
that are more important than other entities participating in the network or at
least have tighter deadlines. Systems that feature such configurable priorities,
deadlines, and resource requirements per entity are often called quality-of-service
(QoS)-enabled systems.

There have been recent efforts to incorporate knowledge and reasoning into
QoS-enabled systems [1, 2], but these efforts are not aimed at mission-critical



scenarios, they use proprietary and minimal reasoning, and are implemented in
managed languages like Java. These systems are limited in their support to scale
to thousands of systems, cannot meet microsecond latency requirements, and are
often developed simply as proof-of-concept prototypes or theoretical ideas. Even
highly optimized solutions [3] built on C++ engines like RACERPRO operate
in dozens of millisecond ranges.

Based on our extensive experience testing such DRE systems and the per-
formance bottlenecks observed in meeting the knowledge reasoning demands for
mission-critical QoS-enabled DRE systems, we surmise these limitations to stem
from the following reasons: (1) contemporary knowledge reasoning systems are
often developed using managed languages in which garbage collection, just-in-
time compilation, and other language features tend to cause significantly high
latencies during local reasoning operations – generally in the dozens to hundreds
of milliseconds when inserting new knowledge into the system (or evaluating
new rules); and (2) the dissemination of knowledge between knowledge reasoning
peers in a network continues to rely on transports that do not offer quality-of-
service differentiation (e.g., UDP and TCP), require blocking communication,
and do not scale well to thousands of reasoning peers. Additionally, the current
knowledge reasoning engines that are available do not appear to have options
for fault tolerance due both to node failures and incorrect knowledge.

To address these issues, we have developed the Knowledge and Reasoning
Language Engine (KaRL Engine), which is an open-source knowledge reasoning
and dissemination framework for DRE systems. The design and implementation
of KaRL focuses on delivering (1) microsecond latency for knowledge rule evalua-
tions, (2) low latency in knowledge dissemination across a network, and (3) QoS
mechanisms for fault tolerance, high priority reasoning peers, and knowledge
conflicts.

The rest of this paper is organized as follows. In Section 2.1, we present
a short motivating scenario for a situation where reasoning services in a DRE
system would be appreciated, and then we present our solution in Section 2. We
evaluate our approach in Section 3, and review related literature in Section 4.
We then wrap up the paper with concluding remarks in Section 5.

2 A Framework for QoS-enabled Reasoning Services

This section describes KaRL, which is our solution to provide a real-time and
scalable, distributed knowledge reasoning and dissemination capability. Before
we describe the details of our solution we bring about the key requirements for
such a capability in Section 2.1.

2.1 Eliciting Requirements for Scalable and Real-time Knowledge
Dissemination

We use an example case study to elicit requirements for scalable and real-time
knowledge dissemination for DRE systems. Our case study shown in Figure 1



comprises at least ten components that have been deployed into a network
(dozens could be deployed as failover components, in case the primary compo-
nent fails) and each of these components has dependencies between each other
that must be reasoned out before the component is able to fully load. This is not
an uncommon problem in DRE systems. One component may require services
already be started (like GPS systems, schedulers, etc.) before it may execute its
own logic which depend on those services being available in the network.

Fig. 1. Deployment plan of ten components with dependencies on each other

Each component in our case study has an init method that checks its deploy-
ment dependencies and a run method that is executed after all dependencies
have been met. The run method will contain an arbitrary but important user
program, and the init method may contain user logic in between checking for
our component’s dependencies being met and signalling that our component is
ready to service others.

The scenario requirements can consequently be summarized into the follow-
ing:

1. Mission-critical services depend on this ten-component deployment, and tim-
ing is crucial. Microsecond deadlines exist per component, and the entire
deployment should take milliseconds, including local reasoning and dissemi-
nation across the network.

2. The user needs to be able to insert logic in between the reasoning service
validating that the component’s requirements have been met, and informing
other interested components that this component’s services are now available
(after the user startup logic has been executed).

3. The solution should scale and be configurable to add new components, es-
pecially failover components that can replace faulty mission-critical compo-
nents in the network. Some components are more mission-critical than oth-



ers, and quality-of-service mechanisms should be available for fine-grained
reasoning and dissemination of knowledge support.

Our solution to meet these requirements can be broken into three main vec-
tors of attack. In Section 2.2, we describe a highly optimized reasoning language
and associated reasoning engine mechanisms that we developed to provide an
intuitive abstraction to capture and mutate knowledge for distributed real-time
and embedded systems (Challenge 1 and 2). In Section 2.3, we describe our tech-
niques for further optimization and scalability with a high performance, QoS-
enabled anonymous publish/subscribe transport (Challenge 1 and 3). Finally, in
Section 2.4, we describe the quality-of-service mechanisms like knowledge quality
and domains that address some key reasoning issues introduced in Challenge 3.

2.2 Language and Reasoning Engine Mechanisms

Despite the stringent timing requirements of Challenge 1, we were also interested
in usability of the reasoning middleware. The Knowledge and Reasoning Lan-
guage (KaRL) looks and feels like a modern programming language and allows
complex conditionals and mutations to be constructed with multi-modal knowl-
edge variables and constants. Support is provided for programming in both a
rule-based (e.g., condition => resulting knowledge) and declarative rule pro-
gramming (e.g., condition && resulting knowledge), and KaRL allows for both
local variables (knowledge that will not be disseminated but can be referenced
and mutated by the reasoning agent) and global variables (which will be dessim-
inated to interested reasoning agents).

To evaluate KaRL, we provide several engine mechanisms exposed to C++
programmers via an object-oriented library of function calls. Several mechanisms
are provided that allow for accessing or mutating individual knowledge variables,
interpretating KaRL logics, and providing fine-grained debugging capabilities of
global knowledge state from a C++ executable or library. Each mechanism is
atomically executed, i.e., no outside entities may change the local knowledge
state maintained by the KaRL reasoning engine while the user program is call-
ing these mechanisms, and the library is completely thread-safe. We focus our
discussions on the two chief mechanisms that are required to meet Challenge 2:
evaluate and wait.

The evaluate and wait mechanisms both compile the provided KaRL user
logic into an optimized format and then evaluate the resulting expression tree.
The key difference between the evaluate and wait mechanisms in the KaRL
engine is that an evaluate call evaluates the expression tree only once. In contrast
to evaluate, the wait mechanism will evaluate the expression tree until the result
of the expression tree is non-zero (true). To save precious microseconds on future
evaluations, the expression tree is cached and future evaluations or waits on the
KaRL user logic will not be compiled again. At the end of an evaluate or wait
call, the knowledge state mutations are aggregated into a knowledge event that
is ready to then be disseminated to all interested peer entities.



In a system with periodic nature that needs to run a KaRL logic repeatedly
for an extended period of time, the wait mechanism reduces computation over-
head by limiting the re-evaluation to only when changes have been made to the
global knowledge state. If the same logic is executed with an evaluate mechanism
nested within a for loop, the logic will be evaluated constantly, even if no change
has been made. Consequently, wait should always be preferred in a periodic sys-
tem that synchronously waits until certain predicates are met. Evaluate should
be used when the results of the logic are not critical to the software entity or
there is other work that can be done while waiting for conditions or global state
to change.

We mention these distinctions because our motivating scenario requires both
mechanisms. The wait mechanism is inserted into the top of of the component’s
init function, e.g., component C5 requires components C2, C3, and C7 to be
ready so it calls engine.wait (”C2.ready && C3.ready && C7.ready”). The user
is then allowed to insert their own programming logic for setting up the com-
ponent services and subsequently calls the evaluate mechanism with a global
variable mutation to indicate that the service is ready, e.g., for component C5,
engine.evaluate (”C5.ready = 1”).

After an evaluate or wait call has been made, a tuple of form S(K,V ) is
created to represent the changes to the local state. K is a vector of length n of all
changed knowledge variables and V is a vector of length n of the corresponding
values, where Ki = Vi. With the local state changes aggregated into a tuple
form, we have the first major piece of the knowledge event.

2.3 Dissemination of Knowledge in the KaRL engine

Once a knowledge tuple S has been formed via the KaRL language and reason-
ing engine mechanisms outlined in Section 2.2, the event is almost ready to be
passed to interested reasoning agents. In this section, we discuss the mechanisms
and additional information required to globally order the knowledge events as
well as demonstrate how the anonymous publish/subscribe paradigm is used to
disseminate knowledge to entities within a knowledge domain (a partition of the
networking entities that might be interested in knowledge from this entity).

The tuple S which represents changes to an entity’s local state is now aug-
mented with a Lamport clock time t [4] and a quality q, which is essentially the
priority of the entity to write knowledge to this variable and is explained in more
detail in Section 2.4. The Lamport time mechanism requires each entity to keep
a local counter for each variable (referred to as Vt) in the knowledge base which
represents the time stamp at which the last update occurred to the knowledge
variable. Additionally, an entity Lamport clock c is maintained which is incre-
mented only if the state is changed by a KaRL user logic via a KaRL engine
mechanism call on the local entity (in which case c = c+1) or a knowledge event
arrives which has a more recent Lamport clock time t, in which case c = t. To
clarify this process, we outline the equation for updating the entity clock (c) in
Table 1.



Table 1. Equation for updating an entity’s Lamport clock c

c =

{
c + 1 if E(S,t,q) is a local event
max(c, t) if E(S,t,q) is a remote event

Before a knowledge event of form E(S, t, q) is constructed, the entity clock is
updated according to the equation in Table 1 and then we set t = c. After this
step is completed, E(S, t, q) is formed and the knowledge event is finally ready
to be disseminated across a knowledge domain d. The domain can be set via the
KaRL engine mechanisms to identify partitions of the global knowledge space
that the software entity is interested in.

To facilitate the scalable delivery of knowledge events to entities in the do-
main, we use the OMG Data Distribution Service (DDS) [5]. Specifically, we
provide a configurable transport for both OpenSplice Community Edition, an
open source implementation of the DDS standard, and RTI’s NDDS, a closed
source option.

The anonymous publish/subscribe paradigm used by DDS fits our solution
concept in the following ways. First, DDS allows for us to be host and entity
agnostic because it relies on an anynomous paradigm, which enables a program-
ming model that intrisically supports fault tolerance (Challenge 3) because we
are no longer tied to host/port information and are instead interested in com-
ponents publishing knowledge relevant to our interests. If a sensor or actuator
in a DRE system is tracking a globally recognized knowledge variable, the value
of the variable is essentially more important than where it came from.

Second, with the dynamic nature of DRE systems (e.g., failing and joining
entities), any solution that requires predetermined URI information for connect-
ing ontologies and variables is detrimental to a real-time mission critical system.
Third, many of the features of DDS can be directly mapped to our application
domain of distributed knowledge and reasoning, e.g., DDS domains, for the most
part, directly map to our concept of knowledge domains. Last, these transports
have a history of scaling to thousands of components and data dissemination
latency in microseconds [6, 5]. Consequently, in order to meet the scalability re-
quirements in Challenge 3, we need to add very little overhead via local reasoning
services (preferably low microseconds to nanoseconds) to the low latency of the
DDS transport mechanisms (which are also in the microseconds on local area
networks).

2.4 Quality-of-Service Mechanisms in KaRL

The knowledge event E(S, t, q) has a parameter q, the knowledge event quality,
which indicates the utility of the updates from this software entity, according
to the KaRL logic developer. When forming the q of the knowledge event E,
the KaRL engine aggregates the qualities of all variables in the knowledge event
according to the following equation: q = max(q, S.Vi). By allowing developers



to set quality per knowledge variable or entity on each entity, a KaRL logic
developer can exert fine-grained control over the entity’s knowledge quality on
a per-variable basis. This same mechanism also allows a developer to safely
deploy redundant components from our motivating scenario, the system will
still function properly, and preference may be given to a component running on
the best hardware or one which is running on top of the sensor that knowledge
in the network is based on (e.g. the component is running on a GPS sensor).

Quality always overrides the Lamport clock value to dictate global ordering
(i.e. t is a tiebreaker for q - not the other way around). This caveat means
that regardless of how fast a low quality sensor, actuator, component, etc. is
publishing its knowledge events, a high quality sensor’s data will always be
preferred. We do provide an optional timeout quality-of-service to allow for low
quality knowledge events to eventually overwrite high quality knowledge, if new
updates by high quality knowledge publishers haven’t been received after some
user-provided timeout interval. Wherever possible, we map our quality-of-service
parameters to the DDS transport under the hood without requiring the user to
understand DDS quality-of-service concepts.

Fig. 2. KaRL Architecture

The resulting solution architecture is shown in Figure 2. The Adaptive Com-
munication Environment (ACE, project site at http://www.dre.vanderbilt.edu/ACE)
shown in the diagram is used by the KaRL engine whenever portable operating-
system specific mechanisms are required (e.g. transient threads for receiving
knowledge updates while user application logic is being ran in the main thread
of execution).

3 Evaluating the KaRL Engine

This section empirically evaluates the KaRL reasoning engine to determine if it
is able to support the knowledge reasoning and dissemination requirements of
DRE systems, which include microsecond-level latencies for evaluating knowl-
edge events, and scalability to thousands of system entities. To that end, Sec-
tion 3.1 investigates the KaRL engine’s throughput in interpreting logic. Sec-
tion 3.2 investigates the dissemination latency when using Open Splice DDS as
a transport.

Unless specified otherwise, all experiments were conducted on five IBM blades
with dual core Intel Xeon processors at 2.8 GHZ each and 1 GB of RAM running



Fedora Core 10 Linux. The code was compiled with g++ with level 3 optimiza-
tion, and each test featured a real-time class to elevate OS scheduling priority to
minimize jitter during the test runs. Each test scenario was executed 20 times
to form an average, and then the tests were repeated 10 times. The code for the
test is available via the KaRL project site.

3.1 Knowledge Reasoning Latency

In this series of tests we create KaRL logics that test the KaRL engine’s ability
to process local knowledge without dissemination to test whether or not the en-
gine can support the timing properties (microsecond latencies) of DRE systems.
These tests isolate the latency of the KaRL engine from the network dissemi-
nation latency of the KaRL engine and DDS transport, which are tested in the
next section. The results help to identify the strengths of KaRL to meet the
performance requirements.

Although the performance of the KaRL engine in evaluating one knowledge
rule is a useful metric, we were also interested in timing information for how
efficient KaRL is in handling larger user logics. To test each of these scenarios,
we constructed four total logics. The first is a simple reinforcement (++.var1 )
that is evaluated inside of a C++ for loop 1,000,000 times. The second is a pred-
icate guarded reinforcement (predicate => ++.var1 that is evaluated inside of
a C++ for loop 1,000,000 times. These logics were then expanded into KaRL
logics that performed 10,000 simple reinforcements and predicate guarded re-
inforcements that were evaluated in a C++ for loop 100 times. The results of
these experiments are shown in Table 2.

Table 2. Reasoning Engine Latency

Reinforcement 997 ns
Chained Reinforcement 502 ns
Guarded Reinforcement 1,000 ns
Chained Guard Reinforcement 597 ns

The results indicate that not only can our solution perform reasoning ser-
vices within microsecond deadlines, but the KaRL engine can perform reasoning
services on larger user logics in nanoseconds of time. The specific optimizations
performed here that result in larger user logics performing faster is removing the
function call and compiled expression tree lookup that is performed with every
call to engine.wait or engine.evaluate as described in Section 2.2.

3.2 Dissemination Latencies in KaRL

In this series of tests we create a number of KaRL logics that generate knowledge
events and disseminate them across a local area network to interested reasoning



peers using OpenSplice DDS as the transport. We break down the latencies
experienced as the logic is compiled, evaluated, and disseminated. Our aim is
to investigate how close KaRL is to the native dissemination protocol, which is
an indicator of how much overhead, if any, it imposes on the dissemination and
other latencies. To gauge these latencies, we construct tag-along logics shown in
Table 3.

Table 3. Latency test setups

Process 1 Process 2

P0 == P1 => ++P0 P0 != P1 => P1 = P0

The two tag-along processes modify global knowledge variables and pro-
duce knowledge events for dissemination. The first process changes P0 whenever
P0 == P1. The second process changes P1 whenever P1 ! = P0. Combined to-
gether with the engine.wait mechanism, these KaRL logics create a continuous
system that we can stop after a certain number of logic evaluations. The logics
are evaluated 5k, 25k, 50k, and 100k times and we include the network latencies
obtained via a ping utility to guage the latency added by the KaRL engine and
DDS dissemination transport.

Table 4. Average Latency Results

5k 25k 50k 100k 500k

Ping 114 us 114 us 114 us 114 us 114 us
Dissem 650 us 440 us 437 us 315 us 317 us

Compile 55 us 55 us 55 us 55 us 55 us
Eval 3 us 2 us 3 us 3 us 3 us

The compilation time penalty is only paid once: the first time wait or
evaluate mechanism is called on the KaRL user logic. After the KaRL user
logics are compiled with the wait or evaluation mechanisms, the expression is
cached, and compilation time is reduced to the time it takes to lookup the KaRL
logic in an STL map (part of the C++ standard library), which is a matter of
nanoseconds on modern processors. Thus, after compilation time is reduced to
lookup time, total evaluation latency is linear to the number of operations per-
formed in the compiled expression tree.

Each dissemination latency average includes KaRL logic evaluation latency
because in the dissemination latency we are interested in the time it takes for a
user-provided KaRL logic to be evaluated, and the changes propogated across the
network and received by interested entities. Though we compute dissemination
latency with roundtrip times, we present the one shot time in Table 4 by dividing
the average roundtrip time by 2, since the roundtrip is the result of a knowledge



event going to the subscriber and then returning for 2 total events for a single
latency calculation.

These experiments were repeated twenty times and the average latencies
could deviate by as many as 70 us. Our lowest average latency for 100k and
500k messages hovered at 240 us and our highest was 380 us. We also saw jit-
ter of 30+ us in the ping tests. We believe the majority of this jitter is being
caused by operating system context switching due to I/O operations required
for dissemination. The last important note to make about DDS and the dissem-
ination latency is that this latency scales well to thousands of reasoning peers
because of its reliance on broadcast and multicast paradigms where available
and flexible asynchronous patterns underneath that even handle single-point
communications efficiently on multi-core systems [6, 5].

4 Related Work

In this section we review existing work in reasoning languages and the dissemi-
nation of knowledge between reasoning peers. Most existing knowledge and rea-
soning engines require ontologies and do not support location transparency be-
tween participating entries. For example, DRAGO [7] specifically uses TCP and
HTTP for connection-oriented communications between each reasoning entity.
The SOMEWHERE [8] project is built on P2PIS [9], which creates a network
of peer and variable mappings. DDL [10, 11] is similar to the other technologies
but also provides data aggregation and the specification of incoming and out-
going peer/variable mappings. All of these technologies require users to build
mappings of variables from local variables to other peers by their URIs, do not
temporally order events, and do not distinguish between important and unim-
portant events. In contrast, our solution does not require such peer and variable
mappings, it temporally orders events, is built for real-time systems, and allows
for priorities.

Partition-based Reasonings, such as the High Performance Knowledge Base
(HPKB) [12], allow for variable mappings between logical partitions. The con-
cept of logical partitions is similar to our solution concept of knowledge domains,
which separate the dissemination space and reduce message complexity. The con-
sequence finding algorithm employed in the HPKB is, however, very specific to
modal (i.e., boolean) logic and will result in conflicts when multiple sensors or
actuators are modifying the same variable with different values – an issue that
occurs with multiple sensors informing listeners of target tracking or tempera-
ture. Our solution to these issues involves quality and multi-modal logic, which
is described in Section 2.

Policy management services, such as KAoS [13, 14], are built to work with se-
mantic web languages based on the Web Ontology Language (OWL) [15]. KAoS
essentially provides a policy reasoning engine which can be configured to work
with the semantic variable mappings provided by the OWL standard. Recently,
this type of policy management service was integrated into the Quality-of-service
Enabled Dissemination (QED) project [1, 2], which also uses a publish/subscribe



paradigm. However, the QED infrastructure was designed to disseminate user-
provided data events and not knowledge and reasoning information and does not
globally order events.

Several content-based tools for publish/subscribe ontologies have been cre-
ated including OPS [16] and other Semantic Message Oriented Middleware [17,
18]. All of these tools feature a content-based querying system that forces sub-
scribers to subscribe to all topics, which results in more messages than should be
necessary. Additionally, these systems are typically built to sustain latencies of
1-2 seconds for performing complex queries, parsing complex types like graphs,
or other types of semantic matching operations on content. These technologies
also do not try to enforce temporal consistency (ordering) of events or event
priorities between sensors, actuators, or software entities.

In contrast to these content-based pub/sub ontologies, KaRL allows for query-
ing content through a wait mechanism within a specified domain to reduce mes-
sage complexity and work within time constraints (microseconds) for real-time
systems. Consequently, we use matching on content after subjects (topics) have
been matched. Additionally, we temporally order events and allow for knowl-
edge quality, to specify importance and priority, which these technologies do not
support.

5 Conclusions

In this paper we presented KaRL which was designed to provide knowledge and
reasoning services for distributed, real-time and embedded systems. Included
in these technologies is a flexible, multi-modal grammar for creating knowledge
events. It also includes an infrastructure for globally ordering and setting pri-
orities - called qualities in the KaRL engine - for knowledge events based on
modified knowledge. KaRL uses anonymous publish/subcribe paradigms and
technologies to facilitate knowledge dissemination in a data-centric manner that
scales well. Other transports like UDP and TCP can be supported by extending
well-defined C++ interfaces and involves overriding a total of two functions. Em-
pirical validation of KaRL indicates it supports both the timing and scalability
requirements for knowledge reasoning and dissemination in DRE systems.

The KaRL engine has recently served as the foundation of an automated test-
ing and deployment suite called KATS, which is being used for distributed in-
strumentation and testing of smart phones and services. Ongoing work in KaRL
includes support for other transports, data types and ontologies. KaRL and its
associated tool suite are available in open source from madara.googlecode.com.

References

1. Loyall, J.P., Gillen, M., Paulos, A., Bunch, L., Carvalho, M., Edmondson, J., Varsh-
neya, P., Schmidt, D.C., III, A.M.: Dynamic policy-driven quality of service in
service-oriented systems. In: In Proceedings of the 13th International Sympo-
sium on Object/Component/Service-oriented Real-time Distributed Computing
(ISORC 10. (2010)



2. Loyall, J., Carvalho, M., Schmidt, D., Gillen, M., III, A.M., Bunch, L., Edmondson,
J., Corman, D.: Qos enabled dissemination of managed information objects in a
publish-subscribe-query information broker. In: SPIE Defense Transformation and
Net-Centric Systems. (2009)

3. Kaplunova, A., Möller, R., Wandelt, S., Wessel, M.: Towards scalable instance
retrieval over ontologies. In: Proceedings of the 4th international conference on
Knowledge science, engineering and management. KSEM’10, Berlin, Heidelberg,
Springer-Verlag (2010) 436–448

4. Lamport, L.: Ti clocks, and the ordering of events in a distributed system. Com-
mun. ACM 21 (July 1978) 558–565

5. Pardo-Castellote, G.: OMG data-distribution service: architectural overview. In:
23rd International Conference on Distributed Computing Systems Workshops,
2003. Volume 0. (May 2003) 200–206

6. Xiong, M., Parsons, J., Edmondson, J., Nguyen, H., Schmidt, D.: Evaluating tech-
nologies for tactical information management in net-centric systems. In: Proceed-
ings of the Defense Transformation and Net-Centric Systems conference. (2007)

7. Serafini, L., Tamilin, A.: Drago: Distributed reasoning architecture for the semantic
web. In: Extended Semantic Web Conference. (2005) 361–376

8. Adjiman, P., Chatalic, P., Goasdou, F., c. Rousset, M., Simon, L.: Distributed
reasoning in a peer-to-peer setting. In: In de Mantaras. (2004) 945–946

9. Abdallah, N., Goasdoué, F.: Non-conservative extension of a peer in a p2p inference
system. AI Communications 22 (December 2009) 211–233

10. Serafini, L., Borgida, A., Tamilin, A.: Aspects of distributed and modular ontology
reasoning. In: International Joint Conferences on Artificial Intelligence. (2005)
570–575

11. Borgida, A., Serafini, L.: Distributed description logics: Assimilating information
from peer sources (2003)

12. Amir, E., Mcilraith, S.: Partition-based logical reasoning for first-order and propo-
sitional theories. Artificial Intelligence 162 (2000) 49–88

13. Uszok, A., Bradshaw, J.M., Johnson, M., Jeffers, R., Tate, A., Dalton, J., Aitken,
S.: Kaos policy management for semantic web services. IEEE Intelligent Systems
19 (July 2004) 32–41

14. Tonti, G., Bradshaw, J.M., Jeffers, R., Montanari, R., Suri, N., Uszok, A.: Semantic
web languages for policy representation and reasoning: A comparison of kaos, rei,
and ponder. In: International Semantic Web Conference. (2003) 419–437

15. Horrocks, I., Patel-Schneider, P.F., Harmelen, F.V.: From shiq and rdf to owl: The
making of a web ontology language. Journal of Web Semantics 1 (2003) 2003

16. Wang, J., Jin, B., Li, J.: An ontology-based publish/subscribe system. In Jacobsen,
H.A., ed.: Middleware 2004. Volume 3231 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg (2004) 232–253

17. Petrovic, M., Burcea, I., Jacobsen, H.A.: S-topss: Semantic toronto pub-
lish/subscribe system. In: IN: PROC. OF CONF. ON VERY LARGE DATA
BASES. (2003) 1101–1104

18. Lien, Y.C.N., Wu, W.J.: A lexical database filter for efficient semantic pub-
lish/subscribe message oriented middleware. In: Proceedings of the 2010 Second
International Conference on Computer Engineering and Applications - Volume 02.
ICCEA ’10, Washington, DC, USA, IEEE Computer Society (2010) 154–157


